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A D-Truss-Equivalence Based Index for Community
Search Over Large Directed Graphs
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Abstract—Community Search (CS) aims to enable online and
personalized discovery of communities. Recently, attention to the
CS problem in directed graphs (di-graph) needs to be improved
despite the extensive study conducted on undirected graphs. Nev-
ertheless, the existing studies are plagued by several shortcomings,
e.g., Achieving high-performance CS while ensuring the retrieved
community is cohesive is challenging. This paper uses the D-truss
model to address the limitations of investigating the CS problem
in large di-graphs. We aim to implement millisecond-level D-truss
CS in di-graphs by building a summarized graph index. To cap-
ture the interconnectedness of edges within D-truss communities,
we propose an innovative equivalence relation known as D-truss-
equivalence, which allows us to divide the edges in a di-graph into a
sequence of super nodes (s-nodes). These s-nodes form the D-truss-
equivalence-based index, DEBI, an index structure that preserves
the truss properties and ensures efficient space utilization. Using
DEBI, CS can be performed without time-consuming access to
the original graph. The experiments indicate that our method can
achieve millisecond-level D-truss community query while ensuring
high community quality. In addition, dynamic maintenance of
indexes can also be achieved at a lower cost.

Index Terms—Community search, directed graphs, D-truss, D-
truss-equivalence.

I. INTRODUCTION

OVER the past decade, there has been substantial growth
in the quantity of intricate data that can be depicted and

analyzed through graphs. In real-world network applications,
the potential graphs often showcase inherent community struc-
tures critical in diverse, interconnected processes. As a result,
community detection (CD) [13], [16], [31] has emerged as a
highly researched problem in graph management and analytics.
The primary goal of community detection is to uncover densely
interconnected subgraphs that unveil latent and crucial commu-
nity structures within graphs. CS [9], [14], [19], [27] is a variant
version of the renowned CD that utilizes query nodes for online
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personalized community exploration. This method has been
widely employed in real-world scenarios involving large-scale
graphs, e.g., for any social platform, we can build it into a
network where each user and the relationship between them can
be described as a vertex and edge. We can recommend friends
or push advertisements to a user by searching the community
where the user belongs.

Depending on whether the directionality of edges is con-
sidered, graphs can be divided into two types: undirected [6],
[14], [26] and directed [10], [12], [28]. Correspondingly, the
community structure can be partitioned into communities in
di-graphs and undirected graphs. The difference between the
two is that communities in di-graphs need to consider directional
information such as out-degree and in-degree. In contrast, com-
munities in undirected graphs mainly focus on the interconnec-
tion relationships between nodes. Extensive research has been
dedicated to exploring CS in large graphs, with most studies fo-
cusing on undirected graphs. Nevertheless, di-graphs are typical
in various fields. However, existing CS methods for undirected
graphs cannot be applied to di-graphs. For example, the k-core
method cannot identify the out-degree and in-degree of nodes in
a di-graph, and the k-truss method cannot distinguish different
types of triangles. Some models, e.g., D-core and CF-truss [10],
[28] have been proposed to process the discovery of communities
in di-graphs. However, the D-core model possesses a notable
limitation. For instance, in some graphs, the out-degree and
in-degree of different nodes may vary significantly. It may form
sparse communities when attempting to include these nodes.
CF-truss models the two types of triangles separately, resulting
in a vast community. Its practicality for real-world limited.

Huang et al. [22] have investigated CS in di-graphs using a
D-truss ((kc, kf )-truss) model, which has a solid structure and
cohesiveness. In particular, D-truss incorporates cycle and flow
triangles as fundamental components. Di-graphs can comprise
cycle and flow triangles. The difference between cycle and flow
triangles is whether the interior constitutes a loop. Fig. 1 shows
two types of triangles. In a D-truss, each edge must constitute
cycle (flow) triangles with at least kc (kf ) vertices. Building
upon the D-truss model, they introduced the D-truss CS (DCS)
concept and proved its NP-hardness. To address this problem ef-
ficiently, they devised two algorithms, e.g., iLocal and iGlobal
[22]. Subsequently, they devised the D-truss index to obtain
the maximal D-truss (M-D-truss). Specifically, they present
an algorithm capable of computing all the potential D-trusses
within a di-graph. The outcomes of the D-truss decomposition
were then stored in an index to discover the M-D-truss. Finally,

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on March 20,2025 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9047-7977
https://orcid.org/0009-0007-4272-1673
https://orcid.org/0000-0002-9787-2002
https://orcid.org/0000-0002-0656-0282
https://orcid.org/0000-0001-5224-4048
mailto:aiwei@hnu.edu.cn
mailto:xiecanhao@csuft.edu.cn
mailto:xiecanhao@csuft.edu.cn
mailto:mengtao@hnu.edu.cn
mailto:dujiayi@csuft.edu.cn
mailto:lik@newpaltz.edu
https://github.com/XieCanhao04/DEBI


AI et al.: D-TRUSS-EQUIVALENCE BASED INDEX FOR COMMUNITY SEARCH OVER LARGE DIRECTED GRAPHS 5483

Fig. 1. Different types of triangles in di-graphs. (a) Cycle triangle formed by
vertices A, B, and C. (b) Two flow triangles formed by edges <C, B>, and
nodes A, and A’. (c) After changing the direction of edges <B, C>, we get two
completely different flow triangles.

Fig. 2. Given a query vertex q=“4”, two integers kc=2 and kf=2, we can get
a M-(2, 2)-truss as shown in the gray area. Dashed marks represent the invalid
edge access.

find the optimal solution for the maximum D-truss through
Local and Global. However, iLocal and iGlobal can suffer
two significant limitations: (1) Both Local and Global seek the
optimal solution iteratively, which is time-costly. (2) Inefficiency
of obtaining M-D-truss in the larger graph. On the one hand, if
an edge’s skyline trussnesses (ST) do not meet the requirements,
accessing and checking this edge will become a waste. On
the other hand, for any two vertices connected by a series of
edges with their ST dominate (kc, kf ), they are contained in
the same (kc, kf )-truss community (ST is introduced in Section
IV). However, during the M-D-truss search by the D-truss index,
we need to examine all these edges and their ST. Consider an
example in Fig. 2. We can get a (2, 2)-truss with query vertex
“4” through the D-truss index, as shown in the gray area in Fig.
2. In this process, the algorithm needs to access and operate on
the dashed mark edges and the edges in the gray area. Among
them, the dashed mark edges do not satisfy the condition, so
access and operation on them are invalid. In addition, the edges
in the gray area all have the ST of (2, 2), but the algorithm still
needs to visit and operate each edge, which is undoubtedly very
time-consuming. We can group these edges with shared char-
acteristics into one class and compress them into a super-node
(s-node). In this case, we only need to find the s-nodes that meet
the conditions and decompress them when doing a CS. This
way, we do not need to do the invalid and repeated access and
operation.

To overcome the constraints of previous research, we intro-
duce a novel indexing method for solving the DCS problem. We
chose D-truss as the base community model is affected by its

robust and stable structure. We propose a novel definition called
D-truss-equivalence to obtain the interconnectedness of edges in
D-truss communities. By employing this innovative definition,
we have the capability to divide any di-graph into s-nodes that
maintain the D-truss information. In D-truss-equivalence, we
devise a robust triangle-connectivity constraint: (kc, kf )-triangle
connectivity to ensure the cohesion of the D-truss communities.
Next, we formulate the CS problem using D-truss-equivalence
and develop a D-truss-equivalence-based index, DEBI. Subse-
quently, we present an approach leveraging DEBI to identify
D-truss communities containing the query vertex q effectively.
CS can conduct directly on DEBI. The DEBI evaluation en-
compasses theoretical and experimental analyses to gauge its
quality and performance. Furthermore, DEBI offers formidable
CS capabilities in large-scale graphs. Specifically, our method is
2 to 5 orders of magnitude better than the iLocal and iGlobal,
which also deals with the DCS problem. In addition, Our method
can achieve millisecond-level DCS in di-graph.

We encapsulate the main contributions in this paper:
1) We present a novel definition termed D-truss equivalence

to capture the interconnectedness among edges in D-truss
communities. By employing this innovative concept, any
di-graph can be divided into s-nodes, facilitating efficient
CS.

2) We develop and establish DEBI, an index characterized
by space efficiency and cost-effectiveness. CS can be con-
ducted directly on DEBI, eliminating the need to access
the original graph, representing a theoretically optimal ap-
proach. In addition, we designed a dynamic maintenance
strategy for the index so that the index can be dynamically
updated at a lower cost.

3) We conduct comprehensive experiments on real-world
networks. The results verify that our method has the best
query efficiency, can achieve millisecond-level CS in most
cases, and outperforms most baseline methods regarding
retrieved community quality.

This paper is structured as follows:
Section II presents a comprehensive review of the related

work. Section III illustrates the main ideas of the DCS problem
and their theoretical assessment. Section IV introduces a novel
concept called D-truss-equivalence, the basis for D-truss-based
CS. Section V proposes an index based on D-truss-equivalence
and an index-based method for CS. The experimental findings
are presented in Section VI, while Section VII offers the con-
cluding remarks for this paper.

II. RELATED WORK

Community Detection (CD): Communities are subgraphs in
a network where vertices exhibit dense connections, forming
cohesive groups.Community structure is a general character-
istic found in numerous complex networks, particularly in social
networks [24]. CD aims to identify community structure within
a network [11], [25]. Most traditional techniques are developed
based on statistical inference and machine learning, such as
spectral clustering and statistical inference, which are suitable
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for smaller networks and more straightforward scenarios. How-
ever, Better techniques are needed when dealing with graphs
and their properties, large-scale networks, and high-dimensional
data formed in dynamic environments. Compared with tradi-
tional techniques, deep learning can handle the CD problem
in high-dimensional data situations [3], [4]. Liu et al. [21]
summarized the existing methods from a technical perspective.
However, CD must contend with diverse non-euclidean graph
data among vertex elements, which cannot be handled well by
traditional deep-learning models. Graph neural network [32],
as a neural network for processing graph data, can compensate
for this drawback. Overall, deep learning techniques provide
highly flexible solutions for CD, and their powerful capabilities
can tackle complex and diverse network structures. Therefore,
deep learning is a new trend for CD.

Community Search: It is committed to solving the problem
of discovering the community structure of a particular vertex or
a group of vertices, also known as local DC. More specifically,
when provided with a node q from a graph G, the goal is to
identify all dense subgraphs within G that include vertex q.
Currently, the primary CS methods are divided into methods
based on k-core, k-truss, and k-clique [6], [14], [26]. In par-
ticular, k-core-based CS identifies communities where every
vertex has a degree equal to or greater than k [2], [7]. Some
indexing methods on k-core, such as the Coreness Central-
ity [26] method, divide nodes into different core levels. The
core degree of a node indicates the highest k core level to which
the node belongs. The higher the centrality, the stronger the
centrality of the nodes in the network. Ensuring cohesion within
k-core communities can be challenging. Ensuring cohesion
within k-core communities can be challenging. To address this
limitation and obtain cohesive communities, k-clique has also
been explored for CS [30]. Because of the excessively limiting
characteristics of the clique model, researchers have explored
relaxed variants to address this limitation, such as k-truss [1].
The studies above primarily concentrate on analyzing undirected
graphs.

Recent studies also concentrate on community analysis for di-
graphs, such as D-core, D-truss, and so on [10], [22]. However,
none of these approaches have resulted in cohesive communi-
ties. Recently, D-truss [22] has been proposed, and modeling
communities use cycle and flow triangles [28]. Triangles are
fundamental components for measuring robust and enduring
community relationships. Each edge in a D-truss community
belongs to kc (kf ) cycle (flow) triangles. As a result, the ob-
tained D-truss communities exhibit a high level of cohesion,
supported by strong theoretical guarantees. Moreover, CS has
been explored beyond simple graphs, extending to more intricate
graph types, such as geo-social graphs [5], temporal graphs [20],
weighted graphs [17], multi-valued graphs [18], and attributed
graphs [15].

Graph Summarization [23]: It aims to find a set of concise
hypergraphs or sparse graphs and clarify the primary structural
information or changing trends of the original graphs instead of
the original graph for data analysis. An excellent summarized
graph covers the main structural features of the original graph,
and its nodes are called s-nodes, which represent a set of similar

TABLE I
A PRIMER OF TERMINOLOGIES AND NOTATIONS

vertices in the original graph; its edges are called super-edges(s-
edges), which represent the connection between two node sets.
In [1], the authors built the summarized graph in the undirected
graph, significantly improving the performance of the k-truss
CS. However, this method cannot be applied to di-graphs due to
the directionality of edges in di-graphs. Cosum [33] transforms
RDF (resource description framework) graphs into multi-type
graphs and transforms the entity parsing problem into a multi-
type graph summary problem.

For different application scenarios, different methods may
need to be selected for optimization. To our knowledge, prior
research has yet to investigate the interconnectedness among
edges within D-truss communities, which motivated the devel-
opment of DEBI, as introduced in this paper.

III. PRELIMINARIES

This section presents a comprehensive overview of the fun-
damental concepts associated with the CS problem in di-graphs.
Table I summarizes the key terminologies and notations intro-
duced in this paper.

Definition 1. (Cycle-Support): For an edge e = 〈u, v〉 ∈
EGd

, the cycle-support of e is |{w in VGd
: �C

u,v,w in G}|,
i.e, csupGd

(e).
Definition 2. (Flow-Support): For an edge e= 〈u, v〉 ∈EGd

,
the flow-support of e is |{w in VGd

: �F
u,v,w in Gd}|, i.e,

fsupGd
(e).

Specifically, given an edge e in Gd, the cycle support is the
number of nodes in Gd that can form a cycle triangle with
e, the flow support is the number of nodes in Gd that can
form a flow triangle with e. In addition, we standardized the
naming rules of a specific triangle to avoid ambiguity and we can
intuitively understand the direction of each side inside it through
the standardized name of a specific triangle. Given three nodes,
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A, B, and C, they can form the only cycle triangle, �C
A,B,C ,

which forms a closed loop inside. That is, the edge direction of
the edges inside �C

A,B,C is always fixed. However, A, B, and
C can form multiple flow triangles. For example, two different
flow triangles can be formed by edges {<A, B >, < A, C >, <
B, C >} and {< B, A >, < A, C >, < B, C >}, but the vertices
involved in forming them are all A, B and C. To avoid ambiguity,
we arrange the vertices in the order of decreasing out-degree of
each vertex in a particular flow triangle. Consider an example
in Fig. 1(b), the out-degrees of nodes A, B, and C are 2, 0, and
1, respectively, so we name this flow triangle �F

A,C,B . In the
same way, we name the flow triangle�C

C,B,A′ . In addition, after
changing the direction of edges<B, C>, we get two completely
different flow triangles�F

A,B,C and�F
B,C,A′ .

Definition 3. (D-truss): Given a subgraph Hs ⊆ Gd, Hs is a
D-truss, also called (kc, kf )-truss, if ∀e ∈EHs

, csupHs
(e)≥ kc

and fsupHs
(e) ≥ kf .

Example 2: Consider an example of a di-graph Gd, as dis-
played in Fig. 2. The edge 〈5, 1〉 constitutes one cycle triangles
with vertex “4” in �C

5,1,4 and one flow-triangle in �F
5,1,4, re-

spectively. Hence, csupGd
(〈5, 1〉) = 1 and fsupGd

(〈5, 1〉) = 1.
As the edge 〈11, 3〉 does not participate in any cycle or flow
triangles, csupGd

(〈11, 3〉) = fsupGd
(〈11, 3〉) = 0. The flow and

cycle-support of all edges in the gray area in the graph is greater
than 2. Therefore, the subgraph enclosed within the gray area is
a (2, 2)-truss.

For two nodes u and v in Gd, v → u is used to indicate that
there is a directed path between v and u ∈ Gd. The distance
between v and u ∈ Gd, i.e., distG〈u, v〉, corresponds to the
length of the shortest directed path between v and u ∈ Gd.
distG〈u, v〉 = +∞, if there is not a directed path between
v and u.

Definition 4. (Diameter): The diameter of a di-graph Gd is
maxu,v∈VGd

distGd
〈u, v〉, i.e., diam(Gd).

Based on above definitions, the problem of DCS has been
defined.

Definition 5. (D-Truss CS(DCS)): For a di-graph Gd(VGd
,

EGd
), a query node q ∈ VGd

, and two integers kc and kf , DCS
aims to discover the D-truss H ′S with the minimum diameter
which q belongs.

The reason for considering the minimum diameter is to avoid
the free-rider effect [22] and obtain a strong cohesive com-
munity. Therefore, the minimum diameter is used to eliminate
these vertices. The DCS problem has been proven to be an
NP-hard problem. To solve this, Huang designed two polynomial
2-approximation algorithms, i.e., Global and Local [22], which
found the D-truss community with the shortest query distance
in the M-D-truss.

Definition 6. (Query Distance): The bi-directed distance be-
tween the query node q and a node set V in Gd represents the
distance between them, i,e., distGd

(V , q).
In the iGlobal algorithm, the initial step involves utilizing

the D-truss index to retrieve the M-D-truss encompassing the
query vertex q. Subsequently, it progressively eliminates the
vertex v farthest from the query vertex q through iterative steps.
It preserves the remaining graph as a D-truss if it contains

Algorithm 1: D-Truss Decomposition.
Input: a di-graph Gd = (VGd

, EGd
)

Output: ST of each edge in Gd

1: for each edge e ∈ EG do
2: Calculate csupGd

(e) and fsupGd
(e);

3: kc ← 0; kf ← 0; D(0,0) ← Gd;
4: Le ← ∅;
5: while |Gd| �= 0 do
6: for each edge e = 〈u, v〉 ∈ EGd

do
7: if csupGd

(e) ≤ kc then
8: Le← Le.append(e);
9: while |Le| �= 0 do

10: e = 〈u, v〉 = Le.pop;
11: Gd.remove(e);
12: for each x ∈ N(u) ∪ N(v) do
13: for eN ∈ {〈x, v〉, 〈x, u〉, 〈v, x〉, 〈u, x〉} do
14: Recalculate csupGd

(eN ) and fsupGd
(eN );

15: if csupGd
(eN ) ≤ kc then

16: Le← Le.append(eN );
17: kc ← kc + 1;
18: D(kc,0) ← G;
19: kcmax ← kc;
20: for kc ← 0 to kcmax do
21: Hs ← D(kc,0);
22: while |D(kc,0)| �= 0 do
23: e is the edge with the min{fsupH(e)|e ∈ Hs};
24: kf ← fsupHs

(e);
25: Calculate _ Skyline_Trussness(e, kc, kf );
26: Delete _ Edge(e, kc, kf , Hs);
27: Return {ST(e) | e ∈ EGd

};
Procedure Calculate _ Skyline_Trussness(e, kc, kf )

28: for each trussness (kc0, kf0) ∈ ST(e) do
29: if (kc0, kf0) ≺ (kc, kf ) then
30: ST(e).remove((kc0, kf0));
31: if (kc, kf ) ≺ (kc0, kf0) then
32: Return;
33: ST(e)← ST(e) ∪ {(kc, kf )};
Procedure Delete _ Edge(e, kc, kf , Hs)

34: Delete e = 〈u, v〉 from Hs;
35: for each incident edge eh of u or v do
36: Recalculate csupGd

(eh) and fsupGd
(eh);

37: if csupHs
(eh) < kc or fsupHs

(eh) < kf then
38: Calculate_Skyline_Trussness(e, kc, kf );
39: Delete_Edge(e, kc, kf , Hs);

q and qualifies as a D-truss. The output is determined by
selecting the D-truss with the minimum query distance. Al-
gorithm iGlobal and iLocal takes O(min{kcmax, kfmax} ·
|EGd

|1.5 + t · |EGm
|1.5) and O(min{kcmax, kfmax} · |EGd

|1.5
+ δ · |EGm

|1.5) time, respectively, where EGm
is the M-D-truss

which q belongs, t is the number of iterations incurred, and δ =
min{distGm

(Gm, q), n}. Therefore, it is incapable of efficient
CS in large-scale graphs with iGlobal and iLocal because of its
high time complexity (TC).
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IV. D-TRUSS-EQUIVALENCE

In order to systematically overcome the limitations of cur-
rent approaches, we introduce a novel concept called D-truss-
equivalence. This notion aims to capture the intrinsic relation-
ship among edges that exhibit strong connectivity within a
D-truss community. Consequently, a D-truss-equivalence-based
index, DEBI, can theoretically be constructed to achieve high-
performance CS with sufficient quality assurance. Before pre-
senting our work, we need a step to decompose the di-graph Gd

into a series of D-trusses in advance.
Definition 7. (Edge Trussness): For an edge e ∈ EGd

, (kc,
kf ) is a trussness of e, if e belong to a (kc, kf )-truss, i.e., (kc,
kf ) ∈ T(e).

Definition 8. (Trussness Dominance): For two trussnesses
(k1c , k1f ) and (k2c , k2f ) of an edge e, trussness (k1c , k1f ) dominates
trussness (k2c , k2f ), denoted as (k2c , k2f ) ≺ (k1c , k1f ), if: k1c > k2c
and k1f ≥ k2f ; or (2) k1c ≥ k2c and k1f > k2f .

Note that, if there are two trussnesses (k1c , k1f ) and (k2c , k2f ) of
e, k1c ≥ k2c and k1f ≥ k2f , we donated it as (k2c , k2f ) � (k1c , k1f ).
The core idea of Trussness Dominance is similar to Coreness
Centrality, which divides edges or nodes into different levels.
The higher the level, the stronger the centrality of the edge or
node. The key difference is that the two dimensions are different.
One considers nodes, and the other considers edges.

Definition 9. (Skyline Trussness): For the trussnesses T(e) =
{(k1c , k1f ), (k2c , k2f ),..., (knc , knf )}, the ST of edge e refer to the
trussnesses values that are not dominated by others, i.e., ST(e)
= (kic, kif ) ∈ T(e): not exists (kjc , kjf ) ∈ T(e), s.t., (kic, kif )≺ (kjc ,

kjf ).
Algorithm 1 can be used to compute the ST of edges in Gd.

First, in the initialization process (Lines 1-2), the algorithm
employs the triangle enumeration method to compute the cycle-
support and flow-support of edges in Gd. Second, with kf set
to 0, kcmax (Lines 5-18). Within the computation of a specific
D(kc, 0), the algorithm iteratively eliminates edges with a cycle-
support value lower than kc (Lines 10-17). Third, for all D-
trusses D(kc, 0) with kc varying from 0 to kcmax, the algorithm
identifies the potential ST for each edge within D(kc, 0) (Lines
20-27). Finally, the algorithm outputs the ST of each edge in
EGd

. The TC of Algorithm 1 isO(min{kcmax,kfmax} · |EG|1.5)
and its space complexity (SC) isO(min{kcmax, kfmax} · |EG|).

Example 2: We utilize Algorithm 1 to compute ST for all
edges in the di-graph Gd. The computed results are shown in
Fig. 3, where edges with different ST are depicted with different
line types.

We note edge <‘1’, ‘2’> and edge <‘6’, ‘7’> connected
through a series of edges with skyline trussness equal (2, 2)
belong to the same maximal (2, 2)-truss. However, vertices “1”
and “2” are not closely connected to vertices ‘6’, and ‘7’, and
it is unreasonable to consider them as members of the same
community. Therefore, we define a vital triangle-connectivity
constraint: (kc, kf )-triangle connectivity, to get the cohesive
communities, as follows.

Definition 10. ((kc, kf )-triangle): For a triangle �u,w,v ⊆
Gd, For each constituent edge e of �u,w,v , if there is a T ∈
ST(e), T � (kc, kf ),�uwv is defined as a (kc, kf )-triangle.

Algorithm 2: Summarized Graph Construction.
Input: Gd = (VGd

, EGd
)

Output: Gs = (Vs, Es) of Gd

1: D-Truss Decomposition(Gd);
2: st← ∅;
3: for each e ∈ EGd

do
4: if ∃ T(e) ∈ ST(e) = d then
5: φd ← φd ∪ e; st← st ∪ {d};
6: for each d ∈ st do
7: for each e ∈ φd do
8: φd.e.Lid← ∅; φd.e.visited← False;
9: Id← 0;

10: for each d in st (d is not dominate by others) do
11: while ∃e ∈ φd do
12: e.visited← True; L← ∅;
13: Id← Id + 1;
14: Create a s-node ν with ν.id← Id;
15: Vs ← Vs ∪ {ν};
16: L.append(e);
17: while |L| �= 0 do
18: e〈u, v〉 ← L.pop();
19: if d = (0, 0) then
20: for each id ∈ e.Lid do
21: Es ← Es ∪{〈μ, ν〉} //μ.id = id;
22: foreach incident edge eh of e do
23: if ST(eh) ∩ d = (0, 0) then
24: ProcessEdge1(eh);
25: else
26: ProcessEdge2(eh);
27: φd ← φd - e;
28: if d �= (0, 0) then
29: for each id ∈ e.Lid do
30: Es ← Es ∪{〈μ, ν〉};
31: for each x ∈N(u) ∩ N(v) do
32: for {(e1, e2)|e1 ∈ {〈x, v〉, 〈v, x〉} ∩ EGd

, e2 ∈ {〈x,
u〉, 〈u, x〉} ∩ EGd

} do
33: if d ∈ ST(e1) ∩ ST(e2) then
34: ProcessEdge1(e1);
35: ProcessEdge1(e2);
36: if ∃ τ ∈ ST(e1) � d and ∃ τ ∈ ST(e2) � d then
37: ProcessEdge2(e1);
38: ProcessEdge2(e2);
39: φd ← φd - e; ST(e)← ST(e) - d
40: if |ST(e)| = 0 then
41: EGd

← EGd
- e

42: st← st - d;
43: Return Gs = (Vs, Es)

Procedure ProcessEdge1(e):
44: if φd.e.visited = False then
45: φd.e.visited = True;
46: L.append(e);

Procedure ProcessEdge2(e):
47: if Id /∈ φd.e.Lid then
48: (e).Lid ← φd.e.Lid ∪ {Id}

Definition 11. ((kc, kf )-triangle connectivity): For two (kc,
kf )-triangles �1 and �2 in Gd, they are (kc, kf )-triangle

connected, i.e.,�1
(kc,kf )←→ �2, if�1 and�2 can be connected

through a series of (kc, kf )-triangles, and for every edge ec
common to two adjacent triangles, ∃ T(ec) ∈ ST(ec), T(ec) =
(kc, kf ).
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Fig. 3. The ST of edges in Gd. The trussness of edge e represents the number
of flow triangles kc and the number of cycle triangles kf that can be formed
with e in Gd. Edges with different ST are illustrated in different line types.

Example 3: For the di-graph Gd depicted in Fig. 3, and two
(0, 3)-triangles �F

7,8,9 and �F
10,6,9. They are (0, 3)-triangle

connected as there is a (0, 3)-triangles�F
6,7,9, such that�F

10,6,9

∩ �F
6,7,9 = {〈7, 9〉}, �F

6,7,9 ∩ �F
10,6,9 = {〈6, 9〉}, and for all

these edges, there exists a T(e) ∈ ST(e), T(e) = (0, 3). However,
the two (2, 2)-triangles�F

4,5,6 and�F
1,2,3 are not (2, 2)-triangle

connected, Because neither�C
1,4,5 nor�F

1,4,5 is a (2, 2)-triangle.
Similarly, given two edges e1, e2 ∈ EGd

, they are (kc, kf )-

triangle connected, i.e., e1
(kc,kf )←→ e2, if e1 and e2 contained in

a same (kc, kf )-triangle, or e1 ∈ �1, e2 ∈ �2, s.t �1
(kc,kf )←→

�2. Based on the above prior knowledge, we proposed a new
relation called D-truss equivalence, defined on the set of edges
EGd

, as follows:
Definition 12. (D-truss-equivalence (Also called (kc, kf )-

truss-equivalence)): Given two edges e1, e2 ∈EGd
, they are (kc,

kf )-truss equivalent(kc �= 0 or kf �= 0), denoted as e1
(kc,kf )⇐⇒ e2,

if and only if (kc, kf ) ∈ ST(e1) ∩ ST(e2) and e1
(kc,kf )←→ e2.

It is important to note that any two edges inEGd
with ST(0, 0)

are (kc, kf )-truss equivalent if they are connected through edges
with ST(0, 0).

Definition 13. (D-Truss-Equivalence-Based CS): For a di-
graph Gd(VGd

, EGd
), a query node q ∈ VGd

, and two integers
kc and kf , the D-Truss-Equivalence-Based CS is to discovery
all subgraphs Hs ⊆ Gd satisfying:

1) q ∈ VGd
;

2) Hs is a (kc, kf )-truss;
3) Every edge in Hs are (kc, kf )-triangle connective.

V. D-TRUSS EQUIVALENCE BASED INDEX

Based on D-truss-equivalence, we devise and construct a
graph-structured index, DEBI, that supports CS with theoret-
ically optimal performance.

A. Index Design and Construction

Utilizing the concept of D-truss equivalence, we partition
all edges of di-graph Gd into a series of equivalence classes.
Furthermore, we have developed a D-truss-equivalence-based
index, DEBI. Our main idea is to use D-truss equivalence to

di-graph Gd to build a summarized graph that preserves the ST
information of edges and the adjacency information of vertices in
di-graph Gd. Afterward, the weighted index, DEBI, is obtained
by building a maximum-spanning tree.

First, we build the summarized graph Gs = (Vs, Es) to
preserve the ST information of the di-graph Gd. Vs represents
a set of s-nodes, while Es represents a set of s-edges. Each
s-node ν ∈ Vs corresponds to a distinct equivalence class Ce.
The s-edges, i.e., (μ, ν) ∈ Es, capture the connections between
s-nodes, representing the relationships between D-truss commu-
nities.

Example 4: The DEBI of the di-graphGd (Fig. 2) is presented
in Fig. 4(c). It contains six s-nodes, which means 6 D-truss
equivalence classes. For example, the s-node ν5 represents a
(3, 0)-truss community of 11 edges. These edges exhibit (3,
0)-triangle connectivity and share the same ST value of (3, 0). In
addition, eight s-edges in DEBI depict the triangle connectivity
between s-nodes, representing the relationships between D-truss
communities.

We construct the summarized graph for a di-graph Gd based
on D-truss equivalence in Algorithm 2. First, we invokes Algo-
rithm 1 to get the ST for edges inEGd

(Line 1). Then, we reassign
edges to a distinct set Φd based on their ST, and we record all
ST values in the variable st. (Lines 2-5). For an edge e ∈ Φd,
we maintain two auxiliary data structures: one is visited, used to
indicate whether the edge e an edge e has been processed during
index building. It is initially set to False (Line 8). The other
is Lid, which is a collection of s-node tokens, with each token
associated with an s-node that has been explored in the past,
denoted as μ, where T(μ) does not dominate d, i.e., d� T(μ), μ
is connected to the current s-node ν, T(ν) = d. The set Φd.e.Lid

is initialized as an empty set. (Line 8). When a value d is present
in st and is not dominated by others, the algorithm then examines
edges in Φd (Lines 10-39). When an edge e ∈ Φd is selected, a
new s-node ν will be set to represent the equivalence class of e
(Lines 11-15). When d= (0, 0), by exploring the incident edges
of edge e, we identify all edges that share D-truss equivalence
with e and append them to the s-node ν (Lines 23-27). When
d �= (0, 0), the algorithm explores the incident (kc, kf )-triangles
of edge e to identify all edges that share D-truss equivalence with
e. Subsequently, these edges are added to the s-node ν (Lines
31-39). Throughout the exploration process, we also check for
the existence of an s-nodeμ inφd.e.Lid that meets the conditions
T(ν) � T(μ) and μ is triangle-connected to ν through edge e.
Upon finding such an s-nodeμ, a new s-edge (μ, ν) is established
in the index (Lines 29-30). Given any incident triangle of e, and
the other two edges of the triangle e1 and e2, if exist a τ in
ST(e1), τ � d and exist a τ in ST(e2), τ � d, the identifier of
the current s-node ν will be associated with e1 and e2 because ν
is triangle-connected to the s-node μ, which e1 and e2 belong.
Moreover, a s-edge (μ, ν) will be created when eh is visited
(Lines 45-46). Once e and all its incident triangles have been
examined, e is deleted from Φk (Line 27 or 39) to ensure that
each edge e in Φd belongs to at most one s-node.

Complexity Analysis: In Algorithm 2. The D-truss decom-
position takes O(min{kcmax, kfmax} · E1.5

Gd
) time. For lines

12-37, considering an edge e ∈ EGd
, and e belongs to n sets
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Fig. 4. The process of build the summarized graph. (a) Compute ST for edges e ∈ EGd
and divide di-graph Gd into equivalence classes. (b) Each s-node

represents an equivalence class. (c) Construct the summarized graph of Gd. Each s-edge illustrates the connections relationship between s-nodes.

Algorithm 3: DEBI Construction.
Input: Gs = (Vs, Es)
Output: G′s = (V ′s , E ′s)
1: W ← ∅;
2: for each 〈μ, ν〉 ∈ Es do
3: w(〈μ, ν〉) = (min{kc(T(μ)), kc(T(ν))},

min{kf (T(μ)), kf (T(ν))});
4: W ←W ∪ w(〈μ, ν〉);
5: Gs = Vs;
6: for each w ∈W (w is not dominated by any others)do
7: Sw ←{〈μ, ν〉}|〈μ, ν〉 ∈ Es, w(〈μ, ν〉) = w};
8: for each 〈μ, ν〉 ∈ Sw do
9: if μ and ν are in different connected components

in G′s then
10: Add〈μ, ν〉 with weight w(〈μ, ν〉) in G′s;
11: Return G′s;

of φd (where n = |ST(e)|). For each occurrence of edge e in
φd, we identify all equivalent edges by examining all event
triangles associated with e, after which e is removed from
φd. Consequently, each e ∈ EGd

is scrutinized n times. The
procedures ProcessEdge1 and ProcessEdge2 each take O(1)
time. Therefore, the TC of Algorithm 2 is O(minkcmax, kfmax·
|EGd

|1.5 + n · |EGd
|). Additionally, since each e ∈ EGd

can be
part of n s-nodes, the SC of Algorithm 2 is n · |EGd

|.
Given a summarized graph Gs, we construct the DEBI in

Algorithm 3. For each s-edge e〈μ, ν〉 ∈ Gs, we allocate a
weight w(〈μ, ν〉) = (min{kc(T(μ)), kc(T(ν))}, min{kf (T(μ)),
kf (T(ν))}), and W is a list to record all weight values (Lines
2-4). The index is a tree structure, initialized as the s-nodes set
Vs (Lines 5). For any w ∈W , if others do not dominate w, we
collect all s-edges in Es with weight equal to w into Sw (Lines
6-7). For each 〈μ, ν〉 ∈ Sw, we add 〈μ, ν〉 with a weight w(〈μ,
ν〉) into G′s, if μ, ν are not connected in G′s, (Lines 8-10).

Complexity Analysis. In Algorithm 3. Each s-edge 〈μ, ν〉 is
examined only once throughout the DEBI build process. So
the TC of Algorithm 3 is O(|Es|). Furthermore, the SC of
Algorithm 4 is n · |EGd

|.

Fig. 5. Index Construction. First, allocate a weight for each s-edge; second,
initialize the index as the s-nodes set; finally, construct the index by building a
maximum-spanning tree.

Example 5: Fig. 5 shows the index construction process based
on the summarized graph Gs in Fig. 4(c). First, we allocate a
weightw to each s-edge inGs.G′s is initialized to beVs. Second,
we add the weighted s-edges to G′s in turn. When the edges 〈ν4,
ν1〉, 〈ν3, ν2〉 and 〈ν4, ν3〉 are added into G′s, the edge 〈ν1, ν2〉
will not be added into G′s, as 〈ν1, ν2〉 are already connected in
G′s.

B. Index Based CS

After DEBI is developed from Gd, CS can be directly per-
formed on DEBI without unnecessary access to Gd. The DEBI-
based CS is detailed in Algorithm 4. The algorithm’s input is
the DEBI of di-graph Gd, a query node q, and two integers kc
and kc. First, we find the s-nodes to which the query vertex
q belongs from the index G′s. We use a list L = ν1,..., νl to
preserve this information. Meanwhile, we preserve an auxiliary
data structure: visited, which indicates whether the s-node e has
been processed and is initialized to False (Lines 1 - 2). And
then, for each s-node ν ∈ L with T(ν) � (kc, kf ), we traverse
G′s in a BFS fashion (Lines 4 - 15). For each incident s-node μ,
if μ has not been processed and T(μ) � (kc, kf ), the algorithm
includes the edges inμ into the D-truss communityCl (Line 11).
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Fig. 6. Index based CS. Given two integers kc=2 and kf=2, and the query
node v4. The algorithm could finds two (2, 2)-communities.

Algorithm 4: DEBI-Based CS.

Input: G′s=(V ′s , E ′s), a query node q, integers kc and kf
Output: all D-truss communities containing q
1: for each ν ∈ V ′s do
2: ν.visited← False;
3: l← 0;
4: for each ν ∈ H(q) do
5: if ν.visited = False and T(ν) � (kc, kf ) then
6: l← l + 1, Cl ← ∅;
7: ν.visited = True;
8: Q← ∅, Q.append(ν);
9: while |Q| �= 0 do

10: ν ← Q.pop();
11: Cl ← Cl ∪{e|e ∈ ν};
12: for each μ ∈ N(ν) do
13: if w(〈μ, ν〉) � (kc, kf ) and μ.visited =False

then
14: μ.visited← True;
15: Q.append(μ);
16: Return {C1,..., Cl}

Subsequently, a series of D-truss communities which q belongs
is obtained.

Complexity Analysis: In Algorithm 4, each edge inCi is exam-
ined one time during the decompression process. Consequently,
the TC of Algorithm 4 is O(| ∪li=1 Cl|).

Example 6: For the di-graph Gd in Fig. 4(a), given the query
node v4, and two integers kc = 2 and kf = 2. As shown in Fig. 6,
the algorithm first finds the s-nodes from DEBI (in Fig. 5) where
v4 is located, which are ν2 and ν4. Starting from ν2, T(ν2) = (2,
2), and the algorithm includes all edges in ν2 into C1. However,
ν2’s neighboring s-node ν3 is disqualified because T(ν3) = (1,
1). Then, the algorithm starts from the second s-node ν4. As
T(ν4) = (2, 2), the algorithm includes all edges in ν2 into C2,
ν4’s neighboring s-nodes ν1 and ν5 are disused because T(ν1)
= T (ν3) = (1, 1), T(ν5) = (0, 3). Finally, we will get two
communities, C1 and C2.

Algorithm 5: Index Update.
Input: The affected edge set E∗Gd

, The affected super node
set V ∗s

Output: The updated G∗s in DEBI
1: T(e)← D-truss Decomposition(E∗Gd

)
2: if Insert a edge then
3: for each e ∈ E∗Gd

do
4: if τ ∈ T(e) not dominate by T in ST(e) then
5: ST∗(e)← ST(e) ∪ τ ;
6: if Delete a edge then
7: ST∗(e)← ST(e);
8: G∗s ← ∅;
9: for each e ∈ E∗Gd

do
10: if any T in ST∗(e) but not in ST(e) and G∗s then
11: create a s-node ν, ν ← ν ∪ e;
12: delete e from the s-node in V ∗s ;
13: G∗s ← G∗s ∪ T: ν;
14: if any T in ST∗(e) and G∗s then
15: delete e from the s-node in V ∗s ;
16: ν of T: ν ← ν ∪ e;
17: Return {G∗s}

Fig. 7. An Example of index update when inserting an edge. (a) Insert a edge
<10, 5>; (b) Index update.

C. Dynamic Maintenance of DEBI

This section will discuss the index maintenance strategy when
the original graph changes and propose the corresponding index
update algorithm, as the real graph is not static. We consider two
cases, i.e., inserting or deleting edges in the original graph.

D-truss Decomposition. When inserting/deleting an edge e∗=
< u, v > inGd, a series of triangles {�F

w,v,u:w ∈N(u)∩N(v)}
are created/destroyed. Therefore, we only need to calculate the
STes of edges in the induced subgraphG∗d* containing the nodes
{u, v, w}. We employ ST(e) and ST∗(e) to represent the ST
values of edge e ∈ Gd before and after the insertion or deletion
of an edge, respectively.

Index Update. After updating the ST information of the orig-
inal graph, we fisrt find the affected supernodes. Then, separate
the changed edges of the skyline truss from the original super
nodes, form new super nodes, and generate corresponding super
edges (the inserted edge should also be included in the new
super nodes when inserting a new edge). Finally, we merge
the newly formed super node and other super nodes (kc, kf )-
triangle-connected to it.
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TABLE II
DATASETS

Example 7: For the di-graph Gd in Fig. 7(a). Inserting a
new edge <10, 5> into Gd, we can get the induced subgraph
composed of nodes 10 and 5 and their common neighbor nodes
as G∗d = {<5, 6>, <5, 7>, <6, 5>, <6, 7>, <7, 5>, <7, 6>,
<10, 6>,<10, 7>,<10, 5>}. First, we calculate the trussnesses
of each edge in G∗d and the ST(<10, 5>) = (0, 2), however, the
new trussnesses of edges <5, 6>, <5, 7>, <6, 5>, <6, 7>, <7,
5>, <7, 6>, <10, 6> and <10, 7> are dominated by existing
ST, thus the ST of these edges are not updated. Then, we find the
affected super nodes V4 and V5. Since the skylines of the edges
in V4 and V5 have not been updated, a super node consisting
of edges <10, 5> will be generated. Finally, new super edges
are generated based on the connectivity relationships between
super nodes, and the final updated index is generated through
the index simplification method.

In Algorithm 5, we show the critical steps of updating the
index of the original graph after inserting or deleting edges.
First, we use the Algorithm 1 to calculate the trussnesses of
edges in induced subgraph G∗d composed of the affected edge
set E∗Gd

(Line 1). Then, we update the ST of the edge in Gd

accordingly according to the operation of inserting or deleting
the edge (Lines 2-7). Finally, separate the changed edges of the
skyline truss from the original super nodes and form new super
nodes (Lines 8-17).

Complexity Analysis: In Algorithm 5. The D-truss decom-
position takes O(min{kcmax, kfmax} · |E∗Gd

|1.5) time. During
the index update operation, each edge in E∗Gd

is accessed only
once. Thus, the TC of Algorithm 5 is O(min{kcmax, kfmax} ·
|E∗Gd

|1.5) + n · |E∗Gd
|).

VI. EXPERIMENT

This section presents our experimental studies on CS in
real-world networks. We executed general experiments to verify
the performance and quality of our method. All experiments
were performed on a Windows Server with a 2.50 GHz six-core
CPU and 32 GB memory. The algorithms were implemented in
Python.

A. Datasets

In our experiments, We employed four real-world datasets
comprising directed networks. The statistical details for these
networks are presented in Table II, including a network Email
with ground-truth communities and four social networks, EAT,
Slashdot, Twitter, and Pokec. The EAT network is obtained from

TABLE III
THE SIZE OF THE ORIGINAL GRAPH, THE TIME AND SPACE REQUIRED FOR THE

DEBI CONSTRUCT, AND THE MEMORY SIZE OF THE PROGRAM

Pajek, while all other networks are retrieved from the Stanford
Network Analysis Project.

Email represents a communication network consists of 42
ground-truth communities. EAT is a collection of word associ-
ation norms that provides information on the frequency of word
associations based on data collected from subjects. Slashdot is
a renowned technology news website. The network comprises
connections representing friend and foe relationships among the
users of Slashdot. Twitter contains the association relationship
between Twitter users. Pokec is an online social network that
connects over 1.6 million people in Slovakia.

B. Index Construction Evaluation

We commence our experiments by DEBI construction, a
process conducted offline before CS. Once constructed, these
indexes are stored in the main memory, facilitating efficient CS
in large di-graphs. We focus on five key evaluation metrics:

1) The time needed for constructing the index (s);
2) The size of the index (MB);
3) The edge compression ratio (ECR): |E ′s| / |EGd

|.
4) Number of super nodes |V ′s | in DEBI;
5) The running memory size (MS) of the program (MB).
From Table III, we can find that DEBI can be built in a short

time. For larger graphs such as Pokec, the D-truss-equivalence-
based index can still be built in half a day, and the size of
DEBI is consistently smaller than the original graph sizes,
because the edges of the original graph are all compressed in
the corresponding s-nodes, there is no redundant information
in DEBI. In addition, on all data sets, the program’s running
memory is kept within a small range. Consequently, DEBI can
be built efficiently with little space costs in large graphs.

C. Index Maintenance

In this part of the experiments, we test the performance
of index maintenance when inserting or deleting edges in the
original graph. For each graph, we randomly insert or delete
m = 0.002|EGd

| edges and update the index. The experiments
were conducted 20 times, and the final result was determined
by taking the average time. The time reported in Fig. 8 is the
average time of these m edges updates.

As shown in Fig. 8, the index update time is much shorter than
the index construction time. This is because when we insert or
delete an edge in the original graph, the affected edge is limited to
a relatively small induced subgraph, and we just need to update
the ST of the edges in the induced subgraph, and then reconstruct
the affected super nodes.
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Fig. 8. The performance of dynamic maintenance of DEBI.

Fig. 9. Comparison of the quality of communities retrieved by different CS
methods on Email.

D. Quality Evaluation

Exp-1. Quality Comparative analyses on Email: In this part
of the experiment, we use a dataset Email with ground-truth
communities to assess the quality of various CS methods. For
each method, we run and obtain the average results of 200 CS
examples, selected from 100 nodes whose degree ranks are in
the top 30 percentile and bottom 70 percentile, respectively.

We contrast our method with four other CS methods, e.g.,
D-truss, k-truss, CF-truss and D-core. For the D-truss, we run
iLocal and iGlobal and take the average result; for CF-truss,
we run the cycle and flow truss and take the average result. We
employ three metrics: Precision (P), Recall (R), and F1-score
to assess the quality of the identified communities. F1-score is
defined as follows:

F1− Score =
2 ∗ P ∗R
P +R

(1)

Fig. 10. Case study on EAT. (a) A (0, 7)-truss community of “DRINK” in
EAT. (b) A (0, 8)-truss community of “DRINK” in EAT.

Fig. 9 reports the results of the community quality assessment
on Email. Our method significantly outperforms most competi-
tive models regarding precision and F1-score. Specifically, The
precision of our method is 2.29, 3.2, and 2.29 times that of
the CF-truss, D-core, and k-truss methods, respectively, and
the F1-score is 2.3, 2.88, and 2.3 times that of the CF-truss,
D-core and k-truss methods respectively. This means we can
better guarantee that the community members returned by our
method belong to the same community. Our method divides
communities offline by establishing equivalence classes with
triangular connectivity constraints, which can guarantee the
quality of retrieved communities and achieve high-performance
CS. As for the recall rate, the recall of DEBI (ours) is 0.63, which
is only 0.15 lower than the best baseline method D-core because
models like CF-truss and D-core retrieve a vast community,
which can encompass most of the nodes within a ground-truth
community. This also means that most of the members returned
by these methods do not belong to the target community we want
to retrieve. If these results are used in downstream tasks, it will
cause a huge waste of resources. In the DCS problem definition,
we need to discover the D-truss with the minimum diameter
as the answer, which causes our method to be unable to obtain
a high recall rate. It is worth noting that recall is not the only
indicator of community quality. Judging from comprehensive
indicators such as F1-score, precision, and recall, our method
is better than most baseline methods regarding community
quality.

Exp-2. Case analysis in EAT: We will conduct case analyses
on the EAT dataset in this experiment segment. EAT represents
a word association network, where the vertices correspond to
English words. The directed connection from vertex a to b
represents the relevancy of a and b vertices. When a word a
is given, we will think of another word b.

We conduct CS on EAT using two query instances: Q1 =
{Q = “DRINK”, kc = 0, kf = 7}, Q = {Q = “DRINK”,
kc = 0, kf = 8}. The (0, 7)-truss community and (0, 8)-truss
community, which contain “Drink,” are shown in Fig. 10(a)
and (b), respectively. We can find that when kf is set to 8,
some members, such as “INEBRIATING” and “WINE,”
were removed from the community. It means these members
are not as closely tied to “DRINK” as those in (0, 8)-truss
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Fig. 11. CS performance under various node-degree.

Fig. 12. CS performance under various values of kc.

Fig. 13. CS performance under various values of kf .

community. Consequently, by adjusting the parameters kc and
kf , we can obtain a range of communities with varying densities
and relevance to the query node.

E. Performance Evaluation

Exp-3. Changing the Degree of Query Vertices: In networks,
nodes of different degrees often participate in communities
characterized by different levels of cohesion. In this segment
of the experiments, we evaluated the performance of various
methods, e.g., L2P -BCC [8], iGlobal, iLocal, WCF -CRC
[29] and D-core on four datasets, e.g., Pokec, Twitter, Slash,
and EAT networks, by adjusting the degree of nodes. First, we
sort the vertices for each graph according to decreasing degrees
and divide them into five equal groups. For example, the first
group contains the top 20 percent of nodes by degree. Afterward,
We randomly picked 100 vertices from each group for CS and
reported their average running time.

As shown in Fig. 11, on all four datasets, our method is 2
to 5 orders of magnitude better than the iLocal and iGlobal

methods, which also deal with the DCS problem. At the same
time, our method performs best on Slashdot, EAT, and Twitter
datasets. L2P -BCC performs best on the height node in the
Pokec dataset. Moreover, it can be observed that the time needed
for WCF -CRC, iLocal, iGlobal, and DEBI to perform CS
remains nearly constant when the degree of the query node is
altered. This finding suggests that the degree of the query node
has minimal influence on these methods. When query vertices
are selected from low-degree percentile groups, the running time
for the algorithm D-core and L2P -BCC gradually increases.
This is because the area the returned community covers increases
as the degree decreases. In smaller graphs like EAT and Slash,
DEBI and iLocal performed well, followed by iGlobal. How-
ever, in a larger graph like Pokec, the performance of iLocal
drops significantly due to finding the largest D-truss using the
D-truss index in a larger graph taking too much time. For our
method, DEBI could maintain excellent and stable performance
on datasets of any size.

Exp-4. Varying kc and kf : We investigate the time for CS
query across distinct datasets by altering the parameters kc or
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kf in this experiment. The objective is to assess how different
values of kc or kf influence the query time of our method.

Figs. 12(a) and 13(a) show the outcomes of varying kc and
kf from 0 to 3 on EAT. Figs. 12(b), (c), (d) and 13(b), (c), (d)
showcase the effects of adjusting kc and kf from 0 to 10 on the
Slash, Twitter and Pokec, respectively. As kc or kf increases, the
runtime of our method decreases across all four datasets. This
occurrence arises as the augmentation of kc or kf decreases the
number of nodes and edges encompassed by the identified com-
munities. The TC of our algorithm is predominantly influenced
by the size of the (kc, kf )-truss communities.

VII. CONCLUSION

This paper explores truss-based CS in large di-graphs. First,
we introduce a novel equivalence relation known as D-truss
equivalence. We then construct a summarized graph of a di-
graph Gd using D-truss equivalence, thereby preserving the
D-truss information inherent in Gd. Afterward, we simplify
the summarized graph by the maximum spanning tree idea to
develop the D-truss-equivalence-based index, DEBI. CS can be
productively run directly on DEBI without requiring access to
the original graph. We conducted comprehensive experiments on
large di-graphs that conclusively demonstrated that the method
in this paper outperforms the existing techniques significantly in
performance. In future research, we plan to optimize community
constraints further to obtain higher recall and precision while
ensuring efficient community queries.

ACKNOWLEDGMENT

The authors deepest gratitude goes to the anonymous review-
ers and AE for their careful work and thoughtful suggestions
that have helped improve this article substantially.

REFERENCES

[1] E. Akbas and P. Zhao, “Truss-based community search: A truss-
equivalence based indexing approach,” in Proc. VLDB Endowment, vol. 10,
no. 11, pp. 1298–1309, 2017.

[2] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo, “Efficient and effective
community search,” Data Mining Knowl. Discov., vol. 29, pp. 1406–1433,
2015.

[3] C. Chen, K. Li, Y. Li, and X. Zou, “ReGNN: A redundancy-eliminated
graph neural networks accelerator,” in Proc. IEEE Int. Symp. High-
Perform. Comput. Architecture, 2022, pp. 429–443.

[4] C. Chen, K. Li, X. Zou, and Y. Li, “DyGNN: Algorithm and architecture
support of dynamic pruning for graph neural networks,” in Proc. 58th
ACM/IEEE Des. Automat. Conf., 2021, pp. 1201–1206.

[5] L. Chen, C. Liu, R. Zhou, J. Li, X. Yang, and B. Wang, “Maximum co-
located community search in large scale social networks,” in Proc. VLDB
Endowment, vol. 11, no. 10, pp. 1233–1246, 2018.

[6] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of
overlapping communities,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2013, pp. 277–288.

[7] W. Cui, Y. Xiao, H. Wang, and W. Wang, “Local search of communities
in large graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2014,
pp. 991–1002.

[8] Z. Dong, X. Huang, G. Yuan, H. Zhu, and H. Xiong, “Butterfly-core
community search over labeled graphs,” 2021, arXiv:2105.08628.

[9] Y. Fang et al., “A survey of community search over big graphs,” VLDB J.,
vol. 29, pp. 353–392, 2020.

[10] Y. Fang, Z. Wang, R. Cheng, H. Wang, and J. Hu, “Effective and efficient
community search over large directed graphs,” IEEE Trans. Knowl. Data
Eng., vol. 31, no. 11, pp. 2093–2107, Nov. 2019.

[11] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486, no. 3–
5, pp. 75–174, 2010.

[12] C. Giatsidis, D. M. Thilikos, and M. Vazirgiannis, “D-cores: Measuring
collaboration of directed graphs based on degeneracy,” Knowl. Inf. Syst.,
vol. 35, pp. 311–343, 2013.

[13] D. Hric, R. K. Darst, and S. Fortunato, “Community detection in networks:
Structural communities versus ground truth,” Phys. Rev. E, vol. 90, no. 6,
2014, Art. no. 062805.

[14] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” in Proc. ACM SIGMOD Int.
Conf. Manage. Data, 2014, pp. 1311–1322.

[15] X. Huang and L. V. S. Lakshmanan, “Attribute-driven community search,”
in Proc. VLDB Endowment, vol. 10, no. 9, pp. 949–960, 2017.

[16] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of
algorithms for network community detection,” in Proc. 19th Int. Conf.
World Wide Web, 2010, pp. 631–640.

[17] J. Li, X. Wang, K. Deng, X. Yang, T. Sellis, and J. X. Yu, “Most influential
community search over large social networks,” in Proc. IEEE 33rd Int.
Conf. Data Eng., 2017, pp. 871–882.

[18] R.-H. Li et al., “Skyline community search in multi-valued networks,” in
Proc. Int. Conf. Manage. Data, 2018, pp. 457–472.

[19] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search in
large networks,” in Proc. VLDB Endowment, vol. 8, no. 5, pp. 509–520,
2015.

[20] R.-H. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community search
in temporal networks,” in Proc. IEEE 34th Int. Conf. Data Eng., 2018,
pp. 797–808.

[21] F. Liu et al., “Deep learning for community detection: Progress, challenges
and opportunities,” 2020, arXiv: 2005.08225.

[22] Q. Liu, M. Zhao, X. Huang, J. Xu, and Y. Gao, “Truss-based community
search over large directed graphs,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2020, pp. 2183–2197.

[23] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization methods
and applications: A survey,” ACM Comput. Surv., vol. 51, no. 3, pp. 1–34,
2018.

[24] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, vol. 69, no. 2, 2004, Art. no. 026113.

[25] S. Parthasarathy, Y. Ruan, and V. Satuluri, “Community discovery in social
networks: Applications, methods and emerging trends,” in Social Network
Data Analytics. Berlin, Germany: Springer, 2011, pp. 79–113.

[26] A. E. Sarıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V.
Çatalyürek, “Incremental k-core decomposition: Algorithms and evalu-
ation,” VLDB J., vol. 25, pp. 425–447, 2016.

[27] M. Sozio and A. Gionis, “The community-search problem and how to plan
a successful cocktail party,” in Proc. 16th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2010, pp. 939–948.

[28] T. Takaguchi and Y. Yoshida, “Cycle and flow trusses in directed networks,”
Roy. Soc. Open Sci., vol. 3, no. 11, 2016, Art. no. 160270.

[29] Y. Tang, J. Li, N. Al H. Haldar, Z. Guan, J. Xu, and C. Liu, “Reliable
community search in dynamic networks,” 2022, arXiv:2202.01525.

[30] C. Tsourakakis, “The k-clique densest subgraph problem,” in Proc. 24th
Int. Conf. World Wide Web, 2015, pp. 1122–1132.

[31] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community detection
in networks: The state-of-the-art and comparative study,” ACM Comput.
Surv., vol. 45, no. 4, pp. 1–35, 2013.

[32] J. Zhou et al., “Graph neural networks: A review of methods and applica-
tions,” AI Open, vol. 1, pp. 57–81, 2020.

[33] L. Zhu, M. Ghasemi-Gol, P. Szekely, A. Galstyan, and C. A. Knoblock,
“Unsupervised entity resolution on multi-type graphs,” in Proc. 15th Int.
Semantic Web Conf., Springer, 2016, pp. 649–667.

Wei Ai received the PhD degree from the College of
Computer Science and Electronic Engineering, Hu-
nan University, Changsha, China. She is currently an
assistant professor with the Central South University
of Forest and Technology, China. Her research inter-
ests include data mining, Big Data, cloud computing,
and parallel computing.

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on March 20,2025 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



5494 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 11, NOVEMBER 2024

Canhao Xie is currently working toward the graduate
degree with the College of Computer Information and
Engineering, Central South University of Forestry
and Technology, Changsha, China. His research inter-
est include complex network analysis and community
query optimization.

Tao Meng received the PhD degree from the College
of Computer Science and Electronic Engineering,
Hunan University, Changsha, China. He is currently
an assistant professor with the Central South Univer-
sity of Forest and Technology, China. His research
interests include data mining, network analysis, and
deep learning.

Jayi Du received the BSc, MSc, and PhD degrees in
computer science from Hunan University, China, in
2004, 2010, and 2015, respectively. He is currently
an assistant professor with the Central South Univer-
sity of Forest and Technology, China. His research
interests include modeling and scheduling for par-
allel and distributed computing systems, embedded
system computing, cloud computing, parallel system
reliability, and parallel algorithms.

Keqin Li (Fellow, IEEE) received the BS degree
in computer science from Tsinghua University, in
1985, and the PhD degree in computer science from
the University of Houston, in 1990. He is a SUNY
distinguished professor with the State University of
New York and a National distinguished professor
with Hunan University (China). He has authored or
co-authored more than 990 journal articles, book
chapters, and refereed conference papers. He received
several best paper awards from international con-
ferences including PDPTA-1996, NAECON-1997,

IPDPS-2000, ISPA-2016, NPC-2019, ISPA-2019, and CPSCom-2022. He holds
nearly 75 patents announced or authorized by the Chinese National Intellectual
Property Administration. He is among the world’s top five most influential
scientists in parallel and distributed computing in terms of single-year and
career-long impacts based on a composite indicator of the Scopus citation
database. He was a 2017 recipient of the Albert Nelson Marquis Lifetime
Achievement Award for being listed in Marquis Who’s Who in Science and
Engineering, Who’s Who in America, Who’s Who in the World, and Who’s
Who in American Education for over 20 consecutive years. He received the
Distinguished Alumnus Award from the Computer Science Department at the
University of Houston in 2018. He received the IEEE TCCLD Research Impact
Award from the IEEE CS Technical Committee on Cloud Computing in 2022
and the IEEE TCSVC Research Innovation Award from the IEEE CS Technical
Community on Services Computing in 2023. He won the IEEE Region 1
Technological Innovation Award (Academic) in 2023. He is a member of the
SUNY Distinguished Academy. He is an AAAS fellow, an AAIA fellow, and
an ACIS founding fellow. He is an academician member of the International
Artificial Intelligence Industry Alliance. He is a member of Academia Europaea
(Academician of the Academy of Europe).

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on March 20,2025 at 01:37:54 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


