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A B S T R A C T

Accurate lithology recognition is pivotal for comprehending subsurface structures and forecasting resource
reservoirs in geological exploration. Most existing approaches rarely utilize multi-view heterogeneous rock
microscopic images, limiting recognition performance in modern geological practices. To tackle the challenges
above, we propose a deep progressive lithology recognition model named RockNet for rock microscopic
images, based on local feature saliency and feature fusion. RockNet includes Multi-channel Feature Fusion
(MFF) blocks and Local Feature Salience (LFS) blocks. The MFF block captures and fuses hierarchical features
from each view of rock images, while the LFS block extracts subtle information across different views. In
addition, we further design a novel loss function and a multi-scale prediction fusion strategy to optimize the
training and inference process. Finally, RockNet adopts a deep progressive learning strategy to enhance its
ability to recognize complex lithological patterns. Experimental results show that RockNet outperforms 12
comparative methods regarding accuracy, precision, recall, F1 score, and specificity. Our work will assist oil
and gas exploration and groundwater resources assessment, contributing significantly to resource development
and sustainable environmental stewardship.
1. Introduction

Within Earth Science, lithology recognition holds immense impor-
tance in comprehending subsurface conditions and geological forma-
tions [1–3]. Typically, rock photomicrographs constitute heterogeneous
multi-view data, each containing numerous instances. The lithology
recognition process entails categorizing and describing rock types based
on visual and quantifiable characteristics, including mineral compo-
sition, texture, color, and structure. This recognition serves as a cor-
nerstone for numerous applications, including petroleum exploration,
groundwater resource assessment, environmental studies, and construc-
tion projects. Accurate and efficient lithology recognition offers valu-
able insights into the properties and dynamics of geological forma-
tions, facilitating informed decision-making in hazard assessment and
engineering initiatives.

Various methodologies have been employed in lithology recog-
nition, including thin section analysis [4], well logging [5], remote
sensing [6], and laboratory testing [7]. Among these methods, rock thin
section analysis is widely utilized because it can faithfully encode infor-
mation that is not visible to the naked eye, offering high confidence in
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results. To ensure repeatable observations of rock thin sections, rock
microscopic images are captured and saved as digital images under
cross-polarized light (XPL) and plane-polarized light (PPL) using a
petrographic microscope, as shown in Fig. 1.

Under PPL, observers can discern the rock’s overall color, grain size,
shape, and mineral arrangement. Rotating the thin section between
crossed polarizers reveals how minerals interact with polarized light,
providing insights into mineral relationships and rock fabric. Conse-
quently, images captured under PPL and XPL of the same thin section
exhibit heterogeneity, showcasing various features and lacking unifor-
mity or consistency in visual appearance. In addition, capturing all the
detailed information in a thin section with a single view is impractical.
Therefore, it is recommended to capture multiple PPL and XPL images
from various viewpoints, adhering to a specific magnification scale for
a comprehensive structural view.

Convolutional Neural Networks (CNNs) [8–10] are employed to
classify lithology based on well-log images or thin sections. Some fea-
ture fusion algorithms, such as concatenation, attention mechanisms, or
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 data mining, AI training, and similar technologies. 
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Fig. 1. PPL and XPL image examples: quartzose, microcrystalline Limestone, and quartzo-Lithic rocks from four views.
ensemble methods, are designed to combine information from multiple
sources or modalities. While extensive research has been conducted
on lithology recognition, few studies consider all the features and
heterogeneity of multi-view rock images, which limits the classification
performance in modern geological practices. First, heterogeneous PPL
and XPL images exhibit inconsistent yet complementary characteristics
such as color, interference patterns, and extinction angle. In addition,
multi-view images introduce challenges such as position shifting, scale
variations, and information redundancy. Moreover, microscopic image
data in practical scenarios are often insufficient, and categories may be
relatively imbalanced.

In this paper, to tackle the challenges above, we propose a CNN-
based deep progressive learning model named RockNet to identify
lithology from multi-view heterogeneous rock microscopic images.
RockNet aims to address the complexities of lithology recognition by
leveraging a progressive learning strategy while mitigating the limi-
tations associated with data heterogeneity and category imbalances.
The multi-channel feature fusion and progressive learning mechanisms
in RockNet significantly enhance the accuracy and reliability of the
lithology identification procedure. Our contributions are four-fold:

• A new category-aware augmentation method is designed to alle-
viate the impact of category imbalance on model training. This
method integrates key strategies including minority oversam-
pling, category-balanced mini-batch generator, global and local
feature augmentation, and automatic data enhancement.

• A CNN-based deep progressive learning model is proposed for
exploring multi-view heterogeneous rock microscopic images. An
MFF block is designed to capture and fuse hierarchical features
from each view, while an LFS block is presented to integrate and
highlight subtle information across different views.

• A progressive learning mechanism is presented to ensure the
model refines its comprehension of lithological features over suc-
cessive stages. This mechanism effectively improves the overall
accuracy and reliability of the lithology identification procedure.

• A novel loss function and a multi-scale testing and prediction fu-
sion strategy are developed to optimize the training and inference
process through a pre-determined loss contribution factor.

The rest of the paper is organized as follows. Section 2 provides
an overview of existing research on lithology recognition, multi-view
feature learning, and progressive learning. Section 3 outlines the foun-
dation and problem definition. Section 4 introduces the architecture
2 
and core modules of the proposed RockNet algorithm. Section 5 as-
sesses the comparison experiments. Finally, Section 6 summarizes the
paper.

2. Related work

2.1. Lithology recognition methods

Advancements in CNNs have revolutionized traditional lithology
recognition, effectively addressing the challenges of long analysis cy-
cles, heavy labor intensity, and the need for high levels of expertise.
These advancements offer new tools and techniques for rapidly and
precisely categorizing rock types [11]. In [12], CNN-based models were
proposed for carbonate petrography identification. Ma et al. [13] devel-
oped an improved squeeze-and-excitation model to hierarchically clas-
sify rock thin sections. Their approach first categorizes the dataset into
three main groups–sedimentary, metamorphic, and igneous rocks–and
further subdivides them into 105 second-level rock categories. Dawson
et al. [14] evaluated the performance of the nine CNN architectures
on transfer learning for carbonate core identification. The results in-
dicated that Inception-V3 performs remarkably well on medium to
large datasets, while VGG19 achieves competitive performance on
smaller datasets. However, most existing work employ single-view
feature learning for either rock image classification [15–17] or rock
thin section recognition [18].

2.2. Multi-view feature learning

Multi-view feature learning is commonly employed in various ap-
plications due to its superior model accuracy compared to single-view
feature learning methods. Chaganti et al. [19] introduced a feature
fusion method based on multiple views for malware identification. This
method gathers static and dynamic features and fuses all the selected
features to differentiate malware executable files. Jia et al. [20] de-
signed a network to learn shared features across different views and
specific features from each view while reducing feature redundancy.
Zeng et al. [21] described a dual-pathway multiscale network for
detecting image forgeries. This network aligns visual features with
edge information and employs variational convolutions and multiscale
fusion to achieve robust region localization. In [22], a learning strategy
based on multiple views was presented. This strategy creates multi-
resolution tumor-centered image groups and applies a homogeneous
bilinear network in each view. As noted, rock photomicrographs are
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Fig. 2. Limestone recognition criteria used in this study.
heterogeneous multi-view data, with each view presenting a unique
semantic perspective of the rock sample. However, most existing ap-
proaches employ Siamese networks or one-view-one-network strategies
to extract and fuse multi-view features, which consumes substantial
computing resources.

2.3. Progressive learning

Progressive learning, which mimics the human learning process,
is an effective approach in various real-world applications due to its
ability to retain previously acquired knowledge while integrating new
information. Du et al. [23] incorporated a progressive training strategy
with feature fusion at different granularities. However, their method
is tailored for fine-grained visual classification, which may limit its
applicability to other types of visual tasks or domains. Huang et al. [24]
developed a progressive training strategy named PLFace, utilizing a
new progressive learning loss for deep face recognition. During various
training phases, PLFace fine-tunes the weights of samples with and
without masks. However, this progressive tuning of weights may intro-
duce additional computational overhead, making the training process
slower. In [25], Song et al. proposed an approach to denoise medical
perfusion imaging using a progressive training strategy. The model is
trained jointly to predict more accurate noise, enhancing network per-
formance. Hu et al. [26] introduced a new progressive learning model
called 𝓁-DARTS, which enhances the original DARTS model by reduc-
ing its depth for faster searches and by introducing a channel fusion
compensation module to maintain accuracy. Additionally, it employs
an enhanced regularization technique to balance operation preferences.
While progressive learning offers significant advantages in retaining
and integrating knowledge, its application is often domain-specific and
comes with several limitations related to scalability, complexity, and
computational demands.

3. Foundation and problem definition

3.1. Rock classification and naming scheme

Limestone and sandstone are two prominent sedimentary rocks.
However, the academic community lacks a standardized and definitive
system for categorizing and naming sedimentary rocks [27]. The main
challenges are the diverse material composition, varied occurrences and
textures, strong heterogeneity, and small grain sizes that are difficult to
observe. In this work, we apply the modified recognition rules proposed
by Embry and Klovan [28]. The recognition rules are primarily based
on the content of grains and cement blocks in the rock samples,
grain types, support methods, and how the original components are
organically bound. Fig. 2 shows the recognition criteria for limestone.

Following the nomenclature scheme introduced by Garzanti [29],
sandstones are classified according to the relative abundance of their
three main components (lithic fragments (L), feldspars (F), and quartz
3 
Fig. 3. Simplified sandstone classification system with percentage indicators.

(Q)). Suppose one main component does not exceed 10%. In that
case, the sandstones are categorized into six types: feldspatho-lithic
(FL), litho-feldspathic (LF), litho-quartzose (LQ), quartzo-lithic (QL),
quartzo-feldspathic (QF), and feldspatho-quartzose (FQ). These corre-
spond to the six trapezoidal fields within the QFL triangle, as illustrated
in Fig. 3. Additionally, the three rhombus fields at the triangle’s ver-
tices, where two of the three main components are less than 10%, are
labeled simply as Q for quartzose, L for lithic, and F for feldspathic.

3.2. Problem definition

Given a dataset  of labeled rock thin section micrograph, as
defined in Eq. (1). It consists of three subsets: a test set te, a validation
set va, and a training set tr. The sizes of these subsets are denoted
by 𝑁te, 𝑁va, and 𝑁tr, respectively.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tr = {𝑥tr
𝑖 , 𝑦

tr
𝑖 }

𝑁tr
𝑖=1

va = {𝑥va
𝑖 , 𝑦va

𝑖 }𝑁va
𝑖=1

te = {𝑥te
𝑖 , 𝑦

te
𝑖 }

𝑁te
𝑖=1

(1)

where 𝑥𝑖 is a rock image, 𝑦𝑖 is the classification label of 𝑥𝑖, while te, va,
and tr denote the test set, validation set, and training set, respectively.

We build a Deep CNN (DCNN) network with 𝑙 hidden layers for
feature extraction. We divide the DCNN into a feature extractor 𝑓
with weights 𝑊 and a linear classifier ℎ with weights 𝜃. To extract
features, we introduce two-dimensional convolution (Conv2D), batch
normalization (BN), and Sigmoid linear unit (SiLU) activation function
layer by layer to the input image 𝑥𝑖. Then, the corresponding output
logits of the network are obtained. The network predictions 𝑦𝑖 are
achieved by utilizing the softmax function for the logits 𝑋(𝑙) of the last
𝑖
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hidden layer 𝑙, as defined as:

⎧

⎪

⎨

⎪

⎩

𝑋(𝑗)
𝑖 = SiLU(BN(𝑓 (𝑗)(𝑋(𝑗−1)

𝑖 ;𝑊 (𝑘))))

= SiLU(BN(Conv2D(𝑐, 𝑑𝑖𝑚, 𝑟, 𝑠, 𝑝)))

𝑦𝑖 = softmax(𝑋(𝑙)
𝑖 ; 𝜃)

(2)

here 𝑋(0)
𝑖 = 𝑥𝑖, 𝑓 (𝑗)(⋅) denotes the convolutional operation with

eights 𝑊 (𝑘), and 𝑗 and 𝑘 represent the indices of hidden layers
nd convolutional operations, respectively. The Conv2D operation is
arameterized by the input channels 𝑐, the number of filters 𝑑𝑖𝑚, filter
ize 𝑟, stride 𝑠, and padding 𝑝.

Rock Lithology Recognition. Given the dataset , we aim to learn a
lassifier ℎ𝑊 ,𝜃 ∶ 𝑥𝑖 → 𝑦𝑖, which is parameterized by 𝑊 and 𝜃. The
lassifier maps each image 𝑥𝑖 to its predicted category 𝑦𝑖. The goal is
o minimize the cross-entropy loss between the prediction 𝑦𝑖 and its

true value 𝑦𝑖 on the training set tr:

min
{𝑊 ,𝜃}

(𝑥tr, 𝑦tr;𝑊 , 𝜃) = − 1
𝑁tr

𝑁tr
∑

𝑖=1

𝑘−1
∑

𝑗=0
𝑦tr
𝑖 (𝑗) ⋅ log(𝑦

tr
𝑖 (𝑗)) (3)

where 𝑘 denotes the number of lithology categories, 𝑦𝑖 ∈ {0, 1}𝑘 is
the ground truth corresponding to 𝑥𝑖. 𝑦𝑖 ∈ {0, 1}𝑘 is the prediction
probability that 𝑥𝑖 belongs to category 𝑗. 𝑦𝑖 and 𝑦𝑖 are both one-hot
vectors.

For the output logits 𝑋(𝑙)
𝑖 , using the softmax function, the classifier

�̂� (𝑗) is defined as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦𝑖(𝑗) = 𝑃 (𝑦 = 𝑗|𝑋(𝑙)
𝑖 , 𝜃𝑗 ) =

e⟨𝑋
(𝑙)
𝑖 ,𝜃𝑗 ⟩

∑𝑘−1
𝑠=0 e⟨𝑋

(𝑙)
𝑖 ,𝜃𝑠⟩

∈ R

𝜃 =
[

𝜃0, 𝜃1,… , 𝜃𝑘−1
]

(4)

where ⟨, ⟩ denotes the inner product, and 𝜃𝑗 is the weight column vector
learned by the classifier (𝑗 ∈ {0, 1,… , 𝑘 − 1}).

 is the predicted label of the input image 𝑥𝑖. It equals the index
of the category with the highest probability, defined by the following
equation:

 = argmax
𝑗

{

𝑦𝑖 (𝑗)
}

(5)

4. Methodology

In this section, we will develop a deep progressive learning model
named RockNet for lithology recognition, based on local feature
saliency and feature fusion. We will introduce the core components
of the Multi-channel Feature Fusion (MFF) block and Local Feature
Salience (LFS) block, respectively.

4.1. Overall architecture

RockNet consists of three main stages, namely category-aware aug-
mentation, progressive learning, and multi-scale testing and predic-
tion fusion, as shown in Fig. 4. RockNet exploits the consistent and
complementary features from multi-view data while avoiding learning
redundant representations. In addition, RockNet applies an efficient
category-aware augmentation method to improve the contribution of
minority categories. Moreover, RockNet includes MFF and LFS blocks.
The MFF block captures and fuses hierarchical features from each view
of rock images, while the LFS block extracts subtle information across
different views.

4.2. Category-aware augmentation module

The rock image dataset has a relatively small amount of training
data. Additionally, the dataset suffers from a serious category imbal-
ance problem. To achieve a fair classifier for both majority and minority
categories, we design a category-aware augmentation module in the
4 
RockNet model. It consists of a category-balanced mini-batch generator
and global–local feature augmentation. Fig. 5 illustrates an example of
category-aware augmentation.

Algorithm 1 Category-aware augmentation algorithm
Input:

𝑘: the number of categories in the dataset;
𝐴: the number of mini-batches;
𝑠𝑖: the image list of each category in the dataset, where 𝑖 =
0, 1,… , 𝑘 − 1.

Output:
𝑚𝑖𝑛𝑖_𝑏𝑎𝑡𝑐ℎ𝑏, where 𝑏 = 1, 2, ..., 𝐴; 𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒.

1: 𝑛_𝑚𝑎𝑥 ← the maximum of 𝑠𝑖;
2: for 𝑖 from 0 to 𝑘 − 1 do
3: Shuffle 𝑠𝑖; 𝑙𝑖 ← the size of 𝑠𝑖;
4: Sample 𝑛𝑚𝑎𝑥 − 𝑙𝑖 images from 𝑠𝑖 randomly and append them to 𝑠𝑖

by Eq. (6);
5: 𝑠𝑡𝑎𝑟𝑡 ← 0;
6: for 𝑏 from 1 to 𝐴 do
7: 𝑠𝑡𝑜𝑝 ← 𝑠𝑡𝑎𝑟𝑡 + ⌊

𝑛_𝑚𝑎𝑥
𝐴 ⌋;

8: 𝑐𝑏0.append(𝑠𝑖[𝑠𝑡𝑎𝑟𝑡: 𝑠𝑡𝑜𝑝]);
9: 𝑠𝑡𝑎𝑟𝑡 ← 𝑠𝑡𝑜𝑝;

10: end for
11: end for
12: 𝑁 ← 𝑛_𝑚𝑎𝑥 × 𝑘; 𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒 ← ⌊

𝑁
𝐴 ⌋;

13: for 𝑏 from 1 to 𝐴 do
14: Performs auto augmentation for images in 𝑐𝑏0;
15: for 𝑗 from 0 to 𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒 − 1 do
16: 𝑐𝑏1[𝑗], . . . , 𝑐𝑏4[𝑗] ← crop(𝑐𝑏0[𝑗]) by Eq. (8);
17: Perform auto-augmentation on the four images, by Eq. (9);
18: Resize them to 𝑛 × 𝑛 and then append them to lists

𝑐𝑏1[𝑗],. . . ,𝑐𝑏4[𝑗];
19: end for
20: Perform auto-augmentation, resize to 𝑛 × 𝑛 for images in 𝑐𝑏0;
21: 𝑚𝑖𝑛𝑖_𝑏𝑎𝑡𝑐ℎ𝑏 ← 𝑐𝑏0, 𝑐𝑏1,… , 𝑐𝑏4 by Eq. (10);
22: end for
23: 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ← 5 × 𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒;
24: return 𝑚𝑖𝑛𝑖_𝑏𝑎𝑡𝑐ℎ𝑏, 𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒.

4.2.1. Category-balanced mini-batch generator
We design category-balanced oversampling to alleviate class im-

balance. Instead of designing complex algorithms to synthesize new
minority samples artificially, we directly copy minority samples to
achieve category balance. The details of the category-balanced mini-
batch generator are described in lines 1–11 of Algorithm 1.

We first obtain the maximum number of samples in 𝑘 categories and
ave the number as 𝑛_𝑚𝑎𝑥. We further shuffle each category and then
erform random selection to ensure all 𝑘 categories attain the desired

size 𝑛𝑚𝑎𝑥, defined by:
{

𝑠𝑖 = shuffle(𝑠𝑖)

𝑠𝑖 = append(random_select(𝑠𝑖[𝑗]))
(6)

where 𝑠𝑖 represents the image list for the 𝑖th category, and 𝑗 denotes the
sample index within 𝑠𝑖. The operators shuffle(⋅), random_select(⋅), and
append(⋅) correspond to shuffling, random selection, and appending,
respectively. In Algorithm 1, specifically in lines 2–4, we first ascertain
the size of 𝑠𝑖, which is represented by 𝑙𝑖. Subsequently, to ensure 𝑠𝑖
attains the desired size 𝑛𝑚𝑎𝑥, we oversample 𝑛𝑚𝑎𝑥−𝑙𝑖 additional samples
and append them to 𝑠𝑖. Following this oversampling, each category
is guaranteed to contain 𝑛𝑚𝑎𝑥 samples, achieving balance across all 𝑘
categories. Consequently, the overall dataset size 𝑁 expands to 𝑛𝑚𝑎𝑥×𝑘.

In RockNet, a mini-batch is the fundamental data component in the
model training procedure. To further alleviate the category imbalance
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Fig. 4. RockNet’s three-stage workflow: category-aware augmentation, progressive learning, and multi-scale prediction fusion.
Fig. 5. Category-aware augmentation example: generating three thirty-sample mini-batches from categories with 6, 3, and 2 samples each. Each batch consists of one global image
list and four local image lists. The global image list contains the original, uncropped images, while each of the four local image lists contains images that are cropped using a
consistent method specific to that list.
problem, we design a category-balanced mini-batch generator. Given
𝐴 mini-batches, the key idea is to assign an equal number of samples
from each category to construct a global image list, denoted as 𝑐𝑏0. This
process is mathematically formulated as:

𝑐𝑏0 = append
(

𝑠𝑖
[

𝑗 ∶ 𝑗 +
⌊ 𝑛_𝑚𝑎𝑥

𝐴

⌋])

(7)

where 𝑗 ranges from 0 to
⌊

𝑛_𝑚𝑎𝑥
𝐴

⌋

, incremented by
⌊

𝑛_𝑚𝑎𝑥
𝐴

⌋

each time,
and 𝑖 ranges from 0 to 𝑘 − 1, representing the category index. The
mini-batch index 𝑏 ranges from 1 to 𝐴. As described in lines 6–10 of
Algorithm 1, we assign ⌊

𝑛_𝑚𝑎𝑥
𝐴 ⌋ samples from 𝑠𝑖 to 𝑐𝑏0. Consequently,

𝑐𝑏0 consists of an equal number of images, ⌊ 𝑛_𝑚𝑎𝑥
𝐴 ⌋, selected from each

of the 𝑘 categories. The length of 𝑐𝑏0 is ⌊

𝑛_𝑚𝑎𝑥×𝑘
𝐴 ⌋.

4.2.2. Global–local feature augmentation
Rock micrographs are high-resolution images with a maximum

resolution of 4908×3264 pixels and a minimum resolution of 800 × 600
pixels. To thoroughly capture local features, we develop a global–local
feature augmentation method based on image cropping, augmentation,
and resizing operations, as depicted in Fig. 6. We first split a rock image
𝑐𝑏0[𝑗] into four images, using a sliding window of size 3

4 (ℎ × 𝑤) and a
step of 1𝑤, where 𝑤 and ℎ represent the width and height of the image
4

5 
in pixels, respectively. Accordingly, the cropping operation is defined
as:

𝑐𝑏1[𝑗], 𝑐𝑏2[𝑗], 𝑐𝑏3[𝑗], 𝑐𝑏4[𝑗] = crop(𝑐𝑏0[𝑗]) (8)

where 𝑗 is the image index within 𝑐𝑏0, 𝑗 = 0, 1,… , ⌊ 𝑛_𝑚𝑎𝑥×𝑘
𝐴 ⌋ − 1, 𝑏 is

the mini-batch index, and 𝑏 = 1, 2,…𝐴. The four local images obtained
from Eq. (8) are saved to the corresponding local image list 𝑐𝑏1, 𝑐𝑏2, 𝑐𝑏3,
and 𝑐𝑏4.

To reduce the negative impact of oversampling, we apply a simple
auto-augmentation to perform data augmentation on images randomly.
This augmentation method is encapsulated in the following equation:

𝑐𝑏𝑖[𝑗] = auto-augmentation(𝑐𝑏𝑖[𝑗]) (9)

where 𝑖 represents the index of the image lists, 𝑖 = 0, 1,… , 4, 𝑗 ranges
from 0 to ⌊

𝑛_𝑚𝑎𝑥×𝑘
𝐴 ⌋ − 1, and 𝑏 ranges from 1 to 𝐴, denoting the

mini-batch index.
Auto-augmentation, an online and random image transformation

strategy, uses a search algorithm to find the best augmentation strategy
to achieve the highest validation accuracy on the dataset. It is available
in the torchvision.transforms module of the PyTorch framework and
includes fourteen augmentation strategies [30].
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Fig. 6. Global–local feature construction method illustration.

Due to insufficient graphics processing unit (GPU) memory, it is
infeasible to directly input original images into our RockNet model for
training. Therefore, all images in 𝑐𝑏𝑖 are resized to 𝑛×𝑛 pixels to form a
mini-batch, and then input to RockNet for effective training, as defined
in Eq. (10).

𝑚𝑖𝑛𝑖 − 𝑏𝑎𝑡𝑐ℎ𝑏 = resize(𝑐𝑏𝑖) (10)

where 𝑖 = 0, 1,… , 4, and 𝑏 = 1, 2,…𝐴.
The global–local feature augmentation, as detailed in lines 13–22

of Algorithm 1, offers several key advantages. By extracting and trans-
forming cropped images from the same original image, we introduce a
variety of transformations that, although derived from a single source,
contribute to a rich and diverse training dataset. This diversity is crucial
for effectively generalizing the model and improving its robustness.

Furthermore, the augmentation process results in a category-
balanced mini-batch 𝑚𝑖𝑛𝑖_𝑏𝑎𝑡𝑐ℎ𝑏, achieved by skillfully combining five
distinct image lists 𝑐𝑏𝑖. This approach not only ensures a balanced
representation of categories but also increases the batch size to five
times the number of images in the list 𝑐𝑏0, as indicated in line 23
of Algorithm 1. This enlargement of the batch size is instrumental in
leveraging more information from each training example.

Importantly, the global–local feature enhancement leads to a non-
uniform frequency distribution of the original 16 image patches across
the four cropped images, as shown in Fig. 6. Some patches, such as 01,
04, 13, and 16, appear only once, while others like 06, 07, 10, and
11 are presented four times. This disparity in frequency is intentional,
emphasizing the significance of local features. Patches that appear more
frequently are subjected to a higher number of image transformations,
which amplifies the local information and, consequently, enhances
their impact on the training loss.

In summary, the global–local feature augmentation technique en-
riches the training process by diversifying the data, emphasizing the
significance of local features, and optimizing the batch size for more
efficient model training.

4.3. Model construction

Like ordinary deep neural networks, RockNet consists of an input
layer, feature extractor, and classifier. Fig. 7(a) shows the structure of
RockNet. The input is 224 × 224 × 3 thin section images. The highlight
of the feature extractor is the block design of MFF and LFS. The initial
6 
hidden layer is a convolutional block with 32 filters. The filter size,
stride, and padding are 3 × 3, 1, and 1, respectively, and the output
is 224 × 224 × 32. The subsequent hidden layers of the network are
composed of alternating MFF and LFS blocks, with each MFF block
being immediately followed by an LFS block, creating a structured
pattern that repeats throughout the feature extraction process. In the
classifier, following the fifth LFS block, an adaptive pooling layer is
applied to the output, reducing the spatial dimensions while retaining
essential features. This is followed by two fully connected layers with
1024 neurons each, designed to capture complex patterns within the
feature space. The final layer has 16 neurons, corresponding to the
number of lithology categories recognized by the RockNet model. To
improve the training speed and overall performance, RockNet adds BN
and applies SiLU as the activation function. Given an input image 𝑥𝑖,
the feature representation 𝑋(1)

𝑖 of the first hidden layer is defined as:

𝑋(1)
𝑖 = SiLU(BN(𝑓 (1)(𝑥𝑖;𝑊 (1))))

= SiLU(BN(Conv2D(3, 32, 3, 1, 1)))
(11)

where 3 is the channel amount of 𝑥𝑖, 32 is the channel amount gener-
ated by the convolution, 3 is the filter size of the convolution, and 1
and 1 are the stride and padding of the convolution, respectively.

4.3.1. Multi-channel feature fusion block
We construct the Multi-channel Feature Fusion (MFF) block to

extract and fuse hierarchical features from each view of rock images,
as shown in Fig. 7(b). Inspired by ‘‘Inception-v4’’, we adopt a flexible
multi-way and multi-scale feature fusion strategy in RockNet. It per-
forms four-path convolutions in parallel and forms the final feature
map by taking the element-wise sum of these outputs. Assume that the
input feature map is ℎ × 𝑤 × 𝑑𝑖𝑚, where 𝑤 and ℎ are the width and
height in pixels, and 𝑑𝑖𝑚 is the channel amount. After performing MFF,
the output will be 1

2ℎ × 1
2𝑤 × 2𝑑𝑖𝑚. The MFF block halves the spatial

dimension and doubles the depth of the feature map. Given a feature
map 𝑋(𝑗−1), the MFF block is formulated as:

MFF(𝑗)(𝑋(𝑗−1)
𝑖 ;𝑊 (𝑘)) =

𝑓 (𝑗)
𝐴 (𝑋(𝑗−1)

𝑖 ;𝛩(𝑘)
1 ) + 𝑓 (𝑗)

𝐶 (𝑓 (𝑗)
𝐵 (𝑋(𝑗−1)

𝑖 ;𝛩(𝑘)
2 );𝛩(𝑘)

3 )+

𝑓 (𝑗)
𝐷 (𝑋(𝑗−1)

𝑖 ;𝛩(𝑘)
4 ) + 𝑓 (𝑗)

𝐸 (𝑓 (𝑗)
𝐷 (𝑋(𝑗−1)

𝑖 ;𝛩(𝑘)
4 );𝛩(𝑘)

5 )

(12)

where 𝑓 (𝑗)(⋅) denotes the Conv2D operation, as defined in Eq. (2),
using weights 𝑊 (𝑘), and superscripts 𝑗 and 𝑘 represent the indices
of hidden layers and convolutional operations, respectively. The sub-
scripts 𝐴,… , 𝐸 correspond to the indices of the convolutions within
the MFF block, listed from left to right. Their corresponding weights
are 𝛩(𝑘)

1 ,… , 𝛩(𝑘)
5 . It should be noted that the weight matrix for the 𝑗th

layer is 𝑊 (𝑘) = {𝛩(𝑘)
1 ,… , 𝛩(𝑘)

5 }.
The MFF block increases the receptive field while decreasing the

model parameters by combining convolution filters of varying sizes
into a large filter. Specifically, from left to right in the MFF block, we
sequentially stack two non-linear convolution layers, namely convolu-
tions B and C in the second path, and convolutions D and E in the fourth
path. Compared to a single convolution operation, the four parallel
paths have receptive fields of 3, 3, 5, and 9, respectively, thereby
increasing the network’s discriminative power. Notably, the stacked
3 × 3 and 5 × 5 convolutional layers in the fourth path have an effective
receptive field of 9 × 9. However, these layers are parameterized
more efficiently than a single 9 × 9 convolutional layer. The 5 × 5
convolutional layer has 5 × 5 × 𝑑𝑖𝑚 × 2𝑑𝑖𝑚 = 50𝑑𝑖𝑚2 weights, and the
3 × 3 convolutional layer has 3 × 3 × 2𝑑𝑖𝑚 × 2𝑑𝑖𝑚 = 36𝑑𝑖𝑚2 weights,
totaling 86𝑑𝑖𝑚2. In contrast, a single 9 × 9 convolutional layer would
require 162𝑑𝑖𝑚2 weights, which is 88% more. Additionally, a 1 × 1
convolutional layer is added to the second path, effectively increasing
the network’s non-linearity.
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Fig. 7. RockNet model architecture: core components of Multi-channel Feature Fusion (MFF), Local Feature Salience (LFS), and classifier.
4.3.2. Local feature salience block
We design the Local Feature Salience (LFS) block to extract subtle

information across different views, maintaining the output dimension
identical to the input. Unlike traditional pooling layers, LFS preserves
spatial resolution, which is crucial since thin sections contain more
details and valuable information that would be lost with downsampling
through pooling operations. As shown in Fig. 7(c), the LFS block
performs two-dimensional max pooling (MaxPool2D) on a 3 × 3 pixel
window with a stride of 1 and padding of 1 to expand local feature
saliency without reducing the spatial dimensions. In addition, we apply
both BN and SiLU sequentially after max pooling, instead of apply-
ing them to each path within the MFF block. This approach further
reduces computational costs while maintaining training effectiveness.
The calculation process of the LFS block is defined as:

LFS(𝑗)(𝑋(𝑗−1)
𝑖 , 𝑟, 𝑠, 𝑝) =

SiLU(BN(MaxPool2D(𝑋(𝑗−1)
𝑖 , 3, 1, 1)))

(13)

where 𝑗 denotes the hidden layer index for 𝑗 ∈ {1, 2,… , 𝑙}. 𝑋(𝑗−1)
𝑖

represents the output features from the layer immediately preceding the
𝑗th layer in the network. In the MaxPool2D operation, the parameters
are a pool size 𝑟 of 3, a stride 𝑠 of 1, and a padding 𝑝 of 1, respectively.

4.4. Progressive training strategy

Motivated by 𝑘-fold cross-validation, we propose a 𝑘-fold progres-
sive training strategy to determine the optimal model parameters,
where 𝑘 is a hyperparameter. Initially, the dataset is partitioned into
three segments: 60% for training, 20% for validation, and 20% for test-
ing, respectively. The test set is used for final evaluation. The remaining
data is shuffled into 𝑘 different combinations of training and validation
sets. The 𝑘-fold progressive training workflow is shown in Fig. 8. In
each quarter of the training epochs, the process is carried out in two
distinct yet interconnected steps for each of the four folds: First, a
model is trained using three of the folds as training data. Subsequently,
the model that emerges from this training phase is validated on the
remaining part of the data.

We adopt the general progressive concept to fine-tune RockNet. The
training cycle is divided into four stages, as depicted in lines 2–3 of
7 
Fig. 8. Four-fold progressive training workflow.

Algorithm 2. In each cycle, different training and validation data will be
applied. The parameters will be continuously adjusted according to the
previous learning process in the next cycle. The whole model training
is a progressive learning process. Furthermore, the 𝑘-fold progressive
training can be regarded as a data-diversifying strategy, forcing the
model to learn from more data. It can gradually enhance the capacity
for more general and richer feature representation. Therefore, the
generalization capability of RockNet can be enhanced.

To emphasize the significance of both global and local features in
our model, we introduce a novel loss function, as defined by Eq. (3).

fusion = 𝜆 × 𝑐𝑏0 + (1 − 𝜆) ×
4
∑

𝑖=1
𝑐𝑏𝑖 (14)

where 𝜆 represents the loss contribution factor, and 𝑏 indexes the mini-
batches from 1 to 𝐴. The term  captures the loss associated with the
𝑐𝑏0
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global images in 𝑐𝑏0, ensuring that the broader context is considered
uring training. Conversely, the summation term ∑4

𝑖=1 𝑐𝑏𝑖 represents
he aggregated loss from local features, with each 𝑐𝑏𝑖 corresponding
o the 𝑖th image list of local images. The index 𝑖 ranges from 1 to
, corresponding to different local regions or features extracted from
he global image. The value of 𝜆 is crucial as it modulates the balance
etween the global and local components of the loss, thus influencing
he learning process and the model’s ability to generalize from the
raining data.

The detailed steps for the progressive training process are outlined
n Algorithm 2. Within this algorithm, the parameters 𝑊 and 𝜃 of
ockNet are optimized through lines 10–30.

Algorithm 2 Progressive model training
Input:

: the dataset; 𝑒: the number of epochs;
𝜆: the loss contribution factor; 𝜂: the learning rate.

Output:
The weights 𝑊 and 𝜃.

1: Initialize 𝑊 and 𝜃 randomly;
2: {tr/va,te} ← Split(), with the ratio of 8:2;
3: {𝐹𝑜𝑙𝑑1,… , 𝐹 𝑜𝑙𝑑4} ← Split(tr/va). Combine different three folds to

construct four training sets tr
1 ,… ,tr

4 . The corresponding left fold
constructs the validation sets va

1 ,… ,va
4 , as described in Fig. 8;

4: 𝑒 ← 160; 𝜂 ← 0.0001; 𝑠 ← 1;
5: for 𝑒𝑝𝑜𝑐ℎ from 1 to 𝑒 do
6: if 𝑒𝑝𝑜𝑐ℎ % 40 == 0 then
7: By Algorithm 1, perform category-aware augmentation over

(tr
𝑠 ) to obtain 𝐴 mini-batches. Each mini-batch comprises five

image lists, denoted as 𝑐𝑏𝑖, with the size of 𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒;
8: 𝑠 ← 𝑠 + 1;
9: end if

10: for 𝑏 from 1 to 𝐴 do
11: for 𝑖 from 0 to 4 do
12: 𝑐𝑏𝑖 ← 0; 𝑗 ← 1; 𝑘 ← 1;
13: for 𝑙 from 1 to 𝑙𝑖𝑠𝑡_𝑠𝑖𝑧𝑒 do
14: 𝑋(𝑗)

𝑙 ← SiLU(BN(𝑓 (𝑗)(𝑥𝑙;𝑊 (𝑘)))) by Eq. (11); 𝑘 ← 𝑘 + 1;
15: for all five MFF blocks do
16: 𝑋(𝑗+1)

𝑙 ← MFF(𝑗+1)(𝑋(𝑗)
𝑙 ;𝑊 (𝑘)) by Eq. (12); 𝑘 ← 𝑘 + 1;

17: 𝑋(𝑗+2)
𝑙 ← LFS(𝑗+2)(𝑋(𝑗+1)

𝑙 , 3, 1, 1) by Eq. (13); 𝑗 ← 𝑗 + 2;
18: end for
19: 𝑋(12)

𝑙 ← AdaptiveMaxPool2D(𝑋(11)
𝑙 , (1, 1));

20: 𝑋(13)
𝑙 ← Flatten(𝑋(12)

𝑙 );
21: 𝑋(14)

𝑙 ← Linear(𝑋(13)
𝑙 );

22: 𝑦𝑙 ← softmax(𝑋(14)
𝑙 ; 𝜃) by Eq. (4);

23: Compute 𝑥𝑙 for image 𝑥𝑙 by Eq. (3);
24: 𝑐𝑏𝑖+ = 𝑥𝑙
25: end for
26: end for
27: Compute fusion by Eq. (14);
28: Update 𝑊 and 𝜃 by Eq. (18);
29: end for
30: end for
31: return 𝑊 and 𝜃.

4.5. Multi-scale prediction fusion module

In the inference process, we further design a multi-scale prediction
fusion strategy for the well-trained RockNet model. Given an input
validation or testing image 𝑥0, the inference consists of three steps.
irstly, through global–local feature augmentation, 𝑥0 is split into four

local images (𝑥1,… , 𝑥4). We then perform auto augmentation and
esizing on 𝑥 , where 𝑖 = 0,… , 4. Next, 𝑥 is fed to RockNet to obtain
𝑖 𝑖 w

8 
its final feature representation 𝑋(𝑙)
𝑖 , and then five predictions 𝑦𝑖 are

ealized based on Eq. (4). Finally, weights 𝜆 and 1 − 𝜆 are assigned
o 𝑦0 and the remaining four predictions.

The final prediction fusion is obtained by the weighted sum of the
ive predictions, with each prediction contributing uniquely to the final
esult, reflecting their importance in the model. The calculation process
f the multi-scale inference is defined as:

fusion = argmax
𝑗

{

𝜆𝑦0(𝑗) + (1 − 𝜆)
4
∑

𝑖=1
𝑦𝑖(𝑗)

}

(15)

here 𝜆 is the loss contribution factor that highlights the importance
f the global prediction. The term 𝑦0 (𝑗) represents the probability that
he global image 𝑥0 is predicted to belong to category 𝑗. Conversely,
he summation term ∑4

𝑖=1 𝑦𝑖(𝑗) represents the aggregated probability
rom the four predictions of the local images. The detailed steps of the
ulti-scale prediction fusion module are described in Algorithm 3.

Algorithm 3 Multi-scale prediction fusion module
Input:

𝑥0: a validation or a testing image;
𝜆: the loss contribution factor;
𝑊 , 𝜃: the weights achieved from Algorithm 2.

Output:
The rock category index fusion of 𝑥0.

1: Cut 𝑥0 into four images 𝑥1,… , 𝑥4 by using the global-local feature
augmentation;

2: for 𝑖 from 0 to 4 do
3: Perform auto-augmentation and resizing for 𝑥𝑖;
4: Calculate the feature representation 𝑋(14)

𝑖 for 𝑥𝑖 by using lines
14–21 of Algorithm 2;

5: Calculate the prediction 𝑦𝑖 by using line 22 of Algorithm 2;
6: end for
7: Calculate the final prediction fusion for 𝑥0 by using Eq. (15);
8: return The predicted index fusion

4.6. Model parameter configuration

In this section, we describe the configuration of model parameters
for RockNet. As illustrated in Fig. 7, RockNet is composed of various
layers, each with its own set of parameters. Specifically, the model
parameters of RockNet are categorized into three main components:

• The weight matrix 𝑊 (1) of the first hidden layer, which serves as
the input to the subsequent layers.

• The set of weight matrices for the MFF block, denoted as 𝑊 (𝑗) for
𝑗 = 2,… , 6. Each 𝑊 (𝑗) comprises five weight matrices 𝛩(𝑗)

1 ,… , 𝛩(𝑗)
5

that correspond to different paths within the MFF block.
• The weight matrix 𝜃 of the output layer, which maps the final

features to the prediction scores for each category.

The parameters are defined as follows:

⎧

⎪

⎨

⎪

⎩

𝑊 = [𝑊 (1),𝑊 (2),… ,𝑊 (6)]

𝜃 = [𝜃0, 𝜃1, 𝜃2,… , 𝜃15]
(16)

here 𝑊 (𝑗) = {𝛩(𝑗)
1 ,… , 𝛩(𝑗)

5 } for 𝑗 = 2,… , 6. 𝛩𝑖 represents the weight
atrices for the 𝑖th convolutional operation of an MFF block. 𝜃𝑘 is the

eight column vector learned by the classifier for 𝑘 ∈ {0, 1,… , 15}.
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The dimensions of these parameters can be represented as:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑊 (1) ∈ R32×3×3×3

𝛩1 ∈ R2𝑑𝑖𝑚×3×3×𝑑𝑖𝑚

𝛩2 ∈ R𝑑𝑖𝑚×3×3×𝑑𝑖𝑚

𝛩3 ∈ R2𝑑𝑖𝑚×1×1×𝑑𝑖𝑚

𝛩4 ∈ R2𝑑𝑖𝑚×5×5×𝑑𝑖𝑚

𝛩5 ∈ R2𝑑𝑖𝑚×3×3×2𝑑𝑖𝑚

𝜃 ∈ R1024×16

(17)

here 𝛩𝑖 for 𝑖 = 1,… , 5 has dimensions R𝐹𝑖×𝐻𝑖×𝑊𝑖×𝐶𝑖 with 𝐹𝑖 being the
umber of filters, 𝐻𝑖 and 𝑊𝑖 being the height and width of the filters,
nd 𝐶𝑖 being the number of input channels. The term 𝑑𝑖𝑚 denotes
he base number of channels, and 2𝑑𝑖𝑚 represents twice the number

of channels. The term 𝑊 (1) represents the weights of the first hidden
layer, with dimensions R32×3×3×3 indicating 32 filters of size 3 × 3 on 3
input channels. The term 𝜃 represents the weights of the output layer,
with dimension R1024×16, where 1024 corresponds to the size of the
final logits of the last hidden layer, and 16 is the number of output
categories.

The optimal weights 𝑊 and 𝜃 of RockNet can be found by minimiz-
ing the loss function fusion using gradient descent. The update rule for
the parameters is given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑊 (𝑗) = 𝑊 (𝑗−1) − 𝜂 ⋅
𝜕fusion(𝑊 , 𝜃)

𝜕𝑊
|

|

|

|𝑊 =𝑊 (𝑗−1)

𝜃(𝑘) = 𝜃(𝑘−1) − 𝜂 ⋅
𝜕fusion(𝑊 , 𝜃)

𝜕𝜃
|

|

|

|𝜃=𝜃(𝑘−1)

(18)

here 𝜂 is the learning rate, 𝑊 (𝑗) represents the 𝑗th weights for 𝑗 =
,… , 6, and 𝜃 represents the output layer weights for 𝑘 = 0,… , 15. The
rror propagation gradient of the 𝑖th hidden layer is defined as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕fusion(𝑊 , 𝜃)
𝜕𝑊 (𝑗)

=
𝜕fusion(𝑊 , 𝜃)

𝜕𝑓 (𝑖)
×

𝜕𝑓 (𝑖)

𝜕𝑊 (𝑗)

𝜕fusion(𝑊 , 𝜃)
𝜕𝜃

=
𝜕fusion(𝑊 , 𝜃)

𝜕𝑦
×

𝜕𝑦
𝜕𝜃

(19)

where 𝑗 = 1,… , 6, 𝑓 (𝑖) denotes the convolutional operation of the 𝑖th
idden layer, and 𝑦 represents the predicted output of the network.

Based on Eq. (12) and the chain rule, the error propagation gradient
f the parameters 𝛩 of the MFF block is defined as follows:
𝜕fusion(𝑊 , 𝜃)

𝜕𝛩(𝑟)
1

=
𝜕fusion(𝑊 , 𝜃)

𝜕𝑓𝐴
×

𝜕𝑓𝐴
𝜕𝛩(𝑟)

1
𝜕fusion(𝑊 , 𝜃)

𝜕𝛩(𝑟)
2

=
𝜕fusion(𝑊 , 𝜃)

𝜕𝑓𝐶
×

𝜕𝑓𝐶
𝜕𝑓𝐵

×
𝜕𝑓𝐵
𝜕𝛩(𝑟)

2
𝜕fusion(𝑊 , 𝜃)

𝜕𝛩(𝑟)
3

=
𝜕fusion(𝑊 , 𝜃)

𝜕𝑓𝐶
×

𝜕𝑓𝐶
𝜕𝛩(𝑟)

3
𝜕fusion(𝑊 , 𝜃)

𝜕𝛩(𝑟)
4

=
𝜕fusion(𝑊 , 𝜃)

𝜕𝑓𝐷
×

𝜕𝑓𝐷
𝜕𝛩(𝑟)

4

+
𝜕fusion(𝑊 , 𝜃)

𝜕𝑓𝐸
×

𝜕𝑓𝐸
𝜕𝑓𝐷

×
𝜕𝑓𝐷
𝜕𝛩(𝑟)

4
𝜕fusion(𝑊 , 𝜃)

𝜕𝛩(𝑟)
5

=
𝜕fusion(𝑊 , 𝜃)

𝜕𝑓𝐸
×

𝜕𝑓𝐸
𝜕𝛩(𝑟)

5

(20)

here 𝑟 denotes the layer index for 𝑟 = 2,… , 6, 𝑓𝐴, 𝑓𝐵 ,… , 𝑓𝐸 represent
he Conv2D operations specific to the four paths of the MFF block.

. Experiments

We perform rigorous experiments to evaluate the performance of
ockNet. We first compare RockNet with existing state-of-the-art meth-
ds. Then, we verify the effectiveness of the proposed category-aware
nhancement and progressive training strategies. Finally, we discuss
he impact of the loss contribution factors and determine their optimal
alues.
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able 1
umber of original datasets.
Rock type XPL image PPL image Training set Validation set Test set

F 56 56 68 22 22
FQ 238 238 286 95 95
FL 23 23 28 9 9
Q 337 334 403 134 134
QL 218 218 262 87 87
L 15 15 18 6 6
LF 44 30 45 15 14
LQ 74 74 89 30 29

Oolitic 97 97 117 39 38
Grainstone 153 148 181 60 60
Wackestone 130 131 157 52 52
Mudstone 180 180 216 72 72
Packstone 112 112 135 45 44
Floatstone 123 123 148 49 49
Arenaceous 81 81 98 32 32
Microcrystal 230 230 276 92 92

Total 2111 2090 2527 839 835

5.1. Dataset and experimental settings

5.1.1. Dataset
We collect the dataset from an open database of rock micro-

graphs [31]. The dataset contains 4201 images of two major sedimen-
tary rocks, specifically limestone and sandstone, as detailed in Table 1.

The dataset includes plane-polarized and cross-polarized light im-
ages of rock-thin sections. According to the simplified Garzanti classi-
fication, sandstone is further subdivided into 8 secondary rock types,
namely feldspathic (F), feldspatho-quartzose (FQ), feldspatho-lithic
(FL), quartzose (Q), quartzo-lithic (QL), lithic (L), litho-feldspathic (LF)
and litho-quartzose (LQ), as shown in Figs. 9(a) to 9(h). Limestone is
further divided into 8 secondary rock types according to the modified
Dunham classification, namely oolitic, grainstone, wackestone, mud-
stone, packstone, floatstone, arenaceous, and microcrystal, as shown in
Figs. 9(i) to 9(p).

The dataset is randomly partitioned into segments: 60% for training,
20% for validation, and 20% for testing. As shown in Table 1, the
number of images in the training, validation, and test sets is 2527, 839,
and 835, respectively.

5.1.2. Experimental settings
We perform all comparison experiments on a server equipped with

an Intel(R) Xeon(R) Gold 6330 processor and three NVIDIA A100 GPUs.
The operating system is Ubuntu 20.04. The programming framework is
Pytorch 1.12.0. The version of the compute unified device architecture
(CUDA) is 11.3. To ensure a fair evaluation, the proposed category-
aware augmentation and progressive learning strategies are applied to
the state-of-the-art models. Moreover, all comparative methods employ
the same training hyper-parameters as RockNet. The training epochs
and batch size are both 160. The original learning rate and decay
factor are 0.001 and 0.1, respectively. The optimizer is stochastic
gradient descent (SGD). Except for ResNeSt-101, the input image size
is 224 × 224 pixels.

5.2. Experimental results

We evaluate the recognition performance of our RockNet model on
a comprehensive dataset encompassing sixteen distinct rock categories.
The recognition performance of RockNet on the test set is summarized
in Table 2.

Table 2 depicts that 75% of the rock categories can be well de-
tected, with precision and recall exceeding 80%. In particular, RockNet
can accurately classify QL with an F1 score and specificity of 100%.
However, RockNet cannot identify FL, wackestone, and LF well, with
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Fig. 9. Rock photomicrograph examples from the dataset: (a), (b), (c), (f), (g), and (j) are cross-polarized light (XPL) images, the rest are plane-polarized light (PPL) images.
Table 2
Recognition performance of RockNet on the test set.

Rock type Precision (%) Recall (%) F1 score (%) Specificity (%)

F 76.9 90.9 83.3 99.3
FQ 99.0 100.0 99.5 99.9
FL 100.0 44.4 61.5 100.0
Q 100.0 98.5 99.2 100.0
QL 100.0 100.0 100.0 100.0
L 100.0 83.3 90.9 100.0
LF 80.0 57.1 66.6 99.8
LQ 82.9 100.0 90.7 99.3

Oolitic 81.0 89.5 85.0 99.0
Grainstone 98.4 100.0 99.2 99.9
Wackestone 71.1 51.9 60.0 98.6
Mudstone 77.2 84.7 80.8 97.6
Packstone 83.7 93.2 88.2 99.0
Floatstone 82.7 87.8 85.2 98.9
Arenaceous 76.7 71.9 74.2 99.1
Microcrystal 94.4 91.3 92.8 99.3

lower recalls of 44.4%, 51.9%, and 57.1%, respectively. This is be-
cause sandstones are classified in the order of abundance of the main
components feldspar (F), lithic (L), and quartz (Q). FL is rich in lithic
fragments, but the feldspar content is higher than quartz, that is,
L>F>Q. Wackestone is a mud-supported carbonate rock with more than
10% of the grains [32]. Sand-sized grains are usually composed of rock
fragments, such as feldspar and quartz. Therefore, the key to accurately
identifying FL, LF, and wackestone is to calculate the contents of F, L,
and Q, which is more challenging than other rock categories.
10 
5.3. Performance evaluation

To provide a comprehensive assessment of recognition performance,
we compare RockNet with ten prevalent CNN-based methods: Efficient-
Net [33], ResNeSt [34], ResNet [35], ResNeXt [36], DenseNet [37],
RepVGG [38], RegNet [39], ShuffleNet [40], ConvNeXt [41], as well as
two transformer-based models, ViT [42] and Swin-T networks [43]. In
addition, model size and Giga floating point of operations (GFLOPs) are
crucial metrics for evaluating deep learning models. The architectural
effectiveness and recognition performance of RockNet relative to 12
prevalent models are detailed in Table 3.

In Table 3, columns 3 and 4 represent a comparison of model
efficiency. RockNet demonstrates a modest computational demand,
requiring only 7.5 GFLOPs and having a relatively moderate number
of parameters at 40.2 million. As a medium-sized CNN model, RockNet
possesses fewer parameters compared to models such as RepVGG-
B2, ResNeSt-101, ConvNeXt-B, and ViT. Columns 5 to 9 show the
recognition performance. RockNet excels in recognition performance
across various metrics, including accuracy, precision, recall, F1 score,
and specificity. Specifically, RockNet achieves the highest scores in
accuracy and F1 score, reaching 90.1% and 87.4%, respectively. As
discussed in Section 4, the task of rock lithology recognition is char-
acterized by an imbalanced dataset. The F1 score, which emphasizes
the balance between precision and recall, is thus a more comprehensive
measure of performance than accuracy alone, particularly in such sce-
narios. Additionally, RockNet exhibits the highest specificity at 99.3%,
indicating its exceptional capability in accurately identifying negative
rock samples. This high specificity, coupled with its top performance in
other metrics, underscores RockNet’s effective balance between model
accuracy and complexity.
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Table 3
Comparative analysis of RockNet with 12 prevalent models: focus on architectural effectiveness and recognition performance.
Model Input image size Model size (M) GFLOPs Accuracy (%) Precision (%) Recall (%) F1 score (%) Specificity (%)

RockNet 2242 40.2 7.5 90.1 89.0 85.8 87.4 99.3
EfficientNet-B0 2242 4.0 0.4 88.6 85.4 80.9 83.1 99.2
ResNeSt-50 2242 25.5 5.4 87.2 85.9 80.0 82.8 99.2
ResNeSt-101 2562 46.3 13.4 87.8 86.7 79.1 82.7 99.2
ResNet50 2242 23.5 4.1 85.9 83.4 77.6 80.4 99.1
ResNeXt-50 2242 23.0 3.8 88.0 83.6 77.3 80.3 99.2
DenseNet-201 2242 18.1 4.4 86.1 82.1 78.2 80.1 99.1
RepVGG-B2 2242 86.5 20.5 84.6 83.8 75.0 79.2 99.0
RegNetY-400MF 2242 3.9 0.4 83.0 79.5 75.5 77.4 98.9
ShuffleNet-v2_X1_0 2242 1.3 0.2 85.4 81.2 77.6 79.4 99.0
ConvNeXt-B 2242 87.6 15.4 74.7 65.7 66.0 65.8 98.3

ViT-B/32 2242 87.5 4.4 82.2 74.1 71.1 72.6 98.8
Swin-T 2242 27.5 4.5 82.3 76.2 71.6 73.8 98.8
Fig. 10. Validation accuracy and training loss: comparative analysis of RockNet with 12 prevalent models.
5.4. Accuracy and convergence analysis

We discuss the accuracy and convergence of the compared models.
The experimental results of validation accuracy and training loss for
these models are depicted in Fig. 10.

We can see from Fig. 10(a) that RockNet achieves the highest
accuracy over other compared models. The best and average validation
accuracy of RockNet are 98.28% and 93.04% respectively, which are
19.37% and 57.75% higher than those of ConvNeXt-B. RepVGG-B2
secures the second place, while ConvNeXt-B is the least performing.
Notably, a significant improvement in accuracy is observed for most
models at the 40th, 80th, 120th, and 160th epochs. These results
demonstrate the effectiveness of the 𝑘-fold progressive learning strat-
egy, which is characterized by periodic updates to the training and
validation sets every 40 epochs, thereby gradually boosting the feature
representation capability of the models. Furthermore, Fig. 10(b) shows
that RockNet exhibits superior convergence performance, evidenced by
a smooth and stable training loss curve.

5.5. Visualization of recognition results

To verify the performance of RockNet, we select five highly com-
petitive models for comparison: EfficientNet-B0, ResNeSt-50, ResNet50,
DenseNet-201, and RepVGG-B2, and visualize their recognition results.
We also select two categories, feldspatho-lithic (FL) and wackestone,
which are frequently misclassified, for our verification process. Fur-
thermore, we utilize category activation heat map visualization to
gain insight into the influence of model predictions on recognition
judgments. Fig. 11 presents the visualization and heat maps of the
recognition results across these models.

In Fig. 11, the first and third rows are FL and wackestone limestone
samples, respectively. The second and fourth rows correspond to the
heat maps generated for each model. Despite the similar features of
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the components F, L, and Q, which can be challenging to distinguish
based on content alone, RockNet demonstrates superior performance
over the other five models in recognizing their distinct shapes, colors,
and pleochroism.

5.6. Performance on multi-view and heterogeneous images

We further conduct comparison experiments to assess RockNet’s
performance on multi-view and heterogeneous images. To evaluate
the efficiency of feature extraction, we categorize and label the debris
grains in the four XPL images as Monocrystalline Quartz (Qm), Poly-
crystalline Quartz (Qp), and Chert (Cht). Subsequently, we examine
the focus areas highlighted by RockNet using rectangles to delineate
Qm, Qp, and Cht. Notably, PPL and XPL rock images exhibit distinctive
features, even when captured from identical viewpoints. Sandstone
classification is based on the relative proportions of its three main
components: Q, F, and L. Fig. 12 illustrates the visualization and heat
maps of recognition results.

As shown in Fig. 12, the eight heat maps correspond to four distinct
views, with each featuring one PPL and one XPL image. The regions
within the blue or red rectangles signify the key features of the ground
truth or predictions made by RockNet, respectively. Areas enclosed by
black rectangles indicate key regions that RockNet has overlooked. By
examining the XPL activation heat maps for views 2 and 3, as shown
in sub-figures (b) and (c), it is evident that RockNet concentrates on
the particles Qm, Qp, and Cht, which are delineated by red rectangles.
In contrast, the PPL activation heat map reveals that RockNet also
attends to extraneous features, in addition to the key features marked
by red rectangles. In sub-figure (d), we observe that RockNet omits
two key features, indicated by black rectangles. Nonetheless, these
features have been successfully captured by the XPL image of view 2.
The diverse and complementary features hidden within the multi-view
and heterogeneous images are effectively identified by RockNet, which
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Fig. 11. Recognition heat maps: comparative analysis of RockNet against five leading models-original images of FL and wackestone (rows 1 & 3) with corresponding heat maps
(rows 2 & 4).
Fig. 12. Visualization and heat maps for quartzose sandstone: a multi-view and heterogeneous image analysis.
Table 4
Performance gains from RockNet strategies: a comparative analysis of category-balanced
mini-batch generator, progressive training, and global–local feature augmentation.

Method Experimental result (%)

RockNet baseline ✓ ✓ ✓ ✓

Category-balanced mini-batch generator ✓ ✓ ✓

Progressive training ✓ ✓

Global-local feature augmentation ✓

Accuracy 87.1 88.3 89.1 90.1
Precision 84.3 85.6 85.5 89.0
Recall 80.9 82.9 81.7 85.8
F1 score 81.0 83.6 82.5 87.4
Specificity 99.1 99.2 99.3 99.3

accurately discerns key features from both PPL and XPL images across
various views.

5.7. Ablation study

5.7.1. Impact of category-aware augmentation and progressive training
We perform ablation experiments to assess the efficiency of the

proposed category-aware augmentation and progressive training. Our
design includes key strategies: global–local feature augmentation, pro-
gressive training, and a category-balanced mini-batch generator. We
measure the impact of each strategy on the accuracy, precision, recall,
F1 score, and specificity. Table 4 details the enhancements achieved
through the strategies.

As presented in Table 4, the accuracy of the RockNet baseline is
87.1%. After applying the category-balanced mini-batch generator, pro-
gressive training, and global–local feature augmentation, the accuracy
improves to 88.3%, 89.1%, and 90.1%, respectively. These improve-
ments represent gains of 1.2%, 0.8%, and 1.0%, respectively, verifying
12 
the effectiveness of our category-aware augmentation and progressive
training strategies.

The recognition results on a floatstone and an arenaceous are visu-
alized in Fig. 13. The network improvement strategy effectively boosts
the model’s classification performance. Specifically, the addition of a
category-balanced mini-batch generator helps to reduce the empha-
sis on background features by appropriately adjusting the network
weights. After undergoing progressive training, the model effectively
reduces the impact of background features in images, allowing RockNet
to focus more accurately on small-sized particles. After applying global–
local feature enhancement, the corresponding heat map indicates that
local fine-grained features become more prominent and uniform. Rock-
Net increases the emphasis on small-grained features, narrows the focus
area, and enhances the recognition rate for small targets. In summary,
enhancing the network architecture significantly improves the lithol-
ogy recognition capabilities of RockNet. Moreover, each modification
contributes to performance improvement in a unique way.

5.7.2. Impact of loss contribution factors
In the proposed RockNet model, 𝜆 is a factor representing the

contribution of global features to the loss. In other words, (1 − 𝜆)
represents the weight of local features when calculating the loss. To
evaluate its impact on the classification performance of RockNet and
determine the optimal value, nine extended experiments are conducted.
Table 5 shows the difference in RockNet recognition accuracy under
various 𝜆 settings.

Table 5 shows that RockNet exhibits strong classification capabili-
ties when 𝜆 is set to 0.4 and 0.7. Notably, at 𝜆 = 0.4, RockNet achieves
the highest values for accuracy, recall, and F1 score, outperforming
other settings considered. This configuration is especially advantageous
for positively identifying rock samples, making it well-suited for practi-
cal rock-type classification tasks. Consequently, we set 𝜆 to the default
value of 0.4 in RockNet.
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Fig. 13. RockNet strategy analysis: original floatstone and arenaceous rock images (rows 1 & 3) vs. corresponding heat maps (rows 2 & 4).
Table 5
Recognition accuracy under different 𝜆 settings.
𝜆 Accuracy (%) Precision (%) Recall (%) F1 score (%) Specificity (%)

0.1 89.8 88.8 85.6 87.2 99.3
0.2 89.2 86.6 83.2 84.9 99.3
0.3 89.7 87.5 83.8 85.6 99.3
0.4 90.1 89.0 85.8 87.4 99.3
0.5 89.3 87.2 82.4 84.7 99.3
0.6 89.8 87.6 84.2 85.9 99.3
0.7 90.2 88.8 85.8 87.3 99.4
0.8 88.3 85.0 82.0 83.5 99.2
0.9 88.5 86.0 82.7 84.3 99.2

6. Conclusion

Lithology identification is crucial for geological mapping and ex-
ploration. This paper proposes a new method named RockNet, which
exploits the advantages of CNN to encode multi-view and heteroge-
neous features, thereby improving the accuracy of lithology identifi-
cation. Comprehensive experiments on open-source datasets confirm
the effectiveness of RockNet. Due to the rarity of certain rocks in real
scenarios, training data is often insufficient. In future work, we will
explore ways to improve the generalization capabilities of RockNet.
Furthermore, with the advent of large models, rock image classification
has made significant progress. Combining these large models with
knowledge distillation provides a promising approach to rock lithology
identification.
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