
IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025 1079

ReViT: Vision Transformer Accelerator With
Reconfigurable Semantic-Aware

Differential Attention
Xiaofeng Zou , Cen Chen , Senior Member, IEEE, Hongen Shao , Qinyu Wang ,

Xiaobin Zhuang , Yangfan Li , and Keqin Li , Fellow, IEEE

Abstract—While vision transformers (ViTs) have continued to
achieve new milestones in computer vision, their complicated
network architectures with high computation and memory costs
have hindered their deployment on resource-limited edge devices.
Some customized accelerators have been proposed to accelerate
the execution of ViTs, achieving improved performance with
reduced energy consumption. However, these approaches utilize
flattened attention mechanisms and ignore the inherent hierar-
chical visual semantics in images. In this work, we conduct a
thorough analysis of hierarchical visual semantics in real-world
images, revealing opportunities and challenges of leveraging
visual semantics to accelerate ViTs. We propose ReViT, a system-
atic algorithm and architecture co-design approach, which aims
to exploit the visual semantics to accelerate ViTs. Our proposed
algorithm can leverage the same semantic class with strong
feature similarity to reduce computation and communication in
a differential attention mechanism, and support the semantic-
aware attention efficiently. A novel dedicated architecture is
designed to support the proposed algorithm and translate it into

Received 20 April 2024; revised 23 October 2024; accepted 10 November
2024. Date of publication 21 November 2024; date of current version 12
February 2025. This work was supported in part by the Fundamental Research
Funds for the Central Universities under Grant 2023ZYGXZR023, in part
by Guangdong Basic and Applied Basic Research Foundation under Grant
2024A1515010220, in part by the Postdoctoral Fellowship Program of CPSF
under Grant GZC20230841, in part by the China Postdoctoral Science
Foundation under Grant 2024M760955, in part by the National Natural
Science Foundation of China under Grant 62472181 and Grant 62302529,
in part by the Basic research of Shenzhen Science and Technology Plan
under Grant JCYJ20210324123802006, in part by Hunan Provincial Natural
Science Foundation of China under Grant 2023JJ40770, in part by Changsha
Municipal Natural Science Foundation under Grant kq2208290, sponsored
by CCF-Phytium Fund, and sponsored by CAAI-MindSpore Open Fund,
developed on OpenI Community. Recommended for acceptance by Y. Hu.
(Corresponding author: Cen Chen.)

Xiaofeng Zou, Hongen Shao, Qinyu Wang, and Xiaobin Zhuang
are with the School of Future Technology, South China University of
Technology, Guangzhou 510641, China (e-mail: zouxiaofeng@scut.edu.cn;
ftshaohongen@mail.scut.edu.cn; ft_wangqinyu@mail.scut.edu.cn; ftzxc111@
mail.scut.edu.cn).

Cen Chen is with the School of Future Technology, South China University
of Technology, Guangzhou 510641, China, and also with Pazhou Laboratory,
Guangzhou 510335, China (e-mail: chencen@scut.edu.cn).

Yangfan Li is with the School of Computer Science and Engineering,
Central South University, Changsha 410083, China (e-mail: liyangfan37@
csu.edu.cn).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA.

Digital Object Identifier 10.1109/TC.2024.3504263

performance improvements. Moreover, we propose an efficient
execution dataflow to alleviate workload imbalance and maximize
hardware utilization. ReViT opens new directions for accelerating
ViTs by exploring the underlying visual semantics of images.
ReViT gains an average of 2.3× speedup and 3.6× energy
efficiency over state-of-the-art ViT accelerators.

Index Terms—Hardware accelerator, vision transformers,
software-hardware co-design.

I. INTRODUCTION

RECENTLY, transformers [1] have emerged as the pre-
dominant method for sequence modeling tasks in natural

language process (NLP) and related fields [2], [3] owing to their
exceptional performance. Inspired by this, researchers began
to expand the transformer architecture into computer vision,
i.e., vision transformers (ViTs) [4], achieving promising per-
formance in various fields such as image retrieval [5], semantic
segmentation [4], image classification [6], [7], object detection
[8], etc. To accommodate image processing, ViTs typically
divide the input image into a sequence of fixed-size patches (e.g.
16× 16) [9], and model the global context relationships among
different patches through multi-head self-attention (MHSA).
Compared to convolution neural networks (CNNs), ViTs can
effectively capture long-range interactions and global informa-
tion for better performance.

Despite the remarkable success of ViTs, applying them to
real-world applications still poses serious challenges [10], [11].
The primary bottleneck arises from the self-attention mecha-
nism employed by the ViT models, which requires computing
the interactions among all patches, and its computational and
memory complexity depends on the number of patches with
a quadratic relationship [10]. This hinders its achievable effi-
ciency and scalability, and inhibits widespread deployment on
resource-constrained edge devices.

Unlike transformers in NLP, real-world images usually ex-
hibit hierarchical semantics [12]. The human visual system
instinctively leverages this hierarchical semantics during the
perception process, gradually extending from local details to
global context, thereby forming a comprehensive understanding
of the image [13], [14]. Inspired by this, we identify three levels
of visual semantics within the ViT framework. Taking Fig. 1(a)

0018-9340 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5823-6345
https://orcid.org/0000-0003-1389-0148
https://orcid.org/0000-0002-3464-2648
https://orcid.org/0000-0001-6375-0819
https://orcid.org/0009-0000-1326-5305
https://orcid.org/0000-0003-3640-5088
https://orcid.org/0000-0001-5224-4048
mailto:zouxiaofeng@scut.edu.cn
mailto:ftshaohongen@mail.scut.edu.cn
mailto:ft_wangqinyu@mail.scut.edu.cn
mailto:ftzxc111@mail.scut.edu.cn
mailto:ftzxc111@mail.scut.edu.cn
mailto:chencen@scut.edu.cn
mailto:liyangfan37@csu.edu.cn
mailto:liyangfan37@csu.edu.cn

1080 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

Fig. 1. The visual semantics of images. Different colors represent different
semantics classes. Taking (a) as an instance, the image can be divided
into multiple levels of semantic information such as sky, snow, and person.
(e) Feature similarity of different semantics.

as a reference, we observe the following: (i) Hierarchical se-
mantics: Images possess multi-level semantic layers, such as
the sky, snow, and people in a skiing scene. By synthesizing this
information, we gain a holistic understanding of the complex
scenario. (ii) Varied scale semantics: Different semantic cate-
gories within an image manifest at various scales, leading to an
uneven representation and spatial distribution. For example, the
background elements like snow and sky cover a larger portion,
whereas the foreground elements, such as people, are confined
to smaller areas. (iii) Feature similarity within the same seman-
tics: As shown in Fig. 1(e), objects of the same semantic class
(e.g., sky and grass) tend to cluster in close spatial proximity,
exhibiting strong feature similarity. Meanwhile, there are sig-
nificant feature differences among different semantic classes.

To alleviate the inefficiency of ViTs, researchers have made
great strides in designing customized accelerators [15], [16],
[17], which significantly outperform general-purpose platforms
such as CPUs and GPUs. However, these ViT accelerators
remain grounded in the vanilla flattened attention mechanism.
They incorporate optimization schemes such as sparse approx-
imation or token pruning from sequence transformers in NLP,
and apply them to flattened image patches. In contrast, recent
studies in computer vision algorithms have demonstrated that
leveraging hierarchical [4], [18] and varied-scale [19], [20],
[21] visual semantics can improve accuracy by maintaining
semantics in the scope of attention operation while simultane-
ously reducing computational workload by limiting information
interactions to local windows.

Despite the promising potential of visual semantics in ac-
celerating ViTs, it poses several significant challenges. (i) The
hierarchical semantic and semantic irregularity of images would
result in irregular attention computations. However, existing
ViT accelerators [15], [16], [17] are limited to flattened at-
tention computation, hindering their ability to fully leverage
these semantic properties to accelerate ViTs. (ii) The varying
scales of different semantic categories cause imbalances in
attention workloads, and simple sequential execution leads to
idle resources. (iii) Attention computations involve multiple

complex operations, making it difficult to effectively exploit
feature similarities within the same semantics.

In this work, we design a systematic algorithm-architecture
co-design approach to end-to-end explore the hierarchical se-
mantics of images for accelerated ViT inference. We first pro-
pose a novel semantic-aware hierarchical differential attention
algorithm for ViTs. It consists of two mechanisms: semantic-
ware differential attention mechanism, and efficient hierarchical
differential attention mechanism. The first mechanism utilizes
both semantic-aware and differential execution models to opti-
mize attention for a specific semantic by reducing computation
and communication redundancies. The second mechanism aims
to support efficient hierarchical attention for different seman-
tics. Our proposed algorithm can improve execution efficiency
and maintain the same recognition accuracy as state-of-the-art
ViTs, which use adaptive hierarchical attention. Moreover, we
also propose a semantic-aware hierarchical pruning method to
prune unimportant patches in a specific semantic and unimpor-
tant semantic.

Since the proposed algorithm involves multiple complex op-
erations, such complex execution dataflow cannot be supported
well by current general-purpose architecture and ViT accelera-
tors [15], [17], [22]. To tackle this, we design a dedicated accel-
erator ReViT to support the proposed algorithm and translate it
into performance improvements. Specifically, we design a Re-
configurable Attention Engine that explores two levels of fine-
grained reconfigurability to efficiently support the semantic-
aware hierarchical differential attention: (i) Processing element
unit (PEU)-level reconfiguration to support multi-granularity
attention computation, including regular flattened attention and
irregular hierarchical attention. It can flexibly allocate compu-
tation resources according to the workload, effectively improv-
ing computation efficiency and reducing resource waste. (ii)
Processing element (PE)-level reconfiguration to support the
differential attention. We design a Reconfigurable Bit-Serial
Processing Element that seamlessly accommodates both atten-
tion and bit-serial differential attention. Finally, we proposed
a latency-aware out-of-order execution dataflow to alleviate
workload imbalance for maximizing hardware utilization to
further improve performance.

To the best of our knowledge, ReViT is the first co-design
framework for exploring the underlying hierarchical visual se-
mantics, offering a fresh perspective and opportunity to accel-
erate ViTs. To summarize, our contributions are as follows:

• We reveal that hierarchical visual semantics are essential
properties of real-world images, and provide a comprehen-
sive of how to leverage hierarchical visual semantics to
accelerate ViTs.

• We propose a novel algorithm that can reduce the compu-
tation and communication in a differential attention mech-
anism, and support hierarchical attention by exploiting
hierarchical visual semantics.

• We further propose a specialized reconfigurable archi-
tecture design to support the proposed algorithm and
translate it into performance improvements. More impor-
tantly, ReViT is more generality than previous ViT accel-
erators [15], [17]. Through flexible configuration, it can

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ReViT: VISION TRANSFORMER ACCELERATOR WITH RECONFIGURABLE SEMANTIC-AWARE DIFFERENTIAL ATTENTION 1081

Fig. 2. Overview of ViTs with flattened attention.

effectively support different attention mechanisms includ-
ing our proposed algorithm.

• Compared with ViTALiTy [17], the state-of-the-art ViT
accelerator, ReViT achieves an average of 2.3× speedup
and 3.6× energy-efficiency.

II. BACKGROUND AND ANALYSIS

A. Preliminaries of Vision Transformer

Motivated by transformer’s powerful performance, Dosovit-
skiy et al. [23] extended it to image classification to achieve
competitive performance. Currently, ViTs have been applied to
various vision domains such as semantic segmentation [4], 3D
vision detection [24], image classification [6], [7], etc.
ViT Model Architecture. Fig. 2 illustrates the model archi-
tecture of ViTs. Given the input 2D image X ∈ R

h×w×c, ViT
flattens it into a series of image patches Xp ∈ R

n×(p2·c), where
c is the number of channels, (h,w) and (p, p) respectively
represent the resolution sizes of the original image and patch
images, and n= hw/p2 is the number of patches. A linear
projection module is utilized to map each image patch Xp

to d-dimension to obtain the patch embedding X0 ∈ R
n×d.

Then, the patch embedding X0 is fed to the L-layer Trans-
former block for processing. Each Transformer block includes a
Multi-Head Self-Attention (MHSA) module and a feed-forward
neural network (FFN). Finally, the first feature vector is sent
to a feed-forward neural network to obtain the classification
result.
Self-Attention in ViTs. Self-attention is the fundamental
component of ViTs, which captures important global context
information via modeling the dependencies between patches.
It contains the following three main computation steps: (i)
Q/K/V Generation. It utilizes linear transformations (MLP)
to compute the query/key/value vectors: Q= wQ ·X,K =
wK ·X,V = wV ·X , where wQ, wK , wV are the weight pa-
rameter. (ii) Attention Score Computation. It computes the
scaled dot-product to obtain the attention score S, and then
utilizes softmax function to normalize it to obtain the final at-
tention score: A= softmax (S) = softmax

(
Q·K�
√
dk

)
. (iii) At-

tention Output Computation. Multiply the attention scores
with the values V to obtain the final output: Z =A · V .

Fig. 3. Latency breakdown on A100 GPU.

Fig. 4. Illustration of three representative ViTs leveraging the image
semantics.

B. Motivation and Analysis

1) Performance Analysis of ViTs: Despite the remarkable
success of ViTs, applying them to practical applications still
faces serious challenges [10], [25]. The primary bottleneck is
that the self-attention mechanism adopted by ViTs requires
computing the information interactions among all patches. The
computation and memory complexity depend on the number
of patches with quadratic relationships, especially as the input
image size increases, the computational complexity would rise
significantly. To better understand this phenomenon, we present
the runtime distribution of various models at each stage in
Fig. 3. We observe that MHSA is the key factor affecting ViT
inference, which accounts for more than 70% of the total la-
tency. Meanwhile, the attention score computation consistently
dominates the MHSA runtime, accounting for 35% to 40% of
the total runtime. These observations demonstrate that decreas-
ing the computational complexity of self-attention is critical to
accelerating ViTs.

2) Analysis of Semantics in ViTs: Real-world images con-
tain the following key fundamental properties:
Hierarchical Semantics. Real-world images usually exhibit
hierarchical semantics [12], and the human visual system in-
stinctively leverages this hierarchical semantics during the per-
ception process, gradually extending from local details to global
context to form an overall understanding of the image or scene
[14]. As shown in Fig. 4(a), when observing an image, humans
naturally begin by focusing on its local details. Based on low-
level features such as color and shape, we effortlessly identify
multi-level semantic information, such as sky, lawn, dog, and
combine them together to understand the entire scene.
Varied Sizes of Different Semantics. Objects of different
semantic classes have different scales in the image, exhibiting
irregular representation and spatial distribution. As shown in
Fig. 4(c), the background (sky and lawn) occupies a large part

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

1082 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

Fig. 5. Cumulative distribution of the number of effectual bits.

of the image, while the foreground (dog) takes up only a small
fraction. Furthermore, the spatial distribution of these objects
is arbitrary and irregular, potentially appearing in different po-
sitions and poses in the image.
Feature similarity within Same Semantics. Due to the hierar-
chical semantics of images, objects within the same semantics
class exhibit strong feature similarity. As shown in Fig. 4(c), the
features of the sky exhibit small differences in the image and
demonstrate strong feature similarity within the local region.
To gain insight into this property, we employ locality-sensitive
hash (LSH) clustering [26] to cluster patches into several se-
mantic groups (more details in Section III-B), and utilize the
delta method [27] to quantify feature similarity. In particular,
given a semantic group Ig with m patches, we compute the
average of all patches to be the centroid xc, the patch xi ∈ Ig
can be represented in a differential form:

xi = xc + (xi − xc) = xc +Δi, (1)

where Δi is the element-wise differences between xi and xc.
If the original features are similar, Δi is small. This provides
an opportunity to reduce the required computational workload.
To facilitate understanding, consider a multiplication xi × w
of node xi and weight w. If xi is represented by p bits, the
multiplication is equivalent to adding p terms, where the i-th
term is the result of multiplying the s-th bit of the multiplier xi

with the shifted s bit positions multiplicand w:

xi × w =

s=p∑
s=0

xsm · (w� s). (2)

Only the ‘1’ valued bits in xi contribute to effective computa-
tion. The effectual bits correspond to the count of 1 values in
xi. Fig. 5 presents the cumulative distribution of the number of
effectual bits for both original features and delta features across
various neural network layers. The distribution is measured on
the ImageNet-1K dataset [28] using DeiT-Base [7] with 16-
bit precision. It is observed that approximately 28% of the
original features have 0 effective bits, while 35% of the delta
features have 0 effective bits. Meanwhile, the delta features
have significantly fewer effective bits compared to the original
features. This indicates that there is considerable potential to
reduce the number of required computations if delta features
are processed instead of raw features.

These inherent hierarchical visual semantics provide a great
opportunity to improve ViTs. It motivates us to consider the
hierarchical visual semantics in self-attention, hitting two

“birds” with one stone (simultaneously improving the model
performance and execution efficiency of ViTs).

3) How Existing ViTs Leverage Semantics: Earlier ViTs
[6], [7] failed to consider the hierarchical semantics inherent
in images. As illustrated in Fig. 4(a), these methods directly
employ flattened attention, which simply splits the image into
flattened patches and utilizes the self-attention mechanism to
perform information interaction among all the patches. Such
treating all patches equally would bring tedious redundant in-
formation interactions, thereby affecting the model’s efficiency
and performance.

Following this line, some approaches [4], [18] have studied
fixed hierarchical attention in ViTs to explore hierarchical se-
mantics. As shown in Fig. 4(b), these methods divide the image
into fixed-size windows, then execute local attention within
the windows, and then utilize global attention to realize cross-
window interaction. This effectively reduces the global scope of
the information interaction to local windows, thereby reducing
computation redundancy and improving execution efficiency.
Nevertheless, objects of different semantic classes have dif-
ferent scales in the image, and an object may span multiple
windows. Fixed window partitions would destroy the semantic
hierarchy of the image, making it difficult to capture the full
local structure associated with the objects.

To explore the semantic irregularity, some works [19], [20],
[21] have further proposed adaptive hierarchical attention on
the basis of fixed hierarchical attention. This approach can
adaptively generate partitions based on image content and cap-
ture local semantics and global context through hierarchical
attention. Table IV illustrates the comparison of accuracy and
throughput of different models on the ImageNet-1K dataset.
It is easy to find that fixed hierarchical attention outperforms
flattened attention in terms of accuracy and efficiency. Further-
more, adaptive hierarchical attention achieves higher accuracy
than fixed hierarchical attention in terms of accuracy, while
the efficiency is lower, but still higher than flattened attention.
Therefore, it can be concluded that exploring image semantics
in ViTs can effectively improve the model performance.

4) Gaps of Existing Architecture: Despite the excellent
performance of adaptive hierarchical attention, it cannot be well
supported by existing general-purpose architectures (e.g., GPU)
and ViT accelerators [15], [16], [17]. The main challenges arise
from the following aspects:
Challenge 1: Lack of exploration of feature similarity
within same semantics. Feature similarity within the same
semantics provides a great opportunity to improve ViT perfor-
mance. However, to the best of our knowledge, neither existing
algorithms nor accelerators do not exploit this feature similarity
to accelerate ViTs. This may be because the attention com-
putation in ViTs involves multiple complex operations (e.g.,
Q/K/V generation, attention score computation, and attention
output computation), making it a non-trivial task to exploit this
similarity.
Challenge 2: Irregular attention computations lead to
inefficient execution. Since different objects in the image have
different scales, adaptive hierarchical attention would adap-
tively divide the image into irregular semantic groups with

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ReViT: VISION TRANSFORMER ACCELERATOR WITH RECONFIGURABLE SEMANTIC-AWARE DIFFERENTIAL ATTENTION 1083

TABLE I
COMPARISON TO SOTA VIT ACCELERATORS

Accelerators
Flattened
Attention

Hierarchical
Attention

Varied Sizes of
Different Semantics

Feature
similarity

Sange [22] � � � �

ViTCod [15] � � � �

ViTALiTy [17] � � � �

ReViT (our) � � � �

different sizes based on the image content, leading to irregular
attention computing and workload imbalance. GPUs are inher-
ently optimized for regular computation and cannot effectively
support irregular computations [29]. Meanwhile, as shown in
Table I, existing ViT accelerators [15], [16] do not consider
the image semantics at all, thus they only support flattened
attention computation and do not support hierarchical attention
computation that considers hierarchical semantic nature and
semantic irregularity.
Challenge 3: Sequential execution for irregular hierarchi-
cal attention results in idle resources. Due to the workload
imbalance of adaptive hierarchical attention, naive sequential
execution suffers from large waiting latency. This is because
global attention must wait until the local attention of all groups
has finished executing, and different semantic groups of dif-
ferent sizes require different execution times to execute local
attention, resulting in idle computing resources.

C. Overview of Our Solutions

ReViT is a systematic algorithm and architecture co-design
approach, which aims to end-to-end exploit the visual semantics
of images to accelerate ViTs.
Algorithm Design. To tackle Challenge 1, we propose a novel
semantics-aware hierarchical differential attention algorithm
for ViTs, which adaptively generates multiple semantic groups
based on the image content and captures local semantics and
global context in a hierarchical attention execution. Meanwhile,
it innovatively supports a semantic-aware differential atten-
tion mechanism, which leverages the strong feature similarity
within the same semantic group to compute attention with a
differential execution model. This method effectively reduces
the computational cost and communication overhead without
changing the computational result. Moreover, we further pro-
pose a semantic-aware hierarchical pruning method to prune
unimportant patches in a specific semantic and unimportant
semantic.
Architecture Design. On the architecture level, we design a
dedicated accelerator to support the proposed algorithm and
translate it into performance improvements. To tackle Chal-
lenge 2, we design a Reconfigurable Attention Engine that
explores two levels of fine-grained reconfigurability. (i) Pro-
cessing element unit (PEU)-level reconfiguration to cope with
load imbalance introduced by irregular attention computation.
It can flexibly allocate computation resources according to the
workload, effectively improving computation efficiency and
reducing resource waste. (ii) Processing element (PE)-level

reconfiguration to support the semantic-aware differential at-
tention. We design a Reconfigurable Bit-Serial Processing
Element that seamlessly accommodates differential/normal at-
tention computation. To tackle Challenge 3, we proposed
a latency-aware out-of-order execution dataflow to alleviate
workload imbalance for maximizing hardware utilization to
further improve performance.

III. ALGORITHM DESIGN OF REVIT

A. Overview of Existing Adaptive Hierarchical Attention

Existing adaptive hierarchical attention [19], [20], [21] con-
tains three main phases. It first utilizes the locality-sensitive
hashing (LSH) algorithm [30] to adaptively partition the im-
age into multiple semantic groups with similar features. Then,
hierarchical attention is performed for these semantic groups.
within each semantic group, intra-group local attention is per-
formed to capture local features. To enable the model to cap-
ture global dependencies, inter-group global attention is further
introduced to enable information interaction between semantic
groups.

B. Semantic-Aware Hierarchical Differential Attention

Despite the adaptive hierarchical attention achieves state-of-
the-art recognition accuracy, its execution efficiency still has a
large room for improvement because of the challenges which
are discussed in Section II-B4. To this end, we propose a novel
semantic-aware hierarchical differential attention, which can
improve execution efficiency and maintain the same recognition
accuracy as adaptive hierarchical attention. It mainly contains
semantic-aware differential attention and an efficient hierarchi-
cal differential attention mechanism.

1) Semantic-Aware Differential Attention Mechanism: As
described above in Challenge 1, it is significantly challenging
to utilize feature similarity in ViTs. There are two reasons:
(i) Objects in images exhibit irregular distribution, making it
challenging to convert similar features into deltas. This requires
efficiently dividing semantic groups of images and determining
their centroid. (ii) Attention computation involves several com-
plex operations, including Q/K/V generation, attention score
computation, and output computation. To overcome these is-
sues, we design a novel semantic-aware differential attention
mechanism. Specifically, we first partition images into several
semantic groups, and compute the centroid for each semantic
group to generate deltas. Then, end-to-end differential attention
is carefully designed to significantly reduce the workload of
the attention computation without changing the computational
result.
Semantic-aware Adaptive Partition. Consistent with [21],
we employ the efficient and hardware-friendly LSH to partition
images into semantic groups. Its core idea is that similar data
points have a high probability of falling into the same bucket
in the hash space. In particular, given an input patch matrix
X ∈ R

n×d, we utilize the hash function to map each patch
xi ∈X to the hash space, and generate the unique hash code:

H(xi) = �(α · xi + β)/γ�, (3)

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

1084 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

Fig. 6. (a) Illustration of semantic-aware differential attention mechanism. (b) Illustration of differential computation with delta.

where α is a vector randomly selected from the normal distribu-
tion N (0, 1), β is randomly selected from uniform distribution
U(0, γ), and γ is the width of the hash buckets. H(xi) ∈ R

G

is the hash code of xi. This process ensures that patches with
similar features have a higher probability of sharing the same
hash code. For simplicity, we transform the hash codes into
semantic group category indexes by:

idxxi
= argmax (H(xi)), (4)

where idxxi
is the cluster index for patch xi. In this manner,

the image is effectively partitioned into G semantic groups, i.e.,
X = {Ig}Gg=1. Then, we take the average of all patches xg ∈ Ig
in the semantic group Ig as the centroid xcg , and convert the
patch features into deltas with Equ. 1:

xcg =
1

lg

∑
i∈Ig

xig , Δxig = xig − xcg , (5)

where lg is the number of patches in Ig.
End-to-end Differential Attention. Since the attention mech-
anism involves several complex operations, including linear
transformations and nonlinear activations, it is not trivial to
perform the attention computation in differential form. To this
end, we design end-to-end differential attention to explore the
computation reduction in all computation steps of attention.
Fig. 6(b) illustrates the overall execution flow of end-to-end
differential attention, which contains four main phases:

Step1: Differential Q/K/V Generation. As shown in
Fig. 6(a), given a semantic group Ig , we first utilize raw fea-
tures to compute for the centroid, while the remaining patches
xig ∈ Ig are computed in a differential manner. Take Q as an
example, the process can be expressed as follows:

Qxcg
= wQ · xcg , ΔQxig

= wQ ·Δxig . (6)

Finally, we add the result of centroid xcg to the other incremen-
tal results to reconstruct the correct result, i.e., Qxig

=Qxcg
+

ΔQxig
. The computation ofK/V follows a similar computation

process. The important difference is that the K/V is stored as
deltas (i.e., ΔKxig

and ΔVxig
) without being reconstructed as

correct results. The benefit of this comes from two aspects:
(i) In the subsequent attention computation flow, the deltas can
be reused directly without recomputation. (ii) Utilizing deltas
reduces on-chip storage and communication.

Step2: Differential Attention Dot-Product. Due to the
limited memory and computing resources, it is necessary to
calculate the attention dot-product in blocks. Therefore, we
load the features of Q/K in blocks, where Q is represented

by the raw features and K is represented by the deltas. The
attention score Sxig

is then computed in an incremental manner
analogous to Equ. 6, and reconstruct the correct result:

Sxcg
=Qxcg

·Kxcg
, Sxig

=Qxig
·ΔKxig

+ Sxcg
. (7)

Step3: Differential Softmax. Next, we perform softmax
operation to normalize the attention score:

m (s) = max
si∈S

(si), A= softmax (S) =
esi−m(s)

∑
si∈S esi−m(s)

. (8)

Nonetheless, the block computation of softmax presents a non-
trivial challenge. This is because the normalization factor (de-
nominator) of softmax contains the summation term associ-
ated with all the elements, i.e., l (S) =

∑
si∈S esi−m(s), which

requires the complete attention score vector S. Therefore, the
normalization operation must wait until all blocks have been
executed.

To address this issue, we propose a novel differential soft-
max to support the blockwise computation of softmax. Its
core idea is to reuse the intermediate results of each block to
obtain the final attention score in an iterative update manner.
❶ Given the attention score vector S1 of a block, we com-
pute the local intermediate results according to Equ. 8, and
store the maximum value m (s1) and summation term l(S1).
❷ When processing the next block S2, we update the current
global maximum mg =max (m (s1),m (s2)) and the global
summation term lg = em(s1)−mg l (S1) + em(s2)−mg l (S2), and
calculate the intermediate result for the current block. Then, the
previous results of the old block are updated based on the new
global maximum and global summation term. ❸ Until all blocks
are processed, the softmax values of all blocks at this point are
true values. In this manner, blockwise computation of softmax
can be efficiently implemented by storing only two additional
statistical values (mg and lg), which effectively reduces waiting
latency and enhances execution efficiency.

Step4: Differential Output Computation. Finally, we load
the features of A/V , where A is the raw features and V is the
deltas. Then, perform A · V computation in incremental form
and reconstruct the correct result to obtain the final output:

Zxcg
=Axcg

· Vxcg
, Zxcg

=Axig
·ΔVxig

+ Zxcg
. (9)

Overall, end-to-end differential attention requires only once
calculation of deltas and utilizes delta for computation, storage,
and communication, thus minimizing computation, storage, and
communication overheads.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ReViT: VISION TRANSFORMER ACCELERATOR WITH RECONFIGURABLE SEMANTIC-AWARE DIFFERENTIAL ATTENTION 1085

2) Efficient Hierarchical Differential Attention Mechanism:
Here, we integrate the proposed differential attention into adap-
tive hierarchical attention [21], which consists of two main
phases. (i) Intra-group differential attention. Due to the strong
feature similarity within semantic groups, we adopt the pro-
posed differential attention to perform intra-group attention for
capturing local features. (ii) Inter-group normal attention. Be-
cause of the large feature differences among semantic groups,
we use the feature of each semantic group’s centroid to perform
normal attention to capture global dependency. This approach
can greatly reduce the redundant information interaction be-
tween different semantic groups.
Latency-aware Out-of-Order Execution for Hierarchical
Attention Process. For the issue of large waiting latency (Chal-
lenge 3) as mentioned in Section II-B4, we propose a latency-
aware out-of-order execution scheme to reduce waiting latency
during the hierarchical attention process. The primary insight
is the insensitivity property of the ViT model to token se-
quences. Specifically, modifying the execution order of patches
in attention would not affect the model accuracy. The latency-
aware out-of-order execution scheme allows semantic groups
that have finished executing intra-group attention to advance
to inter-group computation. This fully pipelined execution flow
minimizes the global attention waiting time. More detailed
execution flow can be found in Section IV-F.

C. Semantic-Aware Hierarchical Pruning

Existing patch pruning methods [11], [31], [32] primar-
ily focus on removing uninformative patches to reduce the
computational cost of ViTs. Building upon this, we present
a semantic-aware hierarchical pruning to further improve effi-
ciency. Unlike previous methods, our approach leverages the hi-
erarchical visual semantics to adaptively distinguish foreground
and background, and prune redundant information in the fore-
ground region. It comprises two main phases: (i) Global group
pruning. To reduce extra parameters introduced by the model,
we adopt the method in [32], which computes the importance
of each semantic group based on class token attention. Specifi-
cally, during inter-group attention, an importance score vector is
obtained by computing the interaction between class token and
the centroid of each semantic group. The foreground regions
with high scores are then retained, limiting intra-group atten-
tion computations to these retained regions. (ii) Local patch
pruning. Similarly, we utilize class token attention to determine
the importance of each patch within the semantic group, retain-
ing the informative patches. To minimize information loss, we
employ the patch packing technique [11] that summarizes non-
informative patches into a package patch instead of completely
discarding them.

D. Computational Complexity Analysis

For clarity, we discuss the computational complexity of
the proposed ReViT here. The main additional computational
overhead introduced by ReViT is semantic-aware adaptive
partition. It can be sequentially decomposed into matrix multi-
plication, matrix addition, and the operation of finding the index

of the maximum value (Eq. 3 and Eq. 4), with complexities
of O(nGd), O(nGd), O(nG) respectively. The total computa-
tional complexity is O(2nGd+ nG). Since the hash length G
is small, the partition overhead is trivial relative to the quadratic
complexity of the attention.

The reduced computational overhead comes from mul-
tiple sources: (i) During the attention score computation
step, the complexity of the multiply-accumulate (MAC) op-
eration is reduced from O(n2d) to O(G2 + d

∑G
i=1 m

2
i) =

O(d
∑G

i=1 m
2
i). Notably,

∑G
i=1 mi = n, therefore

∑G
i=1 m

2
i <

n2, O(d
∑G

i=1 m
2
i)<O(n2d). (ii) Through hierarchical prun-

ing, the number of patches is reduced from n to k(k << n). As
k decreases, both intra-group and inter-group attention compu-
tations are significantly reduced. Furthermore, as the number of
ReViT layers increases, the pruning rate η% also rises, leading
to even more pronounced computational savings.

IV. ARCHITECTURE DESIGN OF REVIT

A. The Need for a Customized Accelerator

Despite the proposed algorithm can accelerate ViTs, it may
not be well supported by existing general-purpose architectures
(e.g., GPUs) and ViT accelerators [15], [16], [17], making it dif-
ficult to translate the theoretical savings into actual performance
gains. The reasons arise from the following aspects: (i) Nei-
ther GPUs nor existing ViT accelerators support the proposed
semantic-aware hierarchical attention well. GPUs are inherently
optimized for regular computation and cannot effectively sup-
port irregular scale attention computations. Meanwhile, existing
ViT accelerators [15], [16] are tailored for flattened attention,
and do not consider the hierarchical visual semantics in images
at all. (ii) The semantic-aware differential attention employs the
bit-serial incremental execution model, which requires process-
ing data bit-by-bit. Neither GPUs nor existing ViT architectures
can support this operation well. Furthermore, end-to-end differ-
ential attention contains multiple complex operations, and it is
a non-trivial task to efficiently support such complex execution
dataflow. Therefore, it is necessary to design a customized
architecture accelerator.

B. Architecture Overview

Design Overview. Fig. 7 illustrates the overall architecture of
ReViT, which integrates three dedicated computing engines:
Reconfigurable Attention Engine, Semantic Group Generation
Engine, Pruner. Different computing engines are designed for
the different computing components, and specific hardware op-
timizations are applied according to their computing properties.
ReViT follows a semantic-aware block execution model, which
divides the image into multiple semantic groups and performs
the attention computation in parallel. The patches within the
same semantic group show strong similarities, which allows the
designed engine to exploit these similarities to reduce compu-
tation and communication redundancy.

The Reconfigurable Attention Engine is the core com-
puting component of ReViT, which explores two levels of
fine-grained reconfigurability to efficiently support the complex

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

1086 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

Fig. 7. Architecture overview of ReViT.

execution dataflow of semantic-aware hierarchical differential
attention: (i) Processing element unit (PEU)-level reconfigu-
ration to tackle the challenges of irregular attention compu-
tation. The designed differential attention engine can flexibly
configure and allocate computational resources according to
the workload. For large semantic groups, we can allocate more
computation resources, while reducing resources for smaller
semantic groups. This unique PEU-level reconfigurability pro-
vides a high degree of freedom to support multi-granularity
attention computation (both regular flat attention and irregular
hierarchical attention). Meanwhile, it maximizes the utilization
of available resources to improve execution efficiency and re-
duce resource waste. (ii) Processing element (PE)-level recon-
figuration for supporting bit-serial differential computation. We
design a reconfigurable bit-serial processing element (RBSP)
that can change the execution mode of PE through fine-grained
configuration. This design facilitates RBSP to seamlessly ac-
commodate both normal attention and bit-serial differential
attention.

The Semantic Group Generation Engine is a lightweight
module that aims to adaptively generate semantic group indexes
for patches. It receives hash codes generated by Reconfigurable
Attention Engine and generates cluster indexes using group-
generation processing elements (G-PEs).

The Pruners aims to support the proposed semantic-aware hi-
erarchical pruning. We equip ReViT with two pruning engines:
Patch Pruner for supporting local patch pruning and Group
Pruner for global group pruning. These two Pruners utilize the
same pruning elements (P-PEs) for pruning.
Central Controller. ReViT is a flexible and reconfigurable
pipeline architecture accelerator. The Central Controller can
control all configurable units, which are configured in real-time
based on configuration parameters to match the target execution
flow.
Buffer Management. The Prefetcher is first utilized to explic-
itly prefetch the patches and weights from the high bandwidth
memory (HBM). We utilize Global Buffer to cache various data
and intermediate results to reduce the data transfer latency. In
particular, Weight Buffer and Input Buffer are used to store the
weight parameters and input patch features. Idx Buffer is used to
store the group indexes of patches. Q/V Buffer is used to store
the Q/V vectors and K/A Buffer to store the K-vectors and

attention scores A. The Global Buffer adopts double-buffering
technology to overlap the data transfer time with computation
to hide the access latency. Note that the Global Buffer is a multi-
mode buffer that consists of multiple scratch banks. In this
manner, it allows adaptive partitioning into multiple indepen-
dent buffers to match the target dataflows, and cooperate with
Reconfigurable Attention Engine for efficient computation.

C. Design of Reconfigurable Attention Engine

The proposed hierarchical attention mechanism would di-
vide images into irregular semantic groups with different sizes,
resulting in irregular attention computation. The computing
unit of existing ViT accelerators [15], [16] only supports flat
attention computation. This fixed-scale computing mode does
not fit well when the scale of the computation changes. It would
suffer from a mismatch of computing resources, which reduces
the computing resource utilization and execution efficiency. To
this end, we design a flexible Reconfigurable Attention Engine.
Architecture of Reconfigurable Attention Engine. As shown
in Fig. 7, it contains a scheduler rSched for workload assign-
ment, a Reconfigurable Matrix Multiplication Unit (RMMU)
responsible for supporting all matrix multiplications in attention
computation, and an SIMD Vector Unit is used to support
softmax, layernorm, dropout, and other operations.

To achieve PEU-level reconfiguration, our novel insight is
to implement an omnidirectional connectivity pattern of pro-
cessing elements to support shape-flexible matrix multiplica-
tion. The opportunity exists to support this pattern by adding
low-cost switch boxes (MUXs) to each processing element
(RBPE), as shown in Fig. 8(a). Specifically, these switch boxes
are specifically used to control the data flow and determine
whether the PE can send intermediate results to its right. The
same single bit (1: true, 0: false) controls these switch boxes, it
connects neighboring PEs if the control flow is 1, and breaks the
connection if the control flow is 0. Since the feature dimensions
are consistent for all patches, only configuring the columns of
the computation engine suffices. In this manner, we can divide
the Reconfigurable Matrix Multiplication Unit into multiple
flexible-shaped independent sub-RMMUs through fine-grained
reconfiguration.

Since attention computation involves softmax operations, if
all sub-RMMUs share a single SIMD Vector Unit, it would
cause the resource conflict problem. To support efficient par-
allel computation among sub-RMMUs, SIMD Vector Unit also
needs to be decomposed into smaller components and coupled
with each sub-RMMU. Due to the parallelism of the unit, we di-
vide the original SIMD Vector Unit into sub-blocks proportional
to the number of sub-RMMUs, and allocate each sub-RMMU
with a small SIMD Vector Unit.
Flexible reconfigurability for Supporting Various At-
tention Variants. Fig. 8(a) presents an example that divides
Reconfigurable Attention Engine into three differently sized
sub-RMMUs for supporting irregular adaptive hierarchical at-
tention. Besides, we can divide Reconfigurable Attention En-
gine into multiple fixed-sized sub-RMMUs for supporting fixed
hierarchical attention. Furthermore, we configure all switch

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ReViT: VISION TRANSFORMER ACCELERATOR WITH RECONFIGURABLE SEMANTIC-AWARE DIFFERENTIAL ATTENTION 1087

Fig. 8. (a) Configuration example of reconfigurable attention engine. (b) Internal of reconfigurable bit-serial processing element. (c) Architecture design of
reconfigurable matrix multiplication unit.

boxes to 1, and the whole Reconfigurable Attention Engine
as a single large execution engine for supporting flat attention
Therefore, this fine-grained reconfigurable execution mode can
provide tailored computational resources based on task require-
ments, effectively improving hardware resource utilization and
execution efficiency.

D. Reconfigurable Bit-Serial Processing Element

Semantic-aware differential attention employs the bit-serial
incremental execution model, which requires processing data
bit-by-bit. Neither GPUs nor existing ViT architectures [15],
[16] can support this operation well. Furthermore, the proposed
hierarchical differential attention needs to support both differ-
ential attention and normal attention.
Architecture of Reconfigurable Bit-Serial Processing Ele-
ment. To achieve PE-level reconfiguration, we design a novel
Reconfigurable Bit-Serial Processing Element (RBSP), which
flexibly switches between differential and normal attention
computation. Specifically, it is based on the classical Bit-
Pragmatic accelerator (PRA) [33], which processes the input
features in a bit-serial manner, focusing solely on the effectual
bits. Therefore, the execution time of the PRA is proportional
to the number of effectual bits of the features. According to the
analysis in section II-B, the effective bit of delta is much smaller
than that of the original feature due to the local feature similarity
of the image. We enhance the PRA’s basic architecture to ac-
commodate delta processing, thus leveraging this phenomenon
for performance improvements.

Fig. 8(b) illustrates the internals of the RBSP. Each RBSP
contains a MUX, a delta generator, offset generators, a Pc input
adder tree, and Pc shifters (not multipliers). We utilize a MUX
to control the dataflow of RBSP to support both differential
and normal attention. It allows RBSP to compute using delta or
raw feature (0: raw value, 1: delta). If MUX inputs 1, the delta
generator generates the delta by subtracting element by element.
The offset generator converts the delta/raw feature streams with
an effective power of 2 through the modified booth encoding. In
each cycle, each offset controls a shifter, effectively multiplying
the weight by a power of 2. The shifted weights are reduced by
the adder tree. Fig. 8(c) details the micro-architecture of sub-
RMMU that contains Pn × Pc basic RBSP. Each RBSP column

deals with a vector, and RBSP(i,j) deals with j-dimension fea-
tures of the i-th patch. In each cycle, we read the Pc dimensional
features of Pn patches to be processed. The patch feature and
weight are broadcast to the relevant RBSP for matrix multipli-
cation. To support processing deltas, each RBSP is configured
with a differential reconstruction processing element (DRP)
for reconstructing the final output post-delta processing. The
MUX enables RBSPs to compute output features using either
deltas or raw feature values. The output reg caches the output
features.
Configurable Pipelined Execution Flow for Supporting
End-to-end Differential Attention. Fig. 9 illustrates the spe-
cific execution procedure of end-to-end differential attention.
Given a semantic group Ig waiting to be executed, ❶ RMMU
first prefetches patch feature X ∈ Ig based on the group index
cached in Idx Buffer and convert it into deltas ΔX . ❷ Configure
RMMU to perform differential Q/K/V generation. The result
is then written to the corresponding on-chip buffer, where the
features of Q are stored in the correct results, while K/V are
stored in deltas. ❸ Load the features of Q/K from the on-chip
buffer by blocks, and dot-product computation of Q ·ΔK is
performed in increment incremental form to obtain the attention
score vector S of the block, ❹ The attention score vector is fed
into SIMD Vector Unit to execute the differential softmax to
obtain the intermediate results. ❺ Traverse the Q/K by blocks
and repeat ❸-❹ until all the Q/K have been processed. At this
time, we can obtain the normalized attention scoreA and write it
to A Buffer. ❻ LoadA/ΔV from the on-chip buffer, and perform
the computation of A ·ΔV in differential form to obtain the
final output.

In this manner, we utilize deltas for processing, storing, and
communicating, and achieve the full-step optimization of dif-
ferential attention. This greatly reduces the computational cost,
storage cost, and communication overhead without compromis-
ing the accuracy of attention computation.

E. Other Engines

1) Semantic Group Generation Engine Design: Previous
ViT accelerators [15], [17] do not consider the hierarchical
semantics in images and thus cannot support semantic-aware
adaptive partition. To achieve this, we devise the novel Semantic

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

1088 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

Fig. 9. Execution flow of end-to-end differential attention.

Fig. 10. Architecture design of semantic group generation engine.

Group Generation Engine to support adaptive clustering. It
consists of two core components: a task scheduler (gSched) and
a set of group-generation elements (G-PEs). Fig. 10 illustrates
the workflow of Group Partition Engine. It receives the patch
hash codes generated by the RReconfigurable Matrix Multipli-
cation Unit and assigns the workloads to each G-PE by gSched.
G-PE is designed to convert hash codes into semantic group
indexes. A single G-PE is implemented by multiple ALUs and
registers. Given the hash code for a patch, the execution flow of
a single G-PE is as follows: Each hash reg in G-PE reads one-
dimensional hash code and then performs max operations in
parallel with multiple ALUs to obtain the final semantic group
index, and store it in Idx Buffer.

2) Pruner Design: The Pruner aims to support adaptive
hierarchical pruning. Since local patch pruning and global
group pruning have the same operation, two Pruners share the
same micro-architecture. Fig. 11 presents the architecture of
Pruner, which includes a task scheduler (psched) responsible
for assigning tasks, a group of pruning processing elements
(P-PEs) for performing the pruning operations and returning
important/unimportant patch mask. Each P-PE contains a norm
generator, several registers, ALUs, and a GumbleSoftmax unit.
Given a set of patches to be pruned The execution process of
the single P-PE is illustrated as follows: ① When pruning starts,
the norm generator obtains the V vectors of the corresponding
patches from the Q/V Buffer, performs the norm computation,
and stores the result into the norm reg. Meanwhile, each att
reg caches attention maps produced by the RMMU. ② Multiple
aliases are utilized to perform parallel multiplication operations
to obtain the importance score of each patch. ③ Apply the
GumbelSoftmax unit to convert it to token retention/pruning
decision masks.

Fig. 11. Architecture design of patch pruner.

Fig. 12. Illustration of latency-aware out-of-order execution flow.

F. Latency-Aware Out-of-Order Execution Flow

Due to the imbalanced workload of semantics-aware hierar-
chical attention, a simple sequential execution would introduce
a new problem: Different semantic groups of different sizes
require different execution times to perform the local attention
computation, smaller semantic groups end the computation ear-
lier, and larger semantic groups require more execution time.
Unfortunately, global attention must wait for all groups’ local
attention to complete before it can be executed. In this case, sim-
ple sequential execution leads to large waiting latency, thereby
resulting in idle computational resources.

Fig. 12(a) illustrates an example of sequential execution. The
complex semantic group ④ contains more patches than other
semantic groups (①,②,③), and its intra-group local attention
computations require longer processing times. At this time,
the computational resources used for other semantic groups
(①,②,③) remain idle until ④ is executed.

To tackle this issue, we exploit the insensitivity property
of the ViT model to token sequences and propose a latency-
aware out-of-order execution scheme, as shown in Fig. 12(b).
Attention computation is utilized to capture the interactions
between different patches in the input sequence, and modifying
the order of attention computation will not affect the model
accuracy. Based on this property, we can reorder the attention
computation for each semantic group based on the processing
latency of the semantic groups. Due to the small size of the
semantic group ③, it would early finish the computation of
intra-group attention. Once the computation of semantic groups
③ is completed, we can reconfigure the spare hardware re-
sources for inter-group attention computation. From then on,
every time a new semantic group finishes the computation, the
inter-group attention computation can be performed until all
semantic groups (②,①,④) have been processed.

Through the latency-aware out-of-order execution, global at-
tention can be computed in advance without waiting for all local
attention to be computed. This fully pipelined execution flow
can minimize the waiting time for inter-group global attention,

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ReViT: VISION TRANSFORMER ACCELERATOR WITH RECONFIGURABLE SEMANTIC-AWARE DIFFERENTIAL ATTENTION 1089

TABLE II
AREA BREAKDOWN OF REVIT

Module Area (%)
Reconfigurable Attention Engine 61.4
Pruner 10.2
Semantic Group Generation Engine 4.8
Total Buffer 21.0
Others 2.6

and effectively improve hardware utilization to enhance the
overall execution efficiency.

V. EVALUATION RESULTS

A. Experimental Setup

Evaluated Models and Dataset. Our evaluations cover
various prominent ViT models, including standard ViTs, e.g.,
DieT-Base/Small/Tiny [7], ViT variants for mobile devices, e.g.,
LeViT-128s/128 [6], and ViT variants with fixed hierarchical
attention, e.g., Siwn-Small [4], FasterViT [18] achieving SOTA
performance using hierarchical attention. Various methods are
benchmarked with: (i) vanilla flattened attention [7], (ii) fixed
hierarchical attention [4], (iii) sparse attention [22] (with a spar-
sity threshold of 0.02), (iv) linear attention [17], (v) ReViT-w/o
pruning and ReViT. Consistent with existing ViT accelerators
[16], [17], we conduct experiments on ImageNet-1K dataset
[34] in image classification tasks, and COCO dataset [35] in
object detection task.
Compared Baselines. We compare the performance of our Re-
ViT accelerator with two kinds of hardware baselines. The first
category is the general platforms, including the CPU platform
featuring Intel Xeon(R) CPU E5-2680 v3 CPUs with 500GB
DRAM, and the GPU platform with NVIDIA A100. The sec-
ond category consists of the SOTA ViT accelerators, includ-
ing Sanger [22], ViTALiTy [17], and ViTCoD [15]. For a fair
comparison, we follow [15] to enhance the hardware resources
of ReViT, so that their hardware budgets are comparable to
the above baseline. To facilitate performance comparisons with
the baseline accelerator, we extend our accelerator to support
the dataflow of the baseline accelerator, i.e., Sparse (Sanger and
ViTCoD) and Linear (ViTALiTy).
Software Implementation. We implement our proposed
semantic-aware hierarchical attention mechanism on each base-
line ViT model using Pytorch [36], and follow [37] to employ
quantization-aware training, which reduces the precision of the
input features to 8 bits without sacrificing accuracy. We finetune
the model using the same training strategy as in [7] and [18],
training 300 times using the AdamW optimizer [38], with a
learning rate of 5e-4 and a total batch size of 1024. To facilitate
comparison with fixed-window hierarchical attention, we set
the number of semantic groups to 4. We profile the energy
consumption of CPU with PyRAPL, and the running power of
GPU is estimated using PyNVML.
Hardware Implementation. To evaluate the performance of
ReViT, we develop a validated custom cycle-accurate sim-
ulator to get the cycle numbers. The simulator models the
micro-architectural behavior of each module, integrating with

TABLE III
SYSTEM CONFIGURATIONS OF COMPARED ACCELERATORS

Chip Sanger ViTALiTy ViTCoD ReViT (Ours)

Cores
64× 64

Systolic MAC
Unit Array

64× 64
Systolic MAC

Unit Array

128 MAC lines
with each having

32 MACs

64× 64
RBSP Array

SRAM(KB) 512 200 576 660

Area (mm2) 13.4 14.5 13.9 15.1

Frequency 1 GHz 1 GHz 1 GHz 1 GHz

DRAMBandwidth HBM 2256 GB/s HBM 2256 GB/s HBM 2256 GB/s HBM 2256 GB/s

Technology 40 nm 40 nm 40 nm 40 nm

Fig. 13. Accuracy comparison among ReViT and baselines on typical
models.

Ramulator [39] for HBM timings estimation and command
trace generation. For each module’s power and area measure-
ments, we implement them in Verilog and employ Synopsys
Design Compiler (DC) with TSMC’s 40 nm technology for
synthesis, estimating power consumption with Synopsys Prime-
Time PX. Additionally, we employ CACTI [40] to compute
the on-chip memory’s area and power. The total area of ReViT
is 15.1mm2. Table II shows the computing components’ area
percentages. Detailed configurations are provided in Table III.

B. Algorithm Performance

Accuracy. Fig. 13 demonstrates the accuracy comparison
between ReViT and the baseline on typical models. It is easy to
observe that: (i) The proposed ReViT outperforms the baseline
in almost all the settings. This can be attributed to the fact that
ReViT fully leverages the hierarchical semantic of images to
reduce redundant information interactions for better accuracy.
Furthermore, it is also effectively illustrated that the proposed
method is a plug-and-play module that can be integrated into
different ViTs to achieve better performance. (ii) Compared to
fixed hierarchical attention, both our ReViT-w/o-pruning and
ReViT achieve better performance. In particular, ReViT im-
proves a 0.7% performance gain compared to FasterViT. The
main reason is that the proposed semantic-aware hierarchical
attention can better capture the complete semantic information
of objects within images and adapt to the irregularity of object
scales for more robust recognition. (iii) Our ReViT demon-
strates considerable improvement, ranging from 2.8% to 7.3%
on sparse settings, and slightly improved accuracy compared
to ReViT-w/o-pruning. This is because the semantic-aware hi-
erarchical pruning can focus on critical foreground patches
and effectively eliminate irrelevant details, thus improving the
model’s efficiency while preserving important information.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

1090 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

TABLE IV
ACCURACY VS THROUGHPUT ON GPU FOR VARIOUS METHODS

Method Type Acc (%) Throughput
DeiT-small [7] Flattened 79.9 940
ConViT [41] Flattened 81.3 725

Siwn-Small [4] Fixed Hierarchical 83.0 1720
FasterViT [18] Fixed Hierarchical 84.2 3161

Paca [20] Adaptive Hierarchical 84.0 1630
DualFormer [21] Adaptive Hierarchical 84.8 2036

Sanger [22] Sparse 79.2 1510
ReViT-w/o pruning Adaptive Hierarchical 84.8 2036

ReViT
Adaptive Hierarchical

& Sparse 84.9 3427

Fig. 14. Speedup over CPU.

Algorithmic Optimization. Table IV shows the accuracy vs.
throughput of the various methods on the GPU. We can observe
that (i) ReViT outperforms all other baselines in terms of both
accuracy and efficiency. Compared to vanilla flattened attention,
ReViT-w/o pruning and ReViT achieve 2.1× and 3.6× times
efficiency improvement, respectively. (ii) The efficiency of our
ReViT-w/o pruning is lower than that of the most advanced
FasterViT, while ReViT is superior to FasterViT after further
introducing the sparse attention mechanism. This is because
semantic-aware hierarchical attention introduces irregular at-
tention computation, and the GPU cannot support the irregular
computation well enough to translate the theoretical saving into
practical performance improvement. Therefore, a specialized
architecture is needed to release the potential of ReViT.

C. Architecture Performance

Speedup. Fig. 14 depicts the performance of our method
compared with other baselines, including Sanger, ViTALiTy,
ViTCoD, CPU, and GPU. On average, ReViT is 6.2×, 2.3×,
3.3×, 474.4× and 9.9× faster than Sanger, ViTALiTy, ViT-
CoD, CPU, and GPU respectively. First, in terms of algorithm
design, our semantic-aware hierarchical differential attention
mechanism exploits feature similarity within the same seman-
tics to significantly reduce the computational workload and
the number of DRAM accesses required for patch loading.
In addition, our proposed semantic-aware hierarchical pruning
further reduces the computational and communication costs by
identifying and focusing on important foreground patches and
excluding unnecessary computations in the background. Sec-
ond, in terms of hardware design, the proposed Reconfigurable
Attention Engine and the latency-aware out-of-order execution
can flexibly allocate the computational resources to enhance the

Fig. 15. Latency breakdown.

Fig. 16. Energy savings.

Fig. 17. Energy breakdown.

overall hardware utilization when processing the varying scales
of hierarchical attention. Furthermore, the Reconfigurable Bit-
Serial Processing Element can support end-to-end differential
attention. It utilizes deltas for processing, storing, and commu-
nicating, greatly reducing the computational cost, storage cost,
and communication overhead. The detailed latency breakdown
compared with the standard attention is provided in Fig. 15.
Energy Consumption. Fig. 16 presents the normalized energy
efficiency comparison between our method and other base-
line accelerators. Overall, ReViT achieves energy savings of
6.2×, 3.6×, 5.0×, 172×, 111× compared to Sanger, ViTALiTy,
ViTCoD, CPU and GPU respectively. The performance gains
come from multiple aspects: (i) The proposed Reconfigurable
Attention Engine reduces the global scope of the information
interaction to local semantic groups. Meanwhile, it utilizes
deltas to perform end-to-end differential attention. (ii) Two
Pruners effectively remove task-irrelevant backgrounds and
patches. All these methods effectively reduce computation cost,
DRAM access, and on-chip memory access. Fig. 17 illustrates
the energy breakdown of ReViT across the typical benchmarks.
On average, the DRAM, Reconfigurable Attention Engine, Se-
mantic Group Generation Engine, Pruners, and the on-chip

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ReViT: VISION TRANSFORMER ACCELERATOR WITH RECONFIGURABLE SEMANTIC-AWARE DIFFERENTIAL ATTENTION 1091

Fig. 18. Effectiveness of (a) semantic-aware attention, (b) semantic-aware
differential attention, and (c) semantic-aware hierarchical pruning.

buffer account for 19.2%, 49.2%, 4.5%, 6.9% and 20.2% of
the total energy consumption respectively. Over 60% of the
total energy is consumed by the computation engines. The extra
energy overhead (e.g., generating semantic groups and pruning)
is negligible compared to the energy saved.

D. Ablation Study

Handling of Semantic-Aware Hierarchical Attention. To
demonstrate the effectiveness of our co-designed architecture in
meeting the adaptive hierarchical attention’s irregular computa-
tion demands, we construct a variant ReViT-w /o-Reconfig that
configures Reconfigurable Attention Engine as a single large
execution engine. In this case, the irregular semantic groups
could only be processed individually by Reconfigurable Atten-
tion Engine. Our experimental results in Fig. 18(a) indicate that
the ReViT model outperforms ReViT-w/o-Reconfig by 1.8×
in terms of speed. This improvement is primarily attributed
to the abundance of smaller patches present within the dy-
namic hierarchical attention, which cannot fully occupy the
entire PE array, thereby resulting in under-utilization of the PEs.
Conversely, our Reconfigurable Attention Engine can flexibly
allocate computational resources to patches with varied sizes
to boost PE array usage. Furthermore, our latency-aware out-
of-order execution flow mitigates idle times due to unbalanced
workloads.
Effect of Semantic-Aware Differential Attention. To vali-
date the effectiveness of semantic-aware differential attention,
we compared our ReViT model against a variant, ReViT-w/o-
Differential, which substitutes the computation matrix com-
posed of the Reconfigurable Bit-Serial Processing Elements in
ReViT with a traditional 64×64 systolic array. The comparison
in Fig. 18(b) shows that the architecture with the RBSP achieves
on average 1.4× speedup and 28% DRAM reduction compared
to ReViT-w/o-Differential. It is mainly because our proposed
RBSP can exploit feature similarity in the intra-group local
attention, which greatly reduces the number of effectual bits
required per value with delta execution. For instance, in our
8-bit quantization setup, the average number of effectual bits
for DeiT-small is 3 for ImageNet-1k, and 3 for COCO. Fur-
thermore, we can observe that differential attention provides a
higher speedup for larger models, mainly because larger models
potentially have more redundant features within local similarity
clusters.

Effect of Semantic-Aware Hierarchical Pruning. To demon-
strate the effectiveness of semantic-aware hierarchical prun-
ing, we have compared our ReViT with its variant ReViT-w/o-
Pruning, which refrains from employing the proposed pruning
scheme. Our results in Fig. 18(c) indicate that ReViT is 3.4×
faster and saves 58.8% DRAM access. From an algorithmic
perspective, by utilizing local patch pruning and global group
pruning, ReViT effectively reduces the number of irrelevant
patches and foreground-background confusion, thereby reduc-
ing redundant computations. On a hardware level, the speed
improvement is largely due to two lightweight pruning engines
that share the same micro-architecture for efficient local patch
pruning and global group pruning.
Effect of Latency-Aware Out-of-Order Execution Flow. To
validate the effectiveness of latency-aware out-of-order execu-
tion flow, we have compared our ReViT with its variant ReViT-
w-order, which employs sequential execution. The results in
Fig. 18(d) indicate that ReViT is 1.15× faster than ReViT-w-
order. Meanwhile, the hardware utilization of Revit is improved
by 25%. This indicates that the proposed latency-aware out-of-
order execution flow can minimize the waiting time for inter-
group global attention and improve hardware utilization, thus
enhancing the overall execution efficiency.

VI. RELATED WORK

Due to the inefficiency of self-attention mechanisms, there
has been an emergence of software and hardware co-designed
transformer accelerators specialized for NLP tasks [22], [42],
[43], [44], [45] and vision tasks [15], [16], [17]. These acceler-
ators utilize dynamic sparse patterns to address the quadratic
complexity of computing attention. For NLP tasks, SpAtten
[42] structurally pruned unnecessary attention headers and input
tokens. Sanger [22] utilized low-precision Q and K vectors
to estimate sparse attention masks, and segmented with the
support of reconfigurable architectures to make them more
regular and efficient. DOTA [43] considered low-rank linear
transformations to predict sparse attention masks and explores
token-level parallelism and promiscuous execution for location-
aware computation. For vision tasks, ViTCoD [15] pruned and
polarized the attention map, and then coordinated both dense
and sparse workloads to improve hardware utilization. HeatViT
[16] reduced computation by pruning task-irrelevant patches.
ViTALiTy [17] accelerates ViTs by unifying the low-rank and
sparse components of attention. However, these approaches all
use the flattened attention mechanism, ignoring the potential op-
portunity for speedup presented by the hierarchical semantics of
images. In contrast, ReViT is the first algorithm-accelerator co-
design framework dedicated to accelerating sparse ViT, leverag-
ing the hierarchical semantics of images from both algorithmic
and hardware perspectives.

VII. CONCLUSION

In this work, we reveal that hierarchical visual semantics
is a fundamental property of real-world images. Inspired by
this, we propose a systematic algorithm-architecture co-design

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

1092 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 3, MARCH 2025

approach, called ReViT, which end-to-end explores the hierar-
chical semantics of images to accelerate ViT inference. Specif-
ically, on the algorithm level, we propose a semantic-aware
hierarchical differential attention mechanism, which exploits
the same semantic class with strong feature similarity to re-
duce computation and communication in a differential attention
mechanism, and support semantic-aware attention efficiently.
On the hardware level, we design a fine-grained reconfigurable
dedicated architecture to support the proposed algorithm and
translate it into performance improvements. To the best of our
knowledge, ReViT is the first systematic hardware-software
co-design approach for exploring the underlying hierarchical
semantics of images within the real world.

REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 6000–6010.

[2] S. Huang, Y. Liu, C. Fung, H. Wang, H. Yang, and Z. Luan, “Improving
log-based anomaly detection by pre-training hierarchical transformers,”
IEEE Trans. Comput., vol. 72, no. 9, pp. 2656–2667, Sep. 2023.

[3] X. Zhou et al., “Personalized federation learning with model-contrastive
learning for multi-modal user modeling in human-centric metaverse,”
IEEE J. Sel. Areas Commun., vol. 42, no. 4, pp. 817-831, Apr. 2024.

[4] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 10012–10022.

[5] C. H. Song, J. Yoon, S. Choi, and Y. Avrithis, “Boosting vision
transformers for image retrieval,” in Proc. IEEE/CVF Winter Conf. Appl.
Comput. Vis., 2023, pp. 107–117.

[6] B. Graham et al., “LeViT: A vision transformer in convnet’s clothing
for faster inference,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 12259–12269.

[7] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H.
Jégou, “Training data-efficient image transformers & distillation through
attention,” in Proc. Int. Conf. Mach. Learn., PMLR, 2021, pp. 10347–
10357.

[8] Z. Dai, B. Cai, Y. Lin, and J. Chen, “UP-DETR: Unsupervised pre-
training for object detection with transformers,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2021, pp. 1601–1610.

[9] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” 2020, arXiv:2010.11929.

[10] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in vision: A survey,” ACM Comput. Surveys, vol. 54,
no. 10s, pp. 1–41, 2022.

[11] Z. Kong et al., “SpViT: Enabling faster vision transformers via latency-
aware soft token pruning,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
Tel Aviv, Israel, Part XI. Berlin, Heidelberg, Germany: Springer, 2022,
pp. 620–640.

[12] M. Marszalek and C. Schmid, “Semantic hierarchies for visual object
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Piscataway, NJ, USA: IEEE Press, 2007, pp. 1–7.

[13] T. Wang et al., “VisualNet: An end-to-end human visual system inspired
framework to reduce inference latency of deep neural networks,” IEEE
Trans. Comput., vol. 71, no. 11, pp. 2717–2727, Nov. 2022.

[14] N. Kruger et al., “Deep hierarchies in the primate visual cortex: What
can we learn for computer vision?” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1847–1871, Aug. 2013.

[15] H. You et al., “ViTCoD: Vision transformer acceleration via dedicated
algorithm and accelerator co-design,” in Proc. IEEE Int. Symp. High-
Perform. Comput. Archit. (HPCA), Piscataway, NJ, USA: IEEE Press,
2023, pp. 273–286.

[16] P. Dong et al., “HeatVit: Hardware-efficient adaptive token pruning for
vision transformers,” in Proc. IEEE Int. Symp. High-Perform. Comput.
Archit. (HPCA), Piscataway, NJ, USA: IEEE Press, 2023, pp. 442–455.

[17] J. Dass et al., “Vitality: Unifying low-rank and sparse approximation for
vision transformer acceleration with a linear Taylor attention,” in Proc.
IEEE Int. Symp. High-Perform. Comput. Archit. (HPCA), Piscataway,
NJ, USA: IEEE Press, 2023, pp. 415–428.

[18] A. Hatamizadeh et al., “FasterViT: Fast vision transformers with hier-
archical attention,” 2023, arXiv:2306.06189.

[19] W. Zeng et al., “Not all tokens are equal: Human-centric visual analysis
via token clustering transformer,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2022, pp. 11101–11111.

[20] R. Grainger, T. Paniagua, X. Song, N. Cuntoor, M. W. Lee, and
T. Wu, “PaCa-ViT: Learning patch-to-cluster attention in vision trans-
formers,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2023, pp. 18568–18578.

[21] Z. Jiang, L. Liu, J. Zhang, Y. Wang, M. Chen, and C. Wang, “Dual path
transformer with partition attention,” 2023, arXiv:2305.14768.

[22] L. Lu et al., “Sanger: A co-design framework for enabling sparse atten-
tion using reconfigurable architecture,” in Proc. 54th Annu. IEEE/ACM
Int. Symp. Microarchit. (MICRO-54), 2021, pp. 977–991.

[23] K. Choromanski et al., “Rethinking attention with performers,” 2020,
arXiv:2009.14794.

[24] C. Zhou, Y. Zhang, J. Chen, and D. Huang, “OcTr: Octree-based
transformer for 3d object detection,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2023, pp. 5166–5175.

[25] Y. Xu et al., “Evo-ViT: Slow-fast token evolution for dynamic vision
transformer,” in Proc. AAAI Conf. Artif. Intell., 2022, vol. 36, no. 3,
pp. 2964–2972.

[26] A. Dasgupta, R. Kumar, and T. Sarlós, “Fast locality-sensitive hashing,”
in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2011, pp. 1073–1081.

[27] M. Mahmoud, K. Siu, and A. Moshovos, “Diffy: A Déjà vu-free differ-
ential deep neural network accelerator,” in Proc. 51st Annu. IEEE/ACM
Int. Symp. Microarchit. (MICRO), Piscataway, NJ, USA: IEEE Press,
2018, pp. 134–147.

[28] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[29] X. Zeng et al., “Addressing irregularity in sparse neural networks
through a cooperative software/hardware approach,” IEEE Trans. Com-
put., vol. 69, no. 7, pp. 968–985, Jul. 2020.

[30] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The efficient trans-
former,” in Proc. Int. Conf. Learn. Representations, 2019, pp. 1–12.

[31] Y. Rao, W. Zhao, B. Liu, J. Lu, J. Zhou, and C.-J. Hsieh, “DynamicViT:
Efficient vision transformers with dynamic token sparsification,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 34, 2021, pp. 13937–13949.

[32] Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan, and Y. Guo, “Not all points
are equal: Learning highly efficient point-based detectors for 3d lidar
point clouds,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 18953–18962.

[33] J. Albericio et al., “Bit-pragmatic deep neural network computing,” in
Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchit., 2017, pp. 382–394.

[34] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Piscataway, NJ, USA: IEEE
Press, 2009, pp. 248–255.

[35] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. 13th Eur. Conf. Comput. Vis. (ECCV), Zurich, Switzerland, Part
V 13. Berlin, Heidelberg, Germany: Springer, 2014, pp. 740–755.

[36] S. Imambi, K. B. Prakash, and G. Kanagachidambaresan, “PyTorch,”
in Programming With TensorFlow: Solution for Edge Computing
Applications, Berlin, Heidelberg, Germany: Springer, 2021, pp. 87–104.

[37] Z. Li and Q. Gu, “I-ViT: Integer-only quantization for efficient vision
transformer inference,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
2023, pp. 17065–17075.

[38] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
in Proc. Int. Conf. Learn. Representations, 2018, pp. 1–18.

[39] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1,
pp. 45–49, Jan.–Jun. 2016.

[40] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. P. Jouppi, “Cacti 5.1,”
Tech. Rep. HPL-2008-20, HP Labs, 2008, pp. 1–37.

[41] S. d’Ascoli, H. Touvron, M. L. Leavitt, A. S. Morcos, G. Biroli, and L.
Sagun, “ConViT: Improving vision transformers with soft convolutional
inductive biases,” in Proc. Int. Conf. Mach. Learn.. PMLR, 2021,
pp. 2286–2296.

[42] H. Wang, Z. Zhang, and S. Han, “SpAtten: Efficient sparse attention
architecture with cascade token and head pruning,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit. (HPCA), Piscataway, NJ, USA:
IEEE Press, 2021, pp. 97–110.

[43] Z. Qu, L. Liu, F. Tu, Z. Chen, Y. Ding, and Y. Xie, “DOTA: Detect and
omit weak attentions for scalable transformer acceleration,” in Proc.
27th ACM Int. Conf. Archit. Support Program. Lang. Operating Syst.,
2022, pp. 14–26.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: ReViT: VISION TRANSFORMER ACCELERATOR WITH RECONFIGURABLE SEMANTIC-AWARE DIFFERENTIAL ATTENTION 1093

[44] Z. Li, S. Ghodrati, A. Yazdanbakhsh, H. Esmaeilzadeh, and M.
Kang, “Accelerating attention through gradient-based learned runtime
pruning,” in Proc. 49th Annu. Int. Symp. Comput. Archit., 2022,
pp. 902–915.

[45] H. Wang, H. Xu, Y. Wang, and Y. Han, “CTA: Hardware-software
co-design for compressed token attention mechanism,” in Proc. IEEE
Int. Symp. High-Perform. Comput. Archit. (HPCA), Piscataway, NJ,
USA: IEEE Press, 2023, pp. 429–441.

Xiaofeng Zou received the Ph.D. degree in
computer science and technology from Hunan
University, China, in 2023. His research interests
include parallel computing, computer architecture,
efficient machine learning, and deep learning.
He has published several research articles in
international conferences and journals, such as
MICRO, HPCA, DAC, IEEE TRANSACTIONS ON

INTELLIGENT TRANSPORTATION SYSTEMS, IEEE
TRANSACTIONS ON EMERGING TOPICS IN

COMPUTATIONAL INTELLIGENCE, and IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS.

Cen Chen (Senior Member, IEEE) received the
Ph.D. degree in computer science from Hunan Uni-
versity, China. Currently, he is a Professor with
the School of Future Technology, South China
University of Technology, China. His research in-
terests include parallel and distributed computing,
computer architecture, machine learning, and deep
learning. He has published several research articles
in international conferences and journals on ma-
chine learning algorithms and parallel computing,
such as MICRO, HPCA, DAC, IEEE TRANSACTIONS

ON COMPUTERS, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, AAAI, IEEE International Conference on Data Mining, ICPP,
ICDCS, IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING

SYSTEMS, and IEEE TRANSACTIONS ON CYBERNETICS. He is also an Associate
Editor of IEEE TRANSACTIONS ON COMPUTERS.

Hongen Shao is currently working toward the
Ph.D. degree with the School of Future Technol-
ogy, South China University of Technology, China.
His research interests include artificial intelligence
algorithms and architecture design.

Qinyu Wang is currently working toward the Ph.D.
degree with the School of Future Technology, South
China University of Technology, China. His re-
search interests include parallel and distributed com-
puting, intelligent computing, and deep learning.

Xiaobin Zhuang is currently working toward the
master’s degree with the School of Future Tech-
nology, South China University of Technology. His
research interests include deep learning and parallel
computing.

Yangfan Li received the bachelor degree in engi-
neering from the School of Automation, Huazhong
University of Science and Technology, in 2015,
and the Ph.D. degree in computer science from
Hunan University, China, in 2022. Currently, he is
a Lecturer with the School of Computer Science
and Engineering, Central South University, China.
His research interests include computer architecture,
efficient machine learning, and deep learning.

Keqin Li (Fellow, IEEE) is a SUNY Distin-
guished Professor of computer science with the
State University of New York and a National Dis-
tinguished Professor with Hunan University, China.
His research interests include cloud computing,
fog computing and mobile edge computing, high-
performance computing, computer architectures and
systems, and intelligent and soft computing. He has
authored or co-authored more than 990 journal arti-
cles, book chapters, and refereed conference papers,
and has received several best paper awards. He is

currently an Associate Editor of ACM Computing Surveys. He has served on
the editorial boards of IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON

CLOUD COMPUTING, IEEE TRANSACTIONS ON SERVICES COMPUTING, and
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING. He is an AAIA fellow
and a member of Academia Europaea (Academician of the Academy of
Europe).

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on March 20,2025 at 14:48:31 UTC from IEEE Xplore. Restrictions apply.

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

