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Abstract—The proliferation of multimedia-enabled IoT devices
and edge computing enables a new class of data-intensive ap-
plications. However, analyzing the massive volumes of multime-
dia data presents significant privacy challenges. We propose a
novel framework called generative adversarial privacy (GAP) that
leverages generative adversarial networks (GANs) to synthesize
privacy-preserving surrogate data for multimedia analytics across
the IoT-Edge continuum. GAP carefully perturbs the GAN’s train-
ing process to provide rigorous differential privacy guarantees
without compromising utility. Moreover, we present optimization
strategies, including dynamic privacy budget allocation, adaptive
gradient clipping, and weight clustering to improve convergence
and data quality under a constrained privacy budget. Theoretical
analysis proves that GAP provides rigorous privacy protections
while enabling high-fidelity analytics. Extensive experiments on
real-world multimedia datasets demonstrate that GAP outper-
forms existing methods, producing high-quality synthetic data for
privacy-preserving multimedia processing in diverse IoT-Edge ap-
plications.

Index Terms—Multimedia data, generative adversarial privacy,
generative adversarial networks, IoT-Edge continuum.

I. INTRODUCTION

IN the rapidly evolving landscape of technology, integrat-
ing Internet of things (IoT) devices and edge computing

resources has become a cornerstone for advancing data-intensive
multimedia applications [1], [2], [3]. These applications, which
include sophisticated realms like video analytics and augmented
reality, are reshaping how we interact with digital content in our
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daily lives [4], [5]. On one hand, the benefits are undeniable.
Edge computing brings data processing closer to the source,
reducing latency and enhancing the user experience in real-
time applications [2]. This is particularly crucial in scenarios
like augmented reality, where immediate data processing is
essential for seamlessly integrating virtual elements with the
real world [5]. Similarly, in video analytics, processing data
on the edge enables quicker decision-making, which can be
vital in security and traffic management [4]. The proliferation
of multimedia-enabled IoT devices and edge computing has
enabled a new class of data-intensive applications. However,
analyzing the massive volumes of multimedia data presents
significant privacy challenges. Existing privacy-preserving tech-
niques often need help maintaining data utility, especially for
complex multimedia data in IoT-Edge environments [6], [7]. Ev-
ery connected device becomes a potential entry point for privacy
breaches, and the distributed nature of edge computing can com-
plicate the enforcement of consistent security protocols [8], [9],
[10], [11].

Moreover, the complexity of these systems often means that
data is processed and stored in multiple locations, making it
challenging to ensure comprehensive data protection [12], [13].
In data security and privacy, encryption is a primary method
to ensure data confidentiality [14], [15], [16]. It effectively
shields data from unauthorized access, but this protection often
comes at a cost, mainly when the need arises to analyze the
content within encrypted data. This is a common scenario in
various applications where data utility is as crucial as confi-
dentiality. To address this, anonymization techniques such as
k-anonymity have been employed [12]. K-anonymity works by
making individual records indistinguishable among at least k-1
others. However, this method could be better. It is increasingly
evident that k-anonymity can be susceptible to inference attacks,
especially when an attacker has access to auxiliary information.
This vulnerability can lead to the re-identification of individuals,
thereby compromising their privacy.

Differential privacy has emerged as a more robust framework
in response to these limitations. It offers a quantifiable approach
to privacy preservation, balancing the trade-off between data
utility and privacy. By adding calibrated noise to the queries
made on a dataset, differential privacy ensures that the output
does not significantly depend on any single record [17], [18],
[19], [20]. This approach effectively limits the risk of privacy
loss, even in the presence of auxiliary information. However,

2168-7161 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on March 20,2025 at 01:33:09 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-0884-6601
https://orcid.org/0000-0001-6555-3464
https://orcid.org/0000-0002-4715-212X
https://orcid.org/0000-0002-3997-5070
https://orcid.org/0000-0003-2542-9842
https://orcid.org/0000-0001-5224-4048
mailto:dnsy_heinrich@neueet.com
mailto:lvjh@pcl.ac.cn
mailto:bg.kim@sookmyung.ac.kr
mailto:cm@warwick.ac.uk
mailto:paramesh@nmit.ac.in
mailto:adam.slowik@tu.koszalin.pl
mailto:lik@newpaltz.edu


WANG et al.: GENERATIVE ADVERSARIAL PRIVACY FOR MULTIMEDIA ANALYTICS ACROSS THE IOT-EDGE CONTINUUM 1261

applying differential privacy, particularly to high-dimensional
multimedia data, is challenging. Multimedia datasets, charac-
terized by their large size and complexity, can significantly
affect utility when differential privacy is naively applied. While
essential for privacy, the added noise can obscure meaningful
patterns and details in the data, diminishing its value for analysis
and decision-making. This presents a complex dilemma in fields
like image and video analytics, where the richness of data and the
privacy of individuals are paramount. Therefore, while differen-
tial privacy offers a rigorous and theoretically sound framework
for privacy protection, its practical application, especially in
high-dimensional multimedia data, requires careful consider-
ation and tailored approaches. Balancing the dual objectives of
maintaining data utility and ensuring privacy protection remains
a critical and ongoing challenge in data security.

While existing approaches combining GANs with differen-
tial privacy have shown promise, they face several key chal-
lenges in IoT-Edge multimedia analytics. First, many current
methods need help maintaining data utility under strict pri-
vacy constraints, especially for complex multimedia data. This
often results in generated samples of poor quality or limited
diversity when strong privacy guarantees are required. Then,
existing DP-GAN techniques often involve computationally in-
tensive processes that are challenging to implement on resource-
constrained IoT-Edge devices. Additionally, most current ap-
proaches need to scale better to high-dimensional multimedia
data, limiting their applicability in real-world IoT scenarios in-
volving images, videos, or audio. Furthermore, existing methods
often need more mechanisms to dynamically adjust to varying
privacy requirements and data characteristics common in diverse
IoT applications. Generative adversarial networks (GANs) have
revolutionized the field of machine learning by their ability to
model and generate complex data distributions, particularly in
multimedia applications [21], [22], [23]. Building on this capa-
bility, we introduce a novel framework, generative adversarial
privacy (GAP), which ingeniously adapts the GAN architecture
to enhance privacy in multimedia data processing. The core idea
of GAP is to integrate differential privacy principles into the
GAN training process. Differential privacy is a robust framework
that provides strong privacy guarantees by ensuring that the
output of a data analysis process does not significantly depend
on any single data instance. By embedding these principles into
GANs, GAP aims to generate synthetic yet highly representative
surrogate data that maintains the utility of the original dataset
while protecting individual privacy.

While differential privacy is a general solution for data privacy
protection, GAP introduces several key innovations that set it
apart from existing work:
� Multimedia-Specific Optimizations: Unlike general DP ap-

proaches, GAP incorporates novel techniques specifically
designed for high-dimensional multimedia data, such as
our multimedia data weight clustering method. This allows
for better preservation of complex data structures common
in images and videos.

� Dynamic Privacy Budget Allocation: GAP introduces a
unique approach to allocating the privacy budget over the

training process, allowing for more efficient use and better
convergence in multimedia GAN training.

� Edge-Centric Design: Unlike most DP-GAN methods that
assume centralized processing, GAP is specifically archi-
tected for distributed IoT-Edge environments, incorporat-
ing techniques to minimize communication overhead and
enable local data synthesis.

� Adaptive Gradient Clipping: Our method introduces a
novel adaptive gradient clipping technique that dynami-
cally adjusts to multimedia data gradients’ characteristics,
improving DP-GAN training’s stability and convergence.

� Efficient Knowledge Transfer: GAP’s approach to transfer-
ring knowledge from a DP teacher to a non-private student
GAN is uniquely designed to maintain data diversity and
utility in the IoT-Edge context.

These innovations enable GAP to achieve superior privacy-
utility trade-offs for multimedia data in IoT-Edge environments
compared to existing general DP or DP-GAN approaches. Ac-
cordingly, the main contributions of this paper are summarized
as follows.
� We present the GAP framework that leverages GANs to

provide rigorous differential privacy for multimedia data
while preserving utility.

� We develop optimization strategies for allocating privacy
budget, clipping gradients, and clustering weights to im-
prove GAN convergence and data quality under differential
privacy constraints.

� We derive theoretical privacy and utility guarantees for the
proposed GAP framework.

The remainder of this study is organized in the following
manner: Section II reviews the related literatures. Section III
delves into a detailed presentation of our proposed methodology.
Following this, Section IV discusses the results obtained from
the experiments. Finally, Section V gives the conclusion.

II. RELATED WORK

A. Multimedia Analytics for IoT-Edge Applications

Recently, the integration of multimedia analytics in IoT-Edge
environments has gained significant traction, particularly in
applications like traffic management, security surveillance, and
augmented reality experiences [24], [25], [26], [27], [28]. These
advancements leverage the growing capabilities of edge com-
puting to process and analyze vast amounts of multimedia data
in real time, enhancing efficiency and responsiveness. Despite
these technological strides, a critical aspect that needs to be
improved is safeguarding privacy in handling multimedia con-
tent. The limited focus on privacy measures raises concerns,
especially given the sensitive nature of data in scenarios like
surveillance [6], [13], [15]. This oversight highlights a crucial
need for developing robust privacy protection strategies tailored
for multimedia data in IoT-Edge ecosystems, ensuring that
technological progress does not come at the cost of individual
privacy and data security [17]. Addressing this gap is essential
for maintaining public trust and ethical standards in the rapidly
evolving domain of IoT-Edge computing.
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B. DP Enhanced GAN

GANs have achieved impressive results in modeling complex
multimedia distributions [21], [22]. The generator tries to fool
the discriminator by classifying real vs. fake samples. Our work
leverages GANs to provide rigorous differential privacy guaran-
tees for multimedia data. Xin et al. [29] introduced the private
federated learning GAN (pFL-GAN), an innovative model merg-
ing the principles of differential privacy with federated learning,
which ingeniously integrated the Lipschitz condition with the
sensitivity aspects of differential privacy, enabling the pFL-GAN
to produce synthetic data of superior quality while concurrently
upholding the confidentiality of the training dataset. Huang et
al. [30] proposed a differentially private (DP) Wasserstein GAN
(DPWGAN) method that could automatically satisfy user-level
differential privacy guarantees. Ren et al. [31] offered a gener-
ative regression neural network (GRNN), and the image-based
privacy data can be quickly recovered in full from the shared gra-
dient. Indhumathi and Devi [32] proposed a healthcare Cramer
GAN (HCGAN), which generated synthetic data.

In the realm of DP-enhanced GANs, seminal works have
laid important foundations. Xu et al. [33] introduced GANob-
fuscator, which mitigates information leakage in GANs using
differential privacy. Yoon et al. [34] proposed PATE-GAN,
generating synthetic data with differential privacy guarantees.
These works demonstrate the potential of combining GANs with
differential privacy, which our work builds upon and extends
to the IoT-Edge context. For private data synthesization in IoT
scenarios, local differential privacy (LDP) has emerged as a
promising approach. Wang et al. [35] proposed LoPub, a method
for high-dimensional crowdsourced data publication with LDP.
Ye et al. [36] introduced LDP-IDS, addressing the challenge
of maintaining privacy in infinite data streams, particularly
relevant to IoT environments. Our work complements these
LDP approaches by focusing on the GAN-based generation
of synthetic multimedia data. Regarding private text data in
multimedia contexts, Zhu et al. [37] proposed a method for
training Latent Dirichlet Allocation models with differential
privacy. While our current work focuses primarily on image and
video data, future extensions could incorporate private text data
synthesis techniques, drawing inspiration from such approaches.

III. METHODOLOGY

A. System Model and Problem Formulation

Consider an IoT-Edge continuum consisting of IoT devices,
edge servers, and cloud data centers, as shown in Fig. 1. Multi-
media data such as images, video, and audio are generated across
the different layers. The data owners wish to outsource analytics
tasks to service providers in a privacy-preserving manner using
the proposed GAP framework.

In this continuum, the key stakeholders are:
� Data Owners: The individuals or organizations that gener-

ate and own the IoT multimedia data. They wish to extract
insights from their data.

� Service Providers: The entities that provide analytics
capabilities, models, and algorithms as services in the

Fig. 1. IoT-Edge continuum for multimedia data generation.

edge/cloud continuum. Data owners outsource processing
tasks to them.

� End Users: The individuals or groups that consume the
data analytics results and insights for various applications.

We assume the multimedia data features such as pixel values
or embedded vectors are bounded, i.e., |x| ≤ 1. The GAN gen-
erator G and discriminator D are multilayer perceptrons. The
gradient norms of G and D are bounded by Gmax. We make
standard assumptions required for DP guarantees [20].

Let D denote the private multimedia dataset. The goal is to
train a GAN to mimic D and generate synthetic data preserving
ε-differential privacy of the real samples. The key challenge
is to optimize the tradeoff between privacy and utility under
constrained privacy budget ε.

We tackle this via the GAP framework that carefully perturbs
the GAN training process to provide rigorous DP guarantees
while maximizing the utility of synthetic samples for various
multimedia analytics tasks. Next, we present the details of the
GAP design.

B. Overall Design of GAP

The key modules in the GAP framework are depicted in Fig. 2
and outlined below:

The core idea of the GAP framework is to train genera-
tive models like GANs under differential privacy to synthesize
high-fidelity surrogate data, preserving the privacy of real user
data. Analytics tasks can then be executed on the synthetic
data instead of the original raw data. In the decentralized IoT
environment, end-user devices and sensors distributed across
different network tiers generate multimedia data like images
and audio. As a first step, this raw multimedia data needs to be
securely aggregated at the edge nodes closest to the data sources.

GAP incorporates several design elements specifically for
IoT-Edge computing scenarios. It uses a tiered edge aggregation
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Fig. 2. GAP framework.

architecture for efficient distributed data collection, minimiz-
ing communication overhead. Edge-based feature extraction re-
duces data dimensionality and preserves privacy from the outset.
Computational tasks are dynamically allocated between edge
devices and cloud resources based on network conditions and
device capabilities. The DP-GAN training process is optimized
for resource-constrained edge devices, using techniques like
weight clustering to reduce memory and computational require-
ments. Once trained, the student GAN can generate synthetic
data locally on edge devices, eliminating the need to transmit
sensitive real data. GAP incorporates differentially private fed-
erated learning techniques for scenarios requiring model updates
across multiple edge nodes. These IoT-Edge-specific design
elements enable GAP to effectively balance privacy, utility,
and efficiency in distributed, resource-constrained environments
typical of IoT-Edge scenarios.

Data aggregation is challenging due to intermittent connec-
tivity between IoT devices and edge nodes, variability in data
generation rates across devices and modalities, communication,
computing, and storage constraints at edge nodes, and the need
for aggregation with cryptographic privacy protections [38],
[39]. To address this, GAP leverages a tiered edge aggregation
architecture, where lightweight compression and encryption are
applied at source devices before transmission, providing data
confidentiality and reducing transfer load. Edge nodes have
staged storage with high-speed caching, slower local storage,
and bulk cloud storage, allowing data to be stored locally and
streamed to the cloud. In addition, bandwidth allocation, routing,
and caching are optimized dynamically using application-aware
networking to maximize data collection under connectivity con-
straints [40].

GAP leverages differentiable feature extractors and embed-
dings suitable for the multimedia modality, including convolu-
tional neural networks (CNNs) for image classification features,
recurrent neural networks (RNNs) for audio and text embed-
dings, 3D CNNs for video scene features, and autoencoders for
dimensionality reduction [41], [42], [43]. Training data for the

feature extractors can be synthesized using DP techniques or
weakly labeled via human annotation. The feature representa-
tions serve as input for subsequent generative modeling under
DP. Using handcrafted features provides auxiliary information
guiding the DP generative modeling. The compact embeddings
accelerate training and enable deploying models on resource-
constrained edge devices.

GANs have emerged as powerful generative models for
high-dimensional multimedia data, yet directly training GANs
under DP on raw data can be prohibitive regarding privacy
budget. However, GAP overcomes this via intermediate feature
extraction followed by DP-GAN training [44]. To enable the
release of unlimited synthetic data for unrestricted analytics,
GAP leverages knowledge transfer from the DP teacher to a
non-private student GAN [45].

While the knowledge transfer approach from the DP teacher
to the non-private student GAN allows us to generate unlimited
synthetic data without additional privacy loss, it is important to
consider its impact on data diversity. Theoretically, the student
GAN can only learn from the distribution captured by the
teacher, which may lead to some loss in diversity compared
to the original data distribution. To address this concern, we
implement several strategies:
� Diverse Teacher Training: We ensure that the DP teacher

GAN is trained on a sufficiently large and diverse subset
of the original data.

� Stochastic Knowledge Transfer: Rather than determinis-
tic transfer, we introduce stochasticity in the knowledge
transfer process to encourage the exploration of the learned
distribution.

� Regularization: We apply regularization techniques dur-
ing student training to prevent overfitting to the teacher’s
distribution.

� Evaluation Metrics: We use diversity-sensitive metrics like
Fréchet inception distance (FID) to monitor and ensure the
diversity of generated samples.

Next, we formulate the key optimization problem tackled by
GAP. The data distribution exhibited by the real multimedia
dataset X = x1, x2, . . . , xN can be approximated via a para-
metric generative model such as a GAN. The GAN comprises
a generator network G(z; θ) that transforms noise variables z
to synthetic samples x′ = G(z; θ) where θ are the trainable
parameters. A discriminator networkD(x;ω) tries to distinguish
between real x ∼ X and synthetic x′ ∼ G samples, where ω are
trainable parameters. GAN training aims to solve the min-max
optimization problem:

min
θ

max
ω

Ex ∼ X [logD (x;ω)]
+Ez ∼ pz [1− logD (G (z; θ) ;ω)]

. (1)

During training, the 𝓁2 norms of discriminator gradients Δω

and generator gradients Δθ are bounded by C1 and C2. The
training comprises T iterations over batches sampled from X .
Gaussian noise with scale σ2 is added to gradients in each
iteration to achieve DP. Under these assumptions, the goal is to
learn a GAN model G(z; θ) that preserves ε-differential privacy
for the real training data X while maximizing the utility of
synthetic samples G(z; θ) for analytics tasks.
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Algorithm 1: Generative Adversarial Privacy (GAP).

Input: Multimedia dataset D, GAN (G,D), DP budget ε
Output: Student GAN Gs

// DP-GAN training
01: Initialize (G,D) parameters θ and ω;
02: Repeat;
03: Sample batch x(i) ∼ D;
04: Compute loss LD and clip;
05: Update D parameters ω using noisy gradients;
06: Sample noise z(i) ∼ pz and update G parameters θ;
07: Until DP budget ε reached;
// Knowledge transfer
08: Initialize student GAN Gs, Ds parameters θs, ωs;
09: Repeat;
10: Sample noise z(i) ∼ pz;
11: Generate fake samples G(z(i)) using teacher G;
12: Update student Ds and Gs parameters θs, ωs;
13: Until convergence;
14: Return student Gs;

The total privacy budget for training is fixed to εtotal. The
budget must be optimally allocated acrossT iterations to achieve
the best privacy-utility tradeoff. The synthetic data distribution
must provably converge to the real data distribution under DP
constraints for high utility. The training process must operate
within the computational constraints of edge devices under
intermittent connectivity. Formally, GAP requires solving the
constrained optimization problem:

min
θ,ω,σ1,σ2,..,σT

d (G (z; θ) , X)

s.t. εtotal = f (σ1, σ2, .., σT )

E [Δω] ≤ C1,E [Δθ] ≤ C2.

T ≤ Tmax. (2)

where d is a distance metric between the synthetic and real dis-
tributions,σT is the noise scale in iterationT , and f accumulates
the iterated privacy loss.

The overall approach is outlined in Algorithm 1. GAP training
has two stages:

DP-GAN training iterates over batches sampled from the real
multimedia dataset D. In each step, the clipping and pertur-
bation of gradients provide differential privacy for the batch.
Knowledge transfer uses the differentially private teacher GAN
to synthesize fake samples. The student GAN is trained on these
samples to learn the distribution without direct access to real
data. The student GAN model provably preserves the differential
privacy guarantee of the teacher while being able to generate
unlimited synthetic multimedia data.

C. Optimization Strategies

Training accurate and stable GAN models to generate realistic
multimedia data samples is challenging, even without privacy
constraints. Enforcing differential privacy makes this process
significantly harder due to the additional calibrated noise that

must be injected into the model updates to provide privacy guar-
antees. This noise distorts the training process and degrades the
fidelity of the trained model. To address these challenges, we de-
velop specialized optimization strategies tailored for effectively
and efficiently training DP-GAN on complex, high-dimensional
multimedia distributions under tight differential privacy budgets.

1) Dynamic Privacy Budget Allocation: The amount of noise
σ added to gradients during training directly determines the
privacy cost incurred. The total privacy budget ε available for
training is allocated across multiple training iterations. The
allocation must balance between preserving overall privacy and
retaining model utility. We propose dynamically allocating more
privacy budget during the initial training epochs to allow lower
noise gradients, enabling faster convergence early in training.
As the model stabilizes later in training, the noise is increased
to preserve the overall privacy guarantee.

Concretely, we develop customized noise schedules that grad-
ually decay the noise σt in each training epoch t. Three proposed
schedules are:

σt = σ0e
−kt. (3)

σt = σ0 (k [t/period]) . (4)

σt = (σ0 − σend) (1− t/period)k + σend. (5)

where σ0 is the initial noise, and k controls the decay rate.
The hyperparameters are selected in a DP manner using the
exponential mechanism. This dynamic budget allocation allows
more accurate gradient updates early in training while preserving
privacy. The optimized schedule improves DP-GAN accuracy
under a constrained total privacy budget.

2) Adaptive Gradient Clipping: Before injecting Gaussian
noise to guarantee differential privacy, the gradient values are
first clipped to bound the sensitivity Δ, reducing the amount of
noise required. However, fixing a conservative global clipping
thresholdC can cause training instability and slow convergence.
We propose automatically adapting the clipping threshold C
based on the observed distribution of multimedia data gradients
during training.

The adaptive clipping algorithm is outlined in Algorithm 2.
We first discretize the range [0, Cmax] into r intervals according
to the gradient magnitudes encountered during training. The
number of gradients falling into each interval is computed to
form a histogram. Gaussian noise is injected into these histogram
counts to make the clipping threshold selection differentially
private. Finally, the interval with the noisy maximum count has
its upper threshold selected as the clip value Cs for the current
training iteration. This adapts the clipping threshold based on
the empirical gradient distribution for more excellent stability.

For example, suppose the observed multimedia data gradients
have a long-tailed distribution with most values being small and
few outliers’ large values. The adaptive approach sets C to the
upper bound of the high-density small gradient region, allowing
more accurate updates. This improves training stability and DP-
GAN accuracy.

3) Multimedia Data Weight Clustering: Modern GAN archi-
tectures used for complex multimedia data have many trainable
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Algorithm 2: Adaptive Gradient Clipping.

Input: Gradients g(i), noise σC , intervals r
Output: Clipping threshold value Cs

01: Discretize [0, Cmax] into r bins;
02: Compute gradient histogram;
03: Add noise 𝒩(0, σ2

C) to histogram;
04: Cs is upper threshold of noisy max bin;
05: Return clipping threshold Cs;
06: Sample noise z(i) ∼ pz and update G parameters θ;

parameters. Independently adding noise to clip and perturb every
single weight slows down the convergence of DP-GAN train-
ing significantly. We propose identifying and clustering similar
GAN weights that handle correlated multimedia data patterns.
The gradients of weights in each cluster are then clipped together
as a group, reducing the overall noise injected for differential
privacy and accelerating training.

The efficacy of weight clustering in neural networks has been
demonstrated in various contexts. For instance, Han et al. [46]
showed that weight clustering can significantly reduce model
size without compromising performance. Similarly, Ullrich et
al. [47] used weight clustering for model compression in deep
neural networks. Yu et al. [48] demonstrated that clustering
model parameters can enhance privacy-utility trade-offs in dif-
ferential privacy. Our approach builds upon these insights, adapt-
ing weight clustering specifically for multimedia data in GANs
under differential privacy constraints. Algorithm 3 outlines our
proposed multimedia data weight clustering approach based on
density-based spatial clustering. The distance between pairs of
weights is computed based on the proximity of their optimized
clipping thresholds, which indicate the similarity of gradient
value distributions. Density-based spatial clustering (DBSCAN)
is applied to identify clusters so that weights with similar clip-
ping behaviors are grouped [49]. DBSCAN does not require
specifying the number of clusters a priori, unlike k-means.

Together, these optimization strategies improve the conver-
gence and accuracy of differentially private GANs for syn-
thesizing high-quality and practical synthetic multimedia data
under a constrained privacy budget. Next, we provide a rigorous
theoretical analysis.

D. Theoretical Analysis

We define the privacy loss random variable c(o;D,D′) be-
tween outcomes o on neighboring datasets D,D′. For outcome
o ∈ O, the privacy loss c(o;D,D′) between neighboring D,D′

is:

c (o;D,D′) = log
Pr [M (D) = o]

Pr [M (D′) = o]
. (6)

The moment’s accountant αM (λ) accumulates the privacy
loss over iterations. For algorithm M , the λth moment is:

αM (λ) = max
D,D′

logEo∼M(D)

[
eλc(o;D,D′)

]
. (7)

Let 𝒜 be the DP-GAN training algorithm. The 𝓁2-sensitivity
is Δ2 ≤ 2Gmax. By the Gaussian mechanism,𝒜 satisfies ε0-DP.

Algorithm 3: Multimedia Data Weight Clustering.
Input: Weights wi, thresholds ci, radius μ, minPts
Output: Student GAN Gs

01: G gets (wi, ci);
02: Mark all wi as unvisited;
03: n gets 1; // cluster index;
04: For each unvisited wi ∈ G;
05: Mark wi as visited;
06: Nμ(wi) = wj : |cj − ci| ≤ μ // Get μ-neighbors of wi;
07: If |Nμ(wi)| ≥ minPts;
08: Create cluster Gn = wi;
09: c(Gn) = ci; // Initial cluster threshold;
10: For each wj ∈ Nμ(wi);
11: If wj not assigned to a cluster;
12: Gn gets GnUwj;

13: c(Gn) =
c(Gn)+cj

2 ; // update threshold;
14: End if;
15: End for;
16: n gets n+ 1;
17: End if;
18: End for;

By the composition theorem, after T iterations the total privacy
is:

εT =
√

2T log (1/δ) · Δ2

σ
. (8)

Plugging in Δ2 ≤ 2Gmax and simplifying proves the claim.
Therefore, the GAP algorithm satisfies (ε+ ε0)-DP for ε0 =√
2log (1/δ)/Gmax and:

ε =
√
2log (1/δ) · σ · T ·Gmax. (9)

whereσ is the Gaussian noise scale,T is the number of iterations,
and δ > 0 is the failure probability.

Next, we state the utility guarantee in terms of expected
parameter error:

The Gaussian noise added to gradients has expected O(dσ)
for d parameters. Summed over T iterations, the total expected
noise is O(TGmaxσ). This injects direct error between DP and
non-DP GAN parameters.

Therefore, the expected L2 error between DP and non-DP
GAN parameters under GAP is O(TGmaxσ).

The above guarantee on expected parameter error can be used
to bound divergence metrics like total variation distance between
DP and non-DP multimedia data distributions. Optimizing the
privacy-utility tradeoff allows high accuracy DP-GAN training
with rigorous protections.

We also theoretically analyze the impact of our proposed
optimization strategies:
� Dynamic budget allocation: Allocating f · εtotal bud-

get in the first p of training reduces expected error by
O(f(1− p)TCmaxσ).

� Adaptive clipping: Let Ca and Cf be the adaptive and
fixed clipping thresholds. For Ca < Cf , the expected error
reduces by O(T (Cf − Ca)σ).
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� Weight clustering: Let k be the number of clusters. Clus-
tering reduces expected error by O(T (1− k/d)Cmaxσ).

Together, these optimizations improve the accuracy of dif-
ferentially private GAN training under a constrained privacy
budget.

IV. EXPERIMENTS

A. Settings

We conduct experiments to evaluate the proposed GAP frame-
work for differentially private multimedia data synthesis on im-
age, video and facial datasets. The experimental analysis focuses
on: quality of generated data, availability of generated data,
training efficiency, and validation of optimization strategies.

The GAP framework is evaluated using the following real-
world multimedia, i.e., MNIST, CIFAR-10 and UCF-101. For
them, we give the details below. MNIST contains 28 × 28-pixel
grayscale images of handwritten digits (0 through 9), making
it relatively simple compared to more complex datasets like
ImageNet. The CIFAR-10 dataset is widely used in computer
vision and machine learning. The UCF-101 dataset, widely
utilized in computer vision and action recognition, is specifically
designed for training and evaluating machine learning models
and algorithms focused on recognizing human actions in videos.

GAN [29], DPWGAN [30], GRNN [31], and HCGAN [32].
The GAP framework was implemented using PyTorch 1.9 and
the Opacus library for differential privacy. All experiments were
conducted on NVIDIA RTX 4070 GPUs. We used a generator
with four transposed convolutional layers for the GAN archi-
tecture, incorporating batch normalization and ReLU activa-
tion. The discriminator consisted of 4 convolutional layers with
spectral normalization and LeakyReLU activation. The latent
dimension was set to 128. Training was performed using the
Adam optimizer with β1 = 0.5 and β2 = 0.999 and a learning
rate 2e-4. We used a batch size of 64 and trained for 200
epochs. We employed DP-SGD with the Gaussian mechanism
for differential privacy, setting δ = 1e− 5 for the (ε, δ)-DP
guarantee. Our dynamic privacy budget allocation used an initial
noise scale σ0 = 8 with a decay rate k = 0.02 and a cycle
period of 80 epochs, following the exponential decay schedule.
The adaptive gradient clipping technique started with an initial
clipping threshold of C = 1.0, using 100 histogram bins. We
updated the clipping threshold every 100 batches, with a clipping
noise scale σC = 0.1. We employed the DBSCAN algorithm
with a Euclidean distance metric on weight gradients for multi-
media data weight clustering. We performed reclustering every
ten epochs to adapt to changing gradient distributions during
training. These implementation details were carefully tuned
to balance computational efficiency, model performance, and
privacy guarantees in IoT-Edge environments.

B. Results and Analysis

1) Comparison of Quality of Generated Data: We first qual-
itatively and quantitatively compare GAP against baselines in
terms of fidelity of generated multimedia data for evaluating
model utility.

Fig. 3. Real (top) and differentially private generated CIFAR-10 samples.

Fig. 3 visualizes sample real images from MNIST and syn-
thetic samples generated by GAP to control the privacy budget
to ε = 5 over 50 training epochs.

GAP generates images mimicking salient data properties like
textures and shapes while protecting privacy. GAP samples
show significantly less distortion and higher visual quality than
baselines due to our proposed optimizations.

The GAP framework significantly enhances multimedia an-
alytics in the IoT-Edge continuum. It generates high-quality
synthetic multimedia data, such as images, videos, and facial
datasets, which mimic real data in texture and shape and prior-
itizes privacy preservation. By controlling the privacy budget,
GAP ensures user privacy protection in sensitive IoT networks.
Additionally, GAP’s training and optimization are notably ef-
ficient due to dynamic allocation parameters and proposed op-
timizations, a critical factor in IoT-Edge environments where
computational resources are often limited. This efficiency leads
to quicker deployment and adaptation to evolving data patterns.

For quantitative evaluation, we train convolutional classifiers
on non-private and private synthetic datasets for image classifi-
cation tasks. Classifier accuracy on held-out test data quantifies
utility. We also report the inception score [50], measuring sample
quality and diversity. The inception score is a widely used metric
to quantitatively evaluate the quality and diversity of generated
images from generative models like GANs. The key idea behind
the inception score is to use a pre-trained Inception classification
model to assess properties of generated image samples x from
a generator G. Images are assessed regarding clarity, sharpness,
and degree to which they contain meaningful objects according
to the Inception classifier. The conditional label distribution
p(y|x) for an image x should have low entropy and be peaked
at the true class if the sample has meaningful contents and high
quality.

The marginal distribution over all classes p(y) = ∫ p(y|x =
G(z))dz for images from G(z) should have high entropy if G
captures the diversity of modes in the training data distribution.
Formally, the inception score is defined as follows.

IS = exp (Ex ∼ GDKL(p(y|x)||p (y))). (10)

where DKL is the KL-divergence between the conditional and
marginal distributions.
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TABLE I
IMAGE CLASSIFICATION RESULTS ON MNIST

A higher inception score indicates better sample quality (clear
object patterns) and diversity (variety of generated images)
from the generative model. In experiments, the inception score
measures how useful the differentially private synthetic images
are for tasks like training classifiers compared to real data.
GAP obtains inception score close to state-of-the-art non-private
models, validating its efficacy.

Table I demonstrates GAP’s benefits over baselines in terms of
substantially higher inception scores and improved classification
accuracy using CIFAR-10 at budget ε = 5. This confirms that
GAP creates highly useful differentially private surrogates even
for complex image distributions.

Furthermore, GAP’s performance, validated against state-of-
the-art non-private models, demonstrates that its synthetic data
competes well in quality with non-private models, making it a
valuable tool for privacy-sensitive multimedia analytics in IoT
environments. The efficiency and scalability of GAP are inferred
from its successful use of advanced GPUs and evaluation on
challenging datasets like CIFAR-10, aligning well with the
diverse and resource-constrained nature of IoT-Edge computing.
The framework’s real-world applicability is further evidenced by
its evaluation using the MNIST dataset and its comparison with
other differentially private baselines, highlighting its effective-
ness in practical scenarios vital for IoT-Edge applications.

The Generative Adversarial Privacy framework offers an ef-
fective solution for generating high-quality, diverse, and privacy-
preserving synthetic multimedia data. It is particularly relevant
in the IoT-Edge continuum, where balancing data utility, quality,
and privacy is paramount.

2) Comparison of Availability of Generated Data: We eval-
uate GAP’s ability to produce differentially private synthetic
multimedia data valid for training machine learning models
across various analytics tasks.

We generate private surrogate datasets using GAP and base-
lines under budget ε = 5. Then, we train state-of-the-art convo-
lutional neural network classifiers on the real data (no privacy)
and private surrogate data from all methods for image classifica-
tion on CIFAR-10 and video action recognition using UCF-101.

Fig. 4 reports the classification accuracy of models trained on
data from GAP against the baselines on both datasets.

GAP improves average accuracy over baselines by nearly
5% on CIFAR-10 images. For complex UCF-101 videos, GAP
gains over 4% over baselines. GAP enabling accuracies within
3-4% of non-private upper bound demonstrates high data utility.
This conclusively validates GAP’s ability to produce beneficial

Fig. 4. Availability of generated multimedia data.

differentially private multimedia data for representative analyt-
ics tasks encompassing computer vision and time series analysis.

The GAP framework presents numerous positive impacts for
multimedia analytics within the IoT-Edge continuum. Notably,
GAP’s capacity to produce synthetic data that only marginally
reduces accuracy by 3-4% compared to non-private data is a
substantial achievement. This high data utility is pivotal for
training machine learning models, especially in image classi-
fication and video action recognition tasks. Furthermore, GAP’s
effectiveness across diverse analytics tasks, such as in computer
vision with CIFAR-10 images and time series analysis with
UCF-101 videos, showcases its versatility in IoT-Edge envi-
ronments where diverse data requirements are standard. Addi-
tionally, GAP outperforms other differentially private methods,
with performance improvements of nearly 5% on CIFAR-10 and
over 4% on UCF-101. This highlights its capability to generate
higher quality synthetic data, vital for accurate decision-making
in IoT-Edge scenarios. Importantly, GAP balances privacy and
utility efficiently, operating under a defined privacy budget
(ε = 5) while maintaining high data utility, thereby ensuring
the protection of sensitive information in the data-sensitive
IoT-Edge ecosystem.

In conclusion, the Generative Adversarial Privacy framework
significantly enhances multimedia analytics in the IoT-Edge
continuum. Its ability to generate private, high-quality synthetic
data is essential for effectively training machine learning models,
ensuring data privacy, and maintaining utility across various
analytics tasks.

3) Comparison of Training Efficiency: We evaluate the im-
pact of our proposed optimization strategies on the efficiency
of differentially private GAN training, which directly affects
scalability across diverse analytics tasks and datasets.

Fig. 5 plots the Wasserstein distance between real and syn-
thetic data distributions during training with batch size 64 for
GAP against baselines on the CelebA facial dataset containing
over 200K images.

GAP consistently achieves lower distribution divergence,
highlighting improved training stability. This directly translates
to fewer epochs for GAP to converge to target the privacy-utility
trade-off. GAP unlocks broader applicability to large-scale ana-
lytics by enabling faster and more sample-efficient training. By
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Fig. 5. Training efficiency comparison.

accelerating DP-GAN training for complex multimedia distri-
butions using techniques like adaptive clipping, GAP facilitates
scalability while preserving rigorous privacy.

The GAP framework brings several positive impacts to mul-
timedia analytics in the IoT-Edge continuum based on the
information provided. First, GAP’s achievement in lowering
distribution divergence, reflected by the reduced Wasserstein
distance between real and synthetic data, suggests improved
training stability. This stability is critical for deploying machine
learning models in the dynamic and diverse environments typical
of IoT-Edge systems. Additionally, the efficiency of GAP is
highlighted by its requirement for fewer epochs to converge to
the desired privacy-utility trade-off, a valuable trait in IoT-Edge
contexts where computational resources are limited and timely
analytics are crucial.

Therefore, the GAP framework positively impacts multimedia
analytics in the IoT-Edge continuum by offering a balanced
efficiency, scalability, and privacy solution. Its ability to ef-
ficiently and stably handle complex data distributions while
preserving privacy makes it particularly suited for the varied and
challenging demands of IoT-Edge computing environments.

4) Validation of Effectiveness of Optimization Strategies:
Finally, we validate the individual impact of each optimization
strategy.

To quantify the efficacy of each strategy, we evaluate the
proposed GAP framework and baselines with different com-
positions of optimizations on the image classification task using
CIFAR-10 at privacy budget ε = 5.

Table II reports the improvement in inception score from
selectively incorporating each additional optimization module
over the baselines. Every module consistently improves per-
formance, validating its benefits. Combining modules leads
to further improvements showing complementary advantages.
Together, GAP optimizations achieve over 15% higher inception
scores than baselines. This confirms that each proposed op-
timization technique positively contributes towards improving
the fidelity of differentially private GANs for synthesizing more
useful multimedia data.

In addition to the inception score, we evaluated our method
using the FID, which is considered a more comprehensive metric
for assessing the quality and diversity of generated data. FID

TABLE II
ABLATIVE EVALUATION OF OPTIMIZATION STRATEGIES

TABLE III
FID SCORES ON CIFAR-10

TABLE IV
INCEPTION SCORES AND FID FOR ε = 1, 5, AND 10

measures the distance between the feature distributions of real
and generated images, with lower scores indicating better quality
and diversity. Table III shows the FID scores for GAP and the
baseline methods on the CIFAR-10 dataset.

As evident from the results, GAP achieves the lowest FID
score among all privacy-preserving methods, indicating that it
generates high-quality and diverse images. The FID score of
32.9 for GAP is significantly closer to the real data distribution
(FID= 0.0) compared to the baseline methods, corroborating the
Inception Score findings and further validating our approach’s
effectiveness in maintaining data utility while preserving pri-
vacy.

To provide a more comprehensive evaluation of GAP’s effi-
cacy across different privacy regimes, we conducted additional
experiments with privacy budgets ε = 1 (high privacy) and
ε = 10 (relaxed privacy) in addition to our original ε = 5 setting.
Table IV shows the Inception Scores and FID for GAP and
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TABLE V
COMPARATIVE ANALYSIS OF GAP AND BASELINE METHODS ON CIFAR-10

TABLE VI
DATA TRANSFER VOLUME (IN MB) VS DATASET SIZE

baseline methods under these varying privacy budgets on the
CIFAR-10 dataset.

As expected, performance improves as the privacy budget
increases for all methods. However, GAP consistently outper-
forms baseline methods across all privacy budgets. Even at
ε = 1, GAP achieves an Inception Score of 7.21 and FID of
45.3, comparable to some baselines at ε = 5. This demonstrates
GAP’s robustness in maintaining data utility under strict privacy
constraints. At ε = 10, GAP achieves an Inception Score of
8.89 and FID of 28.1, approaching the quality of non-private
generation methods. This showcases GAP’s ability to utilize
larger privacy budgets when available effectively. These results
underscore GAP’s flexibility and effectiveness across a spectrum
of privacy requirements, making it suitable for various IoT-Edge
applications with varying privacy needs.

Table V provides a detailed comparison of GAP with baseline
methods, focusing on training time and privacy test results across
different privacy budgets.

GAP consistently requires less training time than baseline
methods across all privacy budgets. At ε = 5, GAP is 13.1%
faster than the next best method (GRNN). This efficiency gain
is even more pronounced at stricter privacy settings (ε = 1),
where GAP is 14.2% faster than the closest competitor. GAP
achieves the target privacy budget (ε) more accurately than other
methods. While baselines often slightly exceed the specified ε,
GAP maintains the exact privacy guarantee. This is crucial for
applications requiring strict privacy compliance. As the privacy
budget increases, GAP’s training time decreases more rapidly
than baselines. From ε = 1 to ε = 10, GAP’s training time
reduces by 38.0%, compared to an average reduction of 34.7%
for baselines. This indicates GAP’s ability to utilize additional
privacy budget for efficiency gains. GAP’s performance is supe-
rior across different privacy settings, suggesting its robustness to
varying privacy requirements in IoT-Edge scenarios. GAP shows
the best balance between privacy and efficiency across all privacy
budgets. For instance, at ε = 1, GAP achieves the target privacy
14.2% faster than GRNN, the next most efficient method.

To evaluate GAP’s effectiveness in reducing communication
costs, we conducted simulations of data transfer in a typical IoT-
Edge environment. We compared GAP with baseline methods
and a traditional centralized approach where all raw data is sent
to a central server for processing. Table VI shows the total data
transferred over the network for different dataset sizes.

GAP achieves a 73.3% reduction in data transfer compared to
the centralized approach and a 40.7% reduction compared to the
best-performing baseline (GRNN). This significant reduction is
due to GAP’s efficient data aggregation at edge nodes and ability
to generate compact feature representations.

In summary, through extensive experiments across metrics
and datasets, we demonstrate GAP’s ability to enable high-
fidelity differentially private modeling of complex multimedia
distributions under tight budgets. GAP facilitates emerging ap-
plications built atop private user multimedia data by combin-
ing data-driven optimization strategies with rigorous privacy
accounting.

V. CONCLUSION

The proposed GAP framework addresses the pressing privacy
challenges associated with analyzing multimedia data in the
context of IoT devices and edge computing. Through GANs,
GAP synthesizes privacy-preserving surrogate data that allows
for robust multimedia analytics while safeguarding individual
privacy. GAP distinguishes itself by providing rigorous dif-
ferential privacy guarantees, ensuring that the generated5 data
maintains high privacy protection. To enhance the utility and
efficiency of our framework, we have introduced several opti-
mization strategies, such as dynamic privacy budget allocation,
adaptive gradient clipping, and weight clustering. These strate-
gies improve convergence and data quality, even under a limited
privacy budget. The theoretical analysis supports the effective-
ness of GAP in balancing privacy preservation and analytics
fidelity. Our extensive experiments on real-world multimedia
datasets validate the superiority of GAP over existing methods.
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It consistently generates high-quality synthetic data that can be
employed for privacy-preserving multimedia processing across
various IoT-Edge applications.

Despite this computational challenge, GAP offers several key
advantages in IoT-Edge environments. GAP provides rigorous
differential privacy guarantees, which are crucial in IoT scenar-
ios where sensitive user data is often processed. Unlike simpler
privacy-preserving methods, GAP maintains high data utility,
enabling more accurate analytics in resource-constrained edge
environments. GAP can handle diverse multimedia data types
common in IoT applications, from images to time-series data. By
generating synthetic data at the edge, GAP can reduce the need to
transmit raw data to the cloud, alleviating bandwidth constraints
in IoT networks. With increasing privacy regulations, GAP
helps IoT systems achieve compliance while enabling advanced
analytics capabilities. These benefits make GAP particularly
valuable in privacy-sensitive IoT applications where data utility
cannot be compromised, such as in healthcare monitoring or
smart city surveillance systems.

For future work, we propose several directions aimed at
enhancing the effectiveness and applicability of the GAP frame-
work. These directions include efficiency optimization to reduce
the computational demands of GAP for resource-constrained
edge devices, domain-specific adaptation to fine-tune the frame-
work for diverse multimedia domains, and the development of
more sophisticated algorithms for privacy budget management,
thereby increasing the flexibility and utility of GAP in privacy-
preserving multimedia analytics.
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