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Abstract—Integrating large models (LMs) into future vehicles
and transportation systems marks a significant advancement in
mobility and transportation technology. Incorporating artificial
intelligence and machine learning, these LMs are poised to rev-
olutionize various aspects of transportation. This paper proposes
LMs-based approaches for cooperative control and coordination
of connected and autonomous vehicle (CAV) fleets. Specifically,
algorithms based on the alternating direction method of multipliers
(ADMM) are developed for distributed optimization of CAV trajec-
tories. The synchronous ADMM and asynchronous ADMM algo-
rithms enable parallelized coordination of large-scale CAV systems.
Simultaneously, we propose a distributed training scheme where
each CAV trains its cost and dynamics networks on simulators local
to each vehicle. A central coordinator interacts with the vehicles
to tune the coupling networks. Then, we introduce an innovative
car-following model named the integrated velocity and acceleration
fusion model that integrates state information from multiple lead
and following vehicles to determine the optimal acceleration for the
subject CAV. While we utilize graph sample and aggregate –based
neural network and the gated recurrent unit and propose a model
for recognizing driving intentions and predicting the trajectories
of surrounding vehicles based on these theories. Simulation results
demonstrate enhanced traffic efficiency, safety, robustness, and
scalability using LMs for cooperative control of CAV.

Index Terms—Large models, connected and autonomous
vehicles, alternating direction method of multipliers, cooperative
control, car-following.
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I. INTRODUCTION

CONNECTED and autonomous vehicles (CAVs), endowed
with advanced sensing, communication, and control tech-

nologies, offer transformative potential for the future of trans-
portation [1]. The primary advantages of CAVs include im-
proved traffic flow, enhanced road safety, reduced conges-
tion, lower emissions, and superior mobility services [2], [3],
[4]. However, several complex challenges must be addressed
to harness these benefits on a large scale fully. These chal-
lenges encompass perception, planning, control, and coordina-
tion within expansive transportation networks that include CAVs
and human-driven vehicles (HDVs), pedestrians, and various
infrastructure components [5], [6]. Effectively integrating CAVs
into this dynamic mix demands sophisticated solutions that can
handle the complexities of real-world traffic environments and
the diverse behaviors of different road users. Achieving this
integration is crucial for creating more intelligent, responsive,
sustainable transportation systems.

The advent of large models (LMs) based on deep neural
networks and advanced distributed optimization algorithms have
opened up novel avenues for addressing coordination challenges
in transportation systems [7]. LMs, characterized by their vast
number of parameters, often in the billions, are trained on
extensive and diverse datasets [8], [9]. This training enables
them to learn intricate functions, mapping inputs to outputs
in ways that traditional analytical methods find challenging.
Once pre-trained, these models are fine-tuned for specific tasks,
making them highly adaptable and efficient. In transportation,
LMs are particularly valuable for the cooperative control and
coordination of CAVs. They offer a data-driven, optimization-
based approach to managing large fleets of CAVs, aiming to
enhance overall traffic flow and improve safety across the system
[10]. This advancement is significant in intelligent transportation
systems, where the dynamic interplay of numerous vehicles and
infrastructure components presents a formidable challenge [11].
LMs thus stand as a promising solution, enabling more effective
and safer traffic management in increasingly congested urban
environments.

LMs, such as transformer-based LMs, have emerged as dis-
ruptive machine learning techniques, as exemplified by recent
architectures like BERT and GPT [12], [13], [14]. Their promise
for intelligent transportation systems stems from the innate
ability to learn from vast datasets and adapt to diverse predictive
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tasks crucial for managing traffic complexity. These models
incorporate key innovations that capture intricate spatial and
temporal dynamics. Leveraging such capabilities by training
transformer-based large models on ever-growing transportation
corpora allows learning highly complex traffic flow interactions.
Transformer-based large model architectures provide a flexible
modeling paradigm to encapsulate intricate transportation phe-
nomena in data through scalable, self-attentive compositional
representations. By capturing systemic dependencies and offer-
ing easy downstream adaptability, they promise to significantly
advance intelligent systems for managing congestion, safety, and
other challenges facing modern transportation.

Distributed optimization algorithms, particularly the consen-
sus alternating direction method of multipliers (ADMM), play
a pivotal role in enabling the application of LMs to multi-agent
coordination challenges, such as those encountered in managing
fleets of CAVs [15]. These algorithms facilitate decentralized
optimization of vehicle trajectories, allowing each CAV to tackle
a local sub-problem individually. Simultaneously, this approach
is grounded in using specific cost functions and dynamics
modeled by LMs, with the capability to reach a consensus on
shared decision variables through dual variable updates among
neighboring CAVs [16], [17], [18], [19]. This methodology
effectively sidesteps the need for a central controller and the
complexities associated with extensive vehicle-to-infrastructure
coordination. When LMs are combined with ADMM-based
distributed coordination algorithms, optimizing the trajectories
of large-scale CAV fleets in real time becomes feasible.

In heterogeneous traffic environments where both CAVs and
HDVs coexist, LMs bring a novel dimension to understanding
the intricate dynamics of human driving behaviors [20], [21],
[22]. These LMs can comprehensively capture the complexi-
ties of vehicle interactions and the psychology underpinning
human driving actions. Consequently, they enable the synthesis
of car-following and lane-changing models that closely mimic
real-world traffic flow patterns, offering a more accurate rep-
resentation of mixed traffic scenarios [23], [24]. Integrating
information from multiple surrounding vehicles is a hallmark of
LMs, empowering them to design sophisticated control strate-
gies for CAVs. These strategies enhance traffic stability and
effectively mitigate disturbances in the presence of diverse road
users [25], [26], [27], [28], [29]. By leveraging the power of LMs,
transportation systems can move closer to achieving a harmo-
nious coexistence of autonomous and human-driven vehicles.
Nonetheless, it is imperative to acknowledge that modeling het-
erogeneous multi-agent transportation systems poses challenges
[23]. Scalability, reliability, and stability are foremost concerns
that require careful consideration.

To summarize, incorporating LMs enabled by recent advances
in computation power and dataset availability has significant
potential to address complex coordination problems arising in
CAV systems and mixed traffic environments. However, there
remain essential research gaps related to: (i) Distributed opti-
mization algorithms that can scale to large numbers of CAVs
and enable real-time trajectory planning and coordination; (ii)
Car-following models tailored to mixed traffic environments
that leverage multi-vehicle information while ensuring string

stability; (iii) Validation of the benefits of LM-based control
and coordination strategies through analysis and realistic traffic
simulations.

This paper aims to develop LM-based methodologies to ad-
dress these research gaps. The contributions include:

1) We present algorithms using ADMM for the distributed
optimization of CAV trajectories, which are crucial for the
efficient and effective management of vehicle movements
in a connected environment.

2) We propose a distributed training scheme where each CAV
trains its cost and dynamics networks on simulators local
to each vehicle. A central coordinator interacts with the
vehicles to tune the coupling networks.

3) We propose a novel car-following model named the in-
tegrated velocity and acceleration fusion (IVAF) model.
This model merges state data from various leading and
following vehicles to identify the best acceleration for the
specific CAV.

4) We use graph neural network theory and the gated re-
current unit (GRU), proposing a model for recognizing
driving intentions and predicting the trajectories of sur-
rounding vehicles based on these theories.

The rest of this paper is structured as follows: Section II
illustrates the system model, Section III studies the cooperative
control of CAV, Section IV presents the simulations and results
analysis, and Section V shows the conclusion.

II. SYSTEM MODEL

We consider the problem of coordinating a fleet of N CAVs
traveling on a roadway. The positions and velocities of the
vehicles are coupled through inter-vehicle constraints such as
collision avoidance and traffic flow constraints. The goal is to
optimize the trajectories of the vehicles over a finite horizon to
achieve objectives related to safety, efficiency, and ride comfort.

A. Problem Formulation

The trajectory of each vehicle i ∈ {1, . . . , N} over the finite
horizon is parameterized by the control inputs.

ui = [ui (0) , . . . , ui (T1 − 1)]T . (1)

where T is the horizon length and T1 is the control horizon. The
system evolution is given by the discrete-time dynamics.

xi (t+ 1) = fθi (xi (t) , ui (t)) . (2)

where xi is the state vector (position, velocity etc.), and fθi is a
dynamics network with parameters θi.

The centralized optimal control problem with coupled con-
straints is formulated as follows [30].

min
u1,...,uN

N∑
i=1

(
li (xi,ui) +

∑
j∈Ni

cij (xi,ui,xj ,uj)
)

s.t. xi (t+ 1) = fi (xi (t) ,ui (t)) , i = 1, . . . , N

gi (xi,ui) ≤ 0, i = 1, . . . , N

hij (xi,ui,xj ,uj) = 0, (i, j) ∈ E . (3)

Authorized licensed use limited to: The Ohio State University. Downloaded on February 17,2025 at 00:16:09 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: LARGE MODELS FOR COOPERATIVE CONTROL OF CONNECTED AND AUTONOMOUS VEHICLES 1937

where li is the stage cost for vehicle i, cij are coupling costs
between vehicles i and j, Ni is the set of neighbors of i based
on the interaction topology, gi are state and input constraints, and
hij are coupling equality constraints such as collision avoidance.
E represents the edge set of the interaction topology graph.

Considering the large models for future vehicles and trans-
portation, the overall cost function is as follows.

J (X,U) =
∑N

i=1
lφi

(xi,ui)

+
∑

(i,j)∈E cψij
(xi,ui,xj ,uj). (4)

where lφi
and cψij

are individual and coupling cost networks
with parameters φi, ψij .

The constraints are represented implicitly by penalty terms in
the cost:

lφi
(xi,ui) = l0φi(xi,ui) + λgωi

(xi,ui)cψij
(xi,ui,xj ,uj)

= c0
ψij

(xi,ui,xj ,uj) + μhγij (xi,xj) . (5)

where gωi
and hγij represent state, input and coupling con-

straints, and λ, μ are penalty weights.
The objective combines individual stage costs and coupling

costs over the horizon lengthT . The dynamics constraints couple
the states over time. The inequality constraints gi enforce state
and input limits for each CAV. The coupling equality constraints
hij model interactions between CAVs such as collision avoid-
ance.

To be more specific about the objective function, we define:∑T

t=0
ltφi

(xi (t) ,ui (t)). (6)

ltφi
(xi (t) ,ui (t)) = (xi (t)− xrefi (t))

T
Qi(xi (t)

− xrefi (t)) + ui(t)
TRiui (t) . (7)

where xrefi is the reference trajectory for CAV i, and Qi,
Ri are weighting matrices. This quadratic stage cost penalizes
deviation from the reference path.

The coupling costs are defined as follows.

cψij
(xi,ui,xj ,uj) =

∑
t =

0T−1ctψij
(xi (t) ,ui (t) ,xj (t) ,uj (t)) . (8)

where ctψij
penalizes proximity between CAV i and j at time t

to encourage collision avoidance.
The state and input constraints are as follows.

gxωi
(xi) = xmin

i ≤ xi ≤ xmax
i . (9)

guωi
(ui) = umin

i ≤ ui ≤ umax
i . (10)

These define safety limits on states like positions and veloci-
ties as well as actuator limits on inputs like accelerations.

The coupling collision avoidance constraints [31] are as fol-
lows.

hγij (xi,xj) = |pi − pj |2 − d2
sage ≤ 0. (11)

where pi, pj are the positions of CAV i and j, and dsafe is the
safe distance threshold. This constrains the distance between
vehicles above a safety margin.

B. Constraint Convexification

The non-convexity in the above problem arises from the
nonlinear dynamics fi and constraints gi, hij . We approximate
these nonlinear functions by linearizing them about a nominal
trajectory x̄i, ūi for each CAV i:

xi (t+ 1) ≈ Ai (t)xi (t) +Bi (t)ui (t) . (12)

gωi
(xi,ui)<≈

Gixi +Hiui ≤ bi. (13)

hγij (xi,ui,xj ,uj) ≈ Pij (t)xi+

Qij (t)xj +Rij (t)ui + Sij (t)uj = 0. (14)

where Ai, Bi, Gi, Hi and Pij , Qij , Rij , Sij are obtained by
linearizing the nonlinear functions about the nominal trajectory.

Specifically, the linearized discrete-time dynamics are ob-
tained via:

Ai (t) =
∂fθi
∂x

(x̄i (t) , ūi (t)) . (15)

Bi (t) =
∂fθi
∂u

(x̄i (t) , ūi (t)) . (16)

The linearized state and input constraints are:

Gi = ∇xgi (x̄i, ūi) . (17)

Hi = ∇ugi (x̄i, ūi) . (18)

And the linearized coupling constraints are:

Pij (t) = ∇x̄ihγij (x̄i (t) , ūi (t) , x̄j (t) , ūj (t))

Qij (t) = ∇x̄jhγij (x̄i (t) , ūi (t) , x̄j (t) , ūj (t))

Rij (t) = ∇ūihγij (x̄i (t) , ūi (t) , x̄j (t) , ūj (t))

Sij (t) = ∇ūjhγij (x̄i (t) , ūi (t) , x̄j (t) , ūj (t)) . (19)

This convexifies the constraints, yielding a linear time-varying
model for each CAV:

xi (t+ 1) = Ai (t)xi (t) +Bi (t)ui (t) . (20)

The linearized coupling constraints are written compactly as:

Hij (t) zi (t) + J ij (t) zj (t) = 0, (i, j) ∈ ε. (21)

where zi(t) = [xi(t)
T ,ui(t)

T ]
T

aggregates the states and in-
puts at time t.

This convexification based on linearization introduces some
suboptimality but makes the problem tractable. The accuracy
can be improved by linearizing updated trajectories iteratively.

C. Problem Decomposition

To decompose the centralized optimization problem into
tractable subproblems for each CAV, we introduce local copies of
the coupling variables and consensus constraints [32] to equalize
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the copies:

min
zi,z

j
i ,∀j∈Ni

∑
i = 1N lφi

(zi) . (22)

where zji is the copy of zj kept by vehicle i. The consensus
constraints zi(t) = zji (t) ensure all copies are equal.

We can now decompose this problem into N subproblems,
one for each CAV i:

min
zi,z

j
i ,∀j∈Ni

∑
i = lφi

(zi) . (23)

These subproblems can now be solved in a parallel and
distributed manner by the CAV agents.

III. COOPERATIVE CONTROL OF CAV

A. Proposed Synchronous and Asynchronous ADMM
Algorithms

We present an algorithm based on the ADMM to solve the
decomposed problem in a synchronous and parallel fashion.

The augmented Lagrangian [33] for the consensus optimiza-
tion problem are:

L
(
z, zj ,λ

)
= lφi

(zi) +
∑

(i, j) ∈ E . (24)

λTij
(
zi − zji

)
+
ρ

2

∑
(i, j) ∈ E|zi − zij |22. (25)

where λij is the Lagrange multipliers for the consensus con-
straints and ρ is a penalty parameter.

The synchronous ADMM (sADMM) algorithm consists of
the following update steps at each iteration k:

Step 1: Update zi by solving the subproblem for each CAV i:

zk+1
i argmin zi

(
lφi

(zi) +
ρ

2

∑
j∈Ni

|zi − zi,kj + λkij |22
)
.

(26)

Step 2: Update dual variables λij :

λk+1
ij = λkij + ρ

(
zk+1
i − zi,k+1

j

)
. (27)

Step 3: Update shared variables zij :

zi,k+1
j = zk+1

j , ∀j ∈ Ni. (28)

These steps are repeated until convergence. The zi updates
can be performed independently in parallel by each CAV. After
each iteration, the updated zi values are shared with neighbors.

We provide a brief convergence analysis for the sADMM
algorithm.

Letz,zj , and λ∗ denote the optimal primal and dual variables.
The primal residual at the kth iteration is:

rk =
[
zk+1 − zk+1,j

]
, (i, j) ∈ E . (29)

And the dual residual is:

sk = ρ
[
zk+1,j − zk,j

]
, (i, j) ∈ E . (30)

The sADMM algorithm drives the primal and dual residuals
to zero, i.e.,

lim
k→∞

∣∣∣∣rk
∣∣∣∣= lim

k→∞

∣∣∣∣ sk
∣∣∣∣ = 0. (31)

To model the asynchrony, we track local iteration counts ki
for each CAV i. The update steps now become:

Step 1: Update zi by solving:

zki+1
i argmin zi

(
lφi

(zi) +
ρ

2

∑
j∈Ni

|zi − ẑi,kij + λ̂kiij |22
)
.

(32)

Step 2: Update dual variables λij :

λ̂ki+1
ij = λ̂kiij + ρ

(
ẑki+1
i − ẑi,ki+1

j

)
. (33)

Step 3: Broadcast zi to neighbors:

ẑ
kj+1
j = ẑki+1

j , ∀j ∈ Ni. (34)

The key difference is the use of delayed neighbor variables
ẑj and λ̂ij since perfect synchronization is not guaranteed.
Staleness of information degrades optimality but convergence
can still be guaranteed under mild assumptions as shown next.

Assuming the delay is uniformly bounded by a finite constant
τ , and each CAV updates at least once within any B consec-
utive iterations. Under these assumptions, we can show the
following convergence guarantee that the asynchronous ADMM
(aADMM) algorithm converges to a neighborhood of the opti-
mal solution, with neighborhood size proportional to the delay
bound τ .

For the sADMM algorithm, under the mild assumptions that
the local subproblems solved by each CAV vehicle are convex
and the unaugmented Lagrangian has a saddle point, the follow-
ing convergence result holds:

lim
k→∞

∣∣∣∣rk
∣∣∣∣= lim

k→∞

∣∣∣∣ sk
∣∣∣∣ = 0. (35)

This means primal and dual residuals converge to zero as
the synchronous ADMM iterations progress. Therefore, conver-
gence to the optimal centralized trajectory coordination solution
is guaranteed. A similar result is shown for the asynchronous
ADMM case under additional assumptions bounding the delay
and ensuring all vehicles update periodically. This convergence
guarantee proves the distributed algorithm’s ability to coordinate
the CAV platoon optimally.

B. Distributed Training Scheme

LMs powered by deep learning have emerged as a powerful
tool for modeling complex transportation systems with many
interacting components. Here, we propose a distributed training
scheme where each CAV trains its cost and dynamics networks
on simulators local to each vehicle. A central coordinator inter-
acts with the vehicles to tune the coupling networks.

In this method, we consider a CAV fleet with n vehicles
labeled 1, . . . , n. Each CAV i has a local simulator that can
generate training data for learning the vehicle’s cost network
fi(xi) and dynamics network gi(xi, ui). The goal is to train these
networks in a distributed manner while coordinating between
vehicles.

The overall workflow contains three main steps:

Step 1: Local model training
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In the first step, each CAV trains its cost and dynamics
networks on data generated from its local simulator.

The local loss function to be minimized is:

Li (θfi , θgi) =
1
Ni

∑Ni

k=1
l
(
fi
(
xki ; θfi

)
, ykfi

)
+ l

(
gi
(
xki , u

k
i ; θgi

)
, ykgi

)
. (36)

wherexki ,uki , ykfi , and ykgi are state, control input, cost target, and
next state samples for vehicle i. fi and gi represent the cost and
dynamics networks parameterized by (θfi , θgi). l(·) is the loss
function.Niis the number of samples from vehicle i’s simulator.

This trains models customized for each vehicle using local
data. The trained networks are used as initialization for the next
step.

Step 2: ADMM for coupled training

In the second step, we want to coordinate the vehicle models
by introducing coupling terms in the cost functions:

fi (xi) + cij (xi, xj) , ∀j ∈ Ni. (37)

where Ni is the set of neighboring vehicles of i, and cij(·)
couples i and i’s states.

To learn the coupling terms in a decentralized way, we
formulate the following optimization problem with consensus
constraints:

min
cij

n∑
i=1

[
Li (fi + cij) +

λ

2
|cij |2

]

s.t. cij = cji, ∀j ∈ Ni. (38)

where Li(·) is the loss function for CAV i combining cost and
dynamics.

This can be solved using the ADMM approach similar to the
classification case. The update steps are:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ck+1
ij = argmin

cij
Li (fi + cij) +

ρ
2 |cij − ckij − ukij |2

ck+1
ji = argmin

cji
Lj (fj + cji) +

ρ
2 |cji − ckji − ukji|2

c̄k+1
ij = 1

2

(
ck+1
ij + ck+1

ji

)
uk+1
ij = ukij + ck+1

ij − c̄k+1
ij

uk+1
ji = ukji + ck+1

ji − c̄k+1
ji

. (39)

where c̄ij is the averaged coupling term, ρ is the penalty, and uij
is the dual variable. The cij updates can be done in parallel per
edge. After convergence, we obtain consensus couplings c̄ij .

Step 3: Local model update

Finally, each CAV updates its cost network using the consen-
sus coupling terms:

f̃i (xi) = fi (xi) +
∑

j ∈ Nic̄ij (xi, xj) . (40)

The local cost networks are retrained to minimize loss on the
updated cost function:

min
θfi

1
Ni

∑Ni

k=1
l
(
f̃i
(
xki ; θfi

)
, ykfi

)
. (41)

The dynamics networks gi(·) can also be fine-tuned if needed.
This yields cost and dynamics models customized for each CAV
but coordinated through the coupling terms.

C. Car-Following Model and Strategy for Mixed-Traffic Flow

The car-following model is integral to the future of trans-
portation and vehicle technology primarily because it underpins
a wide range of critical developments [34], [35]. Car-following
models are crucial in evaluating the environmental footprint of
road traffic, including emissions and fuel consumption, thereby
facilitating the development of more sustainable transportation
policies [36], [37].

Subsequently, we propose a new car-following model called
the integrated velocity and acceleration fusion (IVAF) model that
integrates state information from multiple lead and following
vehicles to determine the optimal acceleration for the subject
CAV.

The proposed IVAF model builds on previous models, e.g.,
optimal velocity changes with memory and multiple vehicles
changes memory, but incorporates additional terms to account
for the accelerations of the immediate lead and following vehi-
cles as well as exponentially smoothed velocity differences from
multiple vehicles:

ẍn (t) = a [pVF [Δxn (t)] + (1 − p)VB [Δxn−1 (t)]− ẋn (t)]

+ λ1E(n, k + λ2E(n, h) + ω1ẍn+1(t) + ω2ẍn−1(t)

+

k∑
i=1

γiVF [Δxn+i−1 (t)]

− VF [Δxn+i−1 (t− τ)]

+
h∑
j=1

γjVB [Δxn−j (t)]− VB [Δxn−j (t− τ)] .

(42)

where VF and VB are optimal velocity functions for lead
and following vehicles. E(n, k) and E(n, h) are exponentially
smoothed velocity differences from k lead and h following
vehicles.ω1,ω2 are sensitivities to immediate lead and following
vehicle accelerations. γi, γj account for velocity trend memory
effects.{

VF [Δxn (t)] = α1tanh [Δxn (t)− hs] + tanh (hs)
VB [Δxn (t)] = −α2tanh [Δxn (t)− hs] + tanh (hs)

.

(43){
E (n, k) = β

∑k−2
j=0 (1 − β)jΔvn+j+1 (t)

E (n, h) = β
∑h−1
l=0 (1 − β)lΔvn−l−1 (t)

. (44)

Letx = [Δxn,Δvn]
T . The linearized model around the equi-

librium point x∗ is:

x∗ = Ax. (45)

whereA is a 2×2 matrix containing linearized dynamics param-
eters that characterize the stability of the proposed car-following
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model.

A =

[
0 1

a [pV ′
F (b)− (1 − p)V ′

B (b)] 1hγjz1

]
. (46)

The eigenvalue of A is:

λ =
−tr (A)±√

tr2 (A)− 4det (A)

2
. (47)

It can be shown that for suitable parameter choices, the
real part of λ is negative, indicating local stability around the
equilibrium point.

String stability indicates attenuation of disturbances along a
string of vehicles. To analyze this, we study how perturbations
propagate through the vehicle string by substituting Δxn(t) =
Aeφn+zt into the linearized IVAF model:

z2 = a
[
pV ′

F (b)
(
eφ − 1

)− (1 − p)V ′
B (b)

(
e−φ − 1

)− z
]

+ λ1βkz

k−2∑
j=0

(1 − β)jeφ(j+1)

+ λ2βhz

h−1∑
l=0

(1 − β)le−φ(l+1) + z2 (w1 + w2) e
φ

+ τV ′
F (b)

k∑
i=1

γi

[
eφi − eφ(i−1)

]

+ τV ′
B (b)

h∑
j=1

γj

[
e−φj − e−φ(j−1)

]
. (48)

The characteristic equation yields:

z2 =
1
2
[pV ′

F (b)− (1 − p)V ′
B (b)] +

1
a

⎡
⎣λ′

1

k−2∑
j=0

(1 − β)jz1

+ λ′
2

h−1∑
l=0

(1 − β)lz1 + (w1 + w2 − 1) z2
1

+τV ′
F (b)

k∑
i=1

γiz1 + τV ′
B (b)

h∑
j=1

γjz1

⎤
⎦ . (49)

where z1 = pV ′
F (b) + (1 − p)V ′

B(b) and z2 is the second char-
acteristic root governing string stability. The stability condition
is:

This provides theoretical guidance on selecting parameters
like a, k, and h to ensure string stability of the IVAF model.

Comparatively, CAVs leverage advanced wireless commu-
nication to continuously acquire extensive motion data about
the vehicle and the road. This capability facilitates autonomous
environmental perception, decision-making, and control pro-
cesses in CAVs, significantly enhancing their ability to preempt

Fig. 1. Car-following strategy.

and prevent traffic incidents. The dichotomy in the operational
dynamics of HDVs and CAVs within a mixed traffic environment
is exemplified in the car-following strategy, depicted in Fig. 1.

Combining the findings and methodologies with driver be-
havior model-based simulation calibration, we aim to enhance
the calibration process of our driver behavior models [38], [39].
We employ real-world data to tune model parameters, utilize
optimization techniques to minimize discrepancies between
simulated and observed behaviors and validate our models using
diverse datasets, which will ensure that our models accurately
capture the complexities of driver behavior in mixed traffic sce-
narios, improving the overall realism and reliability of our study.

After applying the distributed optimal control strategy, the
vehicle platoon reaches an optimized formation that maximizes
traffic flow and safety. However, this platoon must still demon-
strate resilience against real-world uncertainties like sudden
braking by the lead vehicle. To guarantee string stability, mathe-
matically derive the condition on the control gain parameter a to
ensure any disturbances introduced on the lead CAV will decay
as it propagates to the subsequent vehicles.

Essentially, (50)shown at the bottom of this page, provides
a lower bound threshold for the control gain a. As long as the
CAV vehicles tune their control gains to satisfy this threshold,

a >
−2

[
λ′

1z1 + λ′
2z1 + (w1 + w2 − 1) z2

1 + τV ′
F (b)

∑k
i=1 γiz1 + τV ′

B (b)
]

[pV ′
F (b)− (1 − p)V ′

B (b)]
. (50)
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the optimized platoon can attenuate any disturbances - proving
resilience against real-world uncertainties. This mathematical
derivation of the string stability condition supplies a formal guar-
antee that the distributed multi-vehicle coordination algorithm
yields an optimized CAV platoon that is provably stable against
upstream propagations.

D. Graph Neural Network-based Vehicle Driving Intention
Recognition and Trajectory Prediction

In actual driving scenarios, at time t at position i, there
may be no surrounding vehicles for the one being predicted.
In this case, it can be assumed that at time t for position i,
the distance to the predicted vehicle is infinitely large, and the
vehicle state parameters at position i at time t can be set to
S

(t)
i = [10000, 10000, 0, 0, 0, 0].
This subsection utilizes graph sample and aggregate –based

neural network and the GRU (GSAG-GRU), proposing a model
for recognizing driving intentions and predicting the trajectories
of surrounding vehicles based on these theories [40].

The ability to model complex interactive relationships be-
tween entities is central to accurately recognizing driving in-
tentions. Graph neural networks are designed to capture such
relational reasoning by operating on graph-structured data rep-
resenting vehicle pairwise interactions. In contrast, CNNs focus
more on extracting spatial features from sensor inputs but can-
not sufficiently encode semantic connections between vehicles
that provide critical contextual cues for intention recognition.
Likewise, Transformers specialize in sequential modeling and
long-range dependencies in time. However, the self-attention
mechanism lacks an explicit relation-centric inductive bias.
Transformers need help fully incorporating the navigational
dependencies essential for multi-agent driving scenarios.

On the other hand, GRUs balance model performance and
computational requirements for online trajectory forecasting.
LSTMs can achieve slightly higher accuracy but involve more
parameters and processing. Transformer architectures incur even
higher complexity costs. Considering the need to deploy inten-
tion recognition and motion prediction models on autonomous
vehicles with power and latency constraints, GRUs offer an
optimal fit.

While graph neural networks and gated recurrent units have
become ubiquitous for relational and sequential modeling, re-
spectively, this study incorporates specialized enhancements
to cater their architectures to the distinct complexities and
challenges of forecasting vehicle trajectories in dynamic traffic
environments. Specifically, we use the GraphSAGE network as
the foundation for capturing the spatial and temporal interactions
among vehicles in the traffic environment. The GraphSAGE
network allows for efficient aggregation of neighborhood in-
formation and enables learning meaningful representations for
each vehicle node in the graph. To further enhance the expres-
siveness and adaptability of our model, we introduce multi-edge
convolutions and spatiotemporal connectivity modeling within
the GraphSAGE framework. The multi-edge convolutions en-
able the network to capture diverse vehicle interactions and

relationships, such as relative positions, velocities, and accel-
erations. We can model complex dynamics and dependencies
in real-world traffic scenarios by incorporating multiple edge
types. Furthermore, we extend the GraphSAGE network with
spatiotemporal connectivity modeling, which allows for the
propagation of information across neighboring vehicles and
different time steps. This enhancement enables the network to
capture the evolution of vehicle states and interactions over time,
providing a more comprehensive understanding of the traffic
flow. These specialized enhancements are seamlessly integrated
into the GraphSAGE network structure, enabling our model to
effectively capture the intricate spatial and temporal patterns in
traffic data. Combining multi-edge convolutions, spatiotemporal
connectivity modeling, and the GraphSAGE network architec-
ture results in a powerful and flexible framework for vehicle
trajectory prediction and interaction modeling.

The proposed methodology is beneficial to CACC vehicles
and flow modeling and control. First, it introduces a novel
IVAF model that incorporates state information from multiple
leads and following vehicles to determine optimal acceleration
for the subject CAV and enhances situational awareness and
cooperative capabilities compared to traditional CACC models.
Second, this study uses graph neural networks and gated recur-
rent units to recognize driving intentions and predict trajectories
of surrounding vehicles, enabling more accurate modeling of
complex vehicle interactions in mixed traffic scenarios. Third,
the distributed optimization framework using synchronous and
asynchronous ADMM algorithms allows for efficient coordina-
tion of large-scale CAV fleets, addressing scalability challenges
often encountered in previous studies. Furthermore, the pro-
posed methodology is validated through extensive simulations,
demonstrating improved traffic efficiency, safety, and robust-
ness under various scenarios. By integrating advanced machine
learning techniques, distributed optimization, and enhanced car-
following models, this study pushes the boundaries of existing
traffic flow management approaches for CACC vehicles [41],
[42]. It provides a comprehensive framework for modeling,
controlling, and coordinating CAVs in mixed-traffic environ-
ments, contributing to developing more intelligent and efficient
transportation systems.

Additionally, the increased presence of CACC vehicles led to
a notable reduction in emissions, as the optimized traffic flow
minimized stop-and-go behavior and excessive accelerations
[43], [44]. The emission levels decreased proportionally with the
increase in CACC penetration, highlighting the environmental
benefits of the proposed strategies [45]. Further, safety metrics,
such as time-to-collision and the number of critical events,
exhibited substantial improvements as the CACC penetration
rate increased. The collaborative nature of the CACC vehicles
enabled better anticipation and response to potential conflicts,
thereby enhancing overall traffic safety [46]. These demonstrate
the effectiveness and scalability of the proposed CACC con-
trol strategies in improving network-wide performance across
multiple dimensions, emphasizing their potential for real-world
implementation in mixed-traffic environments.

Overall, the diagram of cooperative control of CAV is shown
in Fig. 2.
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Fig. 2. Diagram of cooperative control of CAV.

IV. SIMULATION AND RESULTS ANALYSIS

A. Performance Evaluation of Synchronous and Asynchronous
ADMM

We present numerical simulations to demonstrate the pro-
posed algorithms. The CAV dynamics are modeled by the
discrete-time unicycle model [47]:

⎧⎨
⎩
xi,k+1 = xi,k + viΔtcos (θi,k)
yi,k+1 = yi,k + viΔtsin (θi,k)

θi,k+1 = θi,k + ωiΔt
. (51)

where (xi, yi) is the position, θi is the heading angle, vi is the
constant speed, ωi is the turn rate, and Δt is the sampling time.
The control input is ui = ωi.

The cost function penalizes deviation from a straight line
reference path:

lφi
(xi, yi) = (xi − xrefi )

2
+ (yi − yrefi )

2
. (52)

The coupling cost penalizes proximity between vehicles:

cψij
(xi, xj , yi, yj) =

1
|pi − pj |2 . (53)

where pi = (xi, yi) and pj = (xj , yj) are the positions.
The collision avoidance constraints are linearized as:

(xi − xj)
2 + (yi − yj)

2 ≥ d2
safe ≈ Hijzi + J ijzj ≥ 0.

(54)

where zi = (xi, yi, θi, ωi) aggregates the states and input.
We simulate a fleet of N = 5 CAVs moving through an

intersection, starting from random initial positions. The horizon
length is T = 10. Algorithm parameters are ρ = 1, ∈abs =
10−5, ∈rel = 10−3. The delay bound for the asynchronous al-
gorithm is τ = 5.

The effectiveness of the proposed sADMM and aADMM al-
gorithms as cooperative control strategies are validated through
simulation experiments. We examine and analyze the results
before and after optimal control is applied to facilitate compara-
tive analysis. The scenario involves a four-way intersection with
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Fig. 3. Simulation results in scenario 1.

traffic lights, where the north-south and east-west directions each
consist of 2-lane roads, including a left turn lane. The dimensions
of the intersection are 50 meters by 50 meters.

In the first scenario, denoted as scenario 1, the traffic signal
initially displays the green phase, with a time window of [0,
30 s]. The simulation outcomes, depicted in Fig. 3, reveal that
at the outset, the fleet of vehicles travels at a speed of 10 meters
per second. Without optimized control, the CAVs continue con-
stantly and fail to utilize the initial green phase (time window:
[0, 30 s]). Consequently, they arrive at the stop line during the
red phase, necessitating a complete stop and waiting for the
subsequent green phase.

In scenario 2, assuming that the signal is in the red phase at
the initial moment, the first green time window is [40, 70 s],
and other initial conditions are the same as in scenario 1; the
simulation results are shown in Fig. 4.

As depicted in Fig. 4, the CAV fleet maintains a constant speed
under uncontrolled conditions. The traffic signal is in the red
phase when it approaches the stop line. The signal switches to the
green phase following a brief stop-and-wait period. At this point,
the CAV vehicles gradually accelerate and proceed past the stop
line. Upon implementing aADMM, the lead vehicle of the CAVs
undergoes a speed adjustment process characterized by mini-
mal amplitude changes. This adjustment ensures that all CAV
vehicles successfully traverse the intersection within the green
light time window without necessitating stops. Consequently,
this optimization enhances passenger comfort significantly and
facilitates uninterrupted passage.

The application of large models, particularly the sADMM
and aADMM algorithms, in the cooperative control of CAVs
demonstrates substantial benefits in optimizing vehicular traffic
flow, enhancing safety, and improving ride comfort. By integrat-
ing these algorithms, CAVs can effectively utilize traffic light
phases, reducing unnecessary stops and delays.

In scenarios where vehicles must traverse intersections with
traffic signals, the sADMM algorithm enables the lead vehicle

Fig. 4. Simulation results in scenario 2.

Fig. 5. Convergence comparison.

to optimize its trajectory by considering its performance and
the overall fleet’s efficiency. This results in smoother and more
efficient traffic flow, as the vehicles can accelerate or decelerate
appropriately to pass through the intersection during the green
phase, thus avoiding stops at red lights. Such optimization signif-
icantly reduces fuel consumption and minimizes the stop-and-go
behavior commonly associated with traffic light-controlled in-
tersections.

The convergence plots in Fig. 5 show that the sADMM
algorithm achieves lower residuals faster while the aADMM
algorithm also converges.

Table I shows the Computation Time, Speedup over ADMM,
and Fleet scalability to demonstrate the proposed distributed
coordination algorithms’ efficiency. While computation time is
measured in milliseconds of wall-clock time taken per optimiza-
tion step. Speedup over ADMM compares runtime improvement
over the benchmark decentralized method. Fleet scalability eval-
uates the increase in computation time as the number of vehicles
grows from 10 CAVs to 100 CAVs.
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TABLE I
COMPARISON OF COMPUTATIONAL LOAD AND ROBUSTNESS

TABLE II
COMPARISON OF CAR-FOLLOWING MODELS

The results showcase the proposed sADMM and aADMM
algorithms have significantly lower computation time that scales
more evenly with increasing vehicles compared to ADMM or
DANE.

Activation of the sADMM algorithm enables the lead CAV
to optimize its velocity by factoring in the current green phase
duration as well as the overall fleet efficiency. By appropriate
acceleration, the lead CAV can ensure that all five CAVs traverse
the intersection without stopping during the first green phase.
utilizing traffic light information for cooperative control elimi-
nates wasteful deceleration, idling, and acceleration, enhancing
transportation efficiency, reducing fuel usage and emission, and
improving ride comfort by preventing stops.

The integration of large models using the sADMM and
aADMM algorithms in the control of CAVs highlights several
positive impacts crucial for advancing intelligent transportation
systems. Additionally, a standout feature of both the sADMM
and aADMM algorithms is their consistent computation time,
which remains nearly constant regardless of the fleet size.

B. Performance Comparison With Different Vehicle
Parameters

To verify the effectiveness of the CAV following model
and optimization strategy in the mixed traffic environment, this
paper assumes that all vehicles on the road follow the following
driving mode, i.e., only longitudinal behavior is considered, no
consideration of lateral behavior, no lane changing, pedestrians,
non-motorized vehicles and other traffic factors interfere, and the
braking stop and start two scenarios can intuitively reflect the
following behavior of the vehicle. Therefore, in this subsection,
three simulation scenarios of vehicle braking and stopping, start-
ing, and running without boundary conditions are selected in the
mixed traffic environment, among which the braking, stopping,
and starting scenarios are mainly designed for verifying the
multi-vehicle state information cognition and key information
fusion.

We simulate the scenario of the IVAF follow-along model
when the fleet vehicles start as follows: during the start-up

Fig. 6. Changes in vehicle parameters during braking and deceleration.

Fig. 7. Changes in vehicle parameters during acceleration.

process, the initial speed of the ten vehicles are all 0, and all
of them are at a standstill, and the position of each vehicle
is xn(0) = (n− 1)Δxn(t), and when t = 0, the lead vehicle
accelerates to 3 m·s-2 for a start and keeps this speed at a uniform
speed when it accelerates to 12.8 m·s-1. After the lead vehicle
accelerates, the other nine vehicles in the fleet follow one by
one. The results are shown in Fig. 6.

The acceleration, velocity, position, and headway of vehicles
1 to 5 are selected for the study. As can be seen in Fig. 7, the
acceleration changes of vehicles 2 and 3 are more significant, and
vehicle 4, because of following the CAV, has a peak difference of
1 m·s-2 relative to vehicle 1, so that the acceleration performance
of vehicle 5 is also better than that of vehicle 1. Therefore, the
speed changes of vehicles 2 and 3 are faster relative to the other
vehicles.
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TABLE III
COMPARISON OF DRIVING INTENTION RECOGNITION

To summarize, when the lead vehicle of the fleet driving
at a uniform speed in the mixed traffic environment receives
the disturbance signal, the higher the CAV penetration rate of
the fleet using the IVAF car-following model and car-following
strategy, the shorter the overall recovery time to the stationary
state, and the less severe the disturbance.

The application of large models, specifically the IVAF follow-
along model, in CAVs within a mixed-traffic environment has
shown promising results in enhancing traffic flow dynamics
and overall vehicular performance. The effectiveness of this
model is evident in scenarios involving braking, acceleration,
and maintaining steady speeds, where it significantly improves
the response and coordination among CAVs.

Subsequently, we demonstrate the advantages of the proposed
IVAF model over three established car-following models: in-
telligent driver model (IDM), Wiedemann 99 (W99) [48], and
cooperative adaptive cruise control (CACC) [49]. The metrics
used for evaluation are: (1) string stability, analyzing how distur-
bances propagate through a platoon of vehicles; (2) disturbance
attenuation, measuring the impact of disturbances introduced
to the lead vehicle on the velocity fluctuations of following
vehicles; and (3) velocity fluctuation, comparing fluctuations
in velocity profiles between models. The simulation setup is a

platoon of 10 vehicles traveling in a single lane. The lead vehicle
introduces velocity disturbances by changing its acceleration.
Table II shows a quantitative comparison between models.

The results demonstrate that IVAF has better string stability,
lower disturbance impacts, and more minor velocity fluctuations
compared to IDM, W99, and CACC models, validating the per-
formance benefits of the proposed IVAF car-following model.

We construct an integrated autonomous driving dataset com-
bining sequences from multiple public sources. The NGSIM
US-101 and I-80 highway datasets are sourced from the Next
Generation Simulation data made accessible by the US Federal
Highway Administration, comprising overhead recordings of
trajectory data across thousands of frames of highway traffic.
This contains 20543 instances of left lane changes, 31747 in-
stances of straight driving, and 8491 instances of right lane
changes within dense traffic scenarios. The nuScenes dataset
spanning Boston and Singapore, providing 1000 scenes (20 sec-
onds each) with full vehicle trajectory annotations, offers ge-
ographical, environmental, and traffic density diversity across
urban areas. The ApolloScape dataset compiles trajectories via
tracking algorithms applied to extensive traffic video footage
from Chinese cities and offers a cross-cultural evaluation of
interaction behavior models. Any biases are mitigated through
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a balanced sampling of data chunks for each labeled maneuver
category. The datasets are partitioned: 80% for training (20590
sequences) and 20% for testing (5148 sequences).

To appraise the driving intention recognition model, we com-
pile 1698 real-world highway events covering lane changes and
straight-line driving for benchmarking. The reference coordi-
nates for the predicted vehicle in each frame provide the point of
perspective. The proposed GSAG-GRU for trajectory forecast-
ing contains approximately 9.2 million parameters distributed
across the encoder, decoder, and auxiliary projection heads.
While this places the model in the small-medium scale range,
it is still quite large for deployment on autonomous vehicle
hardware with memory and latency constraints. Subsequently,
we conducted a comparative analysis with four alternative recog-
nition models: The graph convolution network (GCN) recogni-
tion model, the driving intention recognition model built upon
long short-term memory networks (LSTMs), sequence modeling
networks with hierarchical attention mechanisms (Hiformer)
[50], cross-attention based two-branch transformer network for
rotating bearing fault diagnosis (T-transformer) [51], enhanced
transformer based on the local attention mechanism for speech
recognition (LAS-Transformer) [52], R-Transformer_BiLSTM
model [53], and hierarchical context-attention transformer net-
work for medical CT image segmentation (HT-Net) [54]. The
outcomes of this comparative analysis, showcasing the recogni-
tion performance, are presented in Table III. Table III demon-
strates a notable improvement in the recognition accuracy of the
GSAG-GRU algorithm.

To evaluate the effectiveness of the trajectory prediction
model within a 5-second prediction time domain, we select the
root mean square error (RMSE), average displacement error
(ADE), and final displacement error (FDE) as the chosen metric
for evaluation.

RMSE =

√∑n
i=1 (xi − x′i)

2 + (yi − y′i)
2

n
. (55)

where n is the total number of predicted trajectory coordinates,
xi, yi are the true values of transverse and longitudinal co-
ordinates respectively, and x′i, y

′
i are the predicted values of

transverse and longitudinal coordinates respectively.
The RMSE, ADE, and FDE results of each trajectory pre-

diction model comparing multiple-attention encoding-decoding
framework (MAED) [55], trajectory prediction considering the
behavior of pedestrians intersecting with vehicles (PB-TP) [56],
attention mechanism-based spatial, dynamic, temporal interac-
tion (SDT-ATT) [57], social-attention LSTM (SA-LSTM) [58]
model, and vehicle trajectory prediction method based on time-
feature encoding and physics-intention decoding (TFE-PID)
[59] without considering driving intention are shown in Table IV.

Table IV reveals that the trajectory prediction model devel-
oped in this study, incorporating driving intention, achieves the
highest accuracy in predicting the forthcoming vehicle motion
trajectory within both long and short-time domains.

Table V shows the traffic throughput, safety, and energy
efficiency of the overall integrated system on traffic efficiency.
Traffic throughput is measured as the number of vehicles passing

TABLE IV
COMPARISON OF RMSE, ADE, AND FDE

TABLE V
COMPARISON OF TRAFFIC EFFICIENCY

through the intersection over the simulation period. The time-to-
collision metric evaluates safety. Energy efficiency is estimated
as the kinetic energy consumption over the simulation.

It can be observed from Table V that enhanced transportation
metrics across throughput, safety, and efficiency dimensions
when applying the proposed integrated control framework vali-
date its ability to orchestrate CAV movements to improve overall
traffic flow.

V. CONCLUSION

In this paper, we proposed a novel and promising approach
for advancing the integration of LMs into future vehicles and
transportation systems. The proposed algorithms based on the
ADMM offer a distributed optimization framework for CAV
fleets’ cooperative control and coordination. The synchronous
and aADMM algorithms allow for parallelized coordination,
addressing scalability challenges in large-scale CAV systems.
Furthermore, a distributed training scheme was introduced, en-
abling each CAV to train its cost and dynamics networks locally
on simulators. The central coordinator fine-tunes the coupling
networks through interactions with the vehicles, contributing to
the overall efficiency and adaptability of the system. Integrat-
ing a new car-following model, termed the integrated velocity
and acceleration fusion model, enhances the subject CAV’s
acceleration determination by incorporating state information
from multiple lead and following vehicles. Incorporating graph
sample and aggregate-based neural networks, as well as the
gated recurrent unit, facilitates the recognition of driving inten-
tions and the prediction of trajectories for surrounding vehicles.
Theoretical foundations underpin these models, contributing to
their robustness and effectiveness in diverse driving scenarios.
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Simulation results demonstrated notable improvements in traffic
efficiency, safety, robustness, and scalability when employing
LMs for cooperative CAV control. However, it is essential to
acknowledge certain limitations in this study. Real-world un-
certainties, such as unpredictable traffic conditions or commu-
nication delays, may influence the effectiveness of the proposed
approach. Additionally, the computational demands of large-
scale LMs and the need for extensive training data pose practical
challenges. For future work, conducting real-world experiments
to validate the proposed algorithms and models under varied and
dynamic conditions is imperative.
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