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Abstract—Investigating the inhibitory effects of com-
pounds on cardiac ion channels is essential for assessing
cardiac drug safety. Consequently, researchers have de-
veloped computational models to evaluate combined car-
diotoxicity (CCT) on cardiac ion channels. However, limita-
tions in experimental data often cause issues like uneven
data distribution and scarcity. Additionally, existing models
primarily emphasize atomic information flow within graph
neural networks (GNNs) while overlooking chemical bonds,
leading to inadequate recognition of key structures. There-
fore, this study integrates optimal transport (OT), structure
remapping (SR), and Kolmogorov-Arnold networks (KANs)
into a GNN-based CCT prediction model, CardiOT. First,
the proposed CardiOT model employs OT pooling to op-
timize sample-feature joint distribution using expectation
maximization, identifying “important” sample-feature pairs.
Additionally, SR technology is used to emphasize the role
of chemical bond information in message propagation. KAN
technology is integrated to greatly enhance model inter-
pretability. In summary, the model mitigates challenges re-
lated to uneven data distribution and scarcity. Multiple ex-
periments on public datasets confirm the model’s robust
performance. We anticipate that this model will provide
deeper insights into compound inhibition mechanisms on
cardiac ion channels and reduce toxicity risks.
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I. INTRODUCTION

CURRENTLY, numerous drugs have been scientifically
confirmed to adversely affect cardiac function, including

arrhythmias [1], weakened myocardial function [2], and direct
myocardial cell damage [3]. Blockade of hERG ion channels
often leads to QT interval prolongation, resulting in cardiotoxi-
city [4]. Additionally, interference with other ion channels, such
as Nav1.5 and Cav1.2, is also considered a significant cause
of cardiotoxicity [5]. Therefore, studying the effects of com-
pounds on specific ion channels is crucial for mitigating potential
cardiac risks. Moreover, in the multidisciplinary field of drug
development, drug safety and efficacy remain the primary con-
siderations [6]. A thorough understanding of drug absorption,
distribution, metabolism, and excretion (ADME), along with
toxicological (T) properties, is critical for safety assessments,
clinical trials, and eventual market access. Predicting compound
cardiotoxicity is particularly critical during drug development.
Compound cardiotoxicity (CCT) specifically refers to the inhi-
bition of hERG, Cav1.2, and Nav1.5 ion channels and the po-
tential prolongation of the QT interval. The complexity of CCT
prediction has led to significant losses in the pharmaceutical
industry, as failures to detect it in early, preclinical, or clinical
stages [7], [8] have resulted in drug withdrawals and halted
development projects [9]. Therefore, enhancing the accuracy
of CCT prediction is essential to accelerate drug development,
lower costs, and ensure patient safety. Accurate predictions can
identify potential cardiotoxicity during early screening, prevent
resource waste and late-stage failure, shorten clinical trial dura-
tions, and mitigate safety risks. Furthermore, it can reduce drug
recalls and market withdrawals due to cardiotoxicity, optimize
the R&D process, and further ensure patient safety.

Traditionally, following ICH S7B guidelines by the Interna-
tional Council for Harmonization of Technical Requirements
for Pharmaceuticals for Human Use (ICH) [10], CCT pre-
diction involves two main methods: in vivo and in vitro. In
vivo evaluation directly measures the QT interval in animal
models and analyzes electrocardiograms to assess drug effects
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on cardiac electrophysiological activity [11]. The other method
evaluates the effects of compounds on Kv11.1 voltage-gated
potassium channels through in vitro delayed rectifier potassium
current (IKr) assays on cell lines expressing hERG [12]. While
biological experiments provide reliable data on compound car-
diotoxicity, they inevitably encounter efficiency bottlenecks,
high costs, and ethical concerns. Fortunately, advancements
in computing technology have opened new opportunities for
early cardiotoxicity identification in compounds. Computer-
aided drug discovery (CADD) [13] is an effective approach to
reducing costs and accelerating the development of promising
drug candidates. Toxicity prediction algorithms have become
integral to modern CADD, with CCT prediction algorithms
being particularly essential. These algorithms employ advanced
data analysis and modeling techniques to accurately identify
potential CCT risks early in drug development, supporting the
screening and optimization of drug candidates.

In the early stages of computer-aided drug discovery, re-
searchers enthusiastically embraced machine learning (ML)
techniques, aiming to develop models capable of accurately
predicting cardiac ion channel inhibition. During the early
21st century, statistical methods like Naïve Bayes, Gaussian
processes, expectation maximization, and partial least squares
(PLS) were widely used in ML-driven toxicity prediction, with
their applications extensively discussed and validated [14].
However, most prediction models at the time were constrained
by small datasets, with fewer than a thousand compounds used
for training. As more advanced algorithms, such as random
forests (RF), support vector machines (SVM), and deep neural
networks (DNN), emerged, they became mainstream due to their
superior predictive performance and generalization ability [15],
[16]. Researchers also started utilizing larger datasets for model
training, with some studies involving over 15,000 compounds.
This expansion significantly enhanced model accuracy and re-
liability. This surge in data volume reflects not only the rapid
expansion of medicinal chemistry databases but also the distinct
advantages of ML technology in handling large-scale complex
data.

The rapid advancement of computational biopharmaceuti-
cal technology has sparked unprecedented innovation in drug
toxicity prediction, with statistical learning and early machine
learning models widely adopted [17], [18], [19], [20], [21], [22],
[23]. In 2016, Wang et al. pioneered a study that combined Naïve
Bayes (NB) with support vector machine (SVM) algorithms
and integrated multi-pharmacophore features using ensemble
learning to accurately predict CCT [24]. The study demonstrated
ensemble learning’s potential to enhance model performance
and opened new avenues for future research. Cai et al. later
introduced the DeepERG model, bringing deep learning to CCT
prediction. The model used a multi-task deep neural network
to integrate operating environment and mol2vec descriptors,
generating final molecular representations and significantly im-
proving HERG-related CCT prediction accuracy [25]. In 2020,
Ryu et al. expanded the scope of deep learning in CCT prediction
with the introduction of the DeepHIT framework. This frame-
work adapts to various input data types, including molecular
descriptors, fingerprints, and graph structures, enabling efficient

identification of hERG blockers via customized deep learning
models [26]. However, these studies primarily focus on specific
ion channels (e.g., hERG), and the effects of compounds on other
cardiac ion channels require further investigation. In 2023, Arab
et al. addressed this gap with their research. They conducted
multi-group tests to evaluate the inhibitory effects of compounds
on multiple cardiac ion channels (e.g., hERG, Nav1.5, Cav1.2),
offering a broader perspective for drug safety evaluation [27].
In 2024, Wang et al. introduced a novel solution leveraging pro-
gressive multimodal fusion technology. By integrating feature
information from various modalities, they enhanced molecular
representation while facilitating deep analysis of correlations
and complementarities between modalities, further improving
the model’s robustness and accuracy in cardiotoxicity predic-
tion [28].

Accurately predicting CCT remains a significant challenge in
drug development for both the chemical and medical commu-
nities. Experimental constraints result in limited and unevenly
distributed data. Additionally, current CCT prediction models
focus on atomic information flow within propagation rules and
overlook chemical bond information. Consequently, we intro-
duce the CardiOT model, based on GNN and integrating OT,
SR, and KAN technologies, to enhance CCT prediction perfor-
mance. Initially, we transform “bonds” in the molecular graph
into new nodes and “bond-atom-bond” configurations into new
links, creating an updated molecular graph. Next, we apply OT
technology to ascertain the joint distribution of sample-feature
dimensions. Lastly, the KAN classifier is employed to predict the
CCT score. The key contributions of this study are summarized
as follows:

1) We have integrated OT, SR, and KAN techniques into
GNN to develop a CCT prediction model that yields
promising results.

2) We are the pioneers in employing OT technology for CCT
prediction. By optimizing the joint distribution of samples
and features to identify key sample-feature pairs, we thus
mitigate issues of sample scarcity and uneven distribution.

3) We introduce SR techniques to convert atom-centric
molecular graphs into bond-centric graphs, highlighting
the critical role of chemical bonds in GNN propagation.

4) We introduce the KAN technique for CCT prediction,
demonstrating superior performance and enhanced inter-
pretability compared to MLP.

II. MATERIALS AND METHODS

A. Data Preparation

This study integrates data on hERG, Cav1.2, and Nav1.5 from
multiple sources including ChEMBL Bioactivity Database [29],
PubChem [30], BindingDB [31], hERGCentral [32], numerous
U.S. patents, and scientific literature [33]. Activity data were
categorized into IC50 type and inhibition type based on their
measurement methods. The IC50 type includes quantitative in-
dicators like IC50, EC50, ED50, Ki, and Kd, reflecting inhibitory
potency, whereas the inhibition type reports the percentage
inhibition rate at a specific concentration. To ensure data quality,
we conducted a cross-validation with the hERGCentral database
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TABLE I
DATA STATISTICS

to correct potential errors in hERG activity values. We then
used RDKit (http://www.rdkit.org) and MolVSMolVS (https:
//github.com/mcs07/MolVS) toolkits to standardize chemical
structures rigorously, including selecting major fragments, re-
moving explicit hydrogen, adjusting ionization states, and cal-
culating stereochemical information. The processed structures
were converted into SMILES strings and subsequently into
InChI keys to remove duplicates and ensure unique, accurate
compound identification. Detailed information about the dataset
is presented in Table I.

To facilitate subsequent analysis, we converted all activity
data to nanomolar (nM) units, averaged the values of duplicate
compounds, and applied a 95% quantile filtering strategy to
exclude potential extreme outliers. Subsequently, we calculated
the pIC50 values. Activity data standardization was aligned with
conventional standards in drug toxicity prediction. Under these
standards, compounds with IC50 values ≤ 10 µM (pIC50 ≥
5) were classified as CCT, while others were designated as
non-CCT. We adhered to a 4:1 ratio principle, splitting the
hERG, Nav1.5, and Cav1.2 datasets into training and validation
sets. Additionally, we selected external test sets with structural
similarity below 60% from sources like ChEMBL and Pub-
Chem, to further assess the model’s predictive performance and
practical utility.

B. Model Overview

This study introduces a CCT prediction model called Car-
diOT, which utilizes GNN architecture to integrate OT, SR, and
KAN technologies, as shown in Fig. 1. Module (A) focuses
on collecting the atomic and chemical bond features of com-
pounds. Module (B) remaps the molecular graph bonds to new
nodes, integrates adjacent atom information, forms new “bond-
atom-bond” links, and constructs an updated molecular graph.
Module (C) describes the architecture of KAN. Module (D)
applies expectation maximization to optimize the relationship
between sample indicators and feature dimensions, identifying
key sample-feature pairs. Module (E) utilizes a GIN encoder
and OT pooling layer from (D) to extract molecular represen-
tations. Module (F) employs KAN technology to extract the
final molecular representation. Module (G) employs contrastive
learning to train both the original and remapped molecular graph
representations.

C. Structure Remapping

The traditional GNN model conducts aggregation and updates
by transmitting atomic information within the message propa-
gation mechanism, which often results in the loss of chemical

bond information, treating bonds merely as conduits for mes-
sage transfer. In their study on compound ADT prediction, Ma
et al. redefined “bonds” in the molecular graph as new nodes
and “bond-atom-bond” relationships as new links, creating an
updated molecular graph [34]. Inspired by Ma et al., this study
similarly incorporates chemical bond information into the mes-
sage propagation mechanism of our model.

Specifically, the compound’s SMILES sequence is inputted
and converted into a directed graph G = (X,E,C). X denotes
all atomic vectors in G, each encompassing details like atomic
symbol, bond count, formal charge, bonding hydrogens, hy-
bridization state, aromaticity, and atomic mass. The i-th atomic
vector,Xi, belongs toX .E comprises all chemical bond vectors,
with Ei,j in E representing the bond vector from atom i to
j. Each bond vector details bond type, conjugation, and ring
presence. A denotes the adjacency matrix of molecular graph
G, where Ai,j in A indicates the presence of a chemical bond
between atoms i to j.

Perform the SR operation on molecular graph G to generate
a new molecular graph Gs = (Xs, Es, As), where chemical
bonds are mapped to new nodes, incorporating information from
directly connected atoms:

Xs
i,j = Xi‖Ei,j‖Xj ; Xi, Xj ∈ X, and Ei,j ∈ E, (1)

whereXs
i,j denotes the feature vector of the new node, ‖ signifies

the concatenation operation, and Xi and Xj are the feature
vectors of atoms directly linked by bond Ei,j . The “bond-atom-
bond” configuration is mapped to a new link:

Es
ik,kj = Ei,k‖Xk‖Ek,j ; Ei,k, Ek,j ∈ E and Xk ∈ X, (2)

where Es represents the set of edge vectors, and the adjacency
matrix As of graph Gs is defined as follows:

Ar
ik,kj = 1, Ai,k, Ak,j ∈ A, (3)

Following these steps, the original molecular graph G and its
structurally remapped counterpart Gs are constructed using the
compound’s SMILES sequence.

D. Molecular Graph Encoder

GNN technology, particularly the Graph Isomorphism Net-
work (GIN) [35], is crucial for predicting compound properties
as it elucidates compound structures and highlights their hetero-
geneous information. Consequently, this study employs GIN to
extract representations of molecular graphs and their mappings.
For node i in both the molecular graph and its mapping, GIN
aggregates and updates information within the node’s local
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Fig. 1. The architecture of the CardiOT model comprises four main modules: (A) data preparation, (B) structure remapping, (C) KAN, (D) OT
pooling layer, (E) GIN encoder, (F) graph contrastive learning, and (G) Optimization.

neighborhood:

ht
i = MLP

⎛
⎝(1 + γt

) · ht−1
i +

∑
j∈N(i)

ht−1
i

⎞
⎠ , (4)

whHere, ht
i is the embedding of node i in GIN’s t-th layer, γ

denotes the weight parameter, and N(i) is the set of node i’s
neighboring nodes. ht

i is subsequently input into the optimal
transmission layer.

E. Optimal Transfer-Based Pooling

Global pooling methods, including average pooling, maxi-
mum pooling [36], and attention pooling [37], are widely utilized
across various domains like image classification, where they
excel. However, these methods depend on high data density
to either highlight crucial features or smooth out features,

mitigating the effects of noisy data. In CCT prediction tasks,
available data is often sparse and typically suffers from uneven
distribution. Inspired by the previous work [38], we employ OT
technology in the pooling layer to address these issues. Fol-
lowing the expectation maximization principle, we optimize the
joint distribution of samples and feature dimensions to identify
key sample-feature pairs, enhancing the reliability of feature
dimensionality reduction. This enhancement boosts the model’s
generalization capabilities in handling scarce data.

1) Optimal Transfer and Pooling Theory: In the sample fea-
ture matrix X , xdn denotes the k-th feature of the l-th sam-
ple. In statistical signal processing, a signal corresponds to
a pair of sample and feature dimensions. Given all samples
and feature dimensions, we define the joint distribution P =
[pkl] ∈ [0, 1]K×L, element pkl to represent the significance of
the signal xkl. Typical global pooling operations are unified into
an interpretable algorithm framework based on the expectation
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maximization principle:

f(X) = (X � diag−1(P1K)P ), 1K = ‖Kk=1El∼pl|k [xkl]
(5)

where P̂ = [pl|k] = diag−1(P1K)P . In the above equation,
pooling operations are determined by the joint distribution P ,
utilizing the OT technique to maximize the expectation of this
distribution [34]:

P ∗ = argmaxP∈Ω(u,v)

K∑
k=1

ukEl∼pl|k [xkl]

= argmaxP∈Ω(u,v)E(k,l)∼P [xkl], (6)

where E(k,l)∼P [xkl] is represented by the vector inner product
< X,P >, where u = [pk] ∈ 	K−1 and v ∈ 	L−1 are prede-
fined distributions for feature dimensions and sample indices,
respectively. Consequently, the marginal distribution of P is
constrained to u and v, thus defining P ∈ Ω(u, v) = {P ≥
0|P1L = u, PT 1K = v}.

However, this process encounters challenges such as signif-
icant sparsity, difficulties in obtaining accurate marginal distri-
butions, and overlooking the structural relationships between
samples and features. Therefore, we extend the above equation
to address the regularized optimal transport (ROT) problem:

P ∗
OT (X; Φ)=argminP∈Ω<−X,P >+τ1<C(X,P ), P >

+τ2R(P )+τ3KL(P1L|u0)+τ4KL(PT 1L|v0),
(7)

where < ·, · > represents the vector inner product, KL(·) de-
notes the KL divergence, and Ω = {P > 0|1TKP1L = 1}. The
first term is the optimal transport (OT) term, the second term
is the structural regularization term, and together, they form
the fused Gromov-Wasserstein Discrepancy. The third term is
the smoothing regularization term, while the fourth and fifth
terms are marginal regularization terms. Structural regulariza-
tion utilizing the Gromov-Wasserstein difference enhances the
correlation between feature and sample covariances, preserving
their structural relationship. Consequently, we construct the
following structural cost function:

C(X,P ) = −Z1PZT
2 , (8)

where X denotes the embedding matrix of the compound
extracted by the GIN encoder. Z1 denotes the feature-level
covariance matrix 1

N (X − μ11
T
N )(X − μ11

T
N )T derived from

X , while Z2 represents the sample-level covariance ma-
trix 1

D (X − 1DμT
2 )(X − 1DμT

2 )
T . And μ1 = 1

NX1N , μ2 =
1
DXT 1D, where N and D represent the number of samples and
feature dimensions respectively. P denotes the pairing method
between the source and target sample spaces, aiming to minimize
structural mismatch. Equation (8) measures the structural rela-
tionship between features and samples, enhancing the pooling
effect.

2) OT Pooling Using Sinkhorn: In this study, X is defined
as the embedding matrix of the compound, extracted using the
GIN encoder. The objective is to employ OT technology to op-
timize the joint distribution of samples (nodes) and embedding

dimensions, thus facilitating the pooling of the molecular graph.
Specifically, the near point method [39] is applied iteratively
to solve (7), based on the compound’s joint distribution in the
current feedforward module:

P t+1=argminP∈Ω<−X,P >+τ1<C(X,P t), P >+τ2R(P )

+τ3KL(P1L|u0)+τ4KL(PT 1L|v0)+κKL(P |P t),
(9)

where the weightκ dictates the significance of its proximal term.
The equation R(P ) =< P, logP − 1 > leads to the entropy
imbalance optimal transfer (EUOT) problem:

min
P∈Ω

< Ct, P > +(τ1 + κ) < logP, P >

+ τ3KL(P1L|u0) + τ4KL(PT 1L|v0). (10)

At this stage, Ct is defined by the input data and the current
variableP t. As per [40], it transitions into the Fenchel dual form
of the EUOT problem, suitable for resolution via the sinkhorn-
scaling algorithm [41].

Specifically, this study extends to the ROT framework, imple-
mented with the sinkhorn algorithm. The choice of the sinkhorn
algorithm is primarily due to its advantages in stability and effi-
ciency. First, the sinkhorn algorithm stabilizes the optimization
process by introducing a regularization term, enabling effective
handling of larger datasets. Compared to other optimal transport
methods, the sinkhorn algorithm achieves superior convergence
and computational efficiency. Secondly, the sinkhorn algorithm
preserves marginal distribution balance, which is critical for pro-
cessing complex distributions. Additionally, the interpretability
of the sinkhorn algorithm enhances the transparency of the
model’s decision-making process. Furthermore, the algorithm’s
wide application in various machine learning tasks provides
extensive empirical support for its effectiveness and practicality.
Finally, subsequent experimental results confirm the appropri-
ateness of this strategy.

Besides the sinkhorn-scaling algorithm, alternatives like
Bregman ADMM [42] and other proximal algorithms can also be
used to solve the EOUT problem. However, the sinkhorn-scaling
algorithm demonstrates clear advantages in computational effi-
ciency and accuracy, as confirmed by subsequent experimental
results and analysis.

3) Running Rules: As depicted in Fig. 2, X denotes the
feature matrix produced by GIN. Initially, similarities at both the
feature and sample levels are computed from the feature matrix,
leading to the extraction of specific samples and features based
on these similarities. Subsequently, the ROT method is utilized to
optimize the joint distribution, identifying key “sample-feature”
pairs that significantly contribute to the data representation.
Following this, the significant “sample-feature” pairs within
the optimized joint distribution are weighted against the feature
matrix to achieve the pooling result.

F. Kolmogorov-Arnold Networks (KANs)

Multilayer perceptrons (MLPs) are extensively utilized across
deep learning fields due to their ability to approximate non-
linear functions. However, MLPs encounter challenges such as
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Fig. 2. The general principles of OT pooling operation.

a large parameter count and limited flexibility. Consequently,
KAN technology was developed to address these limitations.
The fundamental principle of Kolmogorov-Arnold theory posits
that any multivariate continuous function can be expressed as a
combination of continuous one-dimensional functions:

f(x1, x2, . . . , xn) =
2n+1∑
m=1

ϕm

(
n∑

c=1

φm,c(xc)

)
. (11)

This theorem guarantees that any multivariate continuous
function can be represented as the sum of continuous one-
dimensional functions. This structure allows each weight pa-
rameter in KAN to be represented by a single-variable function.
These functions are typically parameterized as spline functions,
offering high flexibility to model complex functions with fewer
parameters, thereby enhancing model interpretability. Conse-
quently, KAN demonstrates potential for efficient approxima-
tion of complex functions. Here, φm,c represents a univariate
function mapping each input variable (xc) following φm,c :
[0, 1] −→ R and ϕm : R −→ R. Given that all target functions
are univariate, each can be parameterized as a b-spline curve
with coefficients from learnable local b-spline basis functions.
By integrating MLP architecture, a deeper KAN is achieved by
combining L layers:

KAN(x) = (ϕL−1 ◦ ϕL−2 . . . ϕ1 ◦ ϕ0)x, (12)

Consequently, KAN inherits the MLP framework, enabling deep
feature extraction due to its structural similarity to MLP. By
flexibly adjusting KAN’s number of layers or the spline curve’s
dimensions, it achieves greater accuracy and adaptability. Con-
sequently, this allows for effective control of the model’s param-
eters and complexity, thereby reducing the risk of overfitting.

G. Graph Contrastive Learning

Graph contrastive learning is an unsupervised method for
learning representations of graph data, effectively enhancing
node representations by mining structural similarities within
graphs. In this study, the original molecular graph was con-
structed from SMILES sequences, and a structural remapping
graph was developed using SR technology. Contrastive training
was performed by identifying similarities between the two graph

types and differences among various compounds. Assuming a
total of N compounds in the training set, for compound v, hv

and hs
v denote the molecular and structural remapping graphs,

respectively, with contrastive learning loss calculated using the
InfoNCE function [43]:

LGCL = − 1

N

N∑
v=1

log
ehv ·hs

v/τ∑N
v−=1 e

hv ·hs
v−/τ

(13)

where τ represents the temperature parameter, set by default to
0.5. Given the extensive calculations required for the denomi-
nator, this study implements a batch sampling strategy.

H. Optimization Objectives

The optimization objective for the CardiOT model is to min-
imize both classification and contrastive learning losses. This
study employs the Binary Cross-Entropy (BCE) function to
calculate classification losses for both the molecular graph and
the structural remapping graph:

LG = −
N∑

v=1

yv · log σ(ŷv) + (1− yv) · log σ(1− ŷv) (14)

Ls
G = −

N∑
v=1

yv · log σ(ŷsv) + (1− ysv) · log σ(1− ŷsv) (15)

whereLG denotes the classification loss for the molecular graph,
while Ls

G denotes the loss for the structural remapping graph.
N denotes the number of molecules, and σ symbolizes the
sigmoid function. For thev-th compound, ŷv and ŷsv represent the
CCT prediction scores derived from the molecular and structural
remapping graphs, respectively, corresponding to its true label.
Classification and contrastive learning losses are integrated as
follows:

L = L1 + L2 + αLGCL, (16)

where α is an adjustable parameter.

III. RESULTS

A. Experimental Settings

To assess the CardiOT model and a comparator model on
the CCT prediction task, we utilized six standard metrics: ac-
curacy (ACC), sensitivity (SEN), specificity (SPE), F1-score
(F1), correct classification rate (CCR), and Matthews correla-
tion coefficient (MCC) [44], [45], [46], [47]. Furthermore, the
hERG, Cav1.2, and Nav1.5 datasets were split into training and
validation sets at a 4:1 ratio, using cross-validation to identify the
optimal model. Subsequently, we evaluated the model’s predic-
tive performance on externally collected datasets. To guarantee
fairness, all models were configured identically, and the online
platform operated under default settings.

The proposed CardiOT model is implemented and executed
on the autoDL platform.1 The hardware configuration includes
an NVIDIA RTX 4090 GPU, a Xeon(R) Platinum 8352V CPU,

1https://www.autodl.com/
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TABLE II
RESULTS OF ALL MODELS ON THE HERG EXTERNAL TEST SET (%)

and 32 GB of RAM. In the experiment, the GIN encoder has 2
layers, with a batch size of 1024, 300 training epochs, a learning
rate of 0.0005, and the ADAM optimizer. In the predictor, the
input layer dimension is 512, the hidden layer dimension is 256,
the output layer dimension is 1, and the contrastive learning loss
weight (α) is set to 0.3.

B. Performance Comparison

In this section, we assess the CardiOT model against three
cutting-edge online prediction platforms, CardPred [15], AD-
METsa2.0 [48], ADMETlab 2.0 [49], as well as the CTox-
Pred [27] and MultiCBlo [28] models. For the CardiOT, MultiC-
Tox, and CToxPred models, we identified the optimal configura-
tions via a 5-fold cross-validation experiment and subsequently
evaluated the hERG external test set using these models. For
the other online platforms, we utilized default parameters and
summarized the performance comparisons in Table II.

The CardiOT model outperforms others in nearly all met-
rics, trailing only slightly behind the MultiCTox model in SPE
score. The MultiCTox model effectively employs progressive
multimodal technology to integrate data from various sources,
demonstrating strong performance. Conversely, the CToxPred
model, relying solely on the Fingerprints modality, likely cap-
tures limited information. This underscores the importance of
utilizing multiple modalities to enhance the accuracy of pre-
dictions for molecular properties like CCT. Currently, there is
no effective solution for integrating various types of informa-
tion. Notably, the proposed model solely utilizes SMILES to
construct molecular graphs, yet achieves superior performance.
This indicates that OT technology can be an effective alternative
to address data scarcity and distribution issues in the absence of
robust multimodal fusion techniques.

C. Comparison on Other Datasets

To assess the effectiveness of the CardiOT model in CCT
prediction, we conducted comparisons using two datasets, Nav
1.5 and Cav 1.5. We selected the advanced models, CToxPred
and MultiCTox, for comparison due to their support for local
deployment and ease of replication. Each model underwent 5-
fold cross-validation to identify the optimal settings, followed
by performance evaluation on an external test set.

Table III shows “CToxPred-Nav” where CToxPred was
trained, verified, and evaluated on the Nav dataset using Finger-
prints and Descriptors. “CToxPred-Cav” indicates that CTox-
Pred was trained, verified, and evaluated on the Cav dataset

with Fingerprints and Descriptors. The CardiOT model demon-
strates high performance across various datasets, indicating
strong generalization capabilities. The results confirm the su-
perior performance of the CardiOT model in CCT prediction,
likely due to the KAN and OT techniques it employs. KAN
technology effectively learns weight parameters and enhances
model flexibility, improving adaptability. OT technology aims to
emphasize crucial “sample-feature dimension” pairs, addressing
issues related to data scarcity and uneven distribution.

D. Ablation Experiments

We conducted a series of ablation studies to assess the im-
pact of various modules on the CardiOT model’s performance
using the hERG dataset. Table IV displays the outcomes of
these ablation experiments. ‘w/o GCL’ indicates the removal
of graph contrast learning, ’w/o KAN’ denotes the elimination
of the KAN component, ‘w/o SR’ refers to the removal of the
structural remapping, and ’w/o OT’ signifies the exclusion of the
optimal transport layer in the CardiOT model. The table results
demonstrate that all modules positively enhance the model’s
performance. Notably, the CardiOT model performs poorest
without the OT technology.

Additionally, we conducted a set of experiments to examine
model performance when only the original molecular graph or
the structure remapping graph is used. Results are displayed
in Table V , where “OG” denotes the model using only the
original molecular graph, and “SRG” indicates the use of only
the structure remapping graph. Observations indicate that using
only the original molecular graph or the structure remapping
graph results in lower performance. When both the original
molecular graph and structure remapping graph are used in
comparative learning, the model’s performance significantly
improves. This indicates that the original molecular graph and
structure remapping graph achieve complementary information,
thereby enhancing model performance.

E. Parameter Experiments

1) Testing Different Pooling Techniques: Essentially, CCT
prediction involves graph classification tasks on molecular
graphs of compounds. Graph pooling techniques are commonly
employed in graph classification tasks to extract crucial topolog-
ical structures or nodes. Consequently, we designed experiments
to assess the impact of various pooling techniques on CCT
prediction efficacy. Table VI illustrates that “Mean” corresponds
to average pooling, “Max” to maximum pooling, and “Mix” to
the combination of global maximum and average pooling, with
vector concatenation following these operations. “OT” indicates
the use of optimal transfer-based pooling for both graphs. “MO”
denotes Mix pooling for the molecular graph and OT pooling
for the remap, while “OM” reverses these roles. “No” indicates
no pooling was performed in the model.

The CardiOT model exhibits optimal performance when OT
pooling is applied to the molecular graph and Mix pooling to
the remap graph. The performance falters when OT pooling is
applied solely to the remap graph, possibly due to changes in
the molecular structure that affect OT pooling’s applicability.
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TABLE III
RESULTS OF THE MODELS ON THE NAV 1.5 AND CAV 1.5 EXTERNAL TEST SETS (%)

TABLE IV
RESULTS OF ABLATION EXPERIMENTS (%)

TABLE V
RESULTS OF THE MODEL USING THE ORIGINAL MOLECULAR GRAPH OR THE

STRUCTURE REMAPPING GRAPH (%)

TABLE VI
EVALUATING MODEL PERFORMANCE WITH VARIOUS POOLING TECHNIQUES

(%)

Nevertheless, this approach outperforms the Mean, Max, or Mix
methods, affirming the efficacy of OT technology in pooling
layers.

2) Testing Different Feedforward Module Numbers: The
number of feedforward modules serves as a crucial hyperpa-
rameter in the OT pooling layer. Increasing the number of
feedforward modules can enhance the precision of solutions
to (7), albeit at the cost of extended time for calculations and
backpropagation. Consequently, we investigated how varying
numbers of feedforward modules affect model performance
on hERG, Cav and Nav datasets, respectively. Specifically, we
determined the optimal configuration for feedforward modules
within the range of 4 to 12, as illustrated in Fig. 3(A)–(C). Results

TABLE VII
RESULTS OF CARDIOT MODEL USING DIFFERENT GNN ENCODERS ON

HERG, NAV1.5, AND CAV1.5 DATASETS (%)

indicated improved performance with an increase in feedforward
modules from 4 to 8. However, performance declined when the
number of modules rose from 9 to 12. Optimal performance
was achieved with eight feedforward modules. This suggests
that while appropriately increasing the number of feedforward
modules can enhance performance, excessive modules may
overload computations and degrade performance.

3) Testing Different GNN Encoders: The aggregation
method used by GIN effectively captures heterogeneous
information between nodes, enhancing the representational
capacity for complex molecular structures. This design
enables each node’s embedding to depend not only on the
properties of its immediate neighbors but also on higher-order
adjacent nodes, thereby more comprehensively capturing the
molecular structural information. Additionally, it highlights
the compound’s heterogeneous information. Recent research
and applications indicate that GIN performs well in fields
like drug discovery and toxicity prediction. GIN effectively
identifies compound activity and potential toxicity, supporting
decision-making in drug development. However, models like
GCN [50] and GAT [51] are less effective than GIN at capturing
compound structure.

Additionally, we conducted experiments on the HERG,
Nav1.5, and Cav1.5 datasets to assess the impact of different
GNN encoders on model performance, with results presented
in Table VII. Results indicate that the model using GIN as
an encoder outperforms models using other GNN encoders.
Similarly, to better capture compound structure, the CardiOT
model employs GIN as the GNN encoder.

4) Testing Different Optimization Algorithms: This study se-
lected the sinkhorn-scaling algorithm to solve the EOUT prob-
lem, among options such as Bregman ADMM. To verify the
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Fig. 3. Evaluating model performance with different feedforward module numbers on (A) hERG, (B) Cav and (C) Nav datasets, respectively.

TABLE VIII
RESULTS OF USING DIFFERENT ALGORITHMS FOR THE RTP PROCESS IN

THE MODEL (%)

effectiveness of the sinkhorn-scaling algorithm, a set of exper-
iments was conducted, with results displayed in Table VIII. In
this model, “badmm-e” indicates that the ROT process employs
the BADMM algorithm with entropy smoothing regularization,
“badmm-q” represents the BADMM algorithm with quadratic
smoothing regularization, and “sinkhorn” denotes the ROT pro-
cess using the sinkhorn-scaling algorithm.

The ROT process in the model performs optimally with the
sinkhorn-scaling algorithm. This is likely due to the sinkhorn-
scaling algorithm’s ability to maintain marginal distribution
balance, a crucial feature for handling complex distribution data.
Additionally, the algorithm’s interpretability enhances model
transparency in decision-making. Furthermore, the computa-
tional complexity of the ROT process with the sinkhorn-scaling
algorithm is O(T (N2D +D2N +KND)), where (N2D +
D2N) represents K iterations within each sinkhorn-scaling
module. The sinkhorn-scaling algorithm introduces an entropy
regularization term to transform the original linear programming
problem into a differentiable optimization problem, significantly
reducing computational complexity.

F. Interpretability Analysis

We employed the EdgeSHAPer method [52] to analyze how
the CardiOT method relies on key structures (“bonds”) for CCT
prediction tasks. In the compound’s structure remapping graph,
nodes represent “bonds.” Calculating each node’s Shapley value
quantifies the contribution of these bonds to the model’s predic-
tive accuracy. Building on this, the study examined 125 CCT
and non-CCT compounds in the hERG test set. Bonds exhibit-
ing Shapley values less than -0.005 merit special attention.
Consequently, we identified chemical bonds and their adjacent
structures that impact model performance. We documented the

ten most frequent chemical bonds and their adjacent structures,
detailed in Table IX.

Fig. 4(A)–(C) illustrate the chemical structures of two CCT
compounds (pIC50≥ 5), while Fig. 4(D)–(F) depict those of two
non-CCT compounds (pIC50 < 5). Blue areas signify negative
impacts on CCT prediction, whereas red areas indicate positive
impacts. The intensity of the color correlates with the impact’s
magnitude. Utilizing the EdgeSHAPer method, this study eluci-
dated the contribution of key chemical bonds to model and CCT
prediction performance. This enhances understanding of the link
between chemical structure and biological activity, potentially
guiding innovation in drug research and development.

G. Visualization Analysis

A pharmacophore is a specific structural arrangement within a
molecule that interacts with a biological target, such as enzymes
or receptors. Typically comprising specific atoms or functional
groups, it plays a crucial role in determining a molecule’s
pharmacological and toxicological properties. Identifying phar-
macophores or toxicophores is vital for elucidating drug mecha-
nisms, optimizing designs, and predicting activity. We employed
t-SNE technology to visualize molecular features within the
Cav, Nav, and hERG datasets. In each dataset, we selected pairs
of molecules, from both CCT and non-CCT compounds, that
contain highly correlated pharmacophores or toxicophores. The
results are presented in Fig. 5. It is evident that compounds shar-
ing similar pharmacophores or toxicophores do not significantly
aggregate. These findings indicate a significant uneven data
distribution across the three datasets. This poses a substantial
challenge for molecular prediction tasks, including CCT.

IV. DISCUSSION

This study integrates GNN technology with OT, SR, and KAN
methods to propose an innovative CCT prediction model. This
integration strategy addresses the challenges of traditional GNN
models, such as data scarcity and uneven distribution, while
enhancing the representation of complex chemical structures.
Using OT technology, we optimized the joint distribution of
sample and feature dimensions, accurately identifying “critical”
sample-feature pairs. This approach not only mitigates data
scarcity but also reduces bias from data imbalance through
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TABLE IX
TEN MOST FREQUENT CHEMICAL BONDS AND THEIR ADJACENT BONDS

Fig. 4. Key substructures influence the CCT prediction of compounds, with blue areas indicating negative influence and red areas indicating
positive influence.

Fig. 5. Visualization of CardiOT model prediction results on Cav, Nav, and hERG datasets.
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distribution optimization, creating a more robust foundation for
model training. Traditional GNN models typically emphasize
atomic-level information flow during transmission. This study
employs SR technology to shift the focus of the molecular graph
from atoms to chemical bonds, emphasizing the critical role of
bonds in compound structure and function. This shift provides
richer information for the model, enhancing its understanding
of chemical structure complexity. Additionally, we replaced the
traditional multi-layer perceptron (MLP) classifier with KAN
technology. This modification streamlines the model structure
and significantly enhances prediction accuracy and interpretabil-
ity through its kernel function and attention mechanism. KAN’s
strength lies in its self-learning ability to assign accurate weights
to features, capturing chemical attributes critical to CCT predic-
tion.

The experimental results are promising. The CardiOT model
demonstrated excellent performance in CCT prediction, partic-
ularly under poor data conditions. It maintained stable perfor-
mance even under these challenging conditions. This stability
is primarily attributed to the seamless integration of OT, SR,
and KAN technologies, which are crucial for data distribution,
structural characterization, and prediction accuracy. Notably,
with the support of OT and KAN technologies, our model
achieved a level of interpretability unmatched by other models.
The results further indicate that our model accurately predicts
cardiac ion channel inhibition. This breakthrough offers a new
perspective on compound toxicity research, provides robust
support for environmental assessment and drug development,
and is expected to play a significant role in reducing health risks.

Given the growing concerns about drug abuse and safety,
evaluating the effects of free compounds on the heart is critically
important. The proposed CCT prediction model developed in
this study significantly enhances the accuracy of compound
CCT prediction through the integration of multiple advanced
technologies, profoundly impacting clinical medicine. First, the
model accurately identifies potential cardiac toxicity early in
drug development, aiding drug screening and optimization, re-
ducing clinical trial risks, and ensuring patient safety. Second,
by swiftly identifying low-toxicity compounds and optimizing
toxic drug structures, the model is expected to accelerate drug
approval and enhance overall efficiency. In summary, the pro-
posed CCT prediction model demonstrates substantial value and
potential in improving drug safety and advancing research, and
is expected to play a crucial role in protecting human health.

V. CONCLUSION

Accurate CCT prediction can elucidate the compound’s mech-
anism of action, enabling proactive management of CCT-related
risks in drug development. While current advanced models excel
in CCT prediction, they struggle with data scarcity and uneven
distribution. Consequently, this study introduces the CardiOT
model, which leverages GNN integrated with OT, SR, and KAN
technologies to address these issues. Specifically, the CardiOT
model utilizes OT-based pooling and expectation maximiza-
tion to optimize the joint distribution of sample and feature
dimensions, identifying key “sample-feature” pairs to mitigate

data scarcity and uneven distribution. Additionally, the model
employs SR technology to enhance the role of chemical bond
information within the GNN message propagation process. Fi-
nally, the replacement of traditional MLP with KAN technology
markedly enhances the model’s accuracy and generalizability.
Experimental results demonstrate that the CardiOT model ex-
cels in CCT prediction. This model is expected to clarify the
inhibitory mechanisms of compounds on cardiac ion channels,
reducing risks in cardiac drug development.

Looking ahead, accurate CCT prediction will focus on three
key strategies: First, employing multimodal fusion technology
to integrate diverse knowledge sources and enhance model
generalizability. Second, integrating auxiliary tasks like confor-
mational changes, metabolic networks, and interaction predic-
tions to aid CCT prediction. Third, leveraging transfer learning,
pre-training, and large-scale models to tackle the challenges of
scarce or uneven data distribution.
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