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Random writes limit the application of SSDs signi¯cantly because of their poor latency and high

garbage collection overhead. Traditional page-based and block-based bu®er management
algorithms cannot achieve both high bu®er hit ratio and good destage sequentiality at the same

time. In this paper, we propose a hybrid scheme called the group-based bu®er management

(GBBM). To improve bu®er hit ratio and decrease write/erase counts, GBBM divides bu®er

space into Page Region and Group Region. The frequently accessed data pages are placed at the
Page Region, while infrequently accessed random written data are grouped in the Group

Region. GBBM has been evaluated extensively through simulations. The write counts of GBBM

show an average decrease of 12.7% compared with page-level bu®er scheme. Compared with

hybrid bu®er management such as CBM, GBBM decreases the average write/erase count by
14.3%/12.1%. The write hit ratio of GBBM shows a 4.5% improvement as compared with

PAB. The proposed GBBM can signi¯cantly reduce the number of write operations while

maintaining a relatively high bu®er hit ratio.
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1. Introduction

Solid-state disks (SSDs) have been revolutionizing the storage system during the

past decades and have consequently gained strong interest in both data centers and

high-performance computing.1–5 Compared with traditional hard disk drives

(HDDs), SSDs are built of semiconductor memory, with no moving part, and thus

can provide low access latency, high data bandwidth, lower power consumption and

has no noise.6,7

Although SSDs have a number of advantages over rotating disks, they su®er

from the di®erent read and write access speeds and the limitations of their lifespan

particularly when applied in the enterprise environment.8–10 The performance of an

SSD is highly correlated with access patterns. Random writes are much slower than

sequential writes in an SSD due to the properties of NAND °ash memory internal

mechanism. Because °ash blocks wear out after repeated writes, SSDs have the

potential to wear out. Data stored in °ash memory is no longer reliable when the

amount of erasure exceeds the maximum erase times. Thus, random write a®ects

the performance and the lifespan of SSDs seriously.

To make full use of access patterns, numerous works have focused on the bu®er

management scheme design of SSDs. A good bu®er management scheme should

reduce the e®ects of random writes and suit access patterns. Generally, bu®er

management algorithms can be divided into three categories: page-based, block-

based and hybrid, such as Clean-First Least Recently Used (CFLRU),11 Popularity-

Aware Bu®er (PAB)12 and Cooperative Bu®er Management (CBM),13 respectively.

Their works contribute considerably to the performance of SSDs by organizing data

access in the bu®er. Compared with the page-based bu®er management, the block-

based scheme has fewer write/erase counts, but it sacri¯ces the bu®er utilization of

SSDs. The hybrid bu®er management is a tradeo® between page-based and block-

based methods.

In general, page-based bu®er managements have high bu®er hit ratio and high

write/erase counts. Block-based bu®er managements have low write/erase

counts. They group resident pages in write bu®er and °ush them as sequentially

as possible. However, because of the coarse management granularity and re-

placement policy, the hot data pages in the evicted block are also °ushed to °ash

resulting in low bu®er hit ratio. Block-based bu®er managements merge clean

pages into a victim block. The merge operation will cause large numbers of read

operation and increase unnecessary data migration between bu®er and °ash

memory. Hybrid bu®er management such as CBM coordinates write bu®er and

read cache. CBM merges clean pages of read cache into the victim block using the

merged-on-°ush operation. This operation improves the destage sequentiality and

decreases the response time of SSD. However, it has extra write operations when

the block is °ushed to °ash. Bu®er utilization and write/erase counts of SSDs are

di±cult to balance.
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In this paper, we present a novel hybrid bu®er management scheme named group-

based bu®er management (GBBM). GBBM divides bu®er into the Page and Group

Regions. Data access requests are disposed in the Page Region while the evicted

block is sorted in the Group Region. The GBBM reserves pages with high temporal

locality in the Page Region and groups the longest unused clean pages into the block

in the Group Region. When a block is evicted from the Group Region, GBBM

prioritizes the clean block (the block formed with clean pages) as the victim block.

We compare our scheme with other common °ash-aware cache algorithms using

SSDSim and show that GBBM not only reduces block write counts to extend SSD

lifespan, it also has the same level of bu®er hit ratio with classical page-based

bu®er scheme.

We make the following contributions:

. We design a new hybrid bu®er management scheme with a high bu®er hit ratio

through the full use of temporal and spatial localities in the Page Region. The

scheme has low write counts by grouping the unused clean pages into victim block

in the Group Region when the block is °ushed into °ash.

. An adjustable threshold is proposed to suit di®erent workloads by dividing the

bu®er area into the Page Region and Group Region in di®erent sizes.

. We implement GBBM on SSDSim. Our extensive experiment results show that

GBBM can reduce the erase counts by 12.1% compared with the state-of-the-art

bu®er management schemes.

The rest of this paper is organized as follows. Section 2 provides an overview

of background and related works. In Sec. 3, we present the design details of

GBBM. Performance evaluations of GBBM are presented in Sec. 4. Finally, we

conclude the paper in Sec. 5.

2. Background and Related Works

2.1. SSD and bu®er

SSDs have di®erent performance characteristics than HDDs. The unit of read and

write operations of SSDs is a page, and a page can be written only after the entire

block to which it belongs has been erased.14 The basic design principle of an SSD

bu®er is to keep the most recently and frequently accessed data in the bu®er as

long as possible so as to e®ectively improve the performance of read/write

operations and further reduce the response time of the requests. According to the

characteristics of °ash memory, read speed is signi¯cantly faster than write,15 and

SSD is not good at dealing with random writes. Based on these two facts, di®erent

bu®er management algorithms have di®erent e®ects on the performance of SSD. In

this paper, we focus on improving write performance by a group-based bu®er

management design.
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Figure 1 shows the overview of proposed GBBM in architectural view of an

SSD device. SSDs are usually composed of host interface, RAM bu®er, Flash

Translation Layer (FTL)16 and Flash Array Layer (FAL).17 The RAM bu®er, acting

as a data bu®er for SSDs, can signi¯cantly improve the SSDs' performance and

extend their life. SSDs' controller uses DRAM as the bu®er to improve performance.

Using the proposed GBBM, the RAM bu®er of an SSD becomes a hybrid bu®er with

di®erent granularities by dividing it into Page Region and Group Region. The FTL

allows hosts to access the °ash memory as conventional disk drives. It performs

address mapping, garbage collection and wear leveling. According to the address

mapping schemes, the FTL can be classi¯ed into three types: page-level, block-level

and hybrid, such as BAST,18 FAST,19 LAST,20 SAST,21 DFTL22 and NFTL.23

A page-level FTL is used as the default FTL in this work because it has the best

hit ratio.

In this paper, hybrid bu®er management and universal feature servicing both read

and write accesses are proposed ¯rst. Then a locality-aware replacement policy is

designed to manage the data transmission between Page and Group Regions of

GBBM.

2.2. Random writes and aggregation

Random writes are much slower than sequential writes. Performance of mixed

workload with sequential and random writes is even more worse than the random

writes. Figure 2 shows the write performance of Intel 600 PM.2 2280 SSD by using

IOmeter in our experiment platform. For 4-kB request, sequential write speed is

Fig. 1. Architecture of SSDs using GBBM.
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96-MB/s while random write is 49-MB/s. Write performance is decreased obviously

when the sequential write request is mixed with random write. For 16-kB request and

mixed workload (70% sequential and 30% random writes), the write speed is de-

creased by 23.3%. The result re°ects that random writes limit the SSD performance

signi¯cantly. The random writes have the following issues.

. SSDs' lifetime: Random writes increase erasure of °ash memory, causing the

SSDs to wear out much faster than sequential write24 and thereby reducing their

lifespan.

. Garbage collection overhead: Random writes result in greater garbage collection

overhead compared to sequential writes. This is because random writes generate a

larger number of invalid pages and trigger garbage collection operations more

likely than sequential writes.

. Internal fragmentation: If incoming write operations are distributed randomly

over the logical block address space, then the related physical °ash memory blocks

will be fragmented.25

. Internal parallelism: While striping and interleaving using advanced features of

SSDs can improve sequential write performance, their ability to deal with random

write is very limited.26

Therefore, random writes have many negative e®ects on SSDs. Data aggregation is

one of the ways to improve SSDs' performance considering random writes. Aggre-

gation is the basic idea of block-based cache management algorithms, i.e., the pages

that belong to the same physical block in the cache are clustered together.27

Figure 3 shows an example of the aggregation operation between ¯ve physical

blocks, namely, B1–B5. Each physical block consists of four physical pages, and the

gray portion represents an invalid data page. B5 is the target block for storing

updated data. In Fig. 3(a), S,G, H and B are the updated pages. We store them in B5

Fig. 2. Write performance of an SSD.
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and set the corresponding pages s, g, h and b to invalid, which is called the out-place

update. Thus, each block has an invalid page at this time. If the garbage collection

procedure occurs, B1–B4 are selected as the targets. The erase operation needs to

copy back three pages of each block. In Fig. 3(b), B, P, E and A are the updated

pages, the corresponding old pages are stored in B1. If the garbage collection oper-

ation is performed at this time, B1 will be selected as the target for garbage collection

because all the four data pages in B1 are invalid. Therefore, the block erase operation

can be performed without moving the internal pages.

We place data pages that belong to the same physical block together to reduce

unnecessary internal data migration. When the SSDs' bu®er is full, the aggregated

data blocks are selected and removed from the bu®er ¯rst using our page-based

aggregation policy which increases the number of invalid data pages in the corre-

sponding aggregated data blocks. When the SSD begins garbage collection, the

possibility of the aggregated data blocks to be selected as target is increased, which

can decrease the overhead of garbage collection operation.

2.3. Bu®er schemes

Based on the di®erent granularities of bu®er management schemes, they can be

divided into page-based, block-based and hybrid methods.

The page-based bu®er management schemes organize and replace bu®ered

data at page granularity, such as LRU, CFLRU,11 FARS28 and 2QW-Clock.29 These

(a) General operation.

(b) Aggregation operation.

Fig. 3. General and aggregation operations.
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schemes attempt to increase the bu®er hit ratio as much as possible. They focus on

utilizing temporal and spatial localities to predict the next page to be accessed and

minimize page fault ratio. However, these algorithms may increase the number of

stored debris in the °ash memory, which would signi¯cantly increase the cost of

garbage collection.

CFLRU is a classical page-based bu®er management scheme. CFLRU divides the

bu®er area into working and clean-¯rst regions. It uses the characteristic of °ash

memory that the overhead of write operation is greater than read operation, and

chooses a clean page as a victim rather than dirty pages when the bu®er area is full.

However, the size of the clean-¯rst region in the CFLRU algorithm is determined by

the size of the window. It is di±cult to determine a suitable window size to suit

di®erent tasks. A large window (the clean-¯rst region) will decrease the hit ratio, a

small window will increase the overhead of °ush. Moreover, CFLRU does not opti-

mize the sequentiality of evicted pages, thus, many random writes will have negative

impacts on SSDs' performance.

Flash-aware bu®er management (FAB),27 BPLRU,30 CFDC31 and PAB are

commonly used block-based bu®er management schemes. Resident pages in the

bu®er are grouped on the basis of their logical block associations. Thus, the block-

based scheme decreases the number of stored debris and the cost of garbage collec-

tion. Nevertheless, according to these algorithms, accessing a logical page results in

adjusting all pages in the same logical block having the same recency. FAB is a

classical block-based bu®er management scheme. It bu®ers the data in the form of

data block to organize an LRU-linked list. FAB merges data pages belonging to the

same block, thus can reduce °ash writes and erase operations by preferentially

replacing data blocks which have the largest number of data pages. But the per-

formance of FAB decreases when the requests are random. In addition, FAB selects

the data block with the most data pages as the victim block. If the bu®er has many

blocks with higher access frequency but fewer data pages, FAB cannot adapt to this

situation very well, thus decreasing the hit ratio and the overall I/O performance.

Hybrid managements, such as CBM, are proposed to combine both page-based

and block-based bu®er management methods' advantages for SSDs. CBM coordi-

nates write bu®er and read cache to improve SSDs' performance. The write bu®er is

divided into two regions, a page region and a block region. When the number of pages

belonging to the same block reaches a threshold in page region, these pages will be

migrated to the block region. When the bu®er is full, CBM preferentially selects a

block in the block region as a victim block and merges the dirty pages in victim block.

During the merge operation, extra read and write operations must be invoked in

addition to the necessary erase operation due to the copying of valid pages of the

data block. Therefore, merge operation degrades the performance of SSDs because of

the extra data movement. And the cache proposed by CBM has two parts, one is

read-only cache and the other is write-only cache. It uses two di®erent physical

memory devices. Physical costs are high compared to GBBM. At the same cache size,
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the CBM is physically partitioned into a read cache and a write cache. Therefore,

CBM cannot °exibly adapt to various application scenarios.

All of these bu®er management schemes of SSDs focus mainly on how to improve

the bu®er hit ratio, however, full attention has not been given to the e®ect of write-

ampli¯cation and write/erase counts. This work reduces the write/erase counts to

extend SSDs' lifespan and obtains the same level of bu®er hit ratio as other page-

based bu®er algorithms by using hybrid bu®er and aggregation operation.

3. Design of GBBM

In this section, we ¯rst introduce the basic idea of our proposed GBBM scheme. Then

we describe the bu®er management policy used in GBBM. Finally, we present the

brief description of how to choose the threshold of partition.

3.1. Basic idea of GBBM

The proposed GBBM aims to signi¯cantly reduce the number of write operations

while maintaining a relatively high bu®er hit ratio.

Figure 4 shows the basic idea of GBBM. Compared with existing hybrid bu®er

algorithm CBM which coordinates write bu®er and read cache to improve SSDs'

performance, GBBM processes the read and write requests simultaneously. GBBM

divides the bu®er into the Page and Group Regions. In the Page Region, GBBM uses

page-based algorithm such as LRU to order pages and decides which page will be

evicted. In the Group Region, GBBM uses group operation to aggregate pages

evicted from Page Region into the Group Node, which is the basic unit of Group

Region. GBBM has high bu®er hit ratio because of the page-based management

algorithm used in Page Region and low write/erase counts by grouping the victim

pages into Group Node in Group Region. An adjustable threshold is proposed to

divide the bu®er into Page Region and Group Region to suit di®erent workloads.

Hence, GBBM can obtain high bu®er hit ratio in Page Region and decrease the

erase counts when the data block is °ushed to °ash memory in Group Region.

3.2. Bu®er management

3.2.1. Hybrid bu®er management

The SSDs' bu®er has strict limitation of capacity and cost. The bu®er management

scheme should maintain high hit ratio and decrease the write/erase counts to take

full advantage of this small area. GBBM divides the SSDs' bu®er into two areas:

Page Region and Group Region as shown in Fig. 4. The read or write requests can be

served in the Page Region directly if they are hit. When they are miss in the Page

Region, we will process these requests in the Group Region or °ash memory. When a

page is hit in the Group Region, it will be moved to the Page Region to take

advantage of locality.
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In Fig. 4, Group Node is the basic unit in Group Region that includes Block

Number, Page Count and Dirty Flag. Block Number represents a physical block

number (PBN). All of the data pages in the physical block are managed by a Page

List. Page Count stands for the number of data pages in this physical block. Dirty

Flag indicates whether the Page List has dirty pages. The blocks inGroup Region are

organized as Group List, which is sorted by Page Count (see in Fig. 5). Page Count is

the primary criterion to decide the position of a block in the Block List. The block

that has maximum quantity of pages stays at the head of the Group List, and the

Group List is sorted in descending order by Page Count. Blocks with dirty pages will

remain in the Group List, and GBBM preferentially selects data blocks without dirty

pages as victim blocks.

We use di®erent replacement strategies in Page Region and Group Region. The

pages in the Page Region are organized as page-based LRU list. For incoming read or

write requests, they will be processed in the Page Region ¯rst. Data migration

between Page and Group Regions is a core module in GBBM.

Fig. 4. Management of GBBM.
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Algorithm 1 shows the data management algorithm between the Page and Group

Regions, namely migration between regions (MBRs). Read or write requests can be

served in the Page Region directly if they are hit (lines 3 and 14). When the accesses

are miss in the Page Region, we will process them in the Group Region (lines 5, 6, 16

and 17) or °ash memory. When a page is hit in the Group Region or °ash memory, it

will be migrated to the Page Region to take advantage of locality (lines 6 and 9).

If the Page Region is full, page that was last accessed (the last one of the LRU list

in this paper) is evicted to the Group Region. We calculate the PBN according to the

logical page number (LPN) of data page and determine whether the corresponding

physical block node exists in the Group List. For example, in Fig. 4, the gray page in

the Page Region will be evicted and its PBN is 2. Then we put this data page into the

Page List that belongs to the Group Node which has Block Number = 2. Further-

more, GBBM migrates the page from the Group Region to Page Region if the page is

hit. Thus, the locality of data page is used e±ciently by the °exible movement

between the Page and Group Regions.

3.2.2. Flush policy

When the SSDs' bu®er is full, replacement operation is triggered by °ush policy to

produce more space using Algorithm 2, namely, group region management (GRM).

The °ush operation creates many data movements between the bu®er and SSDs'

Fig. 5. An example of °ush.
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°ash array. A di®erent °ush policy will produce a di®erent request sequence, and the

request sequence can directly a®ect the performance and lifespan of SSD. The cost of

random writes miss is much higher than that of sequential writes. We use GRM to

suit access patterns and extend the lifespan of SSDs by keeping popular data in

bu®er as long as possible. The random write pages evicted from Page Region are

grouped into sequential writes by the Group Node in the Group Region.

In Algorithm 2 (GRM), when the Group Region is full, GBBM chooses the block

containing maximum data pages to write to °ash memory (line 2). If more than one

Group Node has the same number of data pages, the Group Node with the largest

number of clean pages is selected as a victim block (line 5). If the victim group has

dirty pages, these dirty and clean pages are °ushed into °ash together (line 8). GRM

creates a new Group Node if the Group Node list does not contain a node with the

same block number as the page migrated from Page Region (line 15).

Algorithm 1. MBRs: Migration Between Regions
Require: Request R with logical page number LPN, request size SIZE, request

type TYPE
1: if (TYPE == READ) then
2: if (LPN in Page Region) then
3: Read data from Page Region;
4: else if (LPN in Group Region) then
5: Read data from Group Region;
6: Copy data to Page Region;
7: else
8: Read data from the flash to respond to the request;
9: Copy data to Page Region;

10: end if
11: end if
12: if (TYPE == WRITE) then
13: if (LPN in Page Region) then
14: Update the data;
15: else if (LPN in Group Region) then
16: Remove the page from Group Region to Page Region;
17: Update the data in Page Region;
18: end if
19: end if
20: if (Page Region is full) then
21: Select the victim page X ;
22: Call Group Region buffer management(page X);
23: Store the new request in Page Region;
24: end if

A Group-Based Bu®er Management for SSD
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A Group Node, which is a combination of dirty pages and clean pages, is

sequentially written into the °ash array once the Group Node is selected as a victim

block. Hence, our replacement policy chooses the Group Node with the most clean

pages as the victim block to be °ushed. If the Group Node does not contain dirty

page, it need not be written to the °ash array to update data. We can delay the

progress of dirty pages being written to °ash and decrease the write counts of °ash

array by using this strategy. Figure 5 shows a simple example. The white rectangle

represents the clean page and the gray one is the dirty page. The Page Count indi-

cates the number of pages in a Group Node. If a Group Node has a dirty page, the

Dirty Flag is set to 1. When a replacement operation is required, the Group Node

with the largest number of page count should be selected as the replacement target.

In Fig. 5, the ¯rst and second Group Nodes contain four data pages. Because the ¯rst

Group Node contains more clean pages, it is chosen as a replacement target. Thus,

the dirty pages stay in the cache area as long as possible to improve access locality.

The group operation make large numbers of random writes grouped into sequential

writes, and GBBM can decrease the number of °ash memory write operations and

overhead of the garbage collection.

3.3. Threshold of partition

The Page Region is used to hold data pages that are often accessed and the Group

Region is used to group the least used clean pages evicted from the Page Region.

Algorithm 2. GRM: Group Region Management
Require: Page X , the block number (Bln) of page X ;
1: if (Group Region is full) then
2: Select the Group Node whose Page Count is maximum as the victim group;
3: end if
4: if (multiple Group Nodes have same pages) then
5: Select the Group Node with the most clean pages;
6: end if
7: if (there are dirty pages in the victim group) then
8: Flush both dirty and clean pages of the victim group;
9: else

10: Discard all the pages of the victim group;
11: end if
12: if (there is a Group Node in the Group List whose Block Number == Bln) then
13: Insert the page X in the Page List of the selected Group Node;
14: else
15: Create a Group Node, then insert the page X into it;
16: end if
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GBBM's objective is to decrease the amount of debris stored in the °ash memory in

the meantime to maintain high bu®er hit ratio. The di®erent division ratios of the

Group Region and the Page Region can a®ect the bu®er hit ratio and garbage

collection e±ciency.

To demonstrate how the threshold value a®ects the e±ciency of the proposed

GBBM, we test GBBM with Financial 1 workload in di®erent bu®er sizes. We set the

bu®er sizes to 6.25, 12.5, 18.75 and 25 MB. The sizes of the Group Region are 10%,

20%, 40%, 50%, 60%, 70% and 80% of the bu®er area. Figure 6 shows the evaluated

results for di®erent bu®er sizes using the workload Financial1. We can see that the

bu®er hit ratio improved with the increase in bu®er size. The bu®er hit ratio stays at

a relatively high level when the threshold is set to 70%. On the other hand, the erase

count is decreased with the increase in bu®er size because more data can be cached.

The minimum erase counts for di®erent bu®er sizes can be obseved when the

threshold is 70%. We set the partition threshold of the Page and Group Regions to

70% in our experiments. The partition threshold used here is suitable for this paper's

workloads. Details on how to obtain the threshold are out of the scope of this paper.

4. Performance Evaluation

In this section, the performance of proposed GBBM is evaluated through extensive

experiments.

4.1. Experimental setup

We implemented GBBM in SSDSim.32Financial1 and Financial2 are I/O traces

from OLTP applications running at two large ¯nancial institutions.33 We employ

two traces provided by Microsoft and SNIA,34 namely the Radius and Radius-SQL.

Table 1 shows the attributes of the four workloads. Financial1 contains a large

number of write requests. The average length of the write request is 7.5. Financial 2

contains a large number of read requests. The average length of the read request is

(a) Bu®er hit ratio. (b) Erase count.

Fig. 6. Evaluated results for di®erent bu®er sizes.

A Group-Based Bu®er Management for SSD

1950213-13



4.6. Radius is a small trace, but the ratio of read requests to write requests is 11.68%.

The proportion of write requests is very large. Radius-SQL's read requests are less

than write requests, but their average length is 268.5.

In this paper, four metrics are used to evaluate the behavior of di®erent

bu®er management schemes including bu®er hit ratio, write count, write hit ratio and

erase count.

4.2. Experimental results and discussion

We compare GBBM algorithm with LRU, CFLRU, PAB and CBM. Figures 7–11

show the experimental results using workloads Financial 1, Financial 2, Radius and

Radius-SQL.

4.2.1. Bu®er hit ratio

Figure 7 shows the bu®er hit ratios of GBBM compared with other four algorithms.

The design goal of PAB is to improve cache hit ratio and write sequencing. However,

because PAB is a block-based algorithm, the bu®er hit ratio of PAB is smaller than

that of GBBM as shown in Fig. 7(a).

CFLRU is a classical page-based bu®er management algorithm. In Fig. 7(b),

GBBM obtains about 24% improvement compared with CFLRU using Finacial 2

because it has a number of read requests and CFLRU deals with the clean pages ¯rst.

Considering that the Radius-SQL has a large number of big requests and GBBM's

group operation does not bene¯t from it, GBBM's bu®er hit ratio is a little higher

than CFLRU. In this experiment, GBBM can obtain better performance in com-

parison with CFLRU.

In Fig. 7(c), LRU's bu®er hit ratio is only 0.2%, and 0.1% higher than GBBM

using Financial 2 and Radius. GBBM has the same bu®er hit ratio as LRU using

Financial 1. Because GBBM ¯rst uses the Page Region through the LRU policy to

serve access requests, thus its bu®er hit ratio is very close to that of LRU. The bu®er

hit ratio of LRU is high because it only considers the temporal locality. However, the

costs of read and write operations are di®erent in SSDs, and the replacement cost of

dirty pages is larger than that of clean pages. Though LRU has a little higher cache

hit ratio compared with GBBM, but GBBM can distinguish dirty/clean pages from

Table 1. The characteristics of traces.

Trace Read request Write request

Average length of

the read request

Average length of

the write request

Financial1 1,235,596 4,099,351 4.5 7.5

Financial2 3,045,784 653,079 4.6 5.8
Radius 12,760 109,208 13.1 15.4

Radius-SQL 64,820 315,426 268.5 24.9
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the access patterns. Thus, GBBM can decrease the number of erase counts and

unnecessary write operations.

Figure 7(d) shows that the bu®er hit ratio of CBM is the best because it coor-

dinates the read cache in DRAM and write bu®er in NVM. Using di®erent bu®ers

(DRAM and NVM) for read and write requests will signi¯cantly increase the cost of

device and control algorithm. However, GBBM focuses on maintaining high cache

hit ratio while signi¯cantly reducing the numbers of write and erase counts (we show

the experimental data in the following paragraphs).

In general, GBBM can obtain a good bu®er hit ratio compared with the current

main algorithms.

4.2.2. Write count

The less write counts a °ash memory undergoes, the more longer is its life. Figure 8

shows the write counts of GBBM compared with other four algorithms using four

workloads with increasing bu®er size from 6.25MB to 37.5MB. With bu®er size

being increased, the write count of GBBM becomes closer to that of PAB, which is

the block-based bu®er algorithm. When the bu®er size is 37.5 MB, the write count of

GBBM is the same as that of PAB, and far less than the page-based bu®ers such as

(a) Bu®er hit ratio (PAB versus GBBM). (b) Bu®er hit ratio (CFLRU versus GBBM).

(c) Bu®er hit ratio (LRU versus GBBM). (d) Bu®er hit ratio (CBM versus GBBM).

Fig. 7. Bu®er hit ratios of GBBM compared with other four algorithms.
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(a) Write count (Financial 1). (b) Write count (Radius-SQL.)

(c) Write count (Radius). (d) Write count (Financial 2).

Fig. 8. Write counts at di®erent bu®er sizes.

(a) Write count (PAB versus GBBM). (b) Write count (CFLRU versus GBBM).

(c) Write count (LRU versus GBBM). (d) Write count (CBM versus GBBM).

Fig. 9. Write counts when the bu®er size is 37.5 MB.
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LRU and CFLRU. When the bu®er size is 37.5 MB, the write counts of the GBBM

compared with LRU and CFLRU are shown in Fig. 9.

Figure 9(a) shows the write count of GBBM compared with PAB using four

workloads. We can see that GBBM has the same performance as PAB. As displayed

in Figs. 9(b)–9(d), GBBM can decrease the write count by 10.8%, 13% and 16.7%,

respectively, than CFLRU, LRU and CBM using Financial 1 because it has a large

number of small write requests. Compared with page-based bu®er management

schemes (such as CFLRU and LRU), GBBM can group the clean pages and make the

dirty pages stay in the bu®er as long as possible. CBM merges the clean pages with

the dirty pages when the block is °ushed into the °ash. Thus, CBM has many extra

write operations compared with GBBM especially when the workload has large

number of write operations. Figures 8 and 9 show that GBBM is a promising method

to decrease the write count of SSDs.

4.2.3. Write hit ratio

The overhead of write operation is greater than the read operation in SSDs. In-

creasing the write hit ratio of SSDs' bu®er can yield considerable improvement in the

performance of SSDs.

(a) Write hit ratio (PAB versus GBBM). (b) Write hit ratio (CFLRU versus GBBM).

(c) Write hit ratio (LRU versus GBBM). (d) Write hit ratio (CBM versus GBBM).

Fig. 10. Write hit ratios when the bu®er size is 37.5 MB.
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Then we evaluated the write hit ratios with di®erent workloads using GBBM and

other four algorithms. The bu®er size is set to 37.5 MB. From Fig. 10(a), we can

observe that the write hit ratio of GBBM is signi¯cantly greater than PAB. As

shown in Figs. 10(b) and 10(c), the write bu®er hit ratios are smaller than those of

CFLRU and LRU algorithms using Financial 2 because it contains a large per-

centage of read operations. Both read and write requests are bu®ered in GBBM. The

read requests of Financial 2 occupy most of the bu®er area and GBBM does not have

su±cient bu®er area for the write requests. From Fig. 10(d), GBBM's write hit ratio

does not show advantage compared with CBM in the case of containing large number

of read requests. CBM responds to read and write requests in DRAM and NVM. This

extra overhead of hardware used in CBM can obtain a high write hit ratio. In most

cases, the write hit ratio of GBBM is better than PAB, CFLRU and LRU. These

results show that GBBM obtains a better write hit performance with a relatively low

cost and simple bu®er management algorithm.

4.2.4. Erase count

Erase count has a serious e®ect on the garbage collection and service life of SSDs.

Financial 2 and Radius include few write operations, thus, the erase count of SSD is

0. We choose Financial 1 and Radius-SQL as the workloads to evaluate the erase

count performance. Figure 11 shows that the erase counts of GBBM are signi¯cantly

less than the page-based bu®er management algorithms such as LRU and CFLRU,

and it very close to the block-based scheme PAB. The erase count of GBBM is also

less than CBM, because CBM causes the extra write operations when °ushing to

°ash. With the bu®er size being increased, the erase counts of GBBM and PAB are

more and more close. When bu®er size is 37.5 MB, GBBM's erase count is the same

as PAB and better than CBM. In other words, compared with page-based bu®er

schemes, such as LRU and CFLRU, GBBM can reduce the erase counts of °ash

memory more obviously, thereby extending the life of SSDs.

(a) Financial 1. (b) Radius-SQL.

Fig. 11. Erase counts.
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All the experiment results have con¯rmed that the proposed GBBM is an e®ective

method to improve the performance of SSD and signi¯cantly reduce the number of

write operations while maintaining a relatively high bu®er hit ratio. GBBM helps

¯rmware of SSD to provide high-performance I/O service to meet the growing data

demands of applications.

5. Conclusion

In this paper, we present a hybrid bu®er management scheme, GBBM, that mini-

mizes write operations by exploiting both spatial and temporal localities. To improve

both bu®er hit ratio and destage sequentiality, GBBM divides the bu®er area into

Page and Group Regions. GBBM chooses the last page of LRU list in the Page

Region to replace, and aggregates pages into a block in the Group Region. Because of

the aggregation operation, GBBM can transform random write requests into se-

quential write requests and decrease the write count of °ash memory. When a block

is evicted from the write bu®er, GBBM chooses the block which has the most clean

pages as the target. Thus, GBBM can hold dirty pages in cache as long as possible.

The experimental results demonstrate that the proposed GBBM can increase the

cache hit ratio to the level of page-based bu®er algorithms, but reduces the numbers

of write and erase counts to the level of block-based bu®er algorithms at the

same time. In the future, we plan to propose more intelligent bu®er management

schemes for applications with complex access patterns and test them on a real

hardware platform.
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