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Abstract
Adaptive traffic signal control is the core of the intelligent transportation system (ITS), which can effectively reduce the
pressure on traffic congestion and improve travel efficiency. Methods based on deep Q-leaning network (DQN) have become
the mainstream to solve single-intersection traffic signal control. However, most of them neglect the important difference of
samples and the dependence of traffic states, and cannot quickly respond to randomly changing traffic flows. In this paper,
we propose a new single-intersection traffic signal control method (Pri-DDQN) based on reinforcement learning and model
the traffic environment as a reinforcement learning environment, and the agent chooses the best action to schedule the traffic
flow at the intersection based on the real-time traffic states. With the goal of minimizing the waiting time and queue length
at intersections, we use double DQN to train the agent, incorporate traffic state and reward into the loss function, and update
the target network parameters asynchronously, to improve the agent’s learning ability. We try to use the power function
to dynamically change the exploration rate to accelerate convergence. In addition, we introduce a priority-based dynamic
experience replay mechanism to increase the sampling rate of important samples. The results show that Pri-DDQN achieves
better performance, compared to the best baseline, it reduces the average queue length is reduced by 13.41%, and the average
waiting time by 32.33% at the intersection.
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Introduction

Background

With the rapid development of the economy and the accel-
eration of urbanization, the urban transportation system has
become one of the main public infrastructures of the city.
However, the infrastructure is unable to cope with the rapidly
growing number of vehicles, which causesmany traffic prob-
lems in the city, especially traffic congestion during peak
hours. Traffic congestion has become a worldwide “urban
disease", which causes heavy losses in terms of economy,
energy and time every year. For example, due to traffic con-
gestion, American loses $68 billion a year, Beijing emits an
extra 16,700 tons of carbon dioxide and every person aver-
age delay 66min everyday. Traffic congestion has become a
global issue that must be addressed.

In recent years, countries around the world are taking a
series of measures to solve traffic congestion. On the one
hand, these countries have improved infrastructure construc-
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tion, planned urban roads and increased the carrying capacity
of traffic. However, the implementation of the infrastructure
wastes a lot of time and money. On the other hand, many
countries areworking to develop intelligent transportation by
using existing transportation infrastructure to improve traffic
control and management. The Vehicle Infrastructure Coop-
erative System(VICS) technology can dynamically collects
and fuses traffic information,which helps realize information
interaction between vehicles and road side infrastructure.

Figure 1 shows a VICS traffic signal control scenario. p1
is the current phase of the traffic light, which means the
vehicle in south-north has the right to pass through. VICS
controls traffic lights at intersections in real-time to reduce
traffic congestion, pollution, and number of traffic accidents.
In conclusion, the traffic signal adaptive control is an excel-
lent approach to alleviate traffic congestion. Because of the
complexity of the ITS and the heterogeneity and diversity
of the infrastructure, the data in VICS presents variety and
volume, which increases the difficulty of processing data.
However, the real-time and high-efficiency requirements of
ATSC mean it urgently needs efficient data fusion process-
ing and a real-time intelligent decision-making traffic signal
control algorithm.

Intersections are the basic nodes in the urban traffic sys-
tem, which are the location for vehicles and pedestrians to
converge, turn and evacuate. It is also themain body of traffic
signal control. Thus, the control and optimization of traffic
signal for a single intersection can effectively alleviate urban
traffic congestion [1]. Scholars studied traffic signal control
and implemented a large number of projects known as real-
time offline control. These studies predicted the traffic flow
online and selected the control strategy in accordance with
the prediction results. Many traffic signal control systems,
such as SCATS, TRANSYT, and SCOOT, use this approach
extensively.

Traditional traffic signal control methods are dependent
onmodels and cannot dynamically change traffic signalman-
agement strategies. It’s hard to build an appropriate model
for traffic signal light, because the traffic flows are com-
plex, dynamic and changeable. Reinforcement learning can
achieve good learning performance in large spaces and com-
plex non-linear systems without mathematical models and
prior knowledge of the environment.Therefore, reinforce-
ment learning [2] has become an important filed in intelligent
transportation research.

Contributions

We propose a multi-objective optimization adaptive traffic
signal control algorithm, named Pri-DDQN, to improve the
flexibility and intelligence of traffic signal control. The con-
tributions of this paper are as follows:

(1) We build a hybrid agent for the traffic light based on the
cognitive agent and reactive agent structure. The hybrid
agent learns traffic information from the environment
and refines the traffic state from lane level to vehicle
level. Meanwhile, it makes real-time control strategy to
optimize the randomly changing traffic flow.

(2) Pri-DDQN achieves the adaptive traffic signal control by
optimizing the waiting times and queue length at inter-
sections. Pri-DDQN adds two convolutional layers for
the agent to finely extract traffic environment character-
istics, which enhances the expressive ability of the agent.
Pri-DDQN asynchronously updates the target network
parameters to improve the learning ability of the agent
to quickly make ATSC strategy.

(3) We use power function to dynamically change the explo-
ration rate to accelerate the convergence of Pri-DDQN.
Meanwhile, we establish a priority-based dynamic expe-
rience replay mechanism to increase the sampling rate
of important samples. The sampling rate and priority of
samples are changingwith the network and training time.

Related works

Traffic signal control has started in the 20th century. At first,
the single-point control mode with fixed time is adopted to
calculate the optimal phase segmentation or cycle length of
the intersection by analyzing offline traffic data. The theo-
retical basis of the fixed-time scheme was the steady-state
stochastic delay model of unsaturated traffic flow proposed
by Webster [3] in 1958. In this theory, the traffic state took
the delay time of vehicles as the evaluation index. Zhang et
al. [4] improved theWebster algorithm by applying the traffic
flow fluctuation theory. The authors proposed the calculation
formula of the shortest signal cycle at the intersection by con-
sidering the effect of shock waves on the queuing length of
vehicles. The above works have studied the traffic model
based on fixed-time methods. However, fixed-time methods
are scheduled and optimized based on past traffic data, which
cannot satisfy the real-time traffic demand.

The artificial intelligence also affects the field of intelli-
gent transportation. New methods are introduced into traffic
signal control, such as genetic algorithm, particle swarm
optimization algorithm, neural network [5] and fuzzy con-
trol [6]. Thus, the mode of traffic signal control has changed
from fixed duration to semi-adaptive. Liu et al. [7] designed a
fuzzy control system based on a four-phase phasing sequence
to control traffic lights at a single intersection. They adopted
genetic algorithm with an elite reservation strategy to opti-
mize the fuzzy rules and membership function in the fuzzy
control system. Bi et al. [8] evaluated turning vehicles and
lane length, established themain road traffic flow and evalua-
tion model, and proposed a coordinated arterial traffic type-2
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Fig. 1 The scenario of adaptive
traffic signal control

fuzzy logic control method to alleviate the pressure of the
main road. Li et al. [9] mined the topology information of
the road network by using the graph convolutional neural
network, and integrated human knowledge and experience
into the model through the deep imitation learning method
to realize the real-time adjustment of traffic control strategy
in accordance with traffic conditions. However, the methods
of above works are presented based on historical data. Thus,
theirmethods cannot effectively control the traffic signal light
when the traffic flows are complex, dynamic and changeable.

In order to simulate the complex and changeable traffic
flow environment, the traffic signal control models based on
cellular automata are developed. Sanchez-Medina [10] devel-
oped a traffic micro-simulator based on cellular automata,
which can simulate many situations, such as overtaking and
multilane traffic. At the same time, a traffic signal regula-
tion model optimized by genetic algorithmwas designed and
implemented on the Beowulf cluster. Most of them cannot
adapt to dynamic and sudden traffic demands because they
have used the centralized control methods that is poor in
scalability.

To ensure the real-time performance of the control strat-
egy, real-time traffic data must be taken as input, and
the duration of traffic lights must be dynamically adjusted
accordingly. Reinforcement learning provides an effective
solution for real-time traffic signal regulation. In 1989,
Watkins [11] proposed the Q-learning algorithm, which did
not require pre-modeling and was highly adaptable to the
external environment. TheQ-learning algorithmwas suitable
for traffic control problems and had attracted the attention of
a large number of scholars. Yu et al. [12] presented the sig-

nal control issue as a Markov model choice problem and
proposed a signalized cross-section system adaptive control
model based on Markov’s discrete decision-making process.
In [13], the topic of traffic signal control was represented as
a reinforcement learning issue. The authors automatically
extracted all important information from real-time traffic
data, learned and outputted the optimal traffic signal con-
trol strategy, and introduced experiential replay and target
Q-network to solve the instability problem of reinforcement
learning. However, with the rapid growth of the state space
size, these methods cannot be applied to large networks.

As the number of traffic lights growing, model becomes
complex. Traditional reinforcement learning relies on the
assumption of simplified state and manual feature extraction
[14], and the value and strategy functions are simple and can-
not deal with high-dimensional real-time traffic information.
Deep learning addresses these problems by combining it with
reinforcement learning with decision making abilities. Liang
et al. [15] discretized complex traffic scenes by dividing inter-
sections into small grids. Then,the authorsmodeled the traffic
light time that changedbetween twoadjacent cycles as a high-
dimensional Markov decision process, which increased or
decreased the selected phase time from the next cycle stage.

To overcome traffic signal control challenges, researchers
are currently combining a range of reinforcement learning
algorithms with priority experience replay approaches in the
control model, which can learn better strategies in normal
traffic flow rates. Zhong et al. [16] proposed the Nature DQN
algorithm to optimize the signal control strategy of a single
intersection. The Nature DQN algorithm controled the inter-
section traffic signals, and the optimal signal scheme was
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sought through implicit modeling to control the changes in
actions and environmental states. Li et al. [17] designed a
traffic signal timing plan. The authors used the deep-stacked
autoencoder neural network to estimate the Q function and
found an appropriate signal timing strategy by implicitly
modelling control behavior and system state changes. How-
ever, in the experiment, the traffic environmentmodelingwas
simple and only considered the situation of the straight lane.
Lee et al. [18] improved the extensibility of reinforcement
learning algorithms to achieve global optimization. It shared
CNN parameters with all intersections, and the parameters
of the last hidden layer and the output layer were fixed to 1
to overcome the disaster of bits in state and action space.

Combining with the theory of maximum pressure in the
field of transportation, Huawei et al. [19] improved the over-
all network throughput andminimized travel time by defining
intersection pressure, and improved the value of intersec-
tion pressure as a reward in reinforcement learning. Liang
et al. [20] proposed a DRL model to control the cycle of
traffic lights by combining various optimization elements
for enhancing performance, i.e., dueling network, target Q-
network, double Q-network, and priority experience replay.
The model was verified to be effective on the SUMO simu-
lation platform. Zheng et al. [21] proposed the FRAP design
scheme based on the intuitive notion of phase competition in
traffic signal control, that is, the signal with high traffic vol-
ume (i.e., high demand) would be given priority when two
traffic signals conflict. In addition, the invariance of the sym-
metry, such as turning over and rotation in the traffic flow,
was realized. Zang et al. [22] proposed a new framework
MetaLight, which was based on meta-learning algorithm,
including periodically alternating individual-level adaptation
and global level adaptation.

In addition, when optimizing the traffic signal cycle dura-
tion at a single intersection, most existing methods only
optimize one objective, such as the average delay of traf-
fic at the intersection, the number of stops, queue length,
delay, and through-flow volume, etc., [23, 24]. Reference
[25]provided a detailed review of the objectives that can
be optimized, including liquidity objectives and sustainabil-
ity objectives. Most research into the traffic signal control
problem has primarily usedmobility objectives.Without con-
sidering the different requirements of different traffic states
for control indicators, and have their limitations. Therefore,
it is necessary to weigh multiple optimization objectives in a
comprehensive manner.

In summary, existing traffic signal control methods, such
as fuzzy control, Q-learning, DQN, and max-pressure, can
achieve adaptive traffic signal control and alleviate traffic
congestion. However, most of them neglect the important
difference between samples and the dependence among traf-
fic states. Their algorithms are inefficient and cannot quickly
adapt to the dynamic changes in the traffic environment.

Reducing the waiting time and queue length when vehi-
cles pass through the intersection, and flexibly adjusting
the traffic signal control strategy at the intersection, which
are of great significance for alleviating traffic congestion.
Therefore, there is an urgent need for flexible reinforcement
learning methods to adaptively control traffic signals.

Trafficmodel

Hybrid traffic signal control agent model

The cognitive agent and the reactive agent have different
characteristics. Cognitive agents are knowledge-based, and
their environment models are known in advance, which
are not suitable for dynamically changing traffic scenario.
The reactive agent associates the perception with the action
through the condition-action rule, the degree of intelligence
is low. Therefore, it is not the best way to construct a TSC
agent by only using a cognitive agent or a reactive one.

Considering the characteristics of the cognitive agent and
the reactive agent, we construct a hybrid TSC agent based on
"Perception-Cognitive-Behavior" model, as shown in Fig. 2.
The hybrid agent has higher intelligent and adapt to dynam-
ically changing traffic flow to efficiently control the traffic
signal at intersections. Simultaneously, we use normaliza-
tion to improve the discrete traffic state coding to enhance
the intelligence of the agent.

The process of the hybrid TSC agent is as follows. Firstly,
the hybrid TSC agent observes the traffic environment such
as vehicle position, speed, and signal phase at the intersec-
tion. They are used as inputs of the Pri-DDQN, and the
important features of the traffic environment are extracted
through convolution operations. Secondly, the agent learns
the decision-making model of the intersection through the
priority-based experience replaymechanism, and updates the
model online to control the traffic signal. Finally, the traf-
fic environment enters a new state and gives an immediate
reward to the agent. Subsequently, the agent relearns from the
environment and makes new control strategies continually,
to optimize traffic at intersections.

Traffic environment

The traffic environment includes intersections, roads, and
traffic lights. The intersection consists of four roads,and a
traffic light. Each road is 300ms and is divided into three
lanes, i.e., left turn, straight and right turn, as shown in
Fig. 3a. We only pay attention to the entrance lane infor-
mation, because the vehicle which passed the intersection
has no effect on the signal control. So there are twelve
control signals in the intersection, which is expressed as
pi = {l1, l2, l3, · · · , l12}. The control signal in the south
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Fig. 2 The hybrid TSC agent
model

Fig. 3 Intersection model

entrance is expressed as {l1, l2, l3}. {l4, l5, l6} is the east
entrance control signal. {l7, l8, l9} is the control signal of
the north entrance, while {l10, l11, l12} is the control signal
of the west entrance. The control signal for the straight lane
has a high priority than that of the left turn lane. We can see
this in Fig. 3b, in phase p5, there both the left turn lane and
the straight lane are green, the vehicles on left turn lane give
way to the vehicles on the straight.

In our environment, the basic traffic signal control strategy
has eight phases, as shown in Table 1. G represents the green
signal with a high priority, and the vehicle can pass through
the intersectionwithout halting. {GGgGrrGGgGrr}means
that the north–south straight lane and all right-turn lane have
the right of way, and the other lanes have no right of way. g
represents the regular green signal of the lane. r represents
the red signal of the lane, which is a stop signal. y repre-
sents the yellow signal of the lane, reminding the vehicle to
slow down and give way, or stop and wait when through the

Table 1 Traffic signal phase

Phase Describtion Last time (s)

p1 GGgGrrGGgGrr 30

p2 GygGrrGygGrr 5

p3 GrGGrrGrGGrr 10

p4 GryGrrGryGrr 5

p5 GrrGGgGrrGGg 30

p6 GrrGygGrrGyg 5

p7 GrrGrGGrrGrG 10

p8 GrrGryGrrGry 5

intersection. Figure 4 shows the phases of the traffic light, for
example, p1 is green phase for all lanes of the north–south
direction.
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Fig. 4 Traffic signal phase

Reinforcement learning for urban traffic
control

In this section, we define the state space S, action space A
and reward function R of the agent in Pri-DDQN algorithm.

State

The state space consists of vehicle position, speed, and cur-
rent signal phase, which is denoted as S, S = [D, V , pi ].
Each lane is divided into the same cells. D is the vehicle
position matrix and represents whether a vehicle is located
in the cell on each lane. V is the vehicle speed matrix, which
represents the standardized vehicle speed in the cells on each
lane. pi is the phase of the signal light at intersection. The
discrete traffic state encoding (DTSE) is shown in Fig. 5.

We define the state space that refine the traffic state from
lane level to vehicle level. The position matrix value is
Boolean type, and if there is a vehicle at the cell, it is 1,
otherwise 0. We calculate Di, j by using Eq. 1,

Di, j =
{
1, there is a car;

0, otherwise,
(1)

where i is the lanes number, and j is the number of the cell
in the lane i , 1 � i � N , 1 � j � N .

We set the vehicle length plus the safe distance as a cell
length, then each lane can be divided into N cells. N is cal-
culated using Eq. 2,

N = l

lc + d0
, (2)

where l is the road length, lc is the length of the vehicle, and
d0 is the safe distance between vehicles.

The matrix V records the vehicle speed. For convenience
of recording, the value is the ratio of the vehicle speed to the
max speed of lane, that is, when the vehicle is traveling at
maximum speed, Vi, j is recorded as 1.When the vehicle is in
the deceleration state and the speed is half of the maximum
speed, Vi, j is recorded as 0.5. We set Vi, j to be the value
calculated using Eq. 3,

Vi, j = vk

Vmaxi
, (3)

where vk is the speed of the k-th car, k = 1, 2, 3, · · · , and
Vmaxi is the maximum speed of lane i , 1 � i � 12. Through
this matrix, we can judge which vehicles are waiting for the
red light.

Besides position and speed of vehicle, the state includes
the phase P of the traffic signal light, which is also recorded
as a matrix. Each traffic signal control cycle contains eight
phases, which are expressed as P = {p1, p2, p3, · · · , p8}
and correspond to {0, 1, 2, 3, 4, 5, 6, 7}. p1 and p5 are the
two core phases, which last for 31 s. In these two states, the
signal is green for all lanes, and the priority of the straight
lane is higher than that of the left turn lane.
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Fig. 5 The discrete traffic state encoding (DTSE)

Action

A is the action space of the agent that has two elements,
A = {a1, a2}. a1 represents north–south pass through, and
a2 means east–west pass through. For example, A = [1, 0]
represents vehicles on north–south roads gain right ofway. a1
and a2 correspond to core phases p1 and phase p5, respec-
tively. We add the transition phase between p1 and p5 to
prevent traffic accidents caused by directly changing phase.
The changing process is shown in Table 2. If the decision of
the agent is consistent with the traffic light phase, the sig-
nal light phase does not need to be changed. It will be make
decision again after 15 s, which increases the green time of
the current phase. If the agent’s decision is inconsistent with
the traffic light phase, it needs to complete the phase switch
through the transition phase.

When the left turn vehicle meets a vehicle going straight,
the former should politely give way to the latter first. p2, p3,
and p4 are the transition phases between the core phases p1
and p5, which meet the “green-yellow-red-green” changing
sequence in real life. In p2, the straight lane turns yellow, and
the left turn lane is still green. In p3, the straight lane turns red,
and the left turn lane changes to priority green. These two
states are designed to prevent vehicles in the straight lane
from crossing the intersection while allowing left-turning
vehicles that do not cross the intersection to pass through the

intersection. In p4, the left turn lane turns yellow, prompting
the coming vehicles to slow down and warning that the traf-
fic light will turn red. Finally, traffic light turns to phase p5,
vehicles in the east and west directions can begin to move.
p6, p7, and p8 are the transition phases between the core
phases p5 and p1, and the changing process is the same as
above.

Reward

In order to encourage the agent to make reasonable decisions
asmuch as possible and relieve the pressure of traffic conges-
tion at the intersection, the environment will give the agent
an immediate reward.We design a dynamic reward. After the
agent makes decision, traffic lights start to switch phase in
accordance with the decision traffic signal control strategy.
After the agent performs action, the reward for this action is
calculated.

Weaim to reduce thewaiting time andqueue length timeof
vehicles to pass through the intersection, so wemake waiting
time andqueue length as the reward of the agent.Waiting time
is given by the sum of the times that vehicles are stopped.
Queue length is calculated for each lane in an intersection.
Thus, we calculate R by using Eq. 4,

R = −(ω × T + Q), (4)
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Table 2 Traffic signal phase
changing

at+1 at pt pt+1 Phase change

North–South a1 p1 p1 Keep p1 (15 s)

pass through (a1) a2 p5 p1 Change p6 (5 s) → p7 (10 s) → p8 (5 s) → p1 (30 s)

East–West a2 p5 p5 Keep p5 (15 s)

pass through (a2) a1 p1 p5 Change p2 (5 s) → p3 (10 s) → p4 (5 s) → p5 (30 s)

where T is the total waiting time of all vehicles to pass
through the intersection, and Q is the total queue length of
vehicles at the intersection, ω is the weight of total waiting
time to make a balance between T and Q.

We set T to be the value calculated by Eq. 5,

T =
K∑

k=1

tk, (5)

where tk is the delay of vehicle k passing through the inter-
section, K is the total number of vehicles.

We set Q to be the value calculated by Eq. 6,

Q =
N∑
l=1

ql , (6)

where ql is the length of the queue waiting in l-th lane at the
intersection, N is the total number of lanes.

The aim of the agent is to reduce the waiting time and
queue length time at the intersection. The smaller sum of
the waiting time and queue length is, the less the traffic con-
gestion will be, and the control effect of the agent is better.
Therefore, we encourage the agent to explore action to max-
imize the reward in the next action decisions, and the action
is positive regulation. On the contrary, the action is reverse
regulation, and the road becomes congested. Therefore, the
reward is set to the opposite number of the sum of the waiting
time T and queue length Q.

Pri-DDQN for traffic signal control

Signal control model based on Pri-DDQN

The state of traffic environment has a high spatial dimension
and time variability. To overcome the dimensionality curse
caused by state space explosion and the overestimation prob-
lem of the model, we design a traffic signal control model
based on the improved DQN, as shown in Fig. 6.

We use CNN to extract the characteristics of the traffic
environment to improve the expressive ability of the model.
While a dynamic experience replaymechanism is established
to enhance learning efficiency.

In Pri-DDQN model, we build the value network and the
target network, which have the same network structure. The
value network is used to calculate the action corresponding
to the maximum Q value, and the target network is used
to calculate the target Q value corresponding to the maxi-
mum action. The deep Q network of them is CNN, which
is to extract the fine-grained features of the traffic environ-
ment, to enhance the expressive ability of the model. More
importantly, the overestimation problem is eliminated by
decoupling the action selection of the target Q-value and the
calculation of the targetQ-value. TheQnetwork includes two
convolutional layers and two fully connected layers, respec-
tively. The output is the Q value of two actions.

We use the greedy strategy ε-greedy [26] to select the
agent’s action. This strategy takes action at according to
Q-value with probability (1−ε) or random action with prob-
ability ε. Depending on the decision action, traffic lights
perform different signal control strategies.

For example, if the current phase is a1 north–south pass
through, and the agent decision is a2 east–west pass through,
the traffic signal light phases will be switch from p1 to the
target phase p5. Considering the safety in practical applica-
tion, three transitional phases are present between the two
phases. p2, p3, and p4 are the transition phases between the
core phases p1 and p5. The traffic light phase conversion pro-
cess can be expressed as p2(5 s) → p3(10 s) → p4(5 s) →
p5(30 s). When the traffic light phase switches to p5, vehi-
cles traveling in east–west begin to pass. If the current phase
is a1 north–south pass through and the decision result is a1
north–south pass through, we keep the p1 phase that lasts
15 s to enhance the utilization rate of the effective green time,
which is expressed as p1(30s) → p1(15s), and then make a
decision again.

At the end of the execution cycle, the agent observes and
records the state of the traffic environment, thereby learn to
decide the action at the next cycle.

Improved target network

To solve the problem of correlation and non-static distribu-
tion of samples, we introduce the priority-based experience
playback mechanism. We set up an experience pool E =
{e1, e2, · · · , et , · · · , eT } to store the transfer samples et =
(st , at , rt , st+1, pt ), which is obtained from the interaction

123



Complex & Intelligent Systems            (2025) 11:47 Page 9 of 14    47 

Fig. 6 Pri-DDQN model

between agent and environment in each time step. Agent
selects some samples to train based on priority. T is the total
number of samples, t is the number of the sample.

In order to eliminate the problem of overestimation in the
DQN algorithm, we improve the estimationmethod of the Q-
value of the target network. First, we find the action a′ with
the maximum Q-value in the value network and calculate a′
by using Eq.7,

a′ = argmaxaQ(st+1, a; θ), (7)

where st+1 is the new state of environment after executing
the action a, and argmaxaQ(st+1, a; θ) is the action with
the maximum Q-value in the Q-network.

Then, we calculate the Q value of the target network
according to the choose action a′, and set TargetQ to be
the value calculated by Eq.8,

TargetQ = rt + γ × Q(st+1, a
′; θ ′), (8)

where rt is the real reward at t , γ is the discount factor that
indicates the effect of future actions on the current state. We
decouple action selection and evaluation to eliminate over-
estimation.

Finally, we take the Q values of the value network and
target network as true and predicted values, respectively. We

use the gradient descent method to update network parame-
ters, and the loss function is the mean square error (MSE).
We calculate the loss function by using Eq.9,

L(θ) = E[(TargetQ − Q(s, a; θ)2], (9)

where TargetQ is the Q-value of the target network, and
Q(s, a; θ) is the Q-value of the value network. We calculate
MSE by using Eq.10,

MSE(θ) = l

m

m∑
i=1

((rt + γ × Q(st+1, a
′; θ ′))

− Q(s, a; θ))2,

(10)

where θ is the value network parameters, and θ ′ is target
network parameters. These values are not the same.

We update the value network parameters in real-time to
guarantee the stability of the Q-function, whereas the param-
eters of the target network are updated every five actions. We
update the target network parameters by using Eq.11:

θ ′ = ω × θ ′ + (1 − ω) × θ, (11)

where θ ′ is the old parameters of the target network, and θ is
the real updated parameters of the value network.
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Improved decay "-greedy

We improve the state space exploration based on the idea
of decay ε-greedy by first trying to use the power function
dynamically changing the exploration rate. It speeds up the
algorithm convergence, ensures a better convergence effect,
and makes the decision more accuracy. We calculate ε by
using Eq.12,

ε = mn, (12)

where m dynamic change and is one of our optimization
goals, which will be discussed in detail in the experiment. n
is the number of iterations.

Priority-based experience replaymechanism

If the experience pool is full, some samples with the lowest
priority is deleted, and the new sample with high priority
is added to ensure that samples are diversity. We tend to
select samples with a large contribution to speed up agent
learning. It is known that the temporal difference(TD) error
of the sample to sample will make the algorithm easier to
converge. The sample with a large TD error has a greater
effect on backpropagation. In the Q network, the TD error is
the difference of the Q value between the target Q network
and value Q network. In DDQN, the TD error is calculated
by Eq. 13,

δt = rt+1 + γ × Q(st+1, argmaxaQ(st+1, a; θt ); θ
′
t )

− Q(st , at ; θt ),
(13)

where θt is the parameters of value network at step t , θ
′
t is

the parameters of target network at step t . The larger the
absolute value of the TD error, the greater the loss of the Q
network during training. It indicates that the sample brings
more information to the Q network, and the sample should
have a high priority. Therefore we set the priority pt to be
the value calculated by Eq. 14,

pt = |δt |, (14)

If the TD error stored in the experience pool is not updated
in time, it cannot accurately reflect the priority of the samples,
because the Q network is updated in each iteration. So, we
will update its priority after the sample is used. The update
is calculated as Eq. 15:

δt+τ = rt+1 + γ

× Q(st+1, argmaxaQ(st+1, a; θt+τ ); θ
′
t+τ )

− Q(st , at ; θt+τ ), (15)

Table 3 Traffic signal phase

Parameter Value

Road length 250m

Available route Straight, turn right, turn left

Max apeed 13.89m/s

Length of vehicles 3m

Min gap between vehicles 1.5m

Episodes 100

MaxStep 5400

γ 0.9

α 0.001

Memory size 600

Batch size 32

ε 1 − episode
episodes

where t + τ is the step of sample t when it is sampled.

Algorithm pseudo code

The agent initializes the neural network, observes the ini-
tialized state s as the input, and selects initialized action a
randomly. The output is the Q value of the two actions. We
use the decay ε-greedy policy to choose the action. The
agent controls the switching of the traffic light according to
the action a, calculates the reward r , and observes the new
state s′ after executing action a. The algorithm pseudo code
is presented in Algorithm 1.

Experiment analysis

Experiment set

The experimental simulation environment is built using the
Netedit 1.7.0 in SUMO, that is shown in Fig. 3, and the phases
of traffic light are shown in Fig. 4.

We use a public dataset in our experiment released by the
University of Pennsylvania and Shanghai Jiao Tong Univer-
sity [1, 21, 27] and record vehicle driving information at an
intersection in Hangzhou. The main information is vehicles,
road, the time of cars entry, and exit road, and speed, which
are all processed in accordance with the required simula-
tion format. To evaluate the performance of the algorithm
accurately, we select traffic congestion scenarios, which are
1-hour data, because of the large vehicle and change in traf-
fic flow with time. The main experimental parameters are
shown in Table 3, and the experiment environment is shown
in Fig. 3.
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Algorithm 1 Pri-DDQN Algorithm
Input: Replay memory size, batch size, number of episodes, and number of time step, maxSteps
1: Initialize: Q-network, Target Q-network, Memory, Agent
Output: Q value
2: for e = 1, 2, ..., episodes do
3: Initialize state s0
4: for step = 1, 2, ...,maxSteps do
5: Take action a′ with probability (1 − ε) or random action with probability ε, ε ← 0.8step ;
6: Get reward rt and observe next state st+1;
7: Calculate priority pt of (st , at , st+1, done) by using Eq( 13) and Eq( 14);
8: Save (st , at , rt , st+1, pt ) to Memory;
9: Agent Replay:
10: if numberof memory < batchsi ze then
11: return
12: end if
13: mini-batch ← Sample in the experience pool based on priority;
14: for (st , at , rt , st+1, pt ) in mini-batch do

yt ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
rt , if done = True

rt+
γ × Q(st+1, argmaxaQ(st+1, a; θt ); θ

′
t ),

otherwise

15: end for
16: Perform policy gradient using yt for updating θ ;
17: Update target Q-network perform every five actions:

θ ′ ← (1 − σ) × θ ′ + σ × θ

18: Save waitingtime, queuelength, reward of every episodes;
19: Delete last memory;
20: end for
21: end for

Evaluation of metrics

• Thecumulativewaiting timeT is the total amount of time,
it takes for all vehicles to pass through the intersection.
The larger the T , the more congested the intersection.

• The queue length Q is the sum of the queue lengths in
each entrance lane at the intersection when the traffic
phase is red. The larger the Q, the more congested the
intersection.

Experiment and result analysis

State space exploring improved

To verify the effectiveness of Pri-DDQN, we conduct experi-
ments on real data sets. In the experiment, the agent is trained
100 episodes in the simulation environment, and each episode
lasts 5400 steps. Each step is 1 s in real life, that is, each
training lasts 5400s. We explore the action selection strat-
egy, improve the state space detection method, and explore
the different values of ε. The first strategy is the fixed value
method, and we set ε to be 0.1, as shown in Eq.16,

ε = 0.1. (16)

The second strategy is the ratio method. We set ε to be the
value calculated by Eq.17,

ε = 1 − n

maxStep
, (17)

where n is the number of simulations, and maxStep is the
total number of simulations. The third strategy is the power
function, and we set ε to be the value calculated by Eq.18,

ε = 0.8n . (18)

In this section, these three methods are explored, and
experimental results are shown in Fig. 7. The x-axis is the
training time, and the y-axis is the cumulative queue length
(CQL) of each training, that is, the sum of the queue length
values of each training.

Figure 7 shows the following findings. On the one hand,
theCQLof each episodedecreaseswith training timebecause
in the early stage of simulation. The agent has no prior knowl-
edge, and is not familiar with the environment, and has strong
randomness in action selection, whose control effect is not
ideal. As the number of simulations increases, the agent grad-
ually accumulates experience. Through experience replay
and self-learning, high-reward actions are selected on the
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Fig. 7 Queue length with different exploration rate ε

basis of the environment state to reduce the length of vehi-
cle queues and waiting times and finally converge to stable
values.

On the other hand, different ε values have different con-
trol effects. When the exploration rate is dynamically valued
by power function, the algorithm converges the fastest, and
the vehicle queue length is shortest. The CQL is reduced to
3951s, which is optimized by 21.46% and 78.26% over the
fixed value and ratio methods, respectively.

Comparison of methods

Several state-of-the-art approaches are chosen as baseline
methods to validate the performance of the Pri-DDQN
algorithm. There are mainly two categories: transportation
approaches and RL methods.

• Transportation methods: Fixed-time control is a trans-
portation method that uses a predefined plan for traffic
light control.

• RL methods: Q-learning, DQN and Dueling DQN are
reinforcement learning methods. The agent decides
actions based on the state of the environment and exe-
cutes appropriate signal control policies.

We compare the Pri-DDQN with the baseline method on
the real dataset and take the average queue length (AQL) and
average waiting time (AWT) as evaluating indicators. The
AQL and AWT of each algorithm are shown in Fig. 8. The
x-axis is the algorithm, the left y-axis is the average queue
length of the vehicles for each algorithm, and the right y-
axis is the average waiting time. Figure8 gives the AQL and
AWT calculated from 100 simulations of 2230 vehicles that
enter the intersection and leave the intersection. We can see
that, Pri-DDQN outperforms the other four methods with the

Fig. 8 AQL and AWT with different algorithm

Fig. 9 The CQL of different algorithm

shortest AQL and shortest AWT. Compared with the fixed-
time, Q-Learning, DQN, and Dueling DQN, the AQL was
reduced by 63.95%, 39.08%, 26.14%and 13.41%, and the
AWT was reduced by 79.5%, 72.2%, 41.54%, and 32.33%
respectively. It also shows that the shorter the queue length,
the shorter the waiting time of the vehicle.

In terms of convergence and stability, we take the cumula-
tive queue length (CQL) and cumulative waiting time (CWT)
of vehicles passing through the intersection as an example.
The CQL and CWT for each episode vary with the num-
ber of training, as shown in Figs. 9 and 10. The x-axis is
the training time, and the y-axis is the CQL and CWT of
each training with different algorithms, that is, the sum of
the queue lengths and the sum of the waiting time of each
training, respectively. The CWT and CWQ of the fixed-time
is always a fixed and highest value, while the CQL and CWT
of Q-Learning, DQN, Dueling DQN and Pri-DDQN in each
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Fig. 10 The CWT of different algorithm

episode are all decreasing with training time, and Pri-DDQN
has the best result.

In addition, whether it is the CQL or CWT, the conver-
gence speed of Pri-DDQN is significantly faster than that
of the baseline method, and the stability is the best. The
Q-learning determines the agent’s action by looking up the
Q-table.Because the number of samples increases causes fea-
ture curse of dimensionality, the capacity of the Q-table also
increases. Thus, the efficiency and stability of the Q-learning
algorithm are poor. The DQN algorithm combines neural
networks and experience replay. Although it solves the prob-
lem of feature dimensionality curse, it ignores the correlation
of samples, and its state space exploration method is fixed,
which makes it easy to fall into local optimal solutions or
overestimation. Dueling DQN is an improved method based
on DQN. It decomposes the Q value function into a state
value function and an advantage function to better estimate
the contribution of different actions to the state and improve
learning efficiency. However, it only uses uniform sampling
and batch updates, resulting in some low volume but high-
value experiences not being efficiently utilized. Pri-DDQN
combines the advantages of DQN and Dueling DQN, and
uses the power function to dynamically change the agent’s
exploration rate. It also sorts the experience samples and pri-
oritizes samples with high learning value. Therefore, it has
the best convergence speed and experimental effect, effec-
tively alleviating the traffic congestion during peak hours
and is more adaptable to real-time changing traffic flows.

Conclusion

In order to respond to the randomly changing traffic flow
and realize the adaptive traffic signal control, we propose
a new single-intersection traffic signal control method (Pri-

DDQN) based on reinforcement learning. First, we model
the traffic environment as a reinforcement learning environ-
ment and adopt an improved DTSE method to characterize
the randomly changing traffic state. Second, we improved
the Double DQN network structure, added a convolutional
neural network to extract traffic state features to enhance the
expressive ability of the model, and updated the target net-
work parameters asynchronously. In order to accelerate the
convergence of the algorithm,we utilized a power function to
dynamically change the exploration rate. Finally, We priori-
tize samples based on reward and established priority-based
dynamic experience replay mechanism to increase the sam-
pling rate of important samples and the learning efficiency
of the Agent. We validate the effectiveness of the algorithm
based on real-world traffic data. The results show that Pri-
DDQN achieves better performance, compared to the best
baseline, it reduces the average queue length is reduced by
13.41%, and the average waiting time by 32.33% at the inter-
section.

In future, we will continue to improve the algorithm’s
performance, such as further optimizing the priority of expe-
rience playback in Pri-DDQN to ensure that the diversity and
completeness of samples. So that the agent canmake efficient
decisions and response to rapid changes in the traffic environ-
ment. Furthermore, in addition to making single intersection
traffic signal control, we will also study the distributed traffic
signal adaption control of multi-intersection to optimize area
traffic signal control.
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