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Abstract—With the popularity of GPS-equipped smart devices,
spatial crowdsourcing (SC) techniques have attracted growing
attention in both academia and industry. A fundamental prob-
lem in SC is assigning location-based tasks to workers under
spatial-temporal constraints. In many real-life applications, work-
ers choose tasks on the basis of their preferred trajectories. How-
ever, by existing trajectory-aware task assignment approaches,
tasks assigned to a worker may be far apart from each other,
resulting in a higher detour cost as the worker needs to deviate
from the original trajectory more often than necessary. Motivated
by the above observations, we investigate a trajectory-aware task
coalition assignment (TCA) problem and prove it to be NP-hard.
The goal is to maximize the number of assigned tasks by assigning
task coalitions to workers based on their preferred trajectories. For
tackling the TCA problem, we develop a batch-based three-stage
framework consisting of task grouping, planning, and assignment.
First, we design greedy and spanning grouping approaches to gen-
erate task coalitions. Second, to gain candidate task coalitions for
each worker efficiently, we design task-based and trajectory-based
pruning strategies to reduce the search space. Furthermore, a
2-approximate algorithm, termed MST-Euler, is proposed to obtain
a route among each worker and task coalition with a minimal
detour cost. Third, the MST-Euler Greedy (MEG) algorithm is
presented to compute an assignment that results in the maximal
number of tasks assigned and a parallel strategy is introduced to
boost its efficiency. Extensive experiments on real and synthetic
datasets demonstrate the effectiveness and efficiency of the pro-
posed algorithms.
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I. INTRODUCTION

S PATIAL Crowdsourcing (SC) is a novel computing
paradigm, which employs people with sensor-equipped

devices as workers to perform tasks at designated locations.
SC has attracted increasing attention from both industry and
academia for its wide application in delivery (i.e., Meituan1),
map navigation (i.e., Google Maps,2 Amap3), online car-hailing
(i.e., Didi Chuxing,4 Grab5), and other real-world applications.
It also plays an important role in solving tedious and manual
tasks like collecting vital spatial-temporal data (i.e., taking a
store photo, reporting traffic information, and monitoring air
quality).

Task assignment is a fundamental problem in SC by matching
workers with appropriate tasks based on their locations under
spatial-temporal constraints [1], [2], [3], [4], [5], [6], [7], [8].
Most existing approaches assume that workers will depart from
a specific starting point and return to their destination after com-
pleting multiple tasks. The detour cost for workers is the distance
they actually traveled minus the origin-destination distance.
However, the above assumption ignores workers’ preferences
for paths.

In real scenarios, workers expect to perform as many tasks
near their preferred path as possible to reduce detour costs.
Therefore, part-time workers are often reluctant to take addi-
tional detours to perform further tasks, instead prefer to com-
plete them on their daily path or commute. The ridesharing
applications, i.e., Didi, Grab, and Uber, engage part-time drivers
to deliver passengers that align with the driver’s daily path or
commute to minimize detour costs, consequently maximizing
profits. Specifically, worker w1 drives his car from home to
the company regularly. Passengers r1 and r2 share the same
destination as w1, and the start points are located near the w1’s
daily path. By utilizing the advantageous proximity, w1 can
accommodate both r1 and r2 as passengers, ensuring that the
incurred detour costs are under the constraints. Furthermore, the
applicability also can extend to some spatial tasks, i.e., taking

1https://www.meituan.com/
2https://www.google.com/maps/
3https://www.amap.com/
4https://www.didiglobal.com/
5https://www.grab.com/
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Fig. 1. Illustrations of the PNN assignment and the TCA assignment.

TABLE I
TASKS AND WORKERS

photos for stores or check-in POIs, wherein employing part-time
workers to execute tasks that are aligned with predefined routes.
After part-time workers complete the assigned tasks, they return
to their routine routes, bringing the advantages of the distance
proximity and reducing the inconvenience of workers signifi-
cantly.

To alleviate this issue, some recent methods focus on
trajectory-aware task assignment problems in SC [9], [10],
[11], [12]. They allow workers to deviate from their original
trajectory to perform a task and come back to the former egress.
Nevertheless, the assigned tasks for a worker may be far apart
since the distribution of tasks is ignored. If nearby tasks are
gathered and assigned together to a suitable worker, the detour
cost can be reduced further.

Example 1: Paidian6 is published by Meituan for collecting
stores’ information such as a store’s photo. As shown in Fig. 1,
there are three workers w1, w2, and w3, and nine task requests
(e.g., taking a photo of a specific store) t1∼t9 released. Table I
shows the spatial-temporal information of workers and tasks.
For each task t, t.s, and t.d are the release time and deadline,
respectively. All tasks must not exceed deadlines. For each

6https://paidian.meituan.com/

worker w, w.p and w.c are the preferred trajectory and the
capacity of w, respectively.

Take the state-of-the-art algorithm Path Nearest Neighbor
(PNN) [9] as an example. In the PNN assignment, workers
search for tasks near to their preferred trajectories and greedily
choose the nearest one. After completing one of the assigned
tasks, each worker will return to the same egress as their ingress.
In Fig. 1(a), the total distance of the preferred trajectory p1
of w1 is 8.8 units. The maximum detour distance of w1 is
w1.τ = 0.6× 8.8 = 5.28 units and the capacity is 3. In general,
the distance of deviating from the preferred trajectory cannot
exceed the maximum detour distance. Task t2 is the nearest to
w1 and is first qualified to be assigned to w1 because the detour
cost is 2 (i.e., 1×2 < 5.28). Next, t3 is qualified to be assigned
to w1 since the total detour cost of assigning t3 and t4 to w1 is
5, which is also less than the maximum detour distance. Task
t4 cannot be assigned since the total detour cost exceeds the
maximum detour distance if t2 and t3 are already assigned.
Thus, a feasible assignment result of the PNN algorithm is
Ap = {(w1, t2), (w1, t3), (w2, t6), (w2, t7), (w3, t5), (w3, t8)}
with the goal of maximizing the number of assigned tasks.

The above PNN assignment is limited in the following two
aspects. First, the workers are restricted to come back to the same
egress after tasks are performed, which inevitably increases the
detour cost. Second, tasks are assigned and completed one by
one in sequence. The spatial distribution of tasks is overlooked,
resulting in that the tasks assigned to the same worker may be
far apart from each other. These two limitations significantly
hinder the workers from doing their jobs efficiently as they
need to deviate from their trajectories more frequently than
necessary.

To address the above concerns, we investigate a novel problem
in SC, namely the trajectory-aware task coalition assignment
(TCA), which aims to maximize the number of assigned tasks.
Different from existing methods [13], [14], [15], [16], our ap-
proach focuses on assigning a task coalition to each worker
according to her preferred trajectory. In particular, a path with
minimal detour cost is planned for each worker to deviate from
egress and return to another ingress on their trajectories. This
is more in line with real-life scenarios. Besides, a task coalition

Authorized licensed use limited to: National University of Singapore. Downloaded on March 20,2025 at 14:17:04 UTC from IEEE Xplore.  Restrictions apply. 
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is computed for each worker based on their preferred trajectory
each time by aggregating nearby tasks.

To illustrate the TCA problem clearly, we present a task
assignment scenario in spatial crowdsourcing in the following
example.

Example 2: In the TCA problem, shown in Fig. 1(b), task
coalitions are first generated and we obtain three coalitions
g1 = {t2, t3, t4}, g2 = {t6, t7, t9}, and g3 = {t1, t5, t8}. The
task coalitions g1, g2, and g3 are assigned to workers w1, w2,
and w3, respectively. Based on these task coalitions, we have
another assignment At = {(w1, g1), (w2, g2), (w3, g3)}. Take
workerw1 as an example. She first leaves her preferred trajectory
from o11 to complete tasks t3, t4, and t2 in sequence, and
comes back to the trajectory from the point o14. In this way,
worker w1 can finish three tasks t2, t3, and t4 by deviating
from the preferred trajectory only one time. The detour cost
of w1 is 1.2 (i.e., 1.5 + 0.8 + 1.2 + 1.5− 2− 1− 0.8 = 1.2).
Similarly, the detour cost of w2 is 2 and w3’s is 3, respectively.

In the above examples, the TCA assignment results in the
assignment of more tasks, where workers complete 9 tasks de-
viating from their preferred trajectories, with a total detour cost
of 6.2. Conversely, by the PNN assignment, workers can only
complete 6 tasks and the overall detour cost is 16. This suggests
that the TCA assignment increases the number of completed
tasks that deviate from the preferred trajectory, and also greatly
reduces detour costs for workers.

Challenges: To the best of our knowledge, our study is the first
to investigate the TCA problem and we prove its NP-hardness.
The TCA problem consists of three subproblems, namely task
grouping, planning, and assignment, which faces three main
challenges: (1) existing methods, such as DBSCAN [17] and
k-means [18], are inefficient in generating task coalitions based
on the spatial distribution of tasks; (2) it is time-consuming
to plan a route for each worker to choose the best exit pair
(i.e., egress and ingress) of the preferred trajectory such that
the worker can deviate from egress and return to the ingress;
and (3) it is difficult to effectively assign task coalitions to
proper workers such that all workers and tasks satisfy the given
spatio-temporal constraints.

For effective processing, we first explore a batch-based three-
stage framework, consisting of task grouping, task planning,
and task assignment. For Challenge (1), two new task grouping
approaches, Greedy and Spanning, are designed for generating
task coalitions, which achieve these coalitions by more effi-
ciently considering the spatial distribution of tasks than existing
task clustering algorithms [17], [18]. For Challenge (2), an
approximate algorithm with a 2-approximate ratio is proposed
based on two new pruning strategies to solve the task planning
problem. It computes routes with a minimal detour cost for each
worker-and-coalition pair. For Challenge (3), the MST-Euler
Greedy (MEG) algorithm is designed to gain an assignment
with the maximal number of assigned tasks. Additionally, a
parallel strategy is introduced to improve the performance of
MEG. Extensive experiments show that the proposed algorithms
are up to 3 orders of magnitude faster than the exact method
while obtaining very close results. In addition, they can also

accomplish a higher number of assigned tasks than the existing
PNN [9] method.

Briefly, our contributions are illustrated as follows.
� We identify a new task assignment problem, named TCA,

to maximize the number of assigned tasks by assigning
task coalitions to workers based on their trajectories, and
prove its NP-hardness (Section III).

� To solve the trajectory-based task planning problem, we
propose pruning strategies to improve the efficiency, and a
2-approximate ratio approximate algorithm named MST-
Euler (Section VI).

� We develop the MEG algorithm to gain the assignment
result with the goal of maximizing the number of assigned
tasks and a parallel strategy to boost the performance
(Section VII).

� We conduct extensive experiments on real and synthetic
datasets to show the effectiveness and efficiency of our
proposed algorithms (Section VIII).

Related work is reviewed in Section II. Section IV outlines the
framework and Section V introduces the task grouping methods.
Finally, Section IX concludes the article and Section X is the
discussion.

II. RELATED WORK

A. Task Assignment Problem

Location-Aware Task Assignment Problem: Spatial crowd-
sourcing (SC) is comprised of four main research areas, namely
task assignment [19], [20], [21], [22], quality control [23],
[24], incentives [25], and privacy protection [26], [27], [28].
Among these, task assignment is the foundational problem of
SC. As introduced by Tong et al. [29], task assignment prob-
lems can be classified into assignment and planning problems.
An assignment problem relates to managing vast numbers of
tasks and workers through an SC platform; for example, Didi
Chuxing needs to deal with millions of order requests every day.
Thus, how to assign large-scale tasks to a massive number of
workers is the foundational challenge in spatial crowdsourcing.
Zhao et al. [30] studied the destination-aware task assign-
ment problem for achieving the maximal total number of
completed tasks under the constraints of the deadline. Tong
et al. [31] were concerned with assigning suitable work-
ers to tasks while they appear on the platform in real
time [32]. Zhao et al. [7], [8] developed a preference-aware
task assignment problem to predict the workers’ preference
to the tasks for achieving the maximal expected preference
value. These location-aware task assignment studies concen-
trate on assigning proper workers to tasks based on their
exact locations. However, they all ignore workers’ preferred
trajectories.

Trajectory-Aware Task Assignment Problem: Assigning suit-
able tasks to proper workers based on the workers’ trajectories is
more inline with real applications. There exist some trajectory-
aware task assignment studies for SC problems. The problem
setting of Costa et al. [10], [12], named In-Route Task Selection
(IRTS) in spatial crowdsourcing, is similar to our work, which
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assigns the tasks to the workers based on their preferred routes.
A worker is allowed to deviate from an exit point on the route
to the spatial task and returns to the same egress under a limited
budget for maximizing the total profit [33]. The studies in [34],
[35] are similar to our problem of assigning suitable tasks to
workers based on each worker’s preferred trajectory. However,
the TCA problem is allowing the worker to return to other exits
for a lower detour cost. Besides, the nearby tasks are clustered to
make the most use of a spatial advantage when a worker proceeds
for the assigned tasks. Morever, deep learning technologies are
also applied in the trajectory-aware task assignment to predict
the future location of tasks and paths of workers [36], [37], the
goal of which is maximizing the expected number of assigned
tasks.

B. Task Planning Problem

The planning problem [38], [39], [40] is different from the as-
signment problem. A planning problem is related to applications
such as food delivery and ride-sharing, where the SC platform
should plan a route for the workers to guide them to complete
as many tasks as possible. Deng et al. [41], [42] first studied the
planning problem to maximize the number of assigned tasks and
also prove its NP-hardness in the case of one worker to many
tasks. [41] schedule a feasible route for the worker by inserting
the task into the best position, which has a similar research
problem to our TCA problem. However, [41] lacks the task
grouping stage but selects tasks from the global set at the cost of
more extensive search spaces. Besides, the start and destination
are fixed for each worker [41]. But in the TCA problem, all points
on the worker’s trajectory are regarded as equally important,
where each trajectory point on the worker’s route can be the
start and endpoint, bringing more flexible routes. Moreover,
the TCA problem schedules a route considering the global
distance of the worker’s trajectory and tasks’ locations while [41]
inserts tasks one by one into the worker’s schedule route. Thus,
the method of [41] cannot directly solve the proposed TCA
problem.

Additionally, the dial-a-ride (DARP) problem and courier
delivery problems proposed in [43] are associated with the
schedule from origin to destination of a vehicle’s route for
maximizing the number of transported customers. They are
both similar to the subproblem, trajectory-based task coalition
planning, of TCA in this paper. Compared to DARP, our TCA
problem is much different since the DARP problem needs to
pick up their passengers and deliver them to their destinations.
However, the worker in TCA is required to perform their tasks
when arriving at its location, only ”check-in” one location. But
the workers need to follow a predefined route to decide the best
degrees and ingress, which adds another level of complexity
to the problem. Tong et al. [44], [45] focus on developing the
insertion-based framework to solve the flexible multi-objective
route planning for shared mobility. Zeng et al. [46] aim to
solve shared-route planning queries in ridesharing problems.
Zeng et al. [47] propose a guarantee algorithm for optimizing
and minimizing the makespan of couriers and the total latency
of requesters simultaneously for solving the Last-Mile Delivery

TABLE II
SYMBOLS AND DESCRIPTIONS

problem. However, the optimizing goals of these planning prob-
lems are different from our TCA problem, which is not designing
the feasible route by considering the worker’s preferred route.

III. PRELIMINARIES

In this subsection, we present the important definitions and
formulate the TCA problem. Table II lists the important nota-
tions frequently utilized in this paper.

A. Notations and Definitions

Definition 1 (Spatial Task): Given a task set T = {t1, t2,
. . . , tn}, each spatial task t = 〈t.γ, t.l, t.s, t.d〉 is available at
the timestamp γ, released at start time t.s in its location t.l, and
needs to be finished before the deadline t.d.

Definition 2 (Task Coalition): A task coalition is comprised
of a set of tasks close to each other. Given a range constraint r
and a size constraint k, it satisfies

g = {gi∈G| dist
{ti,tj∈g}

(ti, tj)<r, |g|≤k}, (1)

where G is the set of task coalitions, the distance between any
two tasks in g is no more than r, and the size of each task coalition
cannot exceed k.

Definition 3 (Task Sequence): For a given task coalition g and
a worker wj , a task schedule π(g) = {t1, t2, . . . , t|π|} is defined
as a specific completion sequence of tasks in g by the worker
wj . Here, wj will complete all tasks in g following their order in
π(g). After finishing tasks in g, the travel distance of the worker
wj is

cw,g(ti.l) =

{
c(ti−1.l) + dist(ti−1.l, ti.l) i �= 1,

dist(ou.l, ti.l) i = 1,

where dist(ti−1.l, ti.l) is the traveling cost between tasks ti−1

and ti, dist(ou.l, t1.l) is the distance from the egress to the
coalition when there is only one task in the coalition. If given a
specific worker w and a task coalition g, we use c(ti.l) to denote
cw,g(ti.l).

For the sake of simplicity, we have an assumption that all
workers share the same velocity during the whole moving period,
and the travel cost between two locations can be estimated
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by their distance. Note that the proposed algorithms are not
limited to this assumption. Besides, our TCA problem is a static
task assignment in Spatial Crowdsourcing. All spatial-temporal
information is prior known for the platform to achieve an optimal
assignment outcome.

Definition 4 (Spatial Worker): A worker is represented as
w = 〈w.p, α, w.τ, w.c〉, where her preferred trajectory w.p =
{o1, o2, . . . , oe} is comprised of intersection points oi on the
road network for 1≤i≤m. w.c is the capacity of the worker w.
Besides, given the detour rate α of the worker w, her maximum
detour cost w.τ is computed as the total distance multiplied by
the rate α (i.e., w.τ = α·∑oi∈P dist(oi−1.l, oi.l), 2≤i<e).

It is noted that the worker only provides the detour rate
limitation, which results in the maximum detour distance for
each worker. w.τ is also rewritten as τ in the following.

Definition 5 (Worker-and-Coalition Pair): For a set of work-
ers W and a set of task coalitions G, a worker-and-coalition
pair (w, g) is valid if all tasks within coalition g are created
and worker w is available, worker w can arrive at each task in
g before the deadline, and worker w will not deviate from his
trajectory more than w.τ .

For each valid worker-and-coalition pair (w, g), the solution
needs to guarantee that worker w can arrive at all required
locations of the tasks in task coalition g. The travel cost from
the start point on the trajectory to the location of the last
task in g is p(os.l, ou.l) + c(ti.l), where c(ti.l) is defined in
Definition 3 for completing all tasks in g from the egress, and
p(os.l, ou.l) is the distance from the starting point of workers to
the egress alongside trajectory P . Every worker should arrive
at each task assigned before the respective deadline, which
requires (p(os.l, ou.l) + c(ti.l))/speedw≤ti.d. Here, speedw is
the average speed of the worker.

Definition 6 (Detour Distance): For a preferred trajectory
P and a task coalition g, the detour distance is denoted as
D(ou, g, ob), which is the distance from egress, to complete all
tasks in g and come back to the ingress for ou, ob∈P . Thus, we
have

D(ou, g, ob) = c(t|π|.l) + dist(t|π|.l, ob.l). (2)

Here, t|π| is the last task in the complete sequence, c(t|π|.l) is
the distance from egress ou to complete all tasks in g as defined
in Definition 3, dist(t|π|.l, ob.l) is the distance from the last task
in g and return to the ingress ob on the trajectory.

Definition 7 (Detour Cost): The detour cost is denoted as
C(ou, g, ob), which is the extra traveling cost for completing
tasks in g. Thus, we have

C(ou, g, ob) = D(ou, g, ob)− p(ou.l, ob.l), (3)

where p(ou.l, ob.l) is the distance from egress and ingress along-
side trajectory P .

The detour distance is the traveling cost of worker w for
completing tasks on the detour from his trajectory. However,
the real detour cost is the extra cost for accomplishing the
task coalition, which requires the subtraction of the trajectory
distance from ou to ob alongside trajectory P on the basis of
detour distance.

B. Problem Formalization

Trajectory-Aware Task Coalition Assignment (TCA) Problem:
Given a worker set W and a task set T , the objective is to
obtain the assignment consisting of worker-and-coalition pairs
that minimize total detour costs while ensuring the maximal
number of assigned tasks in priority. Besides, the assignment
must meet the following constraints:

1) Detour distance constraint: Worker w can only be as-
signed to task coalitions with detour distances no more
than the maximal distance budget w.τ .

2) Deadline constraint: Worker w can only be assigned to a
task coalition such that she can arrive at all tasks in the
coalition before their deadlines.

3) Capacity constraint: Each worker can only complete w.c
assigned tasks at most.

Remark: The TCA problem contains three subproblems,
namely task grouping, planning, and assignment. In the task
grouping phase, tasks are divided into different coalitions based
on their locations such that tasks in a coalition are close to each
other. Next, the task planning phase aims to compute qualified
worker-and-coalition pairs. To achieve this goal, a route is gen-
erated to minimize the detour cost of each worker-and-coalition
pair. Notably, the detour cost for each worker-and-coalition pair
remains constant beyond the planning stage, serving as a fixed
input for the subsequent task assignment phase. Thereafter, the
task assignment phase is conducted to assign each task coalition
to an available worker with the goal of maximizing the number
of assigned tasks in priority and minimizing the total detour costs
as the secondary goal.

Theorem 1: The TCA problem is NP-hard.
Proof: The NP-hardness proof can be achieved by transform-

ing a Hamiltonion Path Problem, which has been proven to be
NP-hard [48], to an instance of the TCA problem.

Hamiltionion Path Problem (HPP): Given a graph G =
(V,E) with |V | = n nodes, a start node (vstart) and a stop node
(vstop), the problem asks to compute a simple path, beginning
with node vstart and ending with node vstart, to traverse all
nodes exactly once.

The goal of the TCA problem is to assign a task coalition
g to each worker w to maximize the number of assigned tasks
and minimize the detour cost for each worker-and-coalition pair
simultaneously. This means that for an egress ou and an ingress
ob of the worker trajectory w.p, the TCA is required to generate
all the routes from ou to ob for completing tasks in the coalition
g and select the optimal route with the minimal detour costs,
where the worker’s capacity is equal to the size of the coalition,
w.c = |g|. Besides, we set the detour rate to ensure each worker
completes all tasks within the coalition under a maximal detour
distance.

Consider the following special instance of the TCA problem
with only one worker. Let a node vi represent the location of
a task ti in the task coalition g for 1≤i≤k. We could set the
start node vstart as the egress ou and the last node vstop as the
ingress ob. The cost cost(vi, vj) between nodes vi and vj is com-
puted as the distance dist(ti, tj) between corresponding tasks ti
and tj .
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Fig. 2. Batch-based three-stage framework.

Algorithm 1: Batch-Based Three-Stage Framework.

The above instance of our TCA problem aims to compute
a route with the minimal cost to complete all the tasks, which
requires determining all the paths from the start node to the end
node to traverse all tasks in g. This goal is equal to computing
all routes from vstart such that they cover each node vi for one
time in the Hamiltonian Path Problem.

From the above derivation, we can reduce the Hamiltonian
Path Problem to an instance of the TCA problem. Since the
Hamiltonian Path Problem is NP-hard, the TCA problem is also
NP-hard. �

It is worth noting that our TCA problem is much more
complex than the Hamiltonian Path Problem, because it needs
to plan tasks for multiple workers, the egress and ingress may
be different points, and it needs to compute the best egress and
ingress for each worker-and-coalition pair.

IV. FRAMEWORK FOR THE TCA PROBLEM

In this section, we introduce a batch-based three-stage frame-
work as shown in Algorithm 1, which iteratively assigns tasks
to workers in multiple batches. In each batch, the optimal as-
signment is achieved by a three-stage process consisting of task
grouping, planning and assignment phases. Fig. 2 illustrates the
roadmap of our batch-based three-stage framework.

As depicted in Algorithm 1, for timestamp γ, we retrieve all
available tasks T and workers W . Here, available tasks refer
to those that have not been assigned to any worker or those that
newly appeared after the last timestamp. Available workers refer
to those who are not assigned to any task coalitions in the former
batch or those who newly appeared in the current timestamp
(Lines 2–3).

In the first phase, tasks are divided into coalitions by task
grouping strategies (Line 4). For a given range g.r and size g.s,

the distance of any two tasks in the coalition cannot be more
than g.r and the cardinality of each coalition is no more than
g.s. The task grouping methods are discussed in Section V. In
the second phase, for the worker-and-coalition pairs, we plan
a feasible route to minimize the detour cost from the worker
trajectory to the task coalition with the MST-Euler algorithm,
which integrates the pruning strategies detailed in Section VI
(Line 5). In the third phase, the MST-Euler Greedy (MEG)
algorithm is applied to obtain the optimal task assignment result
for maximizing the number of assigned tasks, and a parallel
strategy is introduced in Section VII (Line 6). Finally, according
to the optimal assignment, the platform informs workers to
conduct task coalitions based on the specific planning routes
(Lines 7–8).

We will introduce the methods of each stage in detail in the
following sections. Note that this paper assumes the preferred
route is optimal for each worker in the real application. That
is, the worker can follow this route forward to the destination
at the lowest cost. The point of the TCA problem is to focus
on the detour costs. Despite this, we set the negative detour
cost to 0 since the negative costs will not bring the extra detour
costs.

V. TASK GROUPING

Task grouping is an important component in our TCA prob-
lem, and it has a significant impact on the subsequent assignment
result.

DBSCAN [17] is a general task grouping method that can
exploit the spatial distribution of tasks. It generates distance-
sensitive task clusters as the task coalitions. Although nearby
tasks are clustered into task coalitions, it faces an imbalance
problem, i.e., some coalitions have many tasks while others have
few. Besides, tasks far away from clusters form separate task
coalitions, leading to higher detour costs. To solve this prob-
lem, we present a new grouping method, namely the spanning
grouping method, which constructs a minimum spanning tree
to balance the average distance among all task coalitions. Since
the high running time cost of the spanning grouping method to
construct a spanning tree of all tasks, we also develop the greedy
grouping method utilizing a greedy strategy to separate tasks.

Spanning Grouping Method: The spanning method first con-
structs a minimum spanning tree to connect all tasks based on
the distances between the tasks. After that, we decompose the
spanning tree iteratively into subtrees whose sizes are no more
than the required group size. Here, the tasks in each subtree form
a task coalition. The Edge-Delete algorithm [49] is introduced to
decompose the minimum spanning tree evenly. The variance of
each edge is σ(e) = 1

|E|
∑

e∈E(w(e)
2)− ( 1

|E|
∑

e∈E(w(e))
2,

where w(e) is the distance, |E| is the number of edges. The
weight of each edge is σ(E)− σ(E/e), meaning the decrease in
the variance. Tasks will be grouped evenly if removing the edge
that decreases the variance the most in the minimum spanning
tree. The decomposition is stopped if the task size in a subtree
is smaller than the required coalition size. As a result, each
subtree represents a task coalition. Next, we present an example
to illustrate the process of the spanning grouping method.
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Example: We illustrate the example in Fig. 1(a). First, we build
the MST for all tasks, {t1, t2, . . ., t9}, based on the distance,
denoted by the grey dotted line. Assuming the edge e(t7, t8) has
the highest weight of variance difference, we delete e(t7, t8) to
separate the tree into two parts. As a result, the MST is divided
as two subtrees, s1 ={t1, t5, t8}, and s2 ={t2, t3, t4, t6, t7, t9}.
Since the coalition size of s2 is 3, smaller than the worker’s
capacity, which is set as 5, we stop splitting the s1 since it already
can form a task coalition. Suppose the edge e(t4, t9) has the
highest weight in the s2; we repeat the same processes above
to split the s2 into {t2, t3, t4} and {t6, t7, t9}. The size of each
subtree is smaller than the worker’s capacity, so stop splitting
the subtrees and forming the task coalitions eventually.

Greedy Grouping Method: Since the spanning grouping
method of constructing the minimum spanning tree for all tasks
requires a high running time, we introduce a more time-efficient
alternative method, named the greedy grouping method. The
Greedy method greedily assembles nearby tasks in a given
coalition range to form task coalitions of a specified size. In
particular, it starts from a random task ts and searches for the
nearest task tn. If the task tn is not included in any task coalition,
tn can be included in the task coalition of ti. When the number
of the assembled tasks is equal to the task coalition size g.s, we
choose another new task as a starting task and repeat the above
steps.

The experiments in Section VIII verify that the greedy and the
spanning grouping methods are superior to DBSCAN in terms
of result quality and efficiency.

VI. TASK COALITION PLANNING

Next we introduce the trajectory-based task coalition planning
problem. To tackle the problem effectively, we present efficient
pruning strategies and propose an approximation algorithm with
a 2-approximation ratio.

A. Trajectory-Based Task Coalition Planning Problem

In the second phase of the TCA problem, for each qualified
worker-and-coalition pair, a feasible route with minimal detour
cost is generated for each task coalition.

It is time-consuming to plan a route for a worker from her
trajectory to complete assigned tasks. The time complexity
depends on the number of trajectory points and the task comple-
tion sequence. That is, the planning problem faces two main
challenges: 1) how to find a task completion sequence that
minimizes the travel cost for completing all tasks in the coalition,
and 2) how to choose the best egress and ingress points among
all possible exit-entrance pairs on the original trajectory to divert
to the newly assigned tasks while minimizing the total detour
cost.

To address the two challenges, we design task-based and
trajectory-based pruning strategies to reduce the search space.
Additionally, the MST-Euler Algorithm with an approximate
ratio of 2 is developed to compute a feasible route for each
worker.

Fig. 3. Illustration of the trajectory P = {s, o1, o2, o3, o4, d} and task coali-
tion gi = {t1, t2, t3}. We assume the dist(t1, o3) is the nearest distance from
the worker’s trajectory to the task coalition.

B. Pruning Strategies

In this subsection, we present the design of two pruning
strategies, namely a task-based and a trajectory-based pruning
strategy, to reduce the search space as detailed below.

1) Task-Based Pruning Strategy: Under a limited detour dis-
tance, some coalitions which are far from workers’ trajectories
may be excluded in advance. Inspired by this observation, we
first propose the task-based pruning strategy.

Before we describe the task pruning strategy, we observe that
dist↓(g, P ) has to be less than τ/2, where dist↓(g, P ) is the
minimal distance from a coalition to the trajectory of w (i.e.,
mint∈g{minoi∈P {dist(t.l, oi.l)}}). That is, if w cannot reach
the nearest task and return back to the same offset within the
distance constraint of τ , other tasks cannot be completed in the
same task coalition as well.

Lemma 1: Given the set of coalitions, and a specific worker
w, the candidate coalitions satisfy the following condition:

dist(oi.l, tn.l) + dist(tn.l, oj .l)− p(oi.l, oj .l)≤τ (4)

where tn is the nearest task to trajectory P , and oi, oj ∈ P .
Proof: We will prove the above lemma by contradiction and

by utilizing Fig. 3. Without loss of generality, there is a coalition
containing the tasks t1, t2, and t3. Assuming the shortest distance
from trajectory P to the coalition is dist(t1, o3), the worker
deviates from s and comes back to d. We have dist(s, t1) +
dist(t1, d)− p(s, d)<2·dist(t1, o3) owing to the definition of
triangle inequality, where dist(s, t1)− p(s, o3)<dist(t1, o3)
and dist(t1, d)− p(o3, d)< dist(t1, o3). If dist(s, t1) +
dist(t1, d)− p(s, d)>τ , it holds that dist(t1, o3)>τ/2 (i.e.,
dist↓(g, P )>τ/2). If the detour cost of any task in the coalition
exceeds τ , the coalition can be pruned safely since it cannot
satisfy the detour distance constraint. �

Based on Lemma 1, we can prune unreachable coalitions if
the detour cost exceeds τ . This not only avoids planning for a
task completion sequence but also averts checking all possible
exit-entrance pairs. On the other hand, we propose the following
pruning strategies to remove some invalid trajectory pairs as
early as possible.

2) Trajectory-Based Pruning Strategy: Because of the de-
tour limitation and deadline constraints, not all exit pairs on a
trajectory are available. For example, in Fig. 3, if choosing s as
egress, the candidate ingress set is {o1, o2, o3, o4, d}. However,
due to the distance and time limitations, not all points may be
included in the candidate ingress set, and some of which could
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be deleted in advance. Therefore, we develop trajectory-based
pruning strategies to delete some unavailable points on the
trajectories of workers.

Lemma 2: Given a preferred trajectory P , the valid set of exit
points, denoted as g.V , is

g.V = {o|dist(t, o)≤τ − dist↓(g, P ), t ∈ g, o ∈ P}, (5)

where dist↓(g, P ) is the lower bound distance from trajectory
to task coalition and dist(t, o) is the distance from the task in
coalition to a point on the trajectory.

Proof: Take Fig. 3 as the example again. Assume dist(o3, t1)
is the nearest distance from the task coalition to the trajectory
(i.e., dist↓(g, P )); the task coalition completion sequence is t2,
t3, and t1; o3 is the ingress. For any detour point except o3,
we can choose another one as the exit point. We take o1 as the
egress and t2 as the first task. If dist(o1, t2)>τ − dist(o3, t1),
the detour distance exceeds τ because π(t2, t3, t1).d is no
less than zero. Thus, we have dist(o1, t2) + π(t2, t3, t1).d+
dist(o3, t1)>τ , where π(t2, t3, t1).d is the travel cost of the task
coalition and also is denoted as π(g).d. Thus, in this case, o1 is
not a valid detour point for the task coalition g, which cannot be
added as a valid exit point. Accordingly, the point on P whose
distance to any task in g exceeds τ − dist↓(g, P ) can be pruned
safely. The lemma holds. �

Lemma 3: If the detour points on a preferred trajectory P
satisfy D(o2, g, o3)<τ and D(o1, g, o4)<τ , then C(o2, g, o3) is
greater than C(o1, g, o4).

Proof: As shown in Fig. 3, the detour cost of worker w to
complete task coalition g from (o1, o4) is C(o1, t, o4)=dist(o1,
g) + π(g).d+ dist(o4, g)− p(o1, o4). The detour cost of
choosing
deviating from o2 and returning to o3 is C(o2, t, o3) = dist
(o2, g) + π(g).d+ dist(o3, g)− p(o2, o3). The detour cost
difference holds that C(o1, g, o4)− C(o2, g, o3) = dist(o1, g)
− p(o1, o2)− dist(o2, g) + dist(o4, g)−
p(o3, o4)− dist(o3, g). According to the tri-
angle inequality theorem, we have dist
(o1, g)− p(o1, o2)− dist(o2, g)<0 and dist(o4, g)− p(o3, o4)
− dist(o3, g)<0. Therefore, C(o1, t, o4) is less than C(o2, t, o3),
and this lemma holds. �

For all exit pairs among the candidate set, the detour cost of
exit pairs that have a longer detour distance is smaller than that
of other pairs. Therefore, the exit pairs which have a smaller
detour distance can be deleted safely according to Lemma 3.

Lemma 4: Given the preferred trajectory P of a worker w,
a task coalition g, and on is the nearest offset, available detour
points on P are separated by the point on into two sets, n.LV
and n.RV , where n.LV includes on and detour points earlier
than on when the user is moving from s to d along P , and n.RV
includes points visited later than on. The egress and ingress of the
best exit pair ol and or are from n.LV and n.RV , respectively.

Proof: If the two points ol and or are both in n.LV for
l, r≤n, the detour cost is C(ol, g, or) = dist(ol, π

1) + π(g).d+
dist(πk, or)− p(ol, or). Here, π1 is the first task in π(g) and
πk is the last task. For the exit pair egress ol and ingress
on, the detour cost is C(ol, g, on) = dist(ol, π

1)+ π(g).d+
dist(πk, on)− p(ol, on). According to the triangle inequality

principle, the difference between two edges is lower than the
third edge. Therefore, we have C(ol, g, or)<C(ol, g, on). Ac-
cordingly, (ol, on) is not the best exit pair of g. Therefore, ol
and or must be from n.LV and n.RV , respectively. �

Lemma 5: Given a fixed task sequence of g, for any candidate
detour point on the trajectory P , the upper bound distance from
the point on P to the coalition is τ − π(g).d− dist↓(g, P ).

Proof: For any trajectory point oi on the trajectory, if
dist(g, oi) is greater than τ − π(g).d− dist↓(g, P ) for oi∈P ,
we have dist(g, oe) + π(g).d+ dist↓(g, P )>τ . Here, π(g).d is
the travel cost for completing all tasks in the coalition from the
start task to the end task, and dist↓(g, P ) is the minimal distance
from the trajectory P to the given coalition. �

Based on the above pruning strategies, the task coalitions far
from a given worker’s trajectory and invalid trajectory points
can be pruned safely in advance.

C. The MST-Euler Algorithm

By integrating task-based and trajectory-based pruning strate-
gies, we propose the MST-Euler algorithm, inspired by [50],
to plan a feasible route for each worker-and-coalition pair effi-
ciently. The approximation ratio of MST-Euler is also presented.
Note that the Christofides algorithm [51] is a seminal solution
for the TSP problem, which has similar steps as the following
MST-Euler algorithm. However, the application scenarios of the
Christofides algorithm and our TCA problem are inherently dis-
tinct, in which Christofides schedules a route that visits all nodes,
encompassing both tasks and trajectory points. In contrast, the
planning stage revolves around ensuring visiting all nodes and
a subset of the worker’s trajectory points. This critical varia-
tion in route requirements renders the direct application of the
Christofides algorithm unsuitable for addressing the challenges
presented by the TCA problem. Inspired by this, we propose the
MST-Euler algorithm.

The main idea of the MST-Euler algorithm is first to com-
bine tasks and trajectory points as the node set V . Then, to
form the minimum spanning tree (MST) of V and construct
an Euler tour among all connected node pairs. Next, we obtain
a Hamiltonian cycle connecting all tasks based on the short-
cutting strategy [50]. By integrating the two pruning strategies in
Section VI-B, the MST-Euler algorithm returns the planning
route with minimal travel cost for each qualified worker-and-
coalition pair.

Short-Cutting Strategy: To obtain a task coalition completed
sequence, we introduce the short-cutting [50], [51] strategy in the
MST-Euler algorithm. First, we establish the minimum spanning
tree of a worker’s trajectory and all tasks in the coalition, such
as Fig. 4(a). Next, the Euler tour for each connected node pair,
denoted as the dotted line, is established based on the MST,
shown in Fig. 4(b). Each connected node pair has two arrows
directed at each other. To obtain the task completion sequence,
directly connecting one task to another by skipping the hollow
points can form a Hamiltonian cycle among all tasks since it
follows the triangle inequality principle, as shown in Fig. 4(c).

Example: A set of tasks T = {t1, t2, . . ., t7} are denoted as
hollow dots and a set of trajectory points O = {o11, o12, o13}
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Algorithm 2: MST-Euler Algorithm.

Fig. 4. (a) shows the minimum spanning tree of tasks and trajectories,
(b) presents the Euler-tour, and (c) obtains the Hamiltonian circle by applying
the short-cutting strategy.

are represent to solid dots in Fig. 4. The minimum spanning
tree (MST) is constructed from the union node set T∪O as
shown in Fig. 4(a). Alongside the MST, bilateral connect each
intersect node pair to construct a bidirectional Euler graph as
shown in Fig. 4(b). Then, directly guide a route from one task
to another by skipping all connected hollow dots. As presented
as Fig. 4(c), task t1 is directly connected to t2, but skip o11
and o12. Finally, the task completed circle sequence is given by
gπ = {t1, t2, t3, t4, t5, t6, t7}.

Algorithm: In Algorithm 2, the MST-Euler algorithm first
initializes s∗ as the best planning route result of worker-and-
coalition pair (w, g). From Lemma 1, the distance from the
available coalition to w’s trajectory has to be less than τ/2.
If the distance exceeds τ/2, the return is an empty set as the
final planning result since a feasible route cannot be generated
for the worker-and-coalition pair (Lines 2–3). For available task
coalitions and the trajectory point set, it constructs a minimum
spanning tree (MST) ofV starting from a random task, presented
in Fig. 4(a) (Lines 5–6). After that, the Euler-tour is established

on the MST by building bidirectionally connected routes for
each pair of connected nodes, such as shown in Fig. 4(b) (Line
7). Next, each task of a coalition in the MST is reachable by
the short-cutting strategy and we obtain a Hamiltonian cycle
to connect all tasks as shown in Fig. 4(c) (Line 8). Then,
candidate trajectory points are added into tjw based on Lemma 2
(Lines 9–11). If the distance from the exit pair on P to a task
coalition exceeds τ − π(g).d− dist↓(g, P ), which means the
worker cannot complete the coalition under the limitation of τ ,
the trajectory point can be pruned safely according to Lemma 5
(Lines 14–15). Based on Lemmas 3 and 4, the optimal exit pair
is selected from n.LV and n.RV , respectively (Lines 16–23).
Finally, MST-Euler returns the optimal planning route of the
worker-and-coalition pair with minimal detour cost (Line 24).

Example: Consider the example in Fig. 1 again. For worker
w2, by the MST-Euler algorithm, task coalition g2 is generated
which contains tasks t6, t7, and t9. The detour distance of w2

is 6.51 and the shortest distance from p2 to task coalition g2
is dist(t6, o24) = 0.6, which is smaller than half of the detour
distance, i.e., 0.6<6.51/2. Therefore, g2 is an available task
coalition for w2. Next, we establish a graph among the tasks
in g2 and all trajectory points of w2, where the point set is
V = {o21, . . . , o26, t6, t7, t9} and the weight of each edge is the
distance between corresponding nodes. After that, we search
the minimum spanning tree of the established graph and obtain
the Hamiltonian cycle. Next, we obtain the final task completing
sequence asπ(g2) = {t6, t9, t7}, and o24 and o25 can be selected
as the optimal egress and ingress, respectively.

Below, we provide the approximate ratio proof of the proposed
MST-Euler algorithm.

Theorem 2: The MST-Euler algorithm is a 2-approximation
algorithm.

Proof: Let a set V be comprised of tasks in the coalition
g and trajectory points of worker w. The optimal travel cost
from trajectory to task coalition of pair (w, g) is denoted as
OPT , and the cost of MST-Euler is represented as cost(C).
In Algorithm 2, the cost to form the minimum spanning tree
(MST) is denoted as cost(T ). Thus, we have cost(T )≤OPT
since the travel cost of the MST (i.e., Fig. 4(a)). is no more
than the optimal travel cost for traversing all points in V . For
creating the Euler tour of the MST, we need 2·cost(T ) since the
Euler tour contains twice edges of the MST (i.e., Fig. 4(b)),
denoted as cost(T̂ ). Thus, any solid point pair is reachable
according to the constructed two-way Eulerian graph. Because
of the triangle inequality, we have cost(C)≤cost(T̂ ) after the
”short-cutting” step (i.e., Fig. 4(c)). Combining the above in-
equalities, we have cost(C)≤2 ·OPT , and Theorem 2 holds.
In conclusion, the MST-Euler approach is a 2-approximation
algorithm. �

Time Complexity: Assume there are k tasks in the coalition g
and |P | points on the worker’s trajectory. If the distance from
the coalition to the trajectory exceeds half of w.τ , the coalition
will be pruned directly (i.e., Lemma 1), which costs O(k · |P |)
(Lines 2–3). Prim’s algorithm is applied for forming a minimum
spanning tree, and it costs O((k + |P |)2) (Line 6). Creating
an Euler tree and Hamiltonian cycle also needs O((k + |P |)2)
(Lines 7–8). According to Lemma 2, we require O(k·|P |) to
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Algorithm 3: MEG Algorithm.

choose candidate points of the trajectory P (Lines 10–12). The
time cost of finding the best pair is O(k·|P |) according to Lem-
mas 3, 4 and 5 (Lines 13–23). Thus, the total time complexity
is O(3·k·|P |+ 2·(k + |P |)2).

VII. TASK COALITION ASSIGNMENT

In the third phase of solving the TCA problem, we propose the
MST-Euler Greedy (MEG) algorithm to assign task coalitions to
proper workers. To compute qualified worker-and-task coalition
pairs, a route is generated for each pair to minimize the detour
cost in the task planning phase detailed in Section VI. To attain
a higher number of assigned tasks among all valid worker-and-
coalition pairs, we introduce the MST-Euler Greedy algorithm.
Furthermore, a parallel strategy is applied to boost performance.

To achieve the optimal assignment result, we need to search
all available worker-and-coalition pairs in the planning phase.
Therefore, the main idea of the MEG algorithm is to generate
a feasible route for each available worker-and-coalition pair.
This is followed by the greedy strategy to obtain the final
assignment that achieves the maximal number of assigned tasks
with minimal total detour costs.

Algorithm: In Algorithm 3, we show the pseudocode of the
MEG algorithm. Specifically, it initializes a candidate worker-
and-coalition set M (Line 1). For each worker-and-coalition
pair, we apply the MST-Euler algorithm to plan an optimal route
in order to guide workers in completing all tasks in the coalition
(Lines 2–4). Under the deadline constraint and detour distance
limitation, if the worker-and-coalition pair has a valid planning
route P (w, g), the worker-and-coalition pair is to be updated
and included in M (Lines 5–6). Otherwise, if worker w cannot
complete this task coalition, the pair cannot be included in M
(Lines 7–8). Next, we sort the candidate set according to the
group size and the detour cost of P (w, g) (Line 9). Finally, we
select worker-and-coalition pairs iteratively and include them in
the final assignment A if they have not being assigned so far
(Lines 10–12). Note that, in this assignment phase, we not only
achieve the goal of maximizing the number of assigned tasks

but also generate a route with the minimum detour cost of each
assigned worker-and-coalition pair.

Time Complexity: Assume there are m workers, n tasks, and
g coalitions after the division into task coalitions. The time cost
of the MST-Euler algorithm is O(3·k·|P |+ 2·(k + |P |)2) as
analyzed in Algorithm 2 (Line 4). Besides, it costs O(1) to
identify if the pair (w, g) is available or not (Lines 5–8). The
planning phase costsO(mg·(3·k·|P |+ 2·(k + |P |)2)) to gener-
ate feasible routes for all worker-and-coalition pairs, and the time
complexity of the selection is O(mn) (Lines 10–12). Therefore,
the total time complexity of MEG is O(mg·(3·k·|P |+ 2·(k +
|P |)2)).

Parallelization: To boost the performance of task assign-
ments, a parallel strategy is developed to further reduce the
execution time of the MEG approach. The proposed batch-based
framework is divided into three phases, task grouping, planning,
and assignment. Among the three phases, task planning is the
most time consuming. It requires invoking the MST-Euler algo-
rithm O(|W |·|G|) times for planning routes of all worker-and-
coalition pairs, which accounts for a large proportion of the run-
ning time. To further improve the performance of the proposed
algorithms, we introduce parallel techniques to compute routes
for worker-and-coalition pairs in parallel. In this way, given t̂
CPU threads, it costs O(|W |·|G|/t̂) to compute the planning
route for all worker-and-coalition pairs.

VIII. EXPERIMENTS

We evaluate the efficiency and effectiveness of the proposed
algorithms through extensive experiments. Moreover, we also
evaluate different task grouping methods, such as Greedy, Span-
ning, and DBSCAN, to generate task coalitions. In addition, we
conduct experiments to show the effectiveness of the parallel
strategy.

A. Experiment Setup

Datasets: We evaluate our proposed methods on two real
datasets, Berlin and Ams [52]. The Berlin dataset contains
5,548 POIs on a road network involving 428,769 vertices and
504,229 edges. The Ams dataset consists of 1,446 POIs on a
road network involving 106,600 vertices and 130,091 edges.
In the two datasets, the bus routes and bus stops are taken as
the trajectories and their points. Besides, the locations of coffee
shops, bars, banks, and restaurants are considered realistic task
locations. We choose POIs in Berlin and Ams as tasks and bus
routes as the workers’ trajectories.

Settings: We choose the parameters settings as existing
works [1], [53]. The capacity of workers is set to 5 tasks by
default, according to the number of workers and tasks in our
datasets. Since the task coalition size is equal to the capacity of
workers in our paper, we define the default task coalition size to
be 5 as well. After testing multiple parameters and considering
the workers’ maximal detour distance, we finalize the default
value of the task coalition range to be 0.5 km for the best
performance. For each worker, the detour distance is equal to
the total trajectory distance multiplied by the detour rate. Similar
to [54], we split the bus route every 10 points as the worker’s
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TABLE III
EXPERIMENTAL SETTINGS

single trajectory, i.e., |P | = 10. The task’s expiration time is
dt× dist(o.l, t.l)/speedw [1], where dt is the hyperparameter
which is set as 4, dist(o.l, t.l) is the maximum distance from the
worker’s original location the task’s location, and the worker’s
average speed speedw is 60. Table III summarizes the experi-
mental settings.

Algorithms: We evaluate the performance of the following
algorithms. Em-greedy aims to enumerate all possible egress
and ingress comprised of the worker’s trajectory and list all
feasible routes to complete the task coalition separately for
exploring the optimal route with minimal detour costs in the
planning stage; then, utilize the greedy-inspired algorithm in the
task assignment stage. Emt-greedy adds tricks, i.e., the detour
distance constraint, to filter out invalid routes in advance. To
determine the optimal number of assigned tasks, we utilize the
min-cost max-flow (MM) algorithm in the task assignment stage
compared to Em-greedy, denoted as Em-MM. PNN [9] limits
workers to return to the same egress after completing the task
under the detour distance constraint. Additionally, we modified
three methods from [41], namely GALS, Insert, and InsertPrun,
which research a similar work to this work. Specifically, GALS
assigns the proper workers to suitable tasks from the global task
set by the max-flow min-cost algorithm, then insert tasks into
the worker’s trajectory to schedule the optimal route for each
worker to filter some failed tasks and assign them again in the
next assignment round until all valid tasks are assigned. We add
a detour distance constraint in the GALS. Insert has the same
framework as our method, including task grouping, planning,
and assignment stages. In the task planning stage, enumerates
all egress and ingress as the origin and destination and insert
the tasks in the coalition after finding the best position. The task
grouping and assignment stages are the same as our approaches.
InsertPrun applies the pruning strategies designed in our work
on the basis of Insert.
� Em-greedy: Enumerate the egress and ingress pairs and

task completed sequence separately to explore an optimal
route in the planning stage and utilize the greedy algorithm
in the assignment stage.

� Emt-greedy: Filter out the invalid routes in advance with
the detour distance constraint on the basis of Em-greedy.

� Em-MM: The algorithm aims to enumerate all possible
egress and ingress comprised of the worker’s trajectory
and apply the min-cost max-flow algorithm in the task
assignment stage.

Fig. 5. Effect of the task coalition size g.s.

� PNN: The Path Nearest Neighbor method allows workers
to return to the same offset point after completing the
assigned tasks.

� Insert: Enumerates all egress and ingress as the origin and
destination and find the best position to insert the tasks
in the coalition in the task planning stage; then, apply the
greedy assignment algorithm to obtain the final assignment
result.

� InsertPrun: Applying the designed pruning strategies
based on Insert.

� GALS: Repeat the steps of assigning tasks from the global
tasks by the max-flow min-cost algorithm and insert tasks
into workers’ trajectory under the detour distance con-
straint until all valid tasks are assigned.

� MEG: The MEG algorithm applies the MST-Euler algo-
rithm without any pruning strategies.

� MEG+G: The MEG+G method adds the task-based prun-
ing strategy based to the MEG algorithm.

� MEG+GT: The MEG+GT method adds both the task-
based and the trajectory-based pruning strategies based to
the MEG algorithm.

Metrics: We use three key metrics to evaluate the algorithms:
� Assigned Tasks: This metric counts the number of tasks

successfully assigned to task coalitions.
� Average Detour Cost: It measures the mean detour cost

required to complete a single task.
� Running Time: This metric reflects the total time taken to

process all workers and tasks.
These metrics serve to assess the effectiveness and efficiency

of the algorithms.
All experiments are conducted on an Intel(R) Xeon(R) Gold

6140 CPU @ 2.30 GHz in Python 3.6.

B. Experimental Results

We list the experimental results of the task coalition g.s, task
coalition range g.s, worker’s detour rate α, number of tasks |T |,
and number of workers |W | as follows.

Effect of the Task Coalition Size g.s: Fig. 5 depicts the
experimental results when varying the coalition size from 3 to
7. Fig. 5(a), (b), and (c) show the results of Berlin and Fig. 5(d),
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Fig. 6. Effect of the task coalition range g.r.

(e), and (f) represent the results of Ams. The number of assigned
tasks of most methods increases when more tasks are in a single
coalition. That is because if the size of the task coalition is
expanded, each worker can complete more tasks. The proposed
methods, MEG, MEG+T, and MEG+GT, attain similar num-
bers of assigned tasks to Em-greedy and Emt-greedy. This fact
demonstrates that packaging the nearby tasks is effective. Insert
and InsertPrun achieve a slightly higher number of assigned
tasks and lower average distance than MEG-related methods.
The primary reason is that the insert-related algorithms iden-
tify good positions and sequentially insert tasks into workers’
trajectories, allowing for the exploration of more viable routes
for each worker-coalition pair. However, MEG-related methods
first obtain an execution order for the tasks in the task coalition,
then find a position to insert the whole coalition into worker’s
trajectory, leading to overlooking some good solutions. The
running time of MEG-related methods requires at most two
lower orders of magnitude than the Insert and InsertPrun, which
is more acceptable for all parties in crowdsourcing platforms.
Besides, the MEG-related methods perform better than other
baselines, PNN and GALS. Moreover, when the number of tasks
is larger than 7, the running time to attain the assignment result of
Em-MM, Em-greedy and Emt-greedy exceeds 2.78 hours (e.g.,
105 seconds), which is not an acceptable waiting time in our
problem and we set it as INF. The reason is that the Em-related
methods need to enumerate all feasible routes to complete tasks
in task coalition. The time complexity depends on the number
of assigned tasks.

Effect of Task Coalition Range g.r: Fig. 6 shows the experi-
mental results by varying the task coalition range from 0.5 km
to 0.9 km. As shown in Fig. 6(a) and (d), with the expansion
of the coalition range, the number of assigned tasks of all the
algorithms decreases. That is because the larger the coalition
range, the sparser the coalitions become, which requires a higher
detour cost to finish each task coalition. Therefore, given the
same limited maximal detour cost for each worker, fewer task
coalitions can be completed. PNN and GALS have the same
number of assigned tasks no matter how we change the coalition
range since these two methods don’t have the task grouping
stage, which is not affected by the task coalition range. Fig. 6(b)

Fig. 7. Effect of the detour rate α.

and (e) illustrate the average detour cost. MEG+GT results in
less detour cost than MEG+G, while they require a similar time
cost. In Fig. 6(c) and (f), PNN and GALS require nearly three
times the average detour cost of our proposed methods in the
Berlin dataset and nearly two times in the Ams dataset. This fact
shows that our methods can reduce the detour cost significantly
with better efficiency.

Effect of the Detour Rate α: The experimental results of
varying the detour rate are shown in Fig. 7. Illustrated in Fig. 7(a)
and (d), the number of assigned tasks increases when the detour
rate increase. This is because workers are allowed to go further to
complete more tasks since the detour ratio is linear with the max-
imal detour distance for each worker. After relaxing the detour
rate, our proposed methods significantly increase the number
of assigned tasks. That is, more tasks are completed, resulting
in higher detour costs. Em-MM has the highest number of as-
signed tasks since applying the max-flow min-cost algorithm in
the assignment stage. Em-greedy and Emt-greedy obtain better
performance than MEG-related methods since enumerating all
ingress and egress pairs. The Insert and InsertPrun achieve a
slightly higher number of assigned tasks since they can search
for more feasible routes for each worker but require almost two
orders of magnitude higher time than the MEG-related methods.
Fig. 7(b) and (e) indicate that the average unit cost of each worker
increases when expanding the detour rate. The MEG-related
methods achieve a higher number of assigned tasks and lower
average travel costs than PNN and GALS, and the running time
of MEG-related methods is lower than that of PNN and GALS.
The reason is that the PNN is forced to return to the original
predefined route resulting in a higher detour cost, and GALS
selects tasks first and schedules later, also bringing worse results
when applying to the TCA problem. MEG+GT has a lower
running time than most methods in both two datasets, shown in
Fig. 7(c) and (f), respectively. This fact reveals the effectiveness
and efficiency of our proposed methods.

Effect of the Number of Tasks |T |: Fig. 8 depicts the exper-
imental results when increasing the number of tasks. Fig. 8(a)
and (d) show that, with more nearby tasks being valid for work-
ers, the number of assigned tasks increases. MEG, MEG+G,
and MEG+GT achieve a similar number of tasks assigned but
slightly lower than that of Em-MM and Em-greedy. This fact

Authorized licensed use limited to: National University of Singapore. Downloaded on March 20,2025 at 14:17:04 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: TRAJECTORY-AWARE TASK COALITION ASSIGNMENT IN SPATIAL CROWDSOURCING 7213

Fig. 8. Effect of the number of tasks |T |.

Fig. 9. Effect of the number of workers |W |.

illustrates the effectiveness of our pruning strategies. Fig. 8(b)
and (e) show that the average detour cost decreases since more
nearby tasks can be selected for suitable workers. Illustrated
in Fig. 8(c) and (f), to schedule more task coalitions, more
time is required. Therefore, the running time increases when
expanding the number of tasks. Specifically, MEG’s costs are
two orders of magnitude higher than for MEG+GT while they
achieve a similar number of tasks assigned and average detour
cost. Furthermore, the running time of Em-MM and Em-greedy
is nearly three orders of magnitude higher than MEG+GT, which
indicates the efficiency of the proposed methods.

Effect of the Number of Workers |W |: Fig. 9 shows the
experimental results by increasing the number of workers. In
Fig. 9(a) and (d), with the addition of workers, the number of
assigned tasks of all algorithms increases. That is because more
workers can complete more task coalitions. In Fig. 9(b), the
average cost of all methods is stable even with the number of
assigned tasks rising in the Berlin dataset. Fig. 9(e) shows that
the average detour cost increases with an increasing number
of workers in the Ams dataset. That is, more tasks result in
higher total detour costs. As shown in Fig. 9(c) and (f), compared
with Em-MM and Em-greedy, MEG+GT needs three orders of
magnitude less computation. On the other hand, PNN and GALS
require a higher time cost but complete fewer assigned tasks at a
higher detour cost. Insert and InsertPrun also cost a higher time
but achieve a slightly higher number of assigned tasks. All these

Fig. 10. Effect of different task grouping methods.

Fig. 11. Effect of parallel strategy.

facts support the effectiveness and efficiency of the proposed
MEG-related method can achieve good performance to solve
the TCA problem.

Effect of Different Task Grouping Methods: Fig. 10 depicts
the experimental results of the proposed algorithms by applying
different task grouping methods. The number of assigned tasks
increases when the number of tasks grows from 500 to 2500 in
the Berline dataset and from 100 to 500 in the Ams dataset
since more task coalitions are available. The running time is the
time cost of dividing tasks into different coalitions. Among the
three grouping methods, DBSCAN achieves the lowest number
of assigned tasks. The number of assigned tasks of Spanning
is higher than DBSCAN, but the running time is significantly
higher than both DBSCAN and Greedy. This is because forming
a minimum spanning tree among all tasks requires more time
than the other methods. In terms of the number of assigned tasks,
running time, and average detour cost, Greedy is a practical
choice since it can achieve the largest number of assigned tasks
with less running time.

Effect of Parallel Strategy: In this experiment, we evaluate
the efficiency of the parallel strategy. Fig. 11 shows the parallel
strategy of MEG+GT by varying the number of threads. The
speedup of the algorithm is approximately linear by varying the
number of threads from 1 to 4. The running time of MEG+GT is
reduced from 20.31 s to 5.99 s in the Berlin datasets with 5,000
tasks and from 0.95 s to 0.42 s in the Ams datasets with 500
tasks on 4 threads. The performance of other algorithms follows
a consistent trend. As shown, the running time of MEG+GT
is reduced roughly linearly by introducing the parallel strategy,
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which demonstrates the efficiency of the proposed parallel strat-
egy.

Summary: The proposed MEG, MEG+G, and MEG+GT al-
gorithms perform better than GALS and PNN in terms of the
number of assigned tasks, the average detour cost, and the
running time. The number of assigned tasks and the average
detour cost of the insert-related algorithm is slightly higher than
our proposed algorithms. Although the insert-related algorithm
has been applied in real-world applications, like Didichuxing, to
schedule drivers’ routes, the efficiency of the solutions still needs
improvement, especially in time-sensitive scenarios. Our MEG-
related algorithms take approximately 10 seconds on the Berlin
dataset, while InsertPrun needs approximately 100 seconds. This
significant difference in time expenditure could potentially lead
to user attrition. Additionally, by utilizing the task-based and
trajectory-based pruning strategies, our approaches reduce the
running time by at most three orders of magnitude on the two
real test datasets, which indicates the efficiency of our designed
pruning strategies.

IX. CONCLUSION

In this paper, we study the TCA problem to assign workers to
proper tasks according to their preferred trajectories. We propose
a three-stage framework comprised of task grouping, planning,
and assignment. To plan a feasible route for each qualified
worker-and-coalition pair, we propose the MST-Euler approx-
imate algorithm. In addition, task-based and trajectory-based
pruning strategies are designed to improve efficiency. For the as-
signment stage, we explore the greedy-inspired MEG algorithm.
The algorithms can be parallelized to accelerate the running
time. Extensive experiments demonstrate the effectiveness and
efficiency of our proposed algorithms. In our TCA problem,
we assume that each worker deviates from their trajectory for
only one task coalition. We can extend our solutions to consider
workers that deviate from multiple task coalitions in our future
work. Besides, predicting the worker’s future trajectory and task
location in the next timestamps in the TCA problem is also
promising research work in the future.

X. DISCUSSION

The greedy-inspired MEG algorithm is heuristic when the task
coalitions are independent in our TCA problem. However, if task
coalitions with dependency, the MEG algorithm is approximate
and has a guarantee of the approximate rate. We present the
theorem as follows.

Theorem 3: The optimal assignment Aopt of the MEG al-
gorithm for another case of TCA where task coalitions being
dependent is at least (1− 1

e )·Aopt.
Proof: Let |(wi, gi)| as the size of the task coalition gi.

Then, the objective function of MEG can be rewritten as the
Sum(A) =

∑
wi∈W,gj∈G |(wi, gj)|. The value of the |(wi, gj)|

is always positive when assigning gj to coalition wi, resulting in∑
wi∈W,gj∈G |(wi, gj)| being monotone. If we have Sum(Â)−

Sum(Ã) ≤ Sum(A)− Sum(A), the submodular is proven,
where Sum(Â) = {A ∪ (wi, gi), (wj , gj)}, Sum(Ã) = {A ∪

(wi, gi)}, and Sum(A) = {A ∪ (wj , gj)}. Â is the assignment
result where task coalition gj be assigned to the activate worker
wj after gi is already be assigned. On the other hand, for A,
gi is not assigned yet. Assume task coalition gi and gj have a
dependency relationship, gj can be completed in A but cannot
be finished by Â. Therefore, we haveSum(Â)− Sum(Ã) = 0,
and Sum(A)− Sum(A) = |(wj , gj)|. In summary, Sum(A)
is monotone and submodular. Since Sum(A) is monotone and
submodular, the proven holds according to [55], [56]. �

REFERENCES

[1] Y. Zhao, Y. Li, Y. Wang, H. Su, and K. Zheng, “Destination-aware task
assignment in spatial crowdsourcing,” in Proc. Conf. Inf. Knowl. Manage.,
2017, pp. 297–306.

[2] L. Kazemi and C. Shahabi, “Geocrowd: Enabling query answering with
spatial crowdsourcing,” in Proc. 20th Int. Conf. Adv. Geographic Inf. Syst.,
2012, pp. 189–198.

[3] Y. Tong, Y. Zeng, B. Ding, L. Wang, and L. Chen, “Two-sided online micro-
task assignment in spatial crowdsourcing,” IEEE Trans. Knowl. Data Eng.,
vol. 33, no. 5, pp. 2295–2309, May 2021.

[4] D. Shi, Y. Tong, Z. Zhou, B. Song, W. Lv, and Q. Yang, “Learning
to assign: Towards fair task assignment in large-scale ride hailing,” in
Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2021,
pp. 3549–3557.

[5] X. Tang et al., “Value function is all you need: A unified learning frame-
work for ride hailing platforms,” in Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2021, pp. 3605–3615.

[6] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng, “Preference-aware
task assignment in on-demand taxi dispatching: An online stable matching
approach,” in Proc. AAAI Conf. Artif. Intell., 2019, pp. 2245–2252.

[7] Y. Zhao et al., “Preference-aware task assignment in spatial crowdsourc-
ing,” in Proc. AAAI Conf. Artif. Intell., 2019, pp. 2629–2636.

[8] Y. Zhao, K. Zheng, H. Yin, G. Liu, J. Fang, and X. Zhou, “Preference-
aware task assignment in spatial crowdsourcing: From individuals to
groups,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 7, pp. 3461–3477,
Jul. 2022.

[9] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu, “Monitoring path nearest
neighbor in road networks,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2009, pp. 591–602.

[10] C. F. Costa and M. A. Nascimento, “In-route task selection in crowdsourc-
ing,” in Proc. 20th Int. Conf. Adv. Geographic Inf. Syst., 2018, pp. 524–527.

[11] C. F. Costa and M. A. Nascimento, “In-route task selection in spatial
crowdsourcing,” ACM Trans. Spatial Algorithms Syst., vol. 6, pp. 7:1–7:45,
2020.

[12] C. F. Costa and M. A. Nascimento, “Online in-route task selection in spatial
crowdsourcing,” in Proc. 20th Int. Conf. Adv. Geographic Inf. Syst., 2020,
pp. 239–250.

[13] Z. Chen, P. Cheng, L. Chen, X. Lin, and C. Shahabi, “Fair task assignment
in spatial crowdsourcing,” VLDB Endow., vol. 13, pp. 2479–2492, 2020.

[14] P. Cheng, J. Jin, L. Chen, X. Lin, and L. Zheng, “A queueing-theoretic
framework for vehicle dispatching in dynamic car-hailing,” VLDB Endow.,
vol. 14, pp. 2177–2189, 2021.

[15] P. Cheng, C. Feng, L. Chen, and Z. Wang, “A queueing-theoretic frame-
work for vehicle dispatching in dynamic car-hailing,” in Proc. Int. Conf.
Data Eng., 2019, pp. 1622–1625.

[16] Z. Chen, P. Cheng, Y. Zeng, and L. Chen, “Minimizing maximum delay of
task assignment in spatial crowdsourcing,” in Proc. Int. Conf. Data Eng.,
2019, pp. 1454–1465.

[17] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 1996, pp. 226–231.

[18] D. J. MacKay et al., Information Theory, Inference and Learning Algo-
rithms, Cambridge, U.K.: Cambridge Univ. Press, 2003, pp. 284–292.

[19] P. Cheng, L. Chen, and J. Ye, “Cooperation-aware task assignment
in spatial crowdsourcing,” in Proc. Int. Conf. Data Eng., 2019,
pp. 1442–1453.

[20] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao, “Task assignment on
multi-skill oriented spatial crowdsourcing,” IEEE Trans. Knowl. Data
Eng., vol. 28, no. 8, pp. 2201–2215, Aug. 2016.

Authorized licensed use limited to: National University of Singapore. Downloaded on March 20,2025 at 14:17:04 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: TRAJECTORY-AWARE TASK COALITION ASSIGNMENT IN SPATIAL CROWDSOURCING 7215

[21] Z. Liu, K. Li, X. Zhou, N. Zhu, Y. Gao, and K. Li, “Multi-stage complex
task assignment in spatial crowdsourcing,” Inf. Sci., vol. 586, pp. 119–139,
2022.

[22] Y. Xie, Y. Wang, K. Li, X. Zhou, Z. Liu, and K. Li, “Satisfaction-aware
task assignment in spatial crowdsourcing,” Inf. Sci., vol. 622, pp. 512–535,
2023.

[23] L. Kazemi, C. Shahabi, and L. Chen, “Geotrucrowd: Trustworthy query
answering with spatial crowdsourcing,” in Proc. 20th Int. Conf. Adv.
Geographic Inf. Syst., 2013, pp. 304–313.

[24] J. Tu, P. Cheng, and L. Chen, “Quality-assured synchronized task assign-
ment in crowdsourcing,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 3,
pp. 1156–1168, Mar. 2021.

[25] Z. Liu, K. Li, X. Zhou, N. Zhu, and K. Li, “Incentive mechanisms for
crowdsensing: Motivating users to preprocess data for the crowdsourcer,”
ACM Trans. Sensor Netw., vol. 16, pp. 39:1–39:24, 2020.

[26] H. To, C. Shahabi, and L. Xiong, “Privacy-preserving online task assign-
ment in spatial crowdsourcing with untrusted server,” in Proc. Int. Conf.
Data Eng., 2018, pp. 833–844.

[27] Q. Tao, Y. Tong, Z. Zhou, Y. Shi, L. Chen, and K. Xu, “Differentially private
online task assignment in spatial crowdsourcing: A tree-based approach,”
in Proc. Int. Conf. Data Eng., 2020, pp. 517–528.

[28] M. Li et al., “Privacy-preserving batch-based task assignment in spatial
crowdsourcing with untrusted server,” in Proc. Conf. Inf. Knowl. Manage.,
2021, pp. 947–956.

[29] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowdsourc-
ing: A survey,” VLDB J., vol. 29, pp. 217–250, 2020.

[30] Y. Zhao, K. Zheng, Y. Li, H. Su, J. Liu, and X. Zhou, “Destination-aware
task assignment in spatial crowdsourcing: A worker decomposition ap-
proach,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 12, pp. 2336–2350,
Dec. 2020.

[31] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile micro-task
allocation in spatial crowdsourcing,” in Proc. Int. Conf. Data Eng., 2016,
pp. 49–60.

[32] L. Tran, H. To, L. Fan, and C. Shahabi, “A real-time framework for task
assignment in hyperlocal spatial crowdsourcing,” ACM Trans. Intell. Syst.
Technol., vol. 37, pp. 37:1–37:26, 2018.

[33] C. Liu, K. Li, K. Li, and R. Buyya, “A new service mechanism for
profit optimizations of a cloud provider and its users,” IEEE Trans. Cloud
Comput., vol. 9, no. 1, pp. 14–26, First Quarter, 2021.

[34] S. Shekhar and J. S. Yoo, “Processing in-route nearest neighbor queries:
A comparison of alternative approaches,” in Proc. 11th ACM Int. Symp.
Adv. Geographic Inf. Syst., 2003, pp. 9–16.

[35] J. S. Yoo and S. Shekhar, “In-route nearest neighbor queries,” GeoInfor-
matica, vol. 9, pp. 117–137, 2005.

[36] Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou, “Predictive task
assignment in spatial crowdsourcing: A data-driven approach,” in Proc.
Int. Conf. Data Eng., 2020, pp. 13–24.

[37] P. Cheng, X. Lian, L. Chen, and C. Shahabi, “Prediction-based task
assignment in spatial crowdsourcing,” in Proc. Int. Conf. Data Eng., 2017,
pp. 997–1008.

[38] D. Sun et al., “Online delivery route recommendation in spatial crowd-
sourcing,” World Wide Web, vol. 22, pp. 2083–2104, 2019.

[39] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic taxi
ridesharing service,” in Proc. Int. Conf. Data Eng., 2013, pp. 410–421.

[40] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling on
heterogeneous computing systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 11, pp. 2867–2876, Nov. 2013.

[41] D. Deng, C. Shahabi, and L. Zhu, “Task matching and scheduling for
multiple workers in spatial crowdsourcing,” in Proc. 20th Int. Conf. Adv.
Geographic Inf. Syst., 2015, Art. no. 21.

[42] D. Deng, C. Shahabi, and U. Demiryurek, “Maximizing the number of
worker’s self-selected tasks in spatial crowdsourcing,” in Proc. 20th Int.
Conf. Adv. Geographic Inf. Syst., 2013, pp. 314–323.

[43] J. Cordeau and G. Laporte, “The dial-a-ride problem (DARP): Variants,
modeling issues and algorithms,” Quart. J. Belg. Fr. Italian Operations
Res. Societies, vol. 1, pp. 89–101, 2003.

[44] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, and K. Xu, “Unified route planning for
shared mobility: An insertion-based framework,” ACM Trans. Database
Syst., vol. 47, pp. 1–48, 2022.

[45] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified approach
to route planning for shared mobility,” in Proc. VLDB Endow., vol. 11,
no. 11, pp. 1633–1646, 2018.

[46] Y. Zeng, Y. Tong, Y. Song, and L. Chen, “The simpler the better: An
indexing approach for shared-route planning queries,” in Proc. VLDB
Endow., vol. 13, no. 13, pp. 3517–3530, 2020.

[47] Y. Zeng, Y. Tong, and L. Chen, “Last-mile delivery made practical: An
efficient route planning framework with theoretical guarantees,” in Proc.
VLDB Endow., vol. 13, no. 3, pp. 320–333, 2019.

[48] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman &
Co., 1979.

[49] C. Liu et al., “Spatio-temporal hierarchical adaptive dispatching for
ridesharing systems,” in Proc. 20th Int. Conf. Adv. Geographic Inf. Syst.,
2020, pp. 227–238.

[50] V.V. Vazirani„ “Approximation algorithms,” in Science Business Media,
Berlin, Germany: Springer, 2014.

[51] T. M. Goodrich and R. Tamassia, “The christofides approximation algo-
rithm,” Algorithm Des. Appl., vol. 363, pp. 513–514, 2015.

[52] E. Ahmadi and M. Nascimento, “Datasets of roads, public transportation
and points-of-interest in Amsterdam, Berlin and Oslo,” 2017. [Online].
Available: https://sites.google.com/ualberta.ca/nascimentodatasets/

[53] S. Shang, K. Deng, and K. Xie, “Best point detour query in road networks,”
in Proc. 11th ACM Int. Symp. Adv. Geographic Inf. Syst., 2010, pp. 71–80.

[54] X. Zhou, S. Liang, K. Li, Y. Gao, and K. Li, “Bilateral preference-aware
task assignment in spatial crowdsourcing,” in Proc. Int. Conf. Data Eng.,
2022, pp. 1687–1699.

[55] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage
problem,” Inf. Process. Lett., vol. 70, pp. 39–45, 1999.

[56] W. Ni, P. Cheng, L. Chen, and X. Lin, “Task allocation in dependency-
aware spatial crowdsourcing,” in Proc. Int. Conf. Data Eng., 2020,
pp. 985–996.

Yuan Xie is currently working toward the doctoral
degree with the College of Computer Science and
Electronic Engineering, Hunan University, Chang-
sha, China. She is a visiting student with the National
University of Singapore, Singapore. Her research in-
terests include spatial crowdsourcing and urban com-
puting.

Fan Wu received the MS degree in computer science
from the University of Wuhan University, Wuhan,
China, in 2004, and the PhD degree in computer sci-
ence from the University of Hunan University, Chang-
sha, China, in 2017. He is currently a vice professor
with the College of Computer Science and Electronic
Engineering, Hunan University. His research interests
include parallel and distributed computing, machine
learning, and DNA computing.

Xu Zhou received the master’s degree from the Col-
lege of Computer Science and Electronic Engineer-
ing, Hunan University, in 2009. She is currently an
Associate Professor with the Department of Infor-
mation Science and Engineering, Hunan University,
Changsha, China. Her research interests include par-
allel computing and data management.

Wensheng Luo received the PhD degree from the
College of Computer Science and Electronic Engi-
neering, Hunan University, in 2022. He is a postdoc-
toral fellow with the School of Data Science, Chinese
University of Hong Kong, Shenzhen. His research
interests include parallel computing and data man-
agement/mining, and especially for the graph data.

Authorized licensed use limited to: National University of Singapore. Downloaded on March 20,2025 at 14:17:04 UTC from IEEE Xplore.  Restrictions apply. 

https://sites.google.com/ualberta.ca/nascimentodatasets/


7216 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 11, NOVEMBER 2024

Yifang Yin received the BE degree from the Depart-
ment of Computer Science and Technology, North-
eastern University, Shenyang, China, in 2011, and
the PhD degree in computer science from National
University of Singapore, Singapore, in 2016. She is
currently a senior scientist with the Machine Intellec-
tion Department, Institute for Infocomm Research,
A*STAR. Her research interests include machine
learning, multimodal multimedia analysis, and spa-
tiotemporal data mining.

Roger Zimmermann (Senior Member, IEEE) re-
ceived the PhD degree in computer science from
the University of Southern California, in 1998. He
is a professor in computer science from the School
of Computing, National University of Singapore
(NUS), Singapore. His current research interests in-
clude streaming media and AR/VR architectures, dy-
namic adaptive streaming over HTTP (DASH), soft-
ware defined networking (SDN), applications of ma-
chine/deep learning, mobile location-based services,
spatial data management.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Univer-
sity of New York. He is also a national distinguished
professor with Hunan University, China. His current
research interests include cloud computing, fog com-
puting and mobile edge computing, energy-efficient
computing and communication, embedded systems
and computer architectures and systems. He has au-
thored or coauthored more than 860 journal articles,
book chapters, and refereed conference papers, and
has received several best paper awards. He is an AAIA

fellow. He is also a member of Academia Europaea.

Kenli Li (Senior Member, IEEE) received the PhD
degree in computer science from the Huazhong Uni-
versity of Science and Technology, China, in 2003. He
is currently a Cheung Kong professor of computer sci-
ence and technology with Hunan University, the dean
of the College of Computer Science and Electronic
Engineering, Hunan University. His major research
interests include parallel and distributed processing.
He serves on the editorial board of the IEEE-TC.

Authorized licensed use limited to: National University of Singapore. Downloaded on March 20,2025 at 14:17:04 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


