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A B S T R A C T

With the rapid development of social media and human–computer interaction, multimodal emotion recognition
in conversations (MERC) tasks have begun to receive widespread research attention. The MERC task is to
extract and fuse complementary semantic information from different modalities to classify the speaker’s
emotion. However, the existing feature fusion methods usually directly map the features of other modalities
into the same feature space for information fusion, which cannot eliminate the heterogeneity between different
modalities and make the subsequent emotion class boundary learning more difficult. In addition, existing graph
contrastive learning methods obtain consistent feature representations by maximizing mutual information
between multiple views, which may lead to overfitting of the model. To tackle the above problem, we propose a
novel Adversarial Alignment and Graph Fusion via Information Bottleneck for Multimodal Emotion Recognition
in Conversations (AGF-IB) method. Firstly, we input video, audio, and text features into a multi-layer
perceptron (MLP) to map them into separate feature spaces. Secondly, we build a generator and a discriminator
for the three modal features, respectively, through adversarial representation to achieve information interaction
between modalities and eliminate the heterogeneity among modalities. Thirdly, we introduce graph contrastive
representation learning to capture intra-modal and inter-modal complementary semantic information and learn
intra-class and inter-class boundary information of emotion categories. Furthermore, instead of maximizing
the mutual information (MI) between multiple views, we use information bottleneck theory to minimize the
MI between views. Specifically, we construct a graph structure for the three modal features respectively and
perform contrastive representation learning on nodes with different emotions in the same modality and nodes
with the same emotion in different modalities, to improve the feature representation ability of nodes. Finally,
we use MLP to complete the emotional classification of the speaker. Extensive experiments show that AGF-IB
can improve emotion recognition accuracy on IEMOCAP and MELD datasets. Furthermore, since AGF-IB is a
general multimodal fusion and contrastive learning method, it can be applied to other multimodal tasks in a
plug-and-play manner, e.g., humor detection.
. Introduction

The multimodal emotion recognition in conversations (MERC) task
s to combine the semantic information of different modal features
e.g., text, video, and audio, etc.) to identify the emotion of the speaker
t the current moment [1]. With the continuous development of deep
earning technology and computing resources, MERC has also begun to
e widely used in many practical social media scenarios. For example,
n a human–computer dialogue system, the interactive system can
btain the user’s current emotional state according to the data analysis
f the human–computer dialogue, and then generate words that fit the
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scene. Therefore, accurately identifying the user’s current emotional
state has high practical application value [2].

However, MERC must eliminate the modality gap of multi-modal
heterogeneous data because video, audio, and text feature embeddings
in space are inconsistent [3,4]. The current mainstream feature fusion
method to eliminate the gap of different modal data is directly mapping
them into the same feature space for feature representation [5]. For ex-
ample, Tensor Fusion Network (TFN) [6] uses the tensor outer product
operation to map different modal features into a three-dimensional fea-
ture space for the fusion representation of multi-modal feature vectors.
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Fig. 1. Illustrative example of the effect of different contrastive learning methods on the multi-modal feature embeddings. Previous works mainly focus on intra-sample contrastive
learning, while ignoring inter-sample and inter-class contrastive learning. In our work, we consider both inter-sample and inter-class contrastive learning.
Low-rank Fusion Network (LFN) [7] utilizes low-rank decomposition
operations to combine highly correlated feature vectors and fuse three
modal features. However, the above methods forcibly map different
modal features into a common representation space, which cannot
eliminate their heterogeneity. We argue that a suitable feature fusion
method should first perform modal alignment and then perform modal
fusion.

Another problem with existing deep learning methods is that they
fail to capture inter-sample and inter-class semantic information that
is differentiated. Taking Fig. 1 as an example, previous contrastive
learning work focused on learning interactions and aligning modalities
within samples. For instance, Hu et al. [8] proposed Multi-modal Fu-
sion via Deep Graph Convolution Network (MMGCN) to fuse dialogue
relations and complementary semantic information of different modal-
ities. Liu et al. [9] proposed a Multi-modal Fusion Network (MFN),
which uses an attention mechanism to consider the importance of dif-
ferent modalities and obtains a multi-modal fusion vector with modal
interactions. It is difficult for the above methods to learn clear class
boundaries between different emotion categories. However, an increas-
ing number of studies have shown that capturing the relationship
between samples and emotion categories contributes to better emotion
classification. Therefore, as shown in Fig. 1 (c), we construct an inter-
modal and inter-class contrastive learning paradigm to learn more
discriminative emotional feature representations.

Hence, how to eliminate the heterogeneity between different modal-
ities and capture the intra-modal and inter-modal complementary se-
mantic information and intra-class and inter-class differences is still a
problem to be solved.

Furthermore, existing graph contrastive learning methods obtain
consistent node representations by maximizing the mutual information
between multiple views, which can lead to overfitting of the model. We
argue that a good graph contrastive learning method should construct
structurally heterogeneous but semantically similar multiple views.

To tackle the above problem, we propose a novel Adversarial Align-
ment and Graph Fusion via Information Bottleneck for Multimodal
Emotion Recognition in Conversations, i.e., AGF-IB. Firstly, we use
RoBERTa [10], 3D-CNN [11], and OpenSMILE [12] to obtain semantic
information in text, video, and audio, respectively. Secondly, we input
the extracted three modality features into a multi-layer perceptron
(MLP) to map them into separate feature spaces. Thirdly, we build a
generator and a discriminator for the three modal features, respectively,
and then use adversarial learning to achieve cross-modal feature fusion
and eliminate the heterogeneity between different modalities. Fourthly,
we construct a new graph contrastive representation learning architec-
ture via information bottleneck (IB), which captures complementary
semantic information within and between modalities and intra-class
and inter-class differences by performing contrastive representation
learning on nodes with different emotions in the same modality and
2

nodes with the same emotion in different modalities and utilizing IB to
minimize the mutual information between multiple views, to obtain a
structurally heterogeneous but semantically similar multiple views and
more explicit representation of the boundary distribution. Finally, we
use MLP for emotion classification.

1.1. Our contributions

Therefore, MERC should not only consider eliminating the hetero-
geneity among the three modalities of video, audio, and text but also
learn how to capture the complementary semantic information within
and between modalities and the intra-class and inter-class differences.
Inspired by the above analysis, we propose a novel Adversarial Align-
ment and Graph Fusion via Information Bottleneck for Multimodal
Emotion Recognition in Conversations (AGF-IB) to learn better emotion
class boundary information. The main contributions of this paper are
summarized as follows:

• A novel Adversarial Alignment and Graph Fusion via Informa-
tion Bottleneck for Multimodal Emotion Recognition in Conversa-
tions architecture is present, i.e., AGF-IB. AGF-IB can learn better
emotion class boundary information.

• A new cross-modal feature alignment method with adversarial
learning is designed to eliminate heterogeneity among modalities.

• A novel graph contrastive representation learning framework
via information bottleneck is present to enhance the correlation
of intra-modal and inter-modal semantic information, learn the
intra-class and inter-class differences, and obtain structurally
heterogeneous but semantically similar multiple views.

• Finally, extensive experiments are conducted on two benchmark
datasets, i.e., MELD and IEMOCAP. The experimental results
show that the emotion recognition effect of AGF-IB is better than
the existing comparison algorithms. Furthermore, AGF-IB can be
applied to other multimodal tasks in a plug-and-play manner,
e.g., humor detection.

The rest of this paper is organized as follows. Section 2 presents
the related work of prior MERC. Section 3 describes the multi-modal
emotion recognition task and presents the multi-modal data process-
ing flow. Section 4 illustrates the proposed neural network AGF-IB.
Section 5 describes the datasets and evaluation metrics used. The
related experimental results and discussion on the IEMOCAP and MELD
datasets are shown in Section 6. Finally, we conclude our work and
illustrate future work.
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2. Related work

2.1. Multimodal emotion recognition in conversation

As an interdisciplinary study (e.g., brain science and cognitive
science, etc.), MERC has received extensive attention from researchers
[13]. The current mainstream MERC research mainly includes sequen-
tial context modeling, speaker relationship modeling, and multimodal
feature fusion modeling. The sequential context modeling method
mainly combines the semantic information of the context to classify
the emotion at the current moment. The speaker relationship modeling
method mainly extracts the semantic information of the dialogue
relationship between speakers through the graph convolution opera-
tion. The multimodal feature fusion modeling method mainly achieves
cross-modal feature fusion by capturing intra-modal and inter-modal
complementary semantic information.

In the modeling method based on sequential context, Poria et al.
[14] proposed bidirectional long-short term memory (Bi-LSTM), which
can extract contextual semantic information of forward and reverse se-
quence. However, bc-LSTM has a limited ability to model long-distance
context dependencies. In response to the above problems, Beard et al.
[15] proposed recursive multi-attention (RM), which uses multi-gated
memory units to iteratively update the memory network, thereby re-
alizing the memory of global context information. Although sequen-
tial context-based modeling can achieve certain results in emotion
recognition, it ignores the intra-modal and inter-modal complementary
semantic information.

In the modeling method based on multi-modal feature fusion,
Zadeh et al. [6] proposed Tensor Fusion Network (TFN), which maps
multi-modal features into three-dimensional space through tensor outer
product operation, to realize information interaction between multi-
modal features. However, the feature dimension of TFN is high, which
is prone to an overfitting effect. To alleviate the problems of TFN,
Liu et al. [7] proposed a Low-rank Fusion Network (LFN), which re-
alizes dimensionality reduction of tensors through low-rank decom-
position operations and has achieved performance improvement in
emotion recognition. Hu et al. [8] proposed Multi-modal Fusion via
Deep Graph Convolution Network (MMGCN), which can effectively
utilize the complementary semantic information between multi-modal
features. Although the above methods can achieve cross-modal fea-
ture fusion, they all map the features of different modalities into
the same feature space, which makes it challenging to eliminate the
heterogeneity between different modalities.

In the modeling method based on speaker relationship,
Ren et al. [16] proposed a Latent Relation-Aware Graph Convolutional
Network (LR-GCN), which first constructs a speaker relation graph
and then introduces a multi-head attention mechanism to capture
latent relations between utterances. However, fully connected graphs
introduce noise information. Nie et al. proposed [17] Correlation-based
Graph Convolutional Network (C-GCN), this method can capture the
correlation inter and intra modalities and realize the effective use
of multimodal information. Although the modeling method based on
speaker relationships can fully use the semantic information of speaker
dialogue relationships and cross-modal semantic information, it ignores
the differences between different emotion categories.

2.2. Generative adversarial learning

In the field of multimodal emotion recognition in conversations,
data imbalance is a common problem, which will lead to biased learn-
ing of the model [18]. Therefore, researchers began to use generative
adversarial learning to generate new samples that fit the original data
distribution. Specifically, previous work generates new samples by
minimizing the data distribution learned by the generator and the
discriminator.
3

Su et al. [3] proposed Corpus-Aware Emotional CycleGAN (CAEmo-
CyGAN), which innovatively introduces a target-to-source generator to
generate new samples that more closely match the original data distri-
bution. CAEmoCyGAN enhances the model’s ability to learn unbiased
representations. Chang et al. [19] proposed Adversarial Cross Corpora
Integration (ACCI), which uses an adversarial autoencoder to generate
samples with contextual semantic information and uses emotion labels
as auxiliary constraints for the model. Although using new samples
generated by generative adversarial learning can effectively alleviate
the data imbalance problem, eliminating the heterogeneity between
modalities based on GAN is still an open problem.

2.3. Contrastive learning

Self-supervised learning (SL), an essential branch of deep learning
(DL), has received increasing research attention because of its powerful
ability to learn representations. Contrastive representation learning
(CRL) is one of the representative methods for SL. Specifically, CRL
learns discriminative features by continuously shrinking the distance
(e.g., Euclidean distance and Mahalanobis distance, etc.) between posi-
tive samples and expanding the distance between positive and negative
samples. Previous work usually obtains representations of features by
maximizing the mutual information (MI) between model inputs and
learned representations.

Li et al. [20] proposed contrastive predictive coding (CPC) to ad-
dress the lack of large-scale datasets for emotion recognition tasks.
Through unsupervised contrastive representation learning, CPC can
learn latent emotional semantic information from unlabeled data.
Kim et al. [21] proposed contrastive adversarial learning (CAL) to
solve the problem of existing methods relying too much on supervised
information. CAL learns complex semantic emotional information by
comparing samples with strong emotional features and samples with
weaker emotions. Wang et al. [22] designed a new architecture com-
posed of three networks (i.e., FacesNet, SceneNet, and ObjectsNet) to
improve the feature fusion ability of the model and solve the problem of
missing critical semantic information. Although contrastive representa-
tion learning can enhance the representation of emotional information,
the above methods ignore the intra-modal and inter-modal information
interaction and intra-class and inter-class contrastive representation
learning.

3. Preliminary information

In this section, the Multimodal Emotion Recognition in Conversa-
tions (MERC) task is defined in mathematical terms. In addition, we
also describe the data preprocessing methods of different modalities as
follows: (1) Word Embedding: To eliminate the ambiguity of words, this
paper uses RoBERTa [10] to obtain the embedding representation of
word vectors (2) Visual Feature Extraction: We use 3D-CNN to capture
deeper image features in videos and reduce the introduction of noisy
information. (3) Audio Feature Extraction: We use OpenSMILE [12] to
extract audio signals from different speakers.

3.1. Multimodal feature extraction

The experimental datasets IEMOCAP and MELD in this paper consist
of three modalities, which are stored in the form of text, video, and
audio, respectively. For the features of different modalities, we use
a specific data preprocessing method for feature extraction to obtain
feature vector representations with less noise information and rich
semantic information. We describe how the features are encoded for
each modality as follows.
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3.1.1. Word embedding
To disambiguate words and obtain feature vectors with rich se-

mantic information, following previous work [23–25], we use the
RoBERTa model [10] to encode words. In this paper, we use sentence-
level encoding to encode each utterance of the speaker, and obtain
a contextual semantic representation 𝜑𝑖 = {𝜑1

𝑖 , 𝜑
𝑛
𝑖 ,… , 𝜑𝑚𝑖 } containing

the entire sentence. Among them, 𝑚 is the dimension of word em-
bedding. Due to limited computing resources, we only take the first
100-dimensional vectors encoded by the RoBERTa model as our word
embedding representation 𝜉𝑢.

3.1.2. Visual feature extraction
The speaker’s facial expression and behavior reflect his inner emo-

tional state. Therefore, we capture the speaker’s facial expressions and
action changes from the video frames, thereby extracting semantic
information related to the speaker’s emotional changes. In this paper,
following previous work [11,26,27], we use the 3D-CNN model to
obtain a 512-dimensional feature vector 𝜉𝑣.

3.1.3. Audio feature extraction
The fluctuation of the voice in the audio signal also reflects the emo-

tional changes in the speaker’s heart. Sometimes a person’s actions may
not truly reflect his emotions, but his tone changes cannot be faked.
Therefore, following previous work [11,26,27], we use OpenSMILE to
extract the speaker’s audio features 𝜉𝑎.

3.2. Information bottleneck

Information bottleneck theory (IB) describes two processes during
neural network training, i.e., feature fitting and feature compression.
IB theory argues that during the training process, the model should
maintain task-related information while discarding redundant informa-
tion that is irrelevant to the task, which can improve the robustness of
the model. Formally, for the input data 𝑥 of the neural network, the
label information of the downstream task is 𝑦, and the information-
compressed feature representation ℎ can be obtained using the IB
strategy. The optimization goals of IB are as follows:

max
𝐇
𝐼(𝐘,𝐇,𝜽) − 𝛽𝐼(𝐗,𝐇,𝜽) (1)

here 𝛽 is an scaling factor, 𝜃 is a learnable parameter.
For the mutual information 𝐼(𝑌 ,𝐻) between the label 𝑌 and the

idden layer feature 𝐻 in Eq. (1), we get from the definition of mutual
nformation:

(𝐘,𝐇) = ∫ 𝑑𝐲𝑑𝐡𝑝(𝐲,𝐡) log 𝑝(𝐲,𝐡)
𝑝(𝐲)𝑝(𝐡)

= ∫ 𝑑𝐲𝑑𝐡𝑝(𝐲,𝐡) log 𝑝(𝐲 ∣ 𝐡)
𝑝(𝐲)

(2)

where 𝑝(𝑦|ℎ) represent the true label distribution under condition ℎ,
𝑞(𝑦|ℎ) represent the predicted label distribution under condition ℎ.
However, 𝑝(𝑦|ℎ) is a difficult estimation problem. Inspired by vari-
ational estimation [28], the paper utilizes 𝑞(𝑦|ℎ) as the variational
approximation of 𝑝(𝑦|ℎ), because 𝑝(𝑦|ℎ) can be calculated directly.

Since the Kullback–Leibler divergence 𝐾𝐿 ⩾ 0, we have:

𝐊𝐋[𝑝(𝐲 ∣ 𝐡), 𝑞(𝐲 ∣ 𝐡)] ≥ 0

⇒∫ 𝑑𝐲𝑝(𝐲 ∣ 𝐡) log 𝑝(𝐲 ∣ 𝐡)
𝑞(𝐲 ∣ 𝐡)

≥ 0

⇒∫ 𝑑𝐲𝑝(𝐲 ∣ 𝐡) log 𝑝(𝐲 ∣ 𝐡)

≥ 𝑑𝐲𝑝(𝐲 ∣ 𝐡) log 𝑞(𝐲 ∣ 𝐡)

(3)
4

∫

Combining Eqs. (2) and (3), we know:

𝐼(𝐘,𝐇) ≥ ∫ 𝑑𝐲𝑑𝐡𝑝(𝐲,𝐡) log 𝑞(𝐲 ∣ 𝐡)
𝑝(𝐡)

= ∫ 𝑑𝐲𝑑𝐡𝑝(𝐲,𝐡) log 𝑞(𝐲 ∣ 𝐡) +𝐻(𝐲)

≥ ∫ 𝑑𝐲𝑑𝐡𝑝(𝐲,𝐡) log 𝑞(𝐲 ∣ 𝐡)

= ∫ 𝑑𝐲𝑝(𝐲)∫ 𝑑𝐡𝑝(𝐡 ∣ 𝐲) log 𝑞(𝐲 ∣ 𝐡).

(4)

For the input data and hidden layer features 𝐼(𝑋,𝐻) in Eq. (1), we
get:

𝐼 (𝐇,𝐗) = ∫ 𝑑𝐡𝑑𝐱𝑝 (𝐱,𝐡) log 𝑝 (𝐡, 𝐱)
𝑝(𝐡), 𝑝(𝐱)

= ∫ 𝑑𝐡𝑑𝐱𝑝 (𝐱,𝐡) log 𝑝 (𝐡 ∣ 𝐱)
𝑝(𝐡)

(5)

Similarly, 𝑝(ℎ) is also a difficult estimation problem. The paper uti-
lizes 𝑟(𝑧) as the variational approximation of 𝑝(ℎ). Since 𝐊𝐋[𝑝(𝐡), 𝑟(𝐡)] ≥
⇒ ∫ 𝑑𝐡𝑝(𝐡) log 𝑝(𝐡) ≥ ∫ 𝑑𝐡𝑝(𝐡) log 𝑟(𝐡), we get an upper bound:

𝐼 (𝐇,𝐗) ≤ ∫ 𝑑𝐱𝑑𝐳𝑝 (𝐱) 𝑝 (𝐡 ∣ 𝐱) log 𝑝(𝐡∣𝐱)
𝑟(𝐳)

= ∫ 𝑑𝐱𝑝 (𝐱) ∫ 𝑑𝐡𝑝 (𝐡 ∣ 𝐱) log 𝑝(𝐡∣𝐱)
𝑟(𝐡) .

(6)

According to the derivation process of the above equation, we
obtain the lower bound of the information bottleneck theory as follows:

𝐼(𝐘,𝐇) −
𝑉
∑

𝑣=1
𝛽𝐼 (𝐇,𝐗)

≥ ∫ 𝑑𝐲𝑝(𝐲)∫ 𝑑𝐡𝑝(𝐡 ∣ 𝐲) log 𝑞(𝐡 ∣ 𝐲)

− 𝛽 ∫ 𝑑𝐱𝑝 (𝐱)∫ 𝑑𝐡𝑝 (𝐡 ∣ 𝐱) log 𝑝 (𝐡 ∣ 𝐱)
𝑟(𝐡)

(7)

Research has proven that the upper bound of the information bot-
tleneck theory is equivalent to the InfoNCE loss [28].

4. Methodology

4.1. Task definition

The task of Multimodal Emotion Recognition in Conversation
(MERC) aims to predict the emotion label of each utterance from a con-
versation containing textual, acoustic and visual modalities. The goal of
MERC is to determine the emotional state expressed by each utterance
from predefined emotion categories by comprehensively considering
the textual content, sound characteristics and visual information of
the utterance. Specifically, in MERC, a conversation is viewed as
consisting of 𝑁 consecutive utterances {𝑢1, 𝑢2,… , 𝑢𝑁} and 𝑀 speakers
{𝑠1, 𝑠2,… , 𝑠𝑀}, and each utterance is uttered by a specific speaker
in the conversation. In addition, utterance 𝑢𝑖 includes information
of different modalities, such as text content, voice characteristics,
and speaker’s facial expressions. We represent textual, acoustic, and
visual modality sequences of all utterances in the conversation as
[𝜉1𝑢 ; 𝜉

2
𝑢 ;… ; 𝜉𝑁𝑢 ] ∈ R𝑁×𝑑𝑢 , [𝜉1𝑎 ; 𝜉2𝑎 ;… ; 𝜉𝑁𝑎 ] ∈ R𝑁×𝑑𝑎 , and [𝜉1𝑣 ; 𝜉

2
𝑣 ;… ; 𝜉𝑁𝑣 ] ∈

R𝑁×𝑑𝑣 , respectively, where 𝑑𝑢 is the text dimension, 𝑑𝑎 is the audio
imension, and 𝑑𝑣 is the video dimension. By combining different
odal information, the model can more comprehensively understand

nd identify the emotional changes and expressions contained in the
onversation.

.2. The design of the AGF-IB structure

To increase the performance of multi-modal emotion recognition,
e propose a novel Adversarial Alignment and Graph Fusion via In-

ormation Bottleneck for Multimodal Emotion Recognition in Conver-
ations, namely AGF-IB. The overall architecture of AGF-IB is shown in
ig. 2.
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Fig. 2. The overall framework of the Adversarial Alignment and Graph Fusion via Information Bottleneck consists of a data preprocessing layer, a multimodal feature fusion layer,
a graph contrastive representation learning layer, and an emotion classification layer.
4.2.1. TGAN: Tri-modal Generative Adversarial Networks
Multimodal features provide more emotional semantic informa-

tion for the MERC task. However, multimodal data are heterogeneous
and noisy, which makes cross-modal feature fusion difficult. There-
fore, to effectively eliminate the heterogeneity between modalities and
make full use of the complementary semantic information of multi-
modalities, we design a Tri-modal Generative Adversarial Networks
(TGAN) to eliminate the data distribution differences between different
modal features.

Specifically, firstly, we use MLP to dimensionally align the three
modality features and map them into three separate feature spaces. The
formulas are as follows:
𝜉𝑢 = 𝐹𝑡

(

𝜉𝑢
)

∈ R𝑑

𝜉𝑣 = 𝐹𝑣
(

𝜉𝑣
)

∈ R𝑑

𝜉𝑎 = 𝐹𝑎
(

𝜉𝑎
)

∈ R𝑑
(8)

where 𝑑 denotes the dimension that maps the three modal features
to a separate representation space. 𝐹𝑡(⋅), 𝐹𝑣(⋅), 𝐹𝑎(⋅) represents the MLP
layer.

Secondly, we build a text generator and a text discriminator. The
input to the text generator is audio features 𝜉𝑎 and video features 𝜉𝑣.
The input of the text discriminator is the fused features generated by
the text generator containing three modal information. The objective
optimization functions for the text generator and discriminator are as
follows:
min
𝐺𝑡

𝐺𝑒𝑛
(

𝐺𝑡, 𝐷𝑡
)

= E𝜉𝑎∼𝑃data (𝜉𝑎)
[

log
(

1 −𝐷𝑡
(

𝐺𝑡
(

𝜉𝑎
)))]

+ E𝜉𝑣∼𝑃data (𝜉𝑣)
[

log
(

1 −𝐷𝑡
(

𝐺𝑡
(

𝜉𝑣
)))]

max
𝐷𝑡

𝐷𝑖𝑠
(

𝐺𝑡, 𝐷𝑡
)

= E𝑇∼𝑃data (𝑇 )
[

log𝐷𝑡(𝑇 )
]

+ E𝜉𝑎∼𝑃data (𝜉𝑎)
[

log
(

1 −𝐷𝑡
(

𝐺𝑡
(

𝜉𝑎
)))]

+ E𝜉𝑣∼𝑃data (𝜉𝑣)
[

log
(

1 −𝐷𝑡
(

𝐺𝑡
(

𝜉𝑣
)))]

(9)

where 𝐺𝑡 and 𝐷𝑡 represent text generator and text discriminator, 𝜉𝑎 ∼
𝑃data represents sampling samples from the data that conforms to the
audio feature distribution law, and 𝜉𝑣 ∼ 𝑃data represents sampling
samples from the data that conforms to the video feature distribution
law.

Thirdly, we build an audio generator and an audio discriminator.
The input to the audio generator is text features and video features.
The input of the audio discriminator is the fused features generated by
the audio generator containing three modal information. The objective
5

optimization functions for the audio generator and discriminator are as
follows:
min
𝐺𝑎

𝐺𝑒𝑛
(

𝐺𝑎, 𝐷𝑎
)

max
𝐷𝑎

𝐷𝑖𝑠
(

𝐺𝑎, 𝐷𝑎
) (10)

where 𝐺𝑎 and 𝐷𝑎 represent audio generator and audio discriminator.
Finally, we build a video generator and a video discriminator. The

input of the video generator is text features and audio features. The
input of the video discriminator is the fused features generated by
the video generator containing three modal information. The objective
optimization functions for the video generator and discriminator are as
follows:
min
𝐺𝑣

𝐺𝑒𝑛
(

𝐺𝑣, 𝐷𝑣
)

max
𝐷𝑣

𝐷𝑖𝑠
(

𝐺𝑣, 𝐷𝑣
) (11)

where 𝐺𝑣 and 𝐷𝑣 represent video generator and video discriminator.
It should be noted that after training the three-modal generative

confrontation network, we proceed to the training of subsequent tasks.

4.2.2. Speaker relation graph construction
We use a graph structure to extract semantic information of speaker

dialogue relations. Specifically, we construct a directed graph of
speaker relations  = {, ,,} for the three modal
features of video, audio and text respectively, where  ∈ {𝑇 , 𝑉 , 𝐴}, the
node 𝑣𝑀𝑖 (𝑣𝑀𝑖 ∈ 𝑉) is composed of unimodal features (𝑖.𝑒., 𝜉𝑎, 𝜉𝑣, 𝜉𝑢),
the directed edge 𝑟𝑖𝑗 (𝑟


𝑖𝑗 ∈ ) indicates that there is a dialogue

relationship between the node 𝑣𝑖 and the node 𝑣𝑗 , and 𝜔
𝑖𝑗 (𝜔


𝑖𝑗 ∈

, 0 ≤ 𝜔𝑀𝑖𝑗 ≤ 1) is the weight of the edge 𝑟𝑖𝑗 , and 𝑟 ∈ 𝑅
is the edge type. In particular, in the MERC task, we follow previ-
ous work [8,16,27] to construct a fully connected dialogue graph,
i.e., nodes are all connected within the context window. Furthermore,
there is only one type of edge in the graph, i.e., dialgue relationship.
Since the computational complexity of GCN is 𝑂(𝑛2), this leads to
high computational resources required. Therefore, we set the context
window size to 10.

To capture the key semantic information in the nodes, we use the
attention mechanism to calculate the weight of the edge, and perform
information aggregation according to the edge weight. Firstly, we use
MLP to dynamically learn the correlation between node 𝑖 and node 𝑗.
The formula is defined as follows:

𝜀𝑖𝑗 = 𝑊
𝜗1

(

GELU
(

𝑊
𝜗2

[

𝜉𝑖 ⊕ 𝜉𝑗
]))

(12)

where 𝑊
𝜗1

, 𝑊
𝜗2

are learnable network parameters, and ⊕ represents
the vector concatenation operation.
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Fig. 3. The overall process of graph contrastive representation learning includes intra-modal and inter-modal comparison, and intra-class and inter-class comparison.
a

𝐼

Secondly, we use a softmax function to normalize the correlation
between node 𝑖 and node 𝑗 to obtain the attention score for each edge.
The formula is defined as follows:

𝜔𝑀𝑖𝑗 = sof tmax
(

𝜀𝑖𝑗
)

=
exp

(

𝜀𝑖𝑗
)

∑

𝜂∈𝑖
exp

(

𝜀𝑖𝑗
) (13)

where 𝑖 represents the first-order neighbor nodes of node 𝑖. The larger
𝜔
𝑖𝑗 represents the stronger correlation between node 𝑖 and node 𝑗.

Finally, we update the node representations using a GCN followed
by a GELU activation function. The formula for GCN encoding is as
follows:

𝜓
𝑖 (𝑡) = 𝐺𝐸𝐿𝑈

⎛

⎜

⎜

⎝

∑

𝑟∈

∑

𝑗∈ 𝑟
𝑖

1
|

|

|

 𝑟
𝑖
|

|

|

(

𝜔
𝑖𝑗 𝑊


𝜃1
𝜓
𝑗 (𝑡 − 1)

+𝜔
𝑖𝑖 𝑊


𝜃2
𝜓
𝑖 (𝑡 − 1)

)

)

(14)

where  𝑟
𝑖 is the set of first-order neighbor nodes of node 𝑖 under the

edge relationship 𝑟 ∈ 𝑅, | 𝑟
𝑖 | is the modulus of  𝑟

𝑖 , and 𝜓
𝑖 (𝑡) is the

feature vector encoded by GCN.

4.3. IB loss and mutual information estimation

For the given input data set 𝑋 = {𝑥1, 𝑥2,… , 𝑥𝑁}, it contains one
ositive sample from 𝑝(𝑥𝑡+𝑘 ∣ 𝑐𝑡) and 𝑁−1 positive samples from 𝑝(𝑥𝑡+𝑘)

negative sample, the InfoNCE loss is defined as follows:

N = −E
𝑋

[

log
𝑓𝑘

(

𝑥𝑡+𝑘, 𝑐𝑡
)

∑

𝑥𝑗∈𝑋 𝑓𝑘
(

𝑥𝑗 , 𝑐𝑡
)

]

(15)

where 𝑐𝑡 represents the contextual information, i.e., 𝑐𝑡 = {𝑥1, 𝑥2,… , 𝑥𝑡}.
However, the sample 𝑥𝑖 should be derived from the conditional

distribution 𝑝(𝑥 + 𝑘 ∣ 𝑐 ), not 𝑝(𝑥 + 𝑘). The conditional distribution
6

𝑡 𝑡 𝑡
is derived as follows:

𝑝
(

𝑑 = 𝑖 ∣ 𝑋, 𝑐𝑡
)

=
𝑝
(

𝑥𝑖 ∣ 𝑐𝑡
)
∏

𝑙≠𝑖 𝑝
(

𝑥𝑙
)

∑𝑁
𝑗=1 𝑝

(

𝑥𝑗 ∣ 𝑐𝑡
)
∏

𝑙≠𝑗 𝑝
(

𝑥𝑙
)

=

𝑝(𝑥𝑖 ∣𝑐𝑡)
𝑝(𝑥𝑖)

∑𝑁
𝑗=1

𝑝
(

𝑥𝑗 ∣𝑐𝑡
)

𝑝
(

𝑥𝑗
)

(16)

Minimizing the InfoNCE loss 𝑁 is equivalent to maximizing the
lower bound of mutual information. Inspired by the InfoNCE loss,
minimizing mutual information is equivalent to optimizing negative
InfoNCE. Formally, nodes of the same type are regarded as positive
sample pairs (i.e., {(𝑒𝑖, 𝑒𝑖)|𝑣𝑖 ∈ }), while nodes of different types
re regarded as negative sample pairs (i.e., {(𝑒𝑖, 𝑒𝑗 )|𝑣𝑖, 𝑣𝑗 ∈ }, 𝑖 ≠ 𝑗).

(

𝐄, �̃�
)

=
∑

𝑣𝑖∈
log

exp
(

𝑠
(

𝐞𝑖, �̃�𝑖
)

∕𝜏
)

∑

𝑣𝑗∈ exp
(

𝑠
(

𝐞𝑖, �̃�𝑗
)

∕𝜏
) (17)

Where 𝐄 represents the original view and �̃� represents the augmented
view. 𝑠(⋅) is used to calculate the similarity between nodes.

4.4. IMCL: Intra-modal and inter-modal contrastive learning via IB

IMCL aims to learn complementary semantic information between
modalities and obtain a more discriminative embedding representation
through contrastive learning method. Different from existing graph
contrastive learning methods, we use information bottleneck theory to
minimize the mutual information between multiple views. Specifically,
in IMCL, positive samples are represented by samples of the same
class in the same modality, while negative samples are represented by
samples of the same class in different modalities. The intra-modal and
inter-modal contrastive loss is defined as follows:

𝐼𝑀𝐶𝐿 = −E𝑠

⎡

⎢

⎢

⎢

∑𝑁
𝑖=1 exp

(

𝑃
𝑖 ∕𝜏

)

∑2𝑁 ∑2𝑀 exp
(

𝑃 +𝑄∕𝜏
)

⎤

⎥

⎥

⎥

(18)
⎣

𝑖=1 𝑗=1 𝑖 𝑗
⎦



Information Fusion 112 (2024) 102590Y. Shou et al.

n

where 𝑃
𝑖 = 𝑠

(

𝜇, 𝜒𝑖
)

, 𝑄
𝑗 = 𝑠

(

𝜇, 𝛿𝑗
)

, 𝜇 denotes the anchor
embedded representation, 𝑁 denotes the number of positive samples,
𝑀 denotes the number of negative samples, 𝜒𝑀𝑖 and 𝛿𝑗 denote the em-
bedded representations of positive and negative samples, respectively.
It should be noted that 𝜒

𝑖 and 𝛿𝑗 are the same modality and different
classes.

However, if Eq. (18) is used as a contrastive loss, the model may
fall into a local optimal solution. i.e., 𝑠

(

𝜇, 𝜒
𝑖

)

can be minimized
but 𝑠

(

𝜇, 𝛿𝑗
)

cannot be maximized. The above situation is because
when the similarity between negative sample pairs is 0, no matter
how much the similarity between positive sample pairs is, the con-
trastive loss of the model tends to the minimum value. Our desired
goal is that 𝑠

(

𝜇, 𝜒
𝑖

)

can be minimized and 𝑠
(

𝜇, 𝛿𝑗
)

can be
maximized. Therefore, we introduce a regularization term to ensure
that the similarity between positive sample pairs can be maximized
and the similarity between negative sample pairs can be minimized.
The formula is defined as follows:

𝑅𝐼𝑀𝐶𝐿 =E𝑆

[

1
2𝑁

𝑁
∑

𝑖=1

‖

‖

‖

𝑠
(

𝜇, 𝛿𝑗
)

− 𝛽‖‖
‖

2
]

̃𝐼𝑀𝐶𝐿 = 𝐼𝑀𝐶𝐿 + 𝑅𝐼𝑀𝐶𝐿

(19)

where 𝐼𝑀𝐶𝐿 is the regularization loss for IMCL, 𝛽 is a hyperparameter.
IMCL encourages high similarity between samples of the same class in
the same modality, and forces low similarity between samples of the
same class in different modalities. The overall process of IMCL and ICCL
is shown in Fig. 3.

4.5. ICCL: Intra-class and Inter-class Contrastive Learning via IB

Similar to IMCL, ICCL aims to learn intra-class and inter-class
semantic information with differences through contrastive learning.
Specifically, the intra-class and inter-class contrastive loss is defined
as follows:

𝐼𝐶𝐶𝐿 = −E𝑠

⎡

⎢

⎢

⎢

⎣

∑𝑁
𝑖=1 exp

(

𝑃
𝑖 ∕𝜏

)

∑𝑁
𝑖=1

∑𝑀
𝑗=1 exp

(

𝑇
𝑖 +𝑄

𝑗 ∕𝜏
)

⎤

⎥

⎥

⎥

⎦

(20)

where 𝑇
𝑖 = 𝑠

(

𝜇𝑖 , 𝜒
𝑖

)

, 𝜒
𝑖 and 𝛿𝑗 belong to samples of the same

modality. Similar to IMCL, we also introduce regularization terms to
strengthen the similarity between positive sample pairs and reduce the
similarity between negative samples. The formula is defined as follows:

𝑅𝐼𝐶𝐶𝐿 = E𝑆

[

1
𝑁

𝑁
∑

𝑖=1

‖

‖

‖

𝑠
(

𝜇, 𝜒
𝑖

)

− 1‖‖
‖

2
]

̃𝐼𝐶𝐶𝐿 = 𝐼𝐶𝐶𝐿 + 𝑅𝐼𝐶𝐶𝐿

(21)

where 𝑅𝐼𝐶𝐶𝐿 is the regularization loss for ICCL.
To understand why IMCL and ICCL are effective, we introduce two

important theories in contrastive learning, i.e., alignment and unifor-
mity. Specifically, alignment is used to measure the spatial distance
between positive pairs, and the formula is defined as follows:

𝓁ali(𝑓 ; 𝛼) ≜ E
(𝑥,𝑦)∼𝑝pos

[

‖𝑓 (𝑥) − 𝑓 (𝑦)‖𝛼2
]

, 𝛼 > 0 (22)

where 𝑝𝑝𝑜𝑠 represents the spatial distribution between positive pairs.
The goals of Eq. (22) are very consistent with those of contrastive
learning. Similarly, for IMCL and ICCL, the alignment metric is defined
as follows:

𝓁ali(𝑓 ; 𝛼) ≜ E
(𝑥,𝑦)∼𝑝pos

[

‖𝑓 (𝑥, 𝜃) − 𝑓 (𝑦, 𝜃′)‖𝛼2
]

(23)

The consistency is defined as follows:

𝓁uni (𝑓 ; 𝛼) ≜ log E
(𝑥,𝑦)∼𝑝pos

[

𝑒−𝑡‖𝑓 (𝑥;𝜽)−𝑓 (𝑦;𝜽)‖
2
2
]

(24)

After analyzing IMCL and ICCL, they can achieve better alignment
while improving uniformity.
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Table 1
The division of training set, validation set and test set of IEMOCAP and MELD data
sets.

Datasets Partition Utterance Count Dialogue Count

IEMOCAP train+val 5810 120
test 1623 31

MELD train+val 11 098 1153
test 2610 280

4.6. Emotion inference subnetwork

After the multimodal feature vectors pass through the matching
attention layer, each contextual utterance can be represented as a mul-
timodal fusion vector 𝑧𝑓 . We use a multi-layer perceptron deep neural
etwork called the Emotion Inference Subnetwork 𝑠 with weights 𝑊

conditioned on 𝑧𝑓 . The multi-layer perceptron (MLP) consists of two
fully connected layers with ReLU activation functions and connects
them to a decision layer. The maximum likelihood function of the
Emotion Inference Subnetwork 𝑠 is defined as follows, where 𝜑 is the
label of emotion prediction:

𝐶𝐿𝑆 = argmax
𝜑
𝑝
(

𝜑 ∣ 𝑧𝑓 ;𝑊
)

= argmax
𝜑

𝑠
(

𝑧𝑓 ,𝑊
)

(25)

where 𝐶𝐿𝑆 is emotion classification loss for the model. The smaller
𝐶𝐿𝑆 , the better the emotion classification effect.

4.7. Model training

The intra-modal and inter-modal, and intra-class and inter-class
contrastive losses are obtained by weighted summation of IMCL and
ICCL. The formula is defined as follows:

hybrid = 𝜆̃𝐼𝑀𝐶𝐿 + (1 − 𝜆)̃𝐼𝐶𝐶𝐿 (26)

The overall loss for model training is obtained by summing the
classification loss and the contrastive loss. The formula for the model
training loss is defined as follows:

overall = 𝐶𝐿𝑆 + hybrid (27)

where 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 is the overall loss of the model. The smaller 𝑜𝑣𝑒𝑟𝑎𝑙𝑙, the
better the training effect of the model.

5. Experiments

5.1. Benchmark dataset used

The MELD [29] and IEMOCAP [30] multimodal conversation
datasets are often used for comparative experiments in MERC. We
introduce the situation of the two datasets as follows and show the
division of the IEMOCAP and MELD datasets in Table 1.

The Interactive Emotional Dyadic Motion Capture Database (IEMO-
CAP) contains three modalities, namely video, audio, and text. There-
fore, IEMOCAP is a multimodal dataset, and the use of multimodal
emotion recognition in conversations methods can enhance the predic-
tion effect of the model. A total of 10 actors and actresses are included
in the IEMOCAP dataset, and they communicate in an interactive way.
For each conversation, it is annotated by multiple emotion experts,
avoiding the subjectivity of human annotation. In addition, the IEMO-
CAP dataset contains a total of six emotions, namely ‘‘sad’’, ‘‘happy’’,
‘‘angry’’, ‘‘neutral’’, ‘‘frustrated’’ and ‘‘excited’’.

The Multi-modal EmotionLines Dataset (MELD) is also a multi-
modal dataset whose corpus consists of dialogues from the TV series
Friends. Similar to the IEMOCAP dataset, each conversation is also
annotated by multiple emotion experts. In addition, the MELD dataset
contains a total of seven emotions, namely ‘‘disgust’’, ‘‘anger’’, ‘‘joy’’,
‘‘fear’’, ‘‘sadness’’, ‘‘neutral’’, and ‘‘surprise’’.
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Table 2
Experimental results with our method and other baseline on IEMOCAP dataset. The best result in each column is in bold. Average(w) represents the
weighted average.
Methods IEMOCAP

Happy Sad Neutral Angry Excited Frustrated Average(w)

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 WAA WF1

TextCNN 27.73 29.81 57.14 53.83 34.36 40.13 61.12 52.47 46.11 50.09 62.94 55.78 48.93 48.17
bc-LSTM 29.16 34.49 57.14 60.81 54.19 51.80 57.03 56.75 51.17 57.98 67.12 58.97 55.23 54.98
bc-LSTM+Att 30.56 35.63 56.73 62.09 57.55 53.00 59.41 59.24 52.84 58.85 65.88 59.41 56.32 56.19
DialogueRNN 25.63 33.11 75.14 78.85 58.56 59.24 64.76 65.23 80.27 71.85 61.16 58.97 63.42 62.74
DialogueGCN 40.63 42.71 89.14 84.45 61.97 63.54 67.51 64.14 65.46 63.08 64.13 66.90 65.21 64.14
CT-Net 47.97 51.36 78.01 79.94 69.08 65.82 72.98 67.21 85.35 78.74 52.27 58.83 68.01 67.55
LR-GCN 54.24 55.51 81.67 79.14 59.13 63.84 69.47 69.02 76.37 74.05 68.26 68.91 68.52 68.35
MM-DFN 40.17 42.22 74.27 78.98 69.13 66.42 70.25 69.97 76.99 75.56 68.58 66.33 68.21 68.18
MMIM 33.17 38.97 79.90 71.62 63.03 58.26 61.88 67.20 77.54 75.68 63.68 65.39 63.89 64.39
GCNet 40.85 48.74 74.67 72.15 63.81 61.93 60.91 65.40 84.52 77.31 64.59 63.65 65.37 65.90
ARGF 26.39 – 68.98 – 54.95 – 62.35 – 64.21 – 68.50 – 60.20 59.81
M2FNet 65.92 60.00 79.18 82.11 65.80 65.88 75.37 68.21 74.84 72.60 66.87 68.31 69.69 69.86
AGF-IB 71.88 69.96 74.64 81.58 67.25 63.80 73.79 68.37 82.66 79.15 60.45 63.95 70.46 70.36
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5.2. Implementation details

In this section, we describe the implementation details of the model
during training. We divide the benchmark dataset into three parts. The
first part is the training set for model training, the second part is the
validation set for updating the network parameters, and the third part
is the test set for evaluating the emotional prediction effect of the
model. The experimental environment of this paper is the Windows 10
operating system, and the hardware driver is a computer with Nvidia
RTX 3090. We use Python 3.8, and Pytorch 1.9.1 version to complete
the construction of deep learning algorithms. To ensure the effective
convergence of the model, this paper uses the highly stable Adam
algorithm [31] to optimize the network parameters. In addition, during
the experiment, we set the epochs size to 60, batch size to 32, learning
rate to 0.0005, dropout to 0.5, and weight decay coefficient to 0.00001.
If not specified otherwise, we use RoBERTa-Large by default to extract
contextual semantic information of text features.

5.3. Evaluation metrics

To compare the emotion recognition effect of our algorithm and
other baseline algorithms, we use four evaluation metrics: (1) Accuracy;
(2) F1; (3) Weighted average accuracy (WAA); (4) Weighted average F1
(WAF1).

5.4. Baseline models

We do extensive comparative experiments on two popular datasets
to count the emotion recognition effect of the model proposed in this
paper. Some recent comparison algorithms are described below:

TextCNN: The TextCNN proposed by Kim et al. [32] uses Convo-
lutional Neural Networks (CNN) for emotion recognition of dialogues.
TextCNN exploits the local attention mechanism of convolution kernels
to extract contextual utterances with emotional polarity in texts. How-
ever, TextCNN cannot model the context of long-range dependencies
and can only model unimodal features.

bc-LSTM: The bidirectional LSTM (bc-LSTM) proposed by
Poria et al. [14] can not only model long-range contextual dependen-
cies, but also extract contextual information in two opposite direc-
tions, thereby eliminating word ambiguity. However, bc-LSTM does not
model
speaker relations.

DialogueRNN: The DialogueRNN proposed by Ghosal et al. [11]
onsists of three gated recurrent units (i.e., global GRU, party GRU and
motion GRU), which are able to distinguish between speakers.
DialogueGCN: DialogueGCN proposed by Ghosal et al. [27] is the

first to use graph convolutional neural networks (GCNs) to model
8

speaker relations. DialogueGCN simulates the dialogue relationship ‘
between speakers by constructing a fully connected directed graph,
which can fuse the contextual semantic information and the semantic
information of the dialogue relationship between speakers. However,
the fully connected graph constructed by DialogueGCN may introduce
noisy information.

CTNet: The Conversational Transformer Network proposed by
ian et al. [33] comprehensively considers intra-modal and inter-modal
odeling, and captures long-range contextual information by using a

ross-modal Conversational Transformer architecture.
LR-GCN: The LR-GCN proposed by Ren et al. [16] not only utilizes

CN to model the relationship between speakers, but also utilizes
multi-head attention mechanism to model the latent relationship

etween utterances. In addition, to speed up the convergence of the
odel, LR-GCN also introduces a residual structure to transfer more

radient information. LR-GCN has achieved good experimental results.
MM-DFN: Chudasama et al. [24] combines a multi-head attention

echanism with an adaptive triplet loss to learn emotion-related fea-
ures.
M2FNet: Hu et al. [34] used Multi-modal Fusion Network to dy-

amically fuse context information and make full use of complementary
emantic information between multi-modal features.
MMIM: Han et al. [35] uses Multimodal Infomax to maximize the

utual information (MI) between the maximum single-modal infor-
ation and multi-modal fusion information to retain the task-related

emantic information.
ARGF: Mai et al. [36] a novel adversarial encoder framework to

earn unchanged feature information between different modular char-
cteristics. ARGF’s goal is to learn the original distribution of data
hrough the encoder.
GCNet: Lian et al. [37] constructs Speaker GNN and Temporal GNN

o capture the time and speaker dependence of the context and speaker
t the same time.

. Results and discussion

.1. Comparison with baselines

This paper compares our proposed emotion recognition algorithm
GF-IB with other deep learning algorithms. Tables 2 and 3 show the
ecognition accuracy and F1 value of all algorithms on each emotion
ategory on the IEMOCAP and MELD datasets, and the average accu-
acy and F1 value of the model. Experimental results demonstrate the
uperiority of our algorithm.
IEMOCAP: As shown in Table 2, AGF-IB has the best emotion recog-

ition effect on the IEMOCAP dataset, and the WAA and WF1 values are
0.46% and 70.36%, respectively. In addition, AGF-IB has the highest
ccuracy rate on the ‘‘happy’’ classes, and the highest F1 value on the

‘happy’’ and ‘‘excited’’ classes, while the accuracy and F1 value of other
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Table 3
Experimental results with our method and other baseline on MELD dataset. The best result in each column is in bold. Average(w) represents the weighted
average.
Methods MELD

Neutral Surprise Fear Sadness Joy Disgust Anger Average(w)

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 WAA WF1

TextCNN 76.23 74.91 43.35 45.51 4.63 3.71 18.25 21.17 46.14 49.47 8.91 8.36 35.33 34.51 56.35 55.01
bc-LSTM 78.45 73.84 46.82 47.71 3.84 5.46 22.47 25.19 51.61 51.34 4.31 5.23 36.71 38.44 57.51 55.94
bc-LSTM+Att 70.45 75.55 46.43 46.35 0.00 0.00 21.77 16.27 49.30 50.72 0.00 0.00 41.77 40.71 58.51 55.84
DialogueRNN 72.12 73.54 54.42 49.47 1.61 1.23 23.97 23.83 52.01 50.74 1.52 1.73 41.01 41.54 56.12 55.97
CT-Net 75.61 77.45 51.32 52.76 5.14 10.09 30.91 32.56 54.31 56.08 11.62 11.27 42.51 44.65 61.93 60.57
MMIM 61.43 75.33 71.52 52.91 0.00 0.00 66.65 7.27 70.18 50.79 0.00 0.00 60.75 46.51 62.80 56.50
GCNet 60.50 74.32 75.00 46.94 0.00 0.00 66.67 53.74 65.37 59.43 0.00 0.00 66.67 38.68 62.18 60.39
M2FNet 72.88 67.98 52.76 58.66 5.57 3.45 50.09 47.03 58.49 55.50 17.69 15.24 57.33 55.25 63.85 62.71
AGF-IB 81.10 81.19 56.16 57.24 6.90 5.06 47.41 37.32 65.92 65.92 2.94 2.94 42.28 45.22 64.14 64.01
t
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categories are slightly lower than other comparison algorithms. The
reason is that AGF-IB comprehensively considers the heterogeneity of
modalities, the intra-modal and inter-modal complementary semantic
information, and the intra-class and inter-class differences. The emotion
recognition effect of M2FNet is second, and the values of WAA and
WF1 are 69.69% and 69.86%, respectively. The reason why M2FNet
is less effective than AGF-IB is that it ignores the heterogeneity of
modalities, which leads to poor learning effect of subsequent class
boundaries. The effects of other algorithms are relatively poor, and
they do not consider the heterogeneity of modalities and the intra-class
and inter-class differences. Specifically, the reasons for the performance
of AGF-IB better than MMIM may attribute to reserving semantic
information related to task-related semantic information by introducing
information bottlenecks theory. Compared with some GCN-based meth-
ods (e.g., DialogueGCN and GCNet), AGF-IB introduces a contrastive
learning mechanism in GCN to construct a multi-view with structural
heterogeneity and similar semantics to improve the generalization
ability of the model. Compared with the adversarial learning method
ARGF, AGF-IB builds a generator and a discriminator for each modal
feature separately, and inputs the generated audio features into the
text and video discriminators respectively to eliminate the gap between
modalities while retaining modality-specific information.

MELD: As shown in Table 3, AGF-IB has the best emotion recog-
nition effect on the MELD dataset, and the WAA and WF1 values are
64.14% and 64.01%, respectively. In addition, AGF-IB has the highest
accuracy on the ‘‘neutral’’, ‘‘surprise’’, ‘‘fear’’, ‘‘joy’’, and ‘‘sadness’’
categories, the F1 values on the ‘‘neutral’’, ‘‘surprise’’, ‘‘joy’’, ‘‘sadness’’,
and ‘‘angry’’ categories are the highest, while the accuracy and F1
values in other categories are slightly lower than other comparison
algorithms. In the ‘‘fear’’ and ‘‘disgust’’ categories, the recognition
accuracy and F1 value of AGF-IB and other models are low, because
the MELD dataset has a serious category imbalance problem.

The analysis of the above experimental results illustrates the su-
perior performance of AGF-IB, which can effectively learn the class
boundary information of emotions.

6.2. Importance of the modalities

Since different modal features contain different semantic informa-
tion, we explored the emotion recognition effect of different modal
features on the IEMOCAP and MELD datasets. As shown in Table 4,
text features perform best in emotion recognition in single-modal exper-
iments, with WA values of 65.4% and 60.8%, and WF1 values of 60.8%
and 60.1% in IEMOCAP and MELD datasets, respectively. We think this
is because text is the most direct way for speakers to express their
emotions, and it contains the least noisy information. Audio features
perform second best for emotion recognition, while video features
perform the worst. We think this is because video features contain too
much noise information, and it is difficult for the model to extract
key information. The emotion recognition effect of the combination of
9

text, audio and video features is the best in all experiments, because M
Table 4
The effect of AGF-IB on IEMOCAP and MELD datasets using
unimodal features and multimodal features, respectively. T, V,
and A represent text, video, and audio modality features. The
best result in each column is in bold.
Modality IEMOCAP MELD

WA WF1 WA WF1

T 65.4 64.9 60.8 60.1
A 62.3 62.0 58.6 57.7
V 56.2 54.5 56.8 54.3
T+A+V 70.5 70.4 64.1 64.0

Table 5
Emotion recognition effects of different multimodal feature fusion methods on IEMO-
CAP and MELD datasets. We use multi-modal features for each method. The best result
in each column is in bold.

Methods IEMOCAP MELD

WA WF1 WA WF1

Add 55.2 55.0 57.5 55.9
Concatenate 58.3 57.4 58.6 57.1
Tensor Fusion 63.2 63.0 59.6 58.7
Low-rank Fusion 63.8 63.6 60.8 59.5
Cross-modal Fusion(Ours) 70.5 70.4 64.1 64.0

the model effectively utilizes the complementary semantic information
between modalities. The above experimental phenomena also prove the
rationality of our mode fusion layer design.

6.3. Effectiveness of cross-modal feature fusion

In this section, to compare the difference between our proposed
multimodal feature fusion method and other methods in multi-modal
emotion recognition, we compare our method combining trimodal
generative adversarial networks and graph contrastive learning with
the other four feature fusion methods.

Add: The Add method combines the feature vectors by summing
the multimodal features, which ignores the information interaction
between the multimodal features.

Concatenate: The Concatenate method is a splicing operation of
multi-modal features, which does not model multi-modal features
within and between modalities.

TFN: TFN method models the fusion between multimodal features
hrough tensor outer product operations.
LFM: LFM fuses multimodal features through low-rank tensors.
As shown in Table 5, compared with other fusion methods, our

ross-modal fusion method achieves the best emotion recognition per-
ormance, with WA values of 70.5% and 64.1% and WF1 values of 70.4
nd 64.0% on IEMOCAP and MELD datasets, respectively. Specifically,
ur method improves the WA value by 15.3% and 6.6% and the WF1
alue by 15.4% and 8.1% over the Add method on the IEMOCAP and

ELD datasets, respectively. This is because the Add method cannot
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Table 6
The results of the equal parameters experiment on IEMOCAP and MELD datasets. The
parameters of methods with ⋄ are incremented to be the same as methods with AGF-IB.
The best result in each column is in bold.

Method Params IEMOCAP MELD

WAA WF1 WAA WF1

bc-LSTM 0.53M 55.2 54.9 57.1 56.4
bc-LSTM⋄ 14.68M 52.9 52.7 53.3 52.9

DialogueRNN 13.19M 63.4 62.7 56.1 56.0
DialogueRNN⋄ 14.68M 62.7 62.2 54.8 54.1

DialogueGCN 12.78M 65.2 64.1 54.9 54.7
DialogueGCN⋄ 14.68M 63.8 62.7 54.4 53.0

AGF-IB 14.68M 70.5 70.4 64.1 64.0

eliminate the heterogeneity among modalities and cannot utilize com-
plementary semantic information between modalities. Compared with
the Concatenate method, our method improves the WA value by 12.2%
and 6.9%, and the WF1 value by 5.5% and 6.9%, respectively. Similar
to the Add method, the Concatenate method cannot take advantage
of complementary semantic information between modals. Compared
with the Add and Concatenate methods, the Tensor Fusion and Low-
rank Fusion methods have significantly improved results, because they
utilize complementary semantic information between modalities, and
the Low-rank Fusion method can reduce redundant information be-
tween modalities. However, they cannot eliminate the heterogeneity
between modalities. The above experiments illustrate the superiority
of our designed cross-modal approach and the necessity of eliminating
modality heterogeneity.

6.4. Equal parameter experiments

To illustrate that our method AGF-IB does not improve the perfor-
mance of the model due to the increase in the number of parameters,
but the performance improvement caused by the architecture design
of the model, we conducted experiments with equal parameters on the
IEMOCAP and MELD datasets. As shown in Table 6, the WA and WF1
values of emotion recognition of the bc-LSTM, DialogueRNN and Dia-
logueGCN models decreased when the number of parameters increased.
In addition, in the process of observing the model training, we find that
the model is more prone to overfitting as the number of parameters
increases. Therefore, the above phenomenon shows that our model
architecture outperforms existing emotion recognition algorithms.

Theoretical Analysis: We mathematically prove that simply in-
reasing the number of model parameters while keeping the dataset size
onstant does not improve the model performance. Specifically, given
data set ,  =

{(

𝑥1, �̂�1
)

,
(

𝑥2, �̂�2
)

,…
(

𝑥𝑁 , �̂�𝑁
)}

, the actual trained
model and the ideal model are defined as follows:
ℎtrain = argmin

ℎ
𝐿
(

ℎ,train
)

ℎall = argmin
ℎ
𝐿
(

ℎ,all
)

(28)

here ℎtrain is the model trained on the training set train , and ℎall

is the model obtained on all existing training datasets all .
We hope that 𝐿

(

ℎtrain ,all
)

and 𝐿
(

ℎall ,all
)

should be as close
s possible. Namely:

ℎ ∈ , ||
|

𝐿
(

ℎ,train
)

− 𝐿
(

ℎ,all
)

|

|

|

≤ 𝛿
2

(29)

where 𝛿 is a number close to 0.  represents a collection of models
nder different parameter settings.

Due to ℎtrain = argminℎ 𝐿
(

ℎ,train
)

, we can get 𝐿
(

ℎtrain ,all
)

≥
(

ℎtrain ,train
)

. Hence we transform Eq. (29) to get the Eq. (30) as
ollows:
(

ℎtrain ,all
)

≤ 𝐿
(

ℎtrain ,train
)

+ 𝛿
2

≤ 𝐿
(

ℎall ,train
)

+ 𝛿
2

≤ 𝐿
(

ℎall ,
)

+ 𝛿 + 𝛿 = 𝐿
(

ℎall ,
)

+ 𝛿

(30)
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all 2 2 all
According to Eq. (30), we can simplify it to obtain Eq. (31) as
follows:

𝐿
(

ℎtrain ,all
)

− 𝐿
(

ℎall ,all
)

≤ 𝛿 (31)

Under the condition of satisfying Eq. (31), the model can be trained
on the training set to obtain an optimal network parameter. Intuitively,
when the optimal parameters ℎtrain of the model trained on the dataset
train are similar to the parameters ℎall trained on the dataset all ,
we think that ℎtrain is the optimal solution trained on the training set.

Since we cannot collect all the existing training data all , we can
nly obtain a subset train by sampling from all . We assume that the
train obtained by sampling is bad, then there is at least one ℎ to get

he following situation:

𝐿
(

ℎ,train
)

− 𝐿
(

ℎ,all
)

|

|

|

> 𝜖, 𝜖 = 𝛿
2

(32)

According to Hoeffding’s inequality, we can know the probability of
sampling a bad train given model ℎ as follows:

𝑃
(

train is bad due to ℎ
)

≤ 2 exp
(

−2𝑁𝜀2
)

(33)

where 𝑁 represents the number of sampling times.
Therefore, the probability that train is bad in all cases of ℎ ∈  is

as follows:
𝑃
(

train is bad
)

=
⋃

ℎ∈
𝑃
(

train is bad due to ℎ
)

≤
∑

ℎ∈
𝑃
(

train is bad due to ℎ
)

≤
∑

ℎ∈
2 exp

(

−2𝑁𝜀2
)

= || ⋅ 2 exp
(

−2𝑁𝜀2
)

(34)

According to Eq. (34), we can know that when the number of
samples is fixed, the probability that train is bad is only related to
the complexity || of the model. Therefore, we have mathematically
proved that when the data set is fixed, the larger the number of
parameters of the model, the worse the generalization performance of
the model may be. Therefore, we can conclude that the more complex
the model is, the better the performance of the model is. Instead, we
need to design an effective architecture to learn the distribution law of
the data.

6.5. Comparison of modality margin 𝛽

Since the modal margin 𝛽 is a hyperparameter in this paper, we
have conducted extensive experiments to verify the effect of different
margins 𝛽 on emotion recognition. As shown in Fig. 4(a), on the
IEMOCAP dataset, our model performs best in emotion recognition with
a margin 𝛽 = 0.8, with a WF1 value of 70.4%. When the margin is
too small (e.g., 𝛽 = 0.5∕0.7), the contrastive learning ability of the
model is poor resulting in still large modal gaps. On the contrary, if the
margin is too large (e.g., 𝛽 = 0.9), complementary semantic information
between different modalities may be lost. On the MELD dataset, our
model performs best in emotion recognition with a margin 𝛽 = 0.9,
with a WF1 value of 70.4%. Similar to on the IEMOCAP dataset, too
small margins can lead to large modal gaps. Therefore, choosing a good
margin has an important impact on the training effect of the model.

6.6. Comparison of contrastive learning methods

To explore the effectiveness of our designed graph contrastive learn-
ing mechanism, we compared different contrastive learning methods,
i.e., Supervised Contrastive Learning (SCL), Supervised Cluster-level
Contrastive Learning (SCCL).

As shown in Fig. 4(b), we use RoBERTa-large as our text encoder to
obtain rich context semantic information. For the results on different

comparative learning methods, SCL achieves a 1.4% improvement over
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Fig. 5. We use different batch sizes with RoBERTa-Large to verify the stability
xperiments on IEMOCAP and MELD datasets.

Table 7
Experimental results of C-MFN method on the UR-FUNNY dataset for the humor
detection task. C-MFN (C) means using only contextual information without punchlines.
C-MFN (P) means using only punchlines with no contextual information. ∗ means the
method equipped with the TGAN, IMCL, and ICCL module. The best result is highlighted
in bold.

UR-FUNNY

Modality T A+V T+A T+V T+A+V

C-MFN(P) 62.85 53.30 63.28 63.22 64.47
C-MFN(C) 57.96 50.23 57.78 57.99 58.45
C-MFN 64.44 57.99 64.47 64.22 65.23
C-MFN(P)∗ 67.19 60.87 67.89 68.36 68.97
C-MFN(C)∗ 61.86 55.36 59.26 60.11 62.49
C-MFN∗ 68.69 62.06 67.68 67.92 68.28

the RoBERTa baseline on the IEMOCAP dataset and a 1.7% improve-
ment on the MELD dataset. The performance improvement of SCCL
on the IEMOCAP and MELD datasets is higher than SCL, achieving
2.7% and 3.2% improvements respectively compared to the RoBERTa
baseline. AGF-IB has the highest performance improvement on the
IEMOCAP and MELD datasets, achieving 3.9% and 3.9% improvements
compared to the RoBERTa baseline, respectively.

The above experimental phenomena illustrate the effectiveness of
our designed intra-modal and inter-modal, and intra-class and inter-
11

class contrastive learning mechanism.
6.7. Batch size stability

We use different batch sizes to verify the stability of model training
on IEMOCAP and MELD datasets. As shown in Fig. 5, We set the batch
size to range from 20 = 1 to 25 = 32. According to the experimental
esults, the model has the best emotion classification effect when the
atch size is 16. When each training step sets a small batch size
i.e., when only a small number of samples are used), the model cannot
xtract effective features in different modalities, and their contrastive
earning effect will be relatively poor.

.8. Extended research

To verify the scalability of our fusion and contrastive mechanism to
ther multimodal studies, we apply our method to the task of multi-
odal humor detection. As shown in Table 7, we utilize Contextual
emory Fusion Network (C-MFN) [38] as the backbone network to

erify the effectiveness of our proposed algorithm, where C-MFN (C)
eans using only contextual information without punchlines. C-MFN

P) means using only punchlines with no contextual information, C
epresents the context, P represents the punchlines, and C-MFN rep-
esents using punchlines and contextual information. We embed our
GAN, IMCL, and ICCL mechanisms into the C-MFN method, and exper-

mental results show that our method outperforms the C-MFN method
n any combination of modalities. Specifically, we use accuracy as the
valuation metric for humor detection, and our method can achieve
mprovements ranging from 1.48% to 7.57%. Experimental results
how that our method can be applied not only to multimodal emotion
ecognition in conversations tasks, but also to other multimodal tasks.

.9. Ablation study

To verify the rationality of our module design, we use RoBERTa-
ase and RoBERTa-Large as our text encoders to conduct ablation
xperiments. As shown in Fig. 6(b), for the results on RoBERTa-Large,
GF-IB achieves the best experimental results with WF1 values of
0.4% and 64.0% on the IEMOCAP and MELD datasets, respectively.
he emotional effect of RoBERTa-Large with IMCL is second, and
he WF1 values are 68.9% and 63.5%, respectively. The emotional
ffect of RoBERTa-Large with ICCL is worse than RoBERTa-Large with
MCL, and the WF1 values are 68.1% and 62.9% respectively. The
motional effect of RoBERTa-Large with TGAN is only slightly better
han the RoBERTa-Large baseline, with WF1 values of 67.3% and
1.7%, respectively. The experimental results show that the intra-
odal and inter-modal contrastive learning is the most critical for the

raining of the model, which is beneficial for the model to fuse comple-
entary multi-modal semantic information. Intra-class and inter-class

ontrastive learning is also important for the training of the model,
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Fig. 6. Ablation experiments on IEMOCAP and MELD datasets. (a) We use RoBERTa-Base as a text encoder to explore the impact of TGAN, IMCL, and ICCL on model training.
(b) We use RoBERTa-Large as a text encoder to explore the impact of TGAN, IMCL, and ICCL on model training.
Table 8
The influence of each component on the emotion recognition performance in the IEMOCAP dataset.
RoBERTa-Large is chosen as our architecture.
Row Number Components IEMOCAP MELD

RoBERTa TGAN IMCL ICCL WAA WAF1 WAA WAF1

1 – – – – 65.21 64.14 58.71 58.03
2

√

– – – 67.21 66.53 60.95 60.17
3

√ √

– – 68.38 67.74 61.93 62.66
4

√ √ √

– 69.52 69.11 63.02 63.87
5

√ √ √ √

70.46 70.36 64.14 64.01
Table 9
Experimental results with our method and other graph contrastive learning methods on IEMOCAP and MELD
datasets. The best result in each column is in bold.

Methods IEMOCAP MELD

Train Test Train Test

WAA WF1 WAA WF1 WAA WF1 WAA WF1

DGI 88.76 86.54 66.49 63.77 75.11 75.94 61.08 62.23
InfoGraph 90.15 91.37 65.19 64.36 77.85 76.47 60.99 60.37
AGF-IB 88.49 89.05 70.46 70.36 78.94 79.21 64.14 64.01
Fig. 7. Visualizing the learned features on the IEMOCAP and MELD benchmark dataset. Each dot represents an utterance, and its color represents an emotion.
which facilitates the class boundary learning of the model. Removing
the heterogeneity of modalities is the basis for subsequent model
learning.

As shown in Fig. 6(a), for the results on RoBERTa-Base, similar
conclusions are drawn from the results of RoBERTa-Base. In addi-
tion, the emotion recognition effect of RoBERTa-Large is better than
RoBERTa-Base.

Furthermore, we also verified the influence between each compo-
nent. As shown in Table 8, when no component (only DialogueGCN is
used) is used, the accuracy of the model on the IEMOCAP and MELD
datasets is 65.21% and 58.71%, and the F1 values are 64.14% and
12
64.01%, respectively. When only RoBERTa-Large is used, the accuracy
of the model on the IEMOCAP and MELD datasets is 67.21% and
60.95%, and the F1 values are 66.53% and 60.17%, respectively. The
effect of emotion recognition is better than only using DialogueGCN.
When using RoBERTa-Large and TGAN, the emotion recognition effect
of the model is better than only using RoBERTa-Large. When using
RoBERTa-Large, TGAN and IMCL, the emotion recognition effect of
the model is further improved. When four modules of RoBERTa-Large,
TGAN, IMCL and ICCL are used, the emotion recognition effect of the
model is the best. Experiments demonstrate the effectiveness of each
constituent.
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Fig. 8. Confusion matrix of test set on IEMOCAP and MELD datasets. The rows and columns represent the true labels and predicted labels respectively.
Moreover, to illustrate the effectiveness of the proposed graph
contrastive learning mechanism that minimizes mutual information, we
compare AGF-IB with two existing graph contrastive learning methods
that maximize mutual information (i.e., DGI [39] and InfoGraph [40]).
Specifically, we replace the proposed graph contrastive learning mod-
ule with DGI and InfoGraph for experimental verification. The experi-
mental results are shown in Table 9. On the IEMOCAP dataset, although
InfoGraph has the best performance on the training set, it has the worst
emotion recognition effect on the test set. The emotion recognition
effect of DGI on both the training set and the test set is lower than that
of the proposed method. On the MELD dataset, the proposed method
has the best emotion recognition effect on both the training set and the
test set. The experimental results show the effectiveness and robustness
of the proposed method.

6.10. Visualization

To display the emotional feature vectors in a high-dimensional
space more intuitively, we use the t-SNE method to reduce the di-
mensionality of the emotional features obtained after model learning
in the IEMOCAP and MELD datasets, and obtain a two-dimensional
feature embedding. As shown in Fig. 7(a), in the IEMOCAP dataset
we can see that the features learned when the model only uses the
video modality are relatively confusing, and there are many overlaps
between each emotion category. Therefore, it is difficult for the model
to correctly classify each emotion category when it only uses video
modality. The features learned when the model only uses the audio
modality are better than when only the video modality is used, and
there are fuzzy class boundaries between different emotion categories.
The features learned when the model only uses text modality are better
than when only audio or video modality is used. The best features are
learned when the model combines text, video and audio modalities,
and there are relatively clear class boundaries between different emo-
tion categories, which allows the model to better classify emotions.
Experimental results demonstrate the necessity of multi-modal features
for the MERC task and the effectiveness of the AGF-IB proposed in
this paper. AGF-IB can eliminate the heterogeneity between modalities
and effectively capture the intra-modal and inter-modal complementary
semantic information. Similarly, as shown in Fig. 7(b), on the MELD
dataset, the features learned when the model combines text, video
and audio modalities are the best, and there are relatively clear class
boundaries between different emotional categories. The experimental
results further prove the effectiveness of the AGF-IB proposed in this
paper.

6.11. Error analysis

Although the emotion classification effect of the proposed AGF-
IB is relatively good, it still cannot correctly classify some minority
13
categories of emotions and some emotions with similar semantics.
Specifically, we analyze the confusion matrix of the test set on the
IEMOCAP and MELD datasets. As shown in Fig. 8, AGF-IB cannot
classify emotions with similar semantics very well. For example, on
the IEMOCAP data set, it is easy to misclassify the ‘‘happy’’ emotion as
‘‘excited’’ and the ‘‘angry’’ emotion as ‘‘frustrated’’. It is easy to classify
the ‘‘surprise’’ sentiment into ‘‘angry’’ on the MELD dataset. AGF-IB
also has a classification preference for ‘‘neutral’’ emotions, because the
MELD dataset has data imbalance problems, and ‘‘neutral’’ emotions
belong to most categories. It is difficult for the model to classify the
two emotions of ‘‘fear’’ and ‘‘disgust’’ on MELD because the number of
samples for these two emotions is very small.

To demonstrate the efficacy of the proposed AGF-IB, we tested some
cases. As shown in Fig. 9, we selected a conversation on the MELD
dataset. AGF-IB, which uses multi-modal features, can correctly classify
the emotions of all utterances, while DialogueRNN and DialogueGCN
incorrectly predict the third utterance as ‘‘surprise’’ and the fourth
and fifth utterances as ‘‘neutral’’. Experimental results show that Dia-
logueRNN and DialogueGCN cannot make good use of complementary
semantic information within and between modalities, while AGF-IB
has more powerful multi-modal fusion capabilities. On the other hand,
using only the text modality, AGF-IB incorrectly identifies the fourth
and fifth utterances as ‘‘neutral’’. The experimental results further
illustrate the necessity of multi-modal features for the MERC task.

7. Conclusion and future work

In this paper, we propose a novel Adversarial Alignment and Graph
Fusion via Information Bottleneck for the Multimodal Emotion Recog-
nition in Conversations architecture (AGF-IB) model, which enables
cross-modal feature fusion, intra-modal and inter-modal contrasting
representation learning, and intra-class and inter-class representation
learning. In addition, AGF-IB uses information bottlenecks to minimize
the mutual information between multiple views to obtain structurally
heterogeneous but semantically similar multiple views. Specifically,
we firstly introduce a cross-modal feature fusion method based on
adversarial learning to eliminate the heterogeneity among different
modalities. Secondly, to comprehensively consider the relationship be-
tween intra-modality and inter-modality and the relationship between
intra-class and inter-class, and obtain a compact node representation,
we design a novel graph contrastive learning architecture via IB to
enhance the representation ability of nodes by increasing the distance
between different emotion labels of the same modality and shrinking
the distance between the same emotion of different modalities, and
minimizing MI between views. Finally, we use a multi-layer perceptron
(MLP) for emotion classification.

In future work, we consider using diffusion models for feature fusion
across modalities to generate fused features that contain more semantic
information. In addition, we will also consider transferring our method
to other multimodal tasks.
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Fig. 9. In the MELD dataset, we selected a conversation to test the emotion recognition performance of DialogueRNN, DialogueGCN and AGF-IB.
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