
AUTHOR C
OPY

Journal of Computer Security 32 (2024) 291–317 291
DOI 10.3233/JCS-220044
IOS Press

SIAT: A systematic inter-component
communication real-time analysis technique
for detecting data leak threats on Android

Yupeng Hu a, Wenxin Kuang a, Jin Zhe d, Wenjia Li b, Keqin Li c, Jiliang Zhang a and
Qiao Hu a,∗

a The Department of Computer Science and Electronic Engineering, Hunan University, Changsha,
Hunan, China
E-mails: yphu@hnu.edu.cn, wenxinkuang@hnu.edu.cn, zhangjiliang@hnu.edu.cn,
huqiao@hnu.edu.cn
b The Department of Computer Science, New York Institute of Technology, New York, USA
E-mail: wli20@nyit.edu
c The Department of computer science, State University of New York, New York, USA
E-mail: lik@newpaltz.edu
d China Tobacco Hunan Industrial Co., Ltd., Changsha, Hunan, China
E-mail: jinz1203@hngytobacco.com

Abstract. This paper presents the design and implementation of a systematic Inter-Component Communications (ICCs) dy-
namic Analysis Technique (SIAT) for detecting privacy-sensitive data leak threats. SIAT’s specific approach involves the iden-
tification of malicious ICC patterns by actively tracing both data flows and implicit control flows within ICC processes during
runtime. This is achieved by utilizing the taint tagging methodology, a technique utilized by TaintDroid. As a result, it can
discover the malicious intent usage pattern and further resolve the coincidental malicious ICCs and bypass cases without incur-
ring performance degradation. SIAT comprises two key modules: Monitor and Analyzer. The Monitor makes the first attempt
to revise the taint tag approach named TaintDroid by developing the built-in intent service primitives to help Android capture
the intent-related taint propagation at multi-level for malicious ICC detection. Specifically, we enable the Monitor to perform
systemwide tracking of intent with five abstraction functionalities embedded in the interactive workflow of components. By
analyzing the taint logs offered by the Monitor, the Analyzer can build the accurate and integrated ICC patterns adopted to
identify the specific leak threat patterns with the identification algorithms and predefined rules. Meanwhile, we employ the
patterns’ deflation technique to improve the efficiency of the Analyzer. We implement the SIAT with Android Open Source
Project and evaluate its performance through extensive experiments on a particular dataset consisting of well-known datasets
and real-world apps. The experimental results show that, compared to state-of-the-art approaches, the SIAT can achieve about
25% ∼200% accuracy improvements with 1.0 precision and 0.98 recall at negligible runtime overhead. Apart from that, the
SIAT can identify two undisclosed cases of bypassing that prior technologies cannot detect and quite a few malicious ICC
threats in real-world apps with lots of downloads on the Google Play market.

Keywords: Android malware, dynamic threats detection, inter-component communication, taint tags, threat patterns

*Corresponding author. E-mail: huqiao@hnu.edu.cn.

0926-227X/$35.00 © 2024 – IOS Press. All rights reserved.

mailto:yphu@hnu.edu.cn
mailto:wenxinkuang@hnu.edu.cn
mailto:zhangjiliang@hnu.edu.cn
mailto:huqiao@hnu.edu.cn
mailto:wli20@nyit.edu
mailto:lik@newpaltz.edu
mailto:jinz1203@hngytobacco.com
mailto:huqiao@hnu.edu.cn

AUTHOR C
OPY

292 Y. Hu et al. / SIAT

1. Introduction

In recent years, we have witnessed explosive growth in the number of mobile devices, and the large
quantity of diversified mobile applications (apps) on those mobile devices have made our daily lives
much more convenient and enjoyable. However, with the rapid growth of mobile apps, they have in-
creasingly become the target of mobile malware authors, who generally develop and distribute mobile
malware apps that aim at stealing and disclosing various types of sensitive and valuable information
that is associated with either mobile user or device. As a result, malware has become one of the most
significant security threats to mobile operating systems, especially Android.

In the Android system, the widely used Inter-Component Communication (ICC) [15] plays an essen-
tial role between the components of apps that are isolated in different sandboxes. Apps pass messages
between each other by passing the intents, which are passive data structures holding the abstract de-
scriptions of operations to be performed between components. Such a flexible method contributes a lot
to functionality reuse and data sharing; however, it also exposes a vulnerable surface to several security
threats [26]. In the context of ICC mechanism scenarios, apps whose developers overlooked security
issues often suffer from risky vulnerabilities such as intent hijacking and spoofing [7], resulting in sen-
sitive user data leak or privilege misuse by other apps, particularly mobile malware. Besides, two or
more malicious apps with ICC paths could even collude on stealthy behaviors that neither of them could
accomplish alone [5,12]. In these cases, malicious apps send and receive intents in a way that looks as
if those are ordinary message exchanges. By this means, they can often easily bypass those classical
malware detection approaches, which regularly inspect apps individually.

It is challenging to distinguish a normal or malicious ICC in a given security context. Many existing
ICC-relative research works [27,31] focus on detecting vulnerabilities in benign apps. Benign apps do
not have the malicious intent of ICC but may have some inherent design flaws. Recently, most of the
research works that aim at identifying ICC paths with malicious purposes are in two categories: static
analysis and running protection. A static analysis approach often extracts sensitive ICC paths by match-
ing attributes and tracking data flow (e.g., IC3 [30], AmanDroid [39], DIALDroid [6]). However, even
the state-of-the-art static analysis-based approaches suffer from many false positives because they can-
not validate the specific data content through static analysis when facing the reflection and unreachable
code. As a result, ignoring the validation of the data content in the static analysis will lead to an ICC
path that does not occur in reality. Alternatively, runtime protection-based approaches (e.g., XManDroid
[7] and SCLib [40]) either enforce mandatory access control according to the predefined policy set or
ask about the End-user’s decision for access permission to protect them from threats when apps commu-
nicate with each other using the ICC mechanism. However, those runtime protection-based approaches
only pay attention to the information acquired before receiving intent, ignoring the actual behaviors of
the receiver. Furthermore, they only determine whether to prohibit the mobile app from receiving intent
according to various information, which makes these runtime protection techniques unable to identify
malicious ICC paths for data leaks accurately.

Hereby, along with the explicit data flow, we pay more attention to identifying runtime intent-related
implicit control flow that denotes a transfer of intent control across multiple components via complex
ICC patterns other than an explicit component call. In this paper, we propose a systematic ICC real-time
Analysis Technique (SIAT), which identifies malicious ICC patterns by tracking the data flows and the
implicit control flow in the ICC processes at runtime by leveraging the taint tag approach TaintDroid
[14]. Unlike the traditional control flow tracking in static code analysis, SIAT tracks the implicit control

AUTHOR C
OPY

Y. Hu et al. / SIAT 293

flow through the ICC process at runtime to identify the thorough malicious intent usage pattern. Our key
contributions are summarized as follows:

• We have concluded three kinds of typical data leak-related attacks and divided them into five mali-
cious ICC patterns according to their behaviors.

• We have proposed SIAT,1 the first systematic approach to accurately identify the malicious ICC
patterns across apps with the help of the intent-related implicit control flows. This approach ex-
tracts the implicit control flows by examining both the sender and receiver sides for each intent
communication at runtime.

• We have evaluated the performance of the SIAT through extensive experiments on both malware
apps and benign apps composed of several well-known datasets and thousands of real-world An-
droid apps.

The remainder of this paper is organized as follows. Related works are discussed in Section 2. Sec-
tion 3.2 discusses the threat patterns SIAT focuses on. Section 4 provides our motivations and systematic
methodology. Section 5 describes the overall architecture of SIAT. Section 6 presents the comprehensive
performance evaluation that we have conducted for SIAT. Before drawing conclusion in Section 8, we
introduce the in-depth discussion in Section 7.

2. Related work

App data leak threat issues have attracted a wealth of taint-based research efforts. [5] provides the
first survey on inter-app communication threats, app collusion, and state-of-the-art detection tools in
Android, providing a comprehensive assessment of the strengths and shortcomings of state-of-the-art
approaches. The state-of-the-art approaches could broadly be divided into two categories: single-app
analysis and app-pair analysis. And the analysis approaches of each category also are in two types: static
analysis [42] and dynamic (a.k.a., runtime) analysis.

Single-app analysis. There are a few static single-app analysis approaches. CHEX [27] can identify
the component hijacking vulnerabilities through static data flow analysis. Amandroid [39] focuses on
analyzing inter-component data flows and tracking the interaction of the components. IccTA [25] ad-
dresses the major challenge of performing data flow analysis across multiple Android components for
privacy leakage detection based on static taint analysis. The subsequent RAICC [35] reveals atypical
ICC links in applications. It reflects the fact that their role is not primarily to start a component (as most
ICC methods typically do in this paper) but rather to perform some action (e.g., set the alarm or send
an SMS by starting a component with objects of type PendingIntent and/or IntentSender).
DroidSafe [17] is a typical static information flow analysis tool that reports potential leaks of sensitive
information in Android applications with accurate analysis stubs.

The dynamic single-app analysis approaches [9,14,20,22,41] monitor the app at runtime. As a data
flow tracing method, TaintDroid [14] monitors the system at runtime and tracks the taint transmission
to detect privacy leakage. IntentFuzzer [41] identifies the vulnerable interfaces by dynamically sending
test intents to the components. IntentDroid [20] tests eight different vulnerabilities caused by unsafe
handling of coming ICC intent data. DazeDroid [22] fully-automated extracts the components and fuzz
all interfaces in apps.

1https://github.com/JinxKing/SIAT.

https://github.com/JinxKing/SIAT

AUTHOR C
OPY

294 Y. Hu et al. / SIAT

App-pair analysis. In the static app-pair analysis technologies, a precise and scalable end-to-end flow
static analysis approach is introduced in [13] to identify the malware collusion risk in Android via fine-
grained security risk classification policies. ApkCombiner [24] directly combines two apps into a single
app and uses the single static data flow analysis method to identify sensitive ICC methods. COVERT [3]
employs a compositional analysis method for finding inter-app vulnerabilities. JITANA [38] can analyze
multiple android apps simultaneously. DIALDroid [6] analyzes each app and adopts the database to cal-
culate the sensitive ICC path. PIAnalyzer [19] is a static approach for modeling specific vulnerabilities
where other apps can intercept broadcasted PendingIntents. Although PRIMO [29] predicts the likeli-
hoods of inter-app ICC occurrences via a formalism for ICC links based on set constraints, it cannot
tackle links created by native code or Java reflection, and it is not designed for collusion detection.

Most dynamic app-pair analysis technologies enforce security policies only at the sender to protect
users from inter-app threats. XManDroid [7] is the first approach proposed to prevent application-level
privilege escalation through enforcing permission policies. FlaskDroid [8] provides a mandatory access
control strategy simultaneously for both Android’s middleware and kernel layers to prevent privilege
escalation and collusive data leaks. SCLib [40] proposes an approach that performs inter-app manda-
tory access control for defending against component hijacking without modifying the Android system.
SEALANT [23] combines static analysis and enforcing security policy to provide end-user protection.

Moreover, various works have explored detecting privacy leaks at the network level. For instance,
ReCon [33] uses a machine learning classifier to identify leaks and can deal with simple obfuscation.
AGRIGENTO [10] is resilient to obfuscation techniques, such as encoding, formatting, and encryption,
by performing differential black-box analysis on Android apps. Existing technologies still suffer from
some covert channels. Regarding ICCs, SIAT can handle the data obfuscation, encryption, or transmis-
sion via Secure Sockets Layer (SSL) based on our implicit control flow analysis.

In particular, there are some relevant works to SIAT. SpanDex [11] is integrated with TaintDroid
and Android’s Dalvik VM. Instead of ICCs, it is focused on securely tracking the password data flows
within an app by monitoring explicit and implicit flows differently. Staicu [37] provides an empirical
study of dynamic information flows for JavaScript at the language level and concludes that implicit flow
tracking is needed for some privacy scenarios observable. In contrast, SIAT focuses on the control flow
at the component level. Unlike existing detection technologies, SIAT not only inspects the sender’s but
the receiver’s intent-related behaviors by migrating the runtime approach TaintDroid to the systemwide
tracing of intent data across multiple apps/components at runtime to figure out the real intent usage
pattern of the related components. In this way, SIAT can significantly improve threat detection accuracy
at the cost of negligible runtime overhead.

3. Background and Data Leak Threats

3.1. Intent background

Communications between components of mobile applications (a.k.a., apps) are achieved via send-
ing and receiving intents, which are data structures holding an abstract description of operations to be
performed and are generally used with methods to invoke activity, service, and broadcast receivers. In-
tentions can be divided into two types. One is the explicit intent, which specifies the target component
by name, and the other is the implicit intent, which does not name the target (the component name field
is blank) and is usually used to activate components in other applications. An intent filter is a key to

AUTHOR C
OPY

Y. Hu et al. / SIAT 295

defining the behavior of intents, which works as an expression in an app’s manifest file that specifies the
type of intents the component would like to receive. Components that wish to receive implicit intents
have to declare intent filters. Although an intent filter offers a useful level of flexibility in the run-time
binding of components, it is frequently overused or used inappropriately, with negative consequences
for security.

3.2. Data Leak Threat Patterns

Definition 1 (Malicious ICC for Data Leak). Given a security context, a malicious ICC for data leak
refers to a real ICC path among multiple components that leaks out sensitive data to an unauthorized
party via transferring explicit/implicit intents.

As Section 6 details, we pay more attention to the malicious ICC paths incurred by malware through
implicit control flows. These malicious ICCs mainly appear in three typical threat patterns, i.e., intent
hijacking, intent spoofing, and intent collusion. As shown in Fig. 1, the following threat patterns that
SIAT intends to identify in Section 6 lead to different malicious ICC behaviors that can steal or leak
sensitive data.

Intent hijacking. Intent hijacking involves a malicious app receiving an intent not intended for it. As
depicted in Fig. 1, in intent hijacking, the implicit intent may never reach the expected component, but
an unauthorized app intercepts it. In Victim app, when the Component A sends intent to Component B,
the Malware1 app can obtain the intent just by setting the attributes matched with the intent in the intent
filter of the Component C. As a result, it is easy to cause data leakage during the intent hijacking. If the
data (e.g., location, contacts) requires permission, and the intent does not restrict the receiver, Malware1
obtains the sensitive data without the necessary permission. In this case, the Malware1 escalates the
privilege by hijacking the intent besides stealing the sensitive data.

Intent spoofing. Intent spoofing is an attack where a malicious app induces undesired behavior by
forging an intent. Figure 1 illustrates how intent spoofing works. If the textitVictim app discloses that
the Component B expects to receive intent from the Component A or some other components. Once
textitComponent B does not have appropriate restrictions on the attributes of the intent filter, then textit-
Malware1 may pretend to be textitComponent A and send intent to textitComponent B. In this case, it
could trigger the corresponding action of textitComponent B to leak data.

Intent collusion. Intent collusion generally refers to the situation in which two apps cooperatively
accomplish implicit malicious behaviors that a single app cannot achieve solely. As Fig. 1 shows,
Component D in Malware1 sends an intent with location data to Malware2 via implicit intent
(e.g.,sendBroadcast(intent)). Afterward, Component E receives the intent and sends out the
location data through SMS messages. During the process of intent collusion, the malicious apps pre-
tend to communicate normally with each other, which brings great challenges to identify those apps
successfully as malware apps.

Fig. 1. The intent hijacking, spoofing and collusion patterns that bring forth ICC paths for data leaks will be identified by SIAT.

AUTHOR C
OPY

296 Y. Hu et al. / SIAT

4. Motivations and methodology

Motivations. The actual risk of an ICC path intrinsically depends on the specific security context/se-
mantics. It is challenging to tell the normal or malicious app by merely inspecting its ICC-related be-
haviors. For instance, if the Component C happens to have the attributes matching with the intent from
the Component B, there might be an unintentional false positive hijacking case regarding conventional
static analysis technologies. Ignoring that might result in high false positive rates. In contrast, a mali-
cious ICC might seem normal. For example, in Fig. 1, if the receiver Component E cannot send out the
location data via SMS message without required privileges, even though the Component D intends to,
the ICC between them seems normal. Concerning the probabilistic matching between the implicit intent
and intent filters (e.g., due to the mismatch of multiple intent filters and data types), existing methods are
prone to false positives or false negatives in identifying the malicious ICCs in the threat patterns above.

Methodology. We need to differentiate the defined malicious ICC from normal ICC to solve the above
problems. Therefore, we are dedicated to discovering the inherent logic behind implicit control flows via
a systematic methodology. Through the ICC process, we perform a comprehensive taint analysis at the
multi-level(i.e., app message-level, variable-level, method-level, and file-level) of both the sender and
receiver sides. Our methodology almost has no false positives in runtime analysis, achieving significant
recall owing to its systematic perspective. We showcase the solution of the ‘coincidental malicious ICC’
in Section 6.1.2.

Let M(I, F) be that the intent I matches the intent filter F , i.e., a real satisfying match, and E(I) be
an explicit intent. As shown in Fig. 2, except for the explicit data flows (e.g., straightforward explicit
intent), along with the M(I, F) or E(I) from source to sink methods [32], the proposed SIAT tries to
track the thorough intent-related implicit control flows, i.e., source ∧ (M(I, F) ∨ E(I)) ∧ sink.

We can discover the malicious ICC systematically based on these rules: (1) the threat patterns iden-
tified by Algorithm 1; (2) the sink leaking the sensitive data; (3) implicit/complex ICCs usage pattern
which tending to circumvent our detection, consistent with the insight found in our manual verification
in Section 6.2.

Fig. 2. The systematic methodology for implicit control flows identification. All possible methods the data could leave the
device is a sink.

AUTHOR C
OPY

Y. Hu et al. / SIAT 297

5. The SIAT

5.1. Technical challenges

Technical challenges for architecture design. A key challenge to overcome in architecture design is
to design a sound architecture that can identify intent-related data and control flows without degrading
detection accuracy and runtime performance.

Technical challenges for the Monitor. The critical challenge for the Monitor is finding a sound way
to migrate TaintDroid to cooperate with Android for dynamic ICC path identification at the explicit
data flows and the implicit control flows in a systematic perspective. The fundamental limitations
of TaintDroid lie in two aspects, i.e., (1) it is a single-app analysis approach; (2) it can be circum-
vented through data leaks via implicit control flows. For example, in Fig. 7, the intent transferred via
SharedPreferences can bypass the TaintDroid due to the disposal of the tainted data in the put
operation. In addition, to monitor the implicit control flows in the ICC process, the two key challenges
the Monitor have to deal with are: where the data in the intent by the sender initially comes from; and
where the data in intent finally goes to in the receiver.

Technical challenges for the Analyzer. The critical challenge for Analyzer is building a complete and
accurate ICC pattern with the taint logs.

5.2. The architecture of SIAT

SIAT works as a runtime safety guard to identify the malicious ICCs leaking data by analyzing the
real-time data and control flows. The use scenes for real-world app guard are illustrated in Section 6.2.
The primary objective of SIAT is performing systematic taint tracking by properly revising the runtime
approach TaintDroid.

As shown in Fig. 3, to be practical, the primary design strategy of SIAT is to spread the complex
detection workload to two different modules. Monitor and Analyzer are responsible for the runtime data
collection and taint logs analysis in the background, respectively. Furthermore, combining the improved
TaintDroid with Android via the well-defined intent service primitives, the SIAT provides a real-time

Fig. 3. The architecture of SIAT. Each logical function tracing the intent via the intent primitives denotes a set of taint or intent
handling methods.

AUTHOR C
OPY

298 Y. Hu et al. / SIAT

Fig. 4. The overall workflow (data flow and control flow) of Monitor in inter-component communication.

systematic tracing of privacy-sensitive data and visibility into how collaborative malicious behaviors
occur via intent for data leaks. Meanwhile, we avoid revising their core logical structures when building
explicit data flows and implicit control flows tracking on top of Android with TaintDroid to prevent
functionality and performance degradation, as the evaluation results show in Section 6.

5.3. Monitor

Monitor is responsible for tracing and analyzing the flow of privacy-sensitive data at runtime by in-
specting both the sender’s and the receiver’s intent. Figure 4 demonstrates its implementation of the
five functionality steps in ICC workflow. The single and multiple classes denote the number of classes
involved in implementing functions.

5.3.1. Key technique: TaintDroid migration
Firstly, we need to develop the built-in intent service primitives in the main files of TaintDroid, en-

abling it to interact with Android at multi-level taint propagation (i.e., app message-level, variable-level,
method-level, and file-level) without taint detection precision loss.

Secondly, we would like to leverage architectural features of components based inter-app communi-
cations, to enable the systematic tracking of implicit control flow with TaintDroid. We have deliberated
on the extension of Android framework layer via code instrumentation engineering in the interactive
workflows between TaintDroid and Android, covering the lifetime of four main Android components
(i.e., Activity, Service, Content Provider, and Broadcast Receiver). Specifically, to obtain the optimal
cost-benefits tradeoff, we have to perform an in-depth study on the runtime data collection workflow
and thus abstracted five key functionality steps by extending the Android framework layer as shown in
Fig. 3, which can interact with the intent service primitives to accurately carry out data and control flows
collection.

The five logical functionality steps of the Monitor for overcoming the migration challenge are listed
in Section 5.3.1. It is worth noting that each abstraction function in the five logical functionality steps
above is not a concrete java function name. Instead, they denote a set of taint or intent handling methods
for each step in our extension of the framework layer of the current Android operating system based
on the Android Open Source Project. In this way, by using the intent service primitives to interact with
TaintDroid, the Monitor inspects the relevant components on an ICC path and the data and control
flows associated with the intent at runtime and further identifies the intent’s sender, the intent-matched
component, and the receiver at several critical points of the ICC process, respectively.

AUTHOR C
OPY

Y. Hu et al. / SIAT 299

5.3.2. Monitor implementation
Monitor aims to track the thorough intent data/control workflows to identify the real senders and

the receivers and their subsequent behaviors. The implementation places emphasis on the tracking of
implicit control flows. We need to migrate TaintDroid to trace sensitive intent data.

Firstly, as highlighted in Fig. 3, we have defined a set of service primitives for intent communications.
They encapsulate the sensitive data operation functions and work as middleware between the core meth-
ods of TaintDroid and the Android intent mechanism at the method-level and file-level framework layer.
The new intent primitives encapsulate the functions of returning the source of current taint, obtaining
the next tag with the original taint, setting/getting the tags, and so on. In this way, the main functions
at the framework layer shown in Fig. 3 can cooperate with TaintDroid efficiently. For instance, when
apps call APIs to get those privacy-sensitive data, based on the function AddTaintToData(data) in Fig. 4,
we taint the data as the T-data by which we can trace and distinguish the data from others. Also, we
can extract the tag from T-data and identify the T-data by comparing the number with the function
IdentifyTaintData(T-data). The bit vector of the tag is null if the data is not tainted.

Meanwhile, to catch the intended sensitive data accurately, by revising the main files of TaintDroid, our
Monitor defines a group of new sensitive data and eighty taint tags for identifying them in intent commu-
nications. For example, the sensitive location data, TAINT_LOCATION_Latitude=0x00010004,
TAINT_LOCATION_Longitude=0x00010008. Not only do we consider the privacy-sensitive data
(e.g., locations, contacts, phone state) as sensitive, but we also regard the information that the user in-
puts or acquires from other files and other content providers (e.g., SharedPreferences). The 8-digit
hexadecimal taint number is big enough to cover all sensitive data types we have defined.

Then, we leverage components-based inter-app communications by abstracting five key functionality
steps embedded in the Android framework layer to enable the systematic tracking of implicit control flow
with TaintDroid. To extract the intent usage pattern, we cover all critical methods involved in the life-
time of intent, i.e., the methods to start, send, find, and receive intent involved in main Android compo-
nents, such as startActivity(), bindService(), and resolveIntent(), etc. In addition,
to obtain the optimal cost-benefits tradeoff, we exploit an optimized probe-based codes instrumentation
strategy to inspect the critical ICC checkpoints and generate the minimum set of codes extension, which
incurs less code redundancy and logical structural disturbance.

Specifically, we implement the five functionality steps to track the intent through its whole lifetime as
follows:

(1) Setting Taint. When the sender gets sensitive data from sensitive sources, using the function
AddTaintToData, the Monitor taints the sensitive data and adds a variable tag (an 8-digit hex-
adecimal taint number) to it, which clearly labels its source. We name the sensitive data tainted
as T-data. By examining thousands of apps, we identified thirty-eight types of sensitive data,
such as location, phone number, history, network, SMS message, accelerometer, data from
SharedPreferences2 and so on.

(2) Checking Intent. When the sender sets the intent attributes (e.g. extra, action), the Monitor checks
the T-data to see whether or not it is tainted or retained through the function IdentifyTaintData(T-
data).

(3) Sending Intent. If there is a sender that calls the system API, e.g., startActivity(),
startService(), to send an intent, the Monitor identifies the identity of the sender and the
details of the intent using functions FindSenderComponent and GetDetailsofIntent.

2SharedPreferences is a persistent storage method provided by Android.

AUTHOR C
OPY

300 Y. Hu et al. / SIAT

(4) Receiving Intent. Upon obtaining the best matched component, the Monitor can find out all can-
didates and the real receiver via FindAllCandidate and FindReceiver().

(5) Checking Taint. When the receiver extracts the T-data from an intent, as long as the sensitive APIs
are called, the Monitor will check if any parameter in the APIs is T-data to identify the source of
the data with IdentifyTaintData. Note that we exploit the multiple classes icon in Fig. 3 to denote
that this functionality needs to perform more complex inspection operations at multiple key points
than step (2).

In addition, To inspect the sensitive data in interested APIs, we take advantage of a mature machine-
learning technique named ‘SuSi’ in [32] for achieving the most likely source and sink methods. The data
is tagged as tainted if it comes from a privacy-sensitive source. If the tainted data is found in the sink,
the privacy-sensitive data may inevitably be leaked. We describe the implementation of data and control
flows tracking in Monitor by answering the four questions below:

Is there any sensitive data in the intent? When apps provide data for an intent, based on the T-data,
we inspect the parameters of the data to see if it has been tainted with the function IdentifyTaintData(T-
data). If so, the tainted data will be retained with a new variable tag and a source code to show the
intent’s source clearly. If not, the data will be tainted with this specific intent. We have defined more
than eighty types of tags to identify sensitive data, e.g., TAINT_sharepreference=0x00010018,
TAINT_network_state=0x00010012. In this way, the Analyzer can easily figure out where the
sensitive data comes from in the receiver at runtime.

Who is the sender of the intent? When an app sends an intent, we need to capture the send-
ing event and the information of the original source component. The operation of calling API (e.g.,
startService(intent)) for sending an intent is generally inherited from another class for
Activity or Service component. The BroadcastReceiver will execute the calling operation
by acquiring the Context object and using the API in Context. As Fig. 4 shows, the implemen-
tation of these APIs is in the ContextWrapper class. Therefore, to reach the cost-effective goal,
by integrating the codes for the functions of FindSenderComponent and GetDetailsofIntent into the
ContextWrapper class, we can notice whenever an intent is sent. In this way, we can utilize the Java
reflection mechanism to figure out which component calls the API to send the intent and which package
the component belongs to, even though there are multiple transfers through the implicit control flow.

Who is the receiver of the intent? After capturing the sending event, we want to know which com-
ponent becomes the candidate as its attributes match those of the intent and which component receives
the intent at the end to disclose complex implicit control flow as we find in the evaluation. In our design,
we integrate two functions FindAllCandidate and FindReceiver into the PackageManagerService
(PMS) for querying the components that match with the intent by traversing the components of all apps
as candidates. There are three types of components involved in intent matching: first, for the receiving
component of Activity, if there is more than one matched component, the PMS selects one com-
ponent from the list of candidates by comparing their priorities, such as the preferred order and so on.
Alternatively, the PMS can also ask the user to choose one component; secondly, for the receiving com-
ponent of Service, the Monitor will choose the first candidate; thirdly, for the receiving component
of BroadcastReceiver, the PMS sends intent to all candidates. Therefore we can monitor all can-
didates and the actual receiver of intent in PMS to inspect the implicit control flow leading to data leak
threats through the unintended receivers.

How does the receiver use the sensitive data extracted from intent? The Monitor inspects the
data outputted to a file or sent to another device to determine whether it is tainted. If it is, the Monitor
identifies the source of the data through the tag in the T-data with function IdentifyTaintData(T-data).

AUTHOR C
OPY

Y. Hu et al. / SIAT 301

Therefore, it can indicate how the receiver uses the data extracted from intent. Also, we consider more
sensitive methods employed to store, send, or get sensitive data with taint tag, in the Monitor, such as the
methods to store data in SharedPreferences and database (e.g., Editor.putString()). Since
these sensitive methods don’t need to apply for permissions, they could easily be overlooked by state-
of-the-art technologies, leading to data leak threats such as the bypassing introduced in Section 6.1.3.
Therefore, we design track methods showcased in Fig. 8 in Section 6.1.3 to address this implicit control
flow based on Algorithm 2.

5.4. Analyzer

Analyzer exploits the taint logs outputted by the Monitor to build the specific threat patterns reports
for the users.

5.4.1. Key technique: Pattern building
As Table 1 depicts, a threat patterns to be built by Analyzer is composed of three objects, including

the Sender, the Intent, and the Receiver. To ensure efficiency, we only adopt the most useful attributes,
e.g., the taint data, which denotes the new sensitive data for intent. Based on Table 1, there are two key
technologies below for building patterns:

Intent data extraction. To build accurate threat patterns, the Analyzer needs to extract the intent-related
information from APK package and logs. Firstly, the Analyzer needs to extract the related nodes, child
nodes, and their attributes by iterative traversal of the DOM tree in the AndroidManifest file, such
as package names, permissions, intent-filter, action, category, data, etc. The package names enable the
Analyzer to obtain the process ID of the app, which is a unique identifier assigned to each app by
the Android system. Each record contains a process ID associated with the application that generated
the log. Second, based on this process ID, the parser filters all unrelated logs from Android and other
applications, where irrelevant logs refer to logs that do not contain the same process ID. Thirdly, the
Analyzer reads every filtered log and extracts the intent relevant information that is useful for building
the ICC patterns. For instance, as we can see in Listing 1, which shows the parts of logs containing the
intent data we need to extract according to the predefined rules. The ‘1812’ denotes the process ID, the
tainted sensitive data is the device ID, and the tag has been changed from ‘1812’ to ‘1056768’ during
the transfer in decimal. The logs also record the candidates (with identifier ifilterMatch-) and the
real receiver package/component of intent.

Table 1

The most useful attributes of application and intent adopted in our ICC patterns analysis

Sender Intent Receiver
process ID action process ID
package categories package
components type components
permissions required scheme permissions required
permissions lacked taint data1 permissions lacked
source methods1 · · · sink methods
candidates taint dataN startCompt
1The source methods indicate where the sensitive data most likely comes from based on the ‘SuSi’ [32].

AUTHOR C
OPY

302 Y. Hu et al. / SIAT

TaintLog(1812): intentTaint :DeviceId
TaintLog(1812): intentTaint −content:000000000000000
TaintLog(1812): receiverLeak : tag−8192−newTag−1056768

......
TaintLog(276) : ifilterMatch −component:
1812−lu.uni. serval . iac_startactivity1_sink . InFlowActivity

......
TaintLog(276) : receiver −pakageName:
1825−lu.uni. serval . iac_startactivity1_sink
TaintLog(276) : receiver −componentName:
1825−lu.uni. serval . iac_startactivity1_sink . InFlowActivity

Listing 1. The parts of the logs

Fig. 5. The threat patterns of four components.

Analysis of attributes related to permissions in patterns. The Analyzer needs extra work to analyze
the attributes related to the permissions in the patterns by identifying the attribute permissions required
in the sender based on the permissions required to generate the tainted data in the intent. The attribute
permissions required in the receiver is adopted to implement the sink method. Hence, for the sender,
the attribute permissions lacked denotes the one that the sender does not have, but the receiver requires,
and vice versa for the receiver. Firstly, there are redundant patterns generated by the multi-hop intent
transfers between multiple components. Figure 5 depicts the generation of redundant patterns (Pattern
A, B and C) built by the process mentioned above based on the four components in a streamlined way. It
is incorrect that the source or destination of the sensitive data tainted as T-data is not the real component
that sends or accepts the intent. In Pattern B and Pattern C, the T-data’s source is considered as C2
and C3 respectively, however, the real source and destination is C1 of Pattern A and C4 of Pattern
C respectively. Secondly, there are extra patterns generated by the Android for launching the internal
components that we are not concerned about. For instance, if the destination component is activity
and there is more than one matching with the intent attributes, the Android will deliver the intent named
a to the ResolverActivity firstly to let the user choose the desired component. After the user
selects the destination component, instead of the sender, the ResolverActivity transfers a new
intent named b to the destination.

To address the inflation issue, the Analyzer takes advantage of a deflation technique to eliminate the
redundant patterns as follows. The deflation technique can build an ordered pattern list based on the
components in the sender and the receiver of a single pattern. It then traverses each pattern to compare the

AUTHOR C
OPY

Y. Hu et al. / SIAT 303

taint tag for identifying the real source in the sender and the destination/sink in the receiver, respectively.
In this way, the three patterns in Fig. 5 will be condensed into one, and the Analyzer is able to figure
out if the final receiver C4 starts a private component to leak out the sensitive data after receiving
the intent. Likewise, the proposed deflation technique also can remove the unnecessary and interfering
patterns that come from the Android system’s internal components. For the example mentioned above
of ResolverActivity in the second reason, using the deflation technique, the Analyzer is able to
simplify the two patterns in the intent transfer process as one by executing the following steps: replacing
the sender of intent b with the sender of a and then keeping the intent b meanwhile discarding the a.
Note that this deflation process does not negatively impact the detection owing to the systematic analysis
of SIAT.

In addition, not only improving the pattern building efficiency, but the patterns deflation technique also
helps to handle the multiple apps/components communications based on Algorithm 1 proposed below,
e.g., detecting the intent collusion among three or more apps/components. Let the deflation deep be n,
denoting the maximum number of components in an ICC path. The case in Fig. 5 can be extended to n

components, and the deflation ratio should be 1
n−1 .

5.4.2. Analyzer implementation
The Analyzer implements Algorithm 1 to identify the possible threat patterns in the ICC patterns. Ac-

cording to the attributes in Table 1, Algorithm 1 considers five different cases, which cover all data leak

Algorithm 1 Threat patterns identification
Input: patterns ⇐ all patterns
Output: PatternTypes ⇐ a map of pattern and type

1: Let pattern be a pattern in patterns.
2: Let sender be the sender object in a pattern.
3: Let intent be the intent object in a pattern.
4: Let rcver be the receiver object in a pattern.
5: for each pattern ∈ patterns do
6: for each component ∈ sender.components do
7: if component ∈ Intent.candidates then
8: add (pattern, “hijacking") to PatternTypes
9: continue

10: end if
11: end for
12: if (rcver.taintleak = true) ∧ (sender.lackpms = null) then
13: add (pattern, “hijacking") to PatternTypes
14: else if (sender.lackpms �= null) ∧ (rcver.lackpms = null) then
15: add (pattern, “spoofing") to PatternTypes
16: else if (rcver.startCompt = true) ∧ (rcver.lackpms = null) then
17: add (pattern, “spoofing") to PatternTypes
18: else if (sender.lackpms �= null) ∧ (rcver.lackpms �= null) then
19: add (pattern, “collusion") to PatternTypes
20: end if
21: end for

AUTHOR C
OPY

304 Y. Hu et al. / SIAT

types we target in this paper. Different cases correspond to different identified rules. Analyzer iterates
through each pattern to find the best matching case that has the same attributes.

Case 1 (lines 6–11): Algorithm 1 traverses all components in the sender app to examine carefully
if the list of candidates contains a component from the sender when the receiver component does not
belong to the sender. If so, we add the pattern and the threat type “hijacking” to PatternTypes.
In this case, we deem that the instance illustrated in Fig. 1 is happening and the candidate component
from the sender should be the real destination instead of the receiver component. Therefore, the receiver
component hijacks the intent, which is supposed to be sent to another component.

Case 2 (lines 12–13): Suppose there is some data from the intent used by a specific sensitive method
in the receiver. At the same time, the sender has the permissions related to the sensitive method in the
receiver. In that case, we add the pattern and the threat type “hijacking” to PatternTypes. Afterward,
the data extracted from the intent will be utilized by the sensitive method in the receiver, which means the
receiver proactively acquires the private data from the sender through obtaining the intent. The situation
in which the sender lacks permission related to a sensitive method in the receiver is considered illegal
behavior and is classified as another type of threat.

Case 3 (lines 14–15): When the sender lacks the permission that the receiver needs to call a sensitive
method in the ICC process, but the receiver does have the permission for the data from the sender,
we determine that the sender sends the intent to spoof the receiver and then assign the threat type in
PatternTypes as intent “spoofing”. In this case, the sender will let the receiver do something that it
cannot do without the necessary permission for it. Therefore, the receiver’s privileges will be misused
unexpectedly.

Case 4 (lines 16–17): When the receiver starts a private component with the permissions for the
data from the sender, we think the receiver is spoofed and add the pattern with the threat type to
PatternTypes. Hereby the sender calls a private component via the other exposed components and
will not trigger any illegal behavior.

Case 5 (lines 18–19): When the sender lacks the permissions that the receiver needs for calling a
sensitive method, meanwhile the receiver also lacks permission to generate data from the sender, we
consider that they are colluding. Thus we add the type intent “collusion” threat to PatternTypes,
indicating that they are escalating the privilege from each other and complementing permissions for each
other through the inter-component communication process, which is a clear case of intent collusion.

5.5. Data obfuscation resilience

The data obfuscation resilience challenge for SIAT is to handle the malicious ICCs and try to obfus-
cate or encrypt sensitive data to circumvent the detection. Firstly, as AppFence [21] does, we extend
TaintDroid to add tracking for all thirty-eight sensitive data types based on the interleaving taint tag
allocation mechanism in the stack frame. Our interface library only provides the ability to add and not
set or clear taint tags so that the untrusted functionality can not obfuscate or encrypt data to remove taint
tags. Secondly, SIAT employs the retaint operation to track sensitive data, which might be obfuscated
prior to being stored in an intent. Based on the implicit control flows analysis shown in Fig. 4 and Fig. 8
below, SIAT can capture a variety of SSL/encryption related operations (e.g., SSLSocketFactory
and SecretKeySpec) and two bypassing operations in Section 6.1.3, and further retaints the data.
Practically, the obfuscation techniques at the java codes level are exploited in the malware context to cir-
cumvent the detection of data leaks in the android system. To achieve this circumvention, the obfuscation
methods transform the program codes (e.g., leaking sensitive data via throwing an exception) without

AUTHOR C
OPY

Y. Hu et al. / SIAT 305

changing the behaviors. Nevertheless, SIAT can identify most cases of java code obfuscation given the
intermediate methods/objects by the intent-related control flows analysis as depicted in Section 6.1.3.
Also, SIAT can co-exist with conventional control dependencies, enabling formal protection techniques
to discover more circumvention cases [18], which is beyond the scope of this paper.

5.6. The complexity

The complexity of SIAT depends on the number of apps and components at runtime. Since the com-
plexity of Monitor mainly relies on the actual lifetime of the app, here we focus on analyzing the com-
plexity of Analyzer. Assume all feasible ICC patterns between n apps per app contains m components
to be analyzed in the SIAT. There are (nm − 1) components for each specific component that needs to
be communicated. In practice, if only the vulnerable paths between multiple different apps could incur
malicious behaviors, based on the Algorithm 1 and patterns deflation technique, there are n(n − 1)m2

patterns in this situation. Therefore, the computation complexity of building the ICC patterns and iden-
tifying the threat patterns is O(n2m2) and O(n2m3), respectively.

6. Evaluations

This section presents the experimental evaluation results of SIAT based on the four datasets below:

• DroidBench3.0 [2], which is an app collection for benchmarking ICC-based sensitive data leaks
and consists of many types of ICC-related threats.

• Droidbench-iccta [1], which has three sets of apps for testing the inter-app collusion issues, and was
released by EC SPRIDE Secure Software Engineering Group.

• Our Developments, similar to the DroidBench3.0, consist of more than forty self-developed apps
that only have simple threat patterns and functions for comprehensive testing. Twenty-six ICC pro-
cesses also cover at least three components with various sensitive APIs. Concerning efficiency and
accuracy, the intent call entries are consistent with the app entries to simplify the call graph, and
each app-pair ICC is independent of the other.

• Real-World, which contains about 2100 real-world apps3 downloaded from the Google Play mar-
ket [16]. We focus on collecting the most suspicious apps, e.g., cameras, notebooks, account books,
social tools, malicious software (malware) injecting ads, and so on, according to the mobile malware
revealed in the state-of-the-art approaches, Android security white paper, and data breach research
reports in recent years.

Our evaluation addresses the following three questions:

• RQ1: What is the accuracy of SIAT compared to state-of-the-art approaches?
• RQ2: How well does SIAT perform in practice? What could SIAT find in real-world applications?
• RQ3: What about the individual performance of the Monitor and the Analyzer?

6.1. Results for RQ1 (accuracy comparisons)

To evaluate the accuracy, we compare the SIAT with some state-of-the-art approaches achieving high
accuracy in Section 2. They are the well-known runtime technique XManDroid, and two representative

3We have uploaded some typical apps in the link https://github.com/JinxKing/SIAT/tree/master/apk.

https://github.com/JinxKing/SIAT/tree/master/apk

AUTHOR C
OPY

306 Y. Hu et al. / SIAT

static approaches, DIALDroid and AmanDroid. These methods can easily be acquired and mainly focus
on revealing data leak-related threats like SIAT.

6.1.1. Accuracy comparisons overview
As depicted in Fig. 6 and Table 2, we employ three performance indicators to evaluate the accu-

racy: Precision, denoted by p, which is the fraction of relevant instances among the retrieved instances;
Recall, denoted by r , which is the fraction of the total amount of relevant instances that are actually re-
trieved; F-measure, which computes the comprehensive score 2×p×r

p+r
. Figure 6 depicts the value of three

indicators in total. It is worth noting that the ICC path here denotes the malicious ICC path incurring
data leaks.

Figure 6 provides an overview of the comparisons of accuracy. Tables 2 and 4 illustrate the details of
the results. For simplicity, we merely present some typical detection results. Although we have identified
more than twenty malicious ICC paths in our manual analysis, we chose seventy-five apps only covering
eight ICC paths. Notably, we have tried to execute the IccTA’s successor named RAICC [35], which
boosts the detection by uncovering the atypical ICC methods within the app. Unfortunately, we could
not execute RAICC + ApkCombiner [24] on most of the app pairs (over 70%). There are many crashed
test cases, and RAICC + ApkCombiner can mainly detect the inter-app leaks in Droidbench-iccta (the
same authors of RAICC), e.g., identifying a leak in the source app SendSMS with one extra false
positive. The accuracy value might be misleading and does not reflect the actual performance. Thus we
omit RAICC in comparisons here.

Results of DIALDroid. As Fig. 6 shows, the DIALDroid merely obtains 0.64 precision and 0.54 recall
in total. The DIALDroid performs static taint analysis to identify attributes of the intent and the intent
filter to trace the data flow associated with the intent. Then it uses SQL stored procedures and queries to
calculate sensitive channels in the database according to the matching rules between the intent and the
intent filter. However, the DIALDroid cannot accurately tell whether the data in the intent meets the re-
quirements of the receiving component. When the data format doesn’t meet the program’s requirements,

Fig. 6. Comparisons of three accuracy metrics.

Table 2

Overview of accuracy comparisons between DIALDroid, Amandroid, XManDroid, and SIAT

The ICC path in Table 2 and 3 denotes the malicious ICC path incurring data leaks. � = True Positive, ⊗ = False Positive,

 = False Negative.

AUTHOR C
OPY

Y. Hu et al. / SIAT 307

Table 3

The partial results of ICC paths detection in DroidBench3.0, Droidbench-iccta, and our developments. The malicious behaviors
of Real-World are listed in Table 4. The ICC paths here are true malicious ICCs, including the recognized ICCs in public
datasets and self-developed ICCs

the sensitive method will not be executed. However, the DIALDroid does not consider it and assumes
that the sensitive method must be executed. In addition, DIALDroid treats the case that sensitive data
arrives in other applications via intent as a privacy breach, which improves the overall coverage while
introducing false positives.

Results of AmanDroid. Similarly, the AmanDroid achieves 0.71 precision and 0.21 recall in that it
cannot analyze the complex ICC-based data flow. The AmanDroid cannot analyze the data flows when
facing the complex ICC paths, and thus it cannot detect any malicious ICC path in DroidBench 3.0,
leading to a lower recall than others.

Results of XManDroid. As shown in Fig. 6 and Table 2, the XManDroid obtains 0.73 recall on Our
Developments due to the seven ICC paths suffering from intent spoofing, which the XManDroid cannot
identify. Consequently, the XManDroid only achieves a precision of 0.78 and a recall of 0.80 in total.
The XManDroid enables users to predefine a list of ICC restriction policies and automatically block
ICCs that match any policy. These policies are based on the permissions of the sender and the data in
intent. Thanks to its permission identification mechanism, which will not intercept the delivery of intent
only if the permissions in the receiver match the ones in the sender, the XManDroid performs well both
on Droidbench-iccta and DroidBench3.0, as shown in Table 2. However, when the sender sends out the
sensitive data with permission that the receiver doesn’t have, the XManDroid prohibits this ICC directly
without considering whether the receiver uses the data later. This case is a common problem in many
runtime protection approaches, which raises a high false alarm rate. For example, the experimental re-
sults on Our Developments show that even if the receiver does not extract any sensitive data from intent,
the XManDroid still thinks there is malicious behavior without identifying the receiver’s behaviors. As
a result, it makes the XManDroid detect two false positives ⊗. In contrast, the SIAT traces both of the

AUTHOR C
OPY

308 Y. Hu et al. / SIAT

data flows in the senders and receivers, then analyzes the whole transmission process that enables SIAT
to generate fewer false negatives than the XManDroid.

Results of SIAT. SIAT cannot track a few output methods due to the limitation of the built-in Taint-
Droid. However, compared to the existing approaches, as depicted in Fig. 6 and Table 2, the proposed
SIAT can achieve an accuracy improvement of about 25%∼200% with a precision of 1.0 and a recall
of 0.98. There are two reasons why SIAT performs much better. Firstly, unlike the DIALDroid and the
XManDroid, SIAT traces the data flow in the receiver at runtime by capturing and verifying the data in
a sensitive method, which makes SIAT acquire more precise data flows. Secondly, DIALDroid, Aman-
Droid, and XManDroid do not detect intent spoofing, which is one of the major reasons their precision
is lower than ours.

6.1.2. Details of ICC path detection
Table 3 shows details of malicious ICC paths of DroidBench 3.0 and Droidbench-iccta, and only ten

malicious ICC paths of Our Developments due to the paper limits. The ICC paths in Real-World are
given in Section 6.2. The original three ICC paths in Droidbench-iccta are innocent since the receivers
can get the device ID from intent by themselves with the related permissions. To make the ICC paths
illegal, we delete the permissions for device IDs in the three receivers.

The results in DroidBench 3.0 for DIALDroid are much better than AmanDroid; nevertheless, there
still are two deficiencies: The first one is that the DIALDroid cannot identify the malicious ICC path
when the type of the component is Service; obviously, there are two cases for the two source apps
named DeviceId_Service1 and Location_Service1; the second one is that the DIALDroid
considers all possible branches to be executed when facing many branches in source codes, e.g., for
destination app named Echoer, the two branches in codes make the DIALDroid detect two extra false
malicious ICC paths denoted by ⊗.

Furthermore, as mentioned before, the DIALDroid cannot tell the receiver’s real requirements of the
intent data formats, leading to extra false positives (i.e., aforementioned coincidental malicious ICC).
For instance, in a Real-World dataset, for app vbox7handler, it will exit immediately if the data in
the intent does not have vbox7 /.com /play. However, DIALDroid still constructs the vulnera-
ble ICC path between the sender and the vbox7handler. For another app named UrlToPdf, after
receiving the intent, it will output the data to logs only if it identifies a key-value pair with the key
android.intent.extra.TEXT in the vector EXTRA of the data in the intent. Nevertheless, the
DIALDroid still considers that the log should be triggered since it doesn’t care if the receiver validates
the data, while SIAT can distinguish whether or not the log function should be triggered. On the other
hand, all four approaches can achieve good detection results on Droidbench-iccta, regarding the simple
ICC paths in 3-pair apps.

Indeed, from the software engineering perspective, the dynamic approaches only observe a limited part
of the apps covered by the run-time inputs considered. However, a set of three attributes, i.e., action, data,
and category, can readily cover most intended ICC execution paths in our evaluation. Therefore, the static
techniques DIALDroid and Amandroid have lower accuracy than the other two dynamic approaches
when facing complex ICC paths across multiple apps.

6.1.3. Two cases of bypassing
The bypassing is similar to the malware collusion in a way, i.e., two components try to work coopera-

tively so that each component only performs part of the behavior to bypass the detection. Nevertheless,
the main difference is that the two components come from the same application in the above cases of by-
passing. Based on extensive experiments and in-depth analysis, as depicted in Fig. 7, in the receiver, we

AUTHOR C
OPY

Y. Hu et al. / SIAT 309

Fig. 7. Two cases of bypassing in the receiver.

public class Component_A extends AppCompatActivity { protected void onCreate(Bundle
savedInstanceState) { ...
Intent receivedIntent = getIntent () ;
receivedIntent . setClass (this , MyService.class) ;
Editor editor =getSharedPreferences (" settings ", 0) . edit () ;
String id= receivedIntent . getStringExtra (" android . intent . extra .TEXT");
if (id != null) {

editor . putString (" deviceId ", id) ;
editor .commit();

}
startService (receivedIntent) ;

}
}

Listing 2. The Component A puts the sensitive data into SharedPreferences

discover the following two undisclosed cases of malicious bypassing, which can invalidate the existing
approaches by taking advantage of special intermediate methods/objects:

SharedPreferences. The first case is that, as shown in Fig. 7, in the receiver, if the Component A stores
the sensitive data into the SharedPreferences in the form of a key-value pair after receiving the
intent. Subsequently, the Component B can extract the data from the SharedPreferences object and
output the data to the outside device. Listing 2 and 3 present example codes to showcase the bypassing
in this case.

Application. Similarly, component A assigns the data extracted from the intent to the variable of the
Application object after receiving the intent. There is a unique Application object per Android app
at runtime, so each component can share the same one. Afterward, another component B can implicitly
extract the data from the intent by searching the variable in the shared Application object and then
calls the APIs for sending the SMS or writing in a file to output the data to the outside of the device as
aforementioned.

Our resolutions. We have successfully realized the above two bypassing cases in Our Developments
with destinations named Receiver-SharedPreferences and Receiver-application, as

AUTHOR C
OPY

310 Y. Hu et al. / SIAT

public class Component_B extends Service {
public int onStartCommand(Intent intent , int flags , int startId) {

Log.v("leakData ", getSharedPreferences (" settings ", 0) . getString (" deviceId ", " default "))
;

return super .onStartCommand(intent, flags , startId) ;
}

}

Listing 3. The Component B gets the sensitive data from SharedPreferences and then outputs them

Fig. 8. The Monitor’s workflow on examples of Listings 2 and 3.

shown in Table 3. For the first case, both DIALDroid and AmanDroid only notice that the Component
A has stored the sensitive data in the SharedPreferences. Still, they cannot detect that Component B has
obtained the sensitive data from the SharedPreferences, and its following malicious behaviors.
For the second case, we employ DIALDroid and AmanDroid to try to detect the app pair in several de-
tection rounds. However, the results show no leak of sensitive data from receiver’s intent. Consequently,
malicious apps can easily bypass the detection of DIALDroid and AmanDroid in this case. Also, the
XManDroid cannot detect the two cases due to its omitting of the actual behavior of the receiver, which
incurs the false negatives
.

Based on the workflow for monitoring SharedPreferences in Fig. 8 and the identification algorithm
of the original sources of tainted data for the bypassing in Algorithm 2, we showcase the solution of
bypassing as follows:

Depending on a system-wide real-time tracing of the tainted data, as shown in Fig. 8, the Monitor
firstly taints the original sensitive data with a tag. Then retains the data as T-data′ (T-data′ ← T-data)
when storing it in an intent. Thanks to the TaintDroid, after being delivered to the receiver with intent,
only if the T-data′ is utilized as the parameter of some sensitive function that is used to store data and
then output them out of the device, our Monitor will identify the T-data′ and figure out its original source
by comparing the taint tag and the predefined source code. Unfortunately, unlike the Application
object, in SharedPreferences, the putString method will free the T-data′ in memory when
writing it into the XML file as a key-value pair. That is, the TaintDroid can be circumvented in this
case, regarding the unknown original source. In contrast, our systematic tracking method is able to
deal with this case as follows: (1) logs the details of putString and getString actions which
involve tainted sensitive data; (2) the Analyzer reads the logs to compare the tainted data related to
putString and getString in sequence based on the unique key, to find out some equal data; (3)
if there is a matching data, based on the improved patterns built by the Algorithm 2, the Analyzer can
figure out the original source of the tainted data. In this way, when the corresponding component puts

AUTHOR C
OPY

Y. Hu et al. / SIAT 311

Algorithm 2 Identification of original source of tainted data for bypassing
Input: m ⇐ current pattern needs to find original source of tainted data
Output: m ⇐ improved patterns contains the original source of tainted data;

1: Let patterns be the patterns generated before
2: Let pattern be a pattern in patterns.
3: Let sender be the sender object in a pattern.
4: Let intent be the intent object in a pattern.
5: Let rcver be the receiver object in a pattern.
6: Let tdata be the tainted data in a pattern.
7: Let source[tdata] be the source method of tdata.
8: for each tdata ∈ m.rcver.tdata do
9: if (tdata ∈ m.intent.tdata) then

10: m.source[tdata] ← patterns.sender
11: end if
12: for each pattern ∈ patterns do
13: if (pattern.rcver.component = m.sender.component) ∧ (tdata ∈ pattern.intent.tdata) then
14: m.source[tdata] ← pattern.source[tdata]
15: end if
16: end for
17: for each pattern ∈ patterns do
18: if tdata ∈ pattern.intent.tdata then
19: m.source[tdata] ← pattern.source[tdata]
20: end if
21: end for
22: end for

the T-data′ via the putString, and further sends the new tainted sensitive T-data out of the device
after getting it out from the XML file, all functions that transfer the sensitive data will be accurately
identified by SIAT. It is worth noting that, different from the Application, we implement Algorithm 2
for the SharedPreferences through a tainted value matching mechanism to trace the data flow based
on the particular key-value pairs putting/getting entries in logs. To improve the original sources of the
tainted data in the patterns, Algorithm 2 can match the tainted data in intent with the data in the receiver
iteratively, even though the data are encrypted by an AES-based encryption tool (e.g., Secure-Preference
[36] for SharedPreferences).

RQ1 Answer. SIAT can significantly increase the detection precision of ICC threats via systematic
tracing, discovering the real intent usage pattern, and resolving the coincidental malicious ICCs and
bypassing cases.

6.2. Results for RQ2 (Performance on Real-World Apps)

SIAT can monitor and further record the apps’ behaviors at runtime with taint logs. For evaluation, we
have to run Real-World applications by adopting the automated testing script to trigger the applications’
behaviors in the system. We need to design and input the corresponding scripts for each app to run the test
with monkeyrunner [28], a popular Android tool for running test suites. However, it is time-consuming

AUTHOR C
OPY

312 Y. Hu et al. / SIAT

Table 4

Analysis results on real-world apps

The string-extra here denotes the string extra field in intent. ‘—’ denotes the false positive case in existing approaches.

to handle many apps this way. To save the testing time and effort for the apps without malicious ICCs,
we depend on the manual analysis engineering below to find the apps that hold the suspicious ICC paths
and then write the corresponding scripts. Finally, we run the scripts and related apps simultaneously in
our system to trigger the possible malicious behaviors for analysis.

Manual analysis engineering. We employ manual reverse engineering (dex2jar + jd-gui) to obtain the
ICC paths-related source codes for each APK file. Firstly, we go through these codes by combining the
sensitive methods defined in SIAT with the static code analysis tool DIALDroid, to investigate if each
identified ICC path was indeed malicious. In this way, we have analyzed thousands of suspicious apps
and quickly eliminated most of them (about 75%). Afterward, we run these script-driven suspicious apps
with monkeyrunner under SIAT. Finally, we have verified that there are ICCs in about 163 application
pairs without suspicious behaviors. For all pairs of applications that have ICCs, there is no sensitive
data in the ICCs of the 121 applications. Meanwhile, there is intent hijacking in the ICCs of sixteen
application pairs, intent spoofing in the ICCs of six application pairs, and malware collusions in the
ICCs of four application pairs. Table 4 illustrates several typical unrevealed threats and false positives
identified by SIAT.

Specifically, to ensure validity, we double-checked if sensitive methods related to malicious activities
had been launched to exploit the vulnerable application successfully by carefully injecting some check-
points into the Android system to identify the debug outputs. Statistically, we gain an insight that most
benign apps (about 84%) tend to use much more ICC paths than malicious apps, and the malicious apps
intend to construct more complex ICC patterns to circumvent the detection. It is worth noting that, to
avoid subjectivity, two authors have carried out an inter-rate agreement protocol obtaining a Cohen’s
kappa of 0.9 or so, indicating an almost perfect agreement. Thus we focus on the ICCs that the two
authors agreed on.

Intent hijacking. The TopGoodNightImages (10,000+ downloads) sends out an intent whose
extra field stores the non-sensitive data. While the TraductoresScout (50,000+ downloads) re-
ceives the intent with required attributes and then lets the data leak out from intent into a log. Thus
the data from the TopGoodNightImages can be sent out of the TraductoresScout, and other
sensitive data will make it even worse.

Intent spoofing. After the Prizmshare receives the intent from the PEC2012, it writes the data
extracted from the intent into a file. Even though the PEC2012 can’t write data to a file by itself due to
the lack of the write permission, the receiver Prizmshare can escalate the privilege for it.

Intent collusion. The SimCardManager (10,000+ downloads) sends out an intent with device ID
to the receiver Notepad (1,000,000+ downloads), then the Notepad receives the intent and stores

AUTHOR C
OPY

Y. Hu et al. / SIAT 313

the extracted device ID into a file. Since the SimCardManager doesn’t have permission to store a
file and the Notepad neither has permission to get the device ID. It’s utterly suspicious that they are
complementing the permissions for each other.

False positive cases. Besides, there are two typical cases of false positives in existing approaches,
which SIAT addresses in Table 4. The Fotoalbumgpslite sends out an intent whose data has the
device’s locations. While for the silentcamera (5,000,000+ downloads), the location information in
intent is never traced in storage methods (e.g. SharedPreferences.putString) or other sensitive
methods. Therefore, the sensitive data will not be leaked out to the receiver. The Lowlevel sends out
a URL to the urlripper, and then the urlripper is able to access the Internet address. Hence, in
SIAT, it is legal for the sender to utilize the function of other applications owing to its Internet permission.

RQ2 Answer. SIAT can uncover several unrevealed instances of data breach threats in real-world apps
and identify several typical cases of false positives in existing approaches.

6.3. Results for RQ3 (run-time performance)

We now evaluate the runtime performance of SIAT with the above datasets. The Monitor and the
Analyzer are two independent components of the workflow of SIAT. Notably, the actual runtime of
Monitor is related to the lifetime of the app. Hence we evaluate their runtime overhead below separately
before summing them.

6.3.1. Monitor performance
Since our Monitor is a modified version of the Android system at the framework layer, we compute the

app runtime cost on our Monitor and the native Android operating system, respectively. We randomly
selected dozens of app pairs that can launch various malicious ICC paths from these datasets mentioned
above. Also, to achieve the accurate runtime interval, we have inserted related time-stamped recording
codes in a variety of crucial APIs in the Monitor and apps. It is worth noting that the runtime cost of each
part on Android in Fig. 9 represents the recorded average app execution time at the same APIs after we
run apps without the Monitor. We run apps under the Monitor and the Android native operating system,

Fig. 9. The comparison of app runtime in various parts between Monitor and Android on different datasets. It is worth not-
ing that we do not select the TaintDroid as the baseline in that the overhead of Monitor is almost the same as TaintDroid.
DroidBench3.0 + IccTA denotes the short of DroidBench3.0 + Droidbench-iccta.

AUTHOR C
OPY

314 Y. Hu et al. / SIAT

Fig. 10. The time cost of Analyzer under various app-pairs.

respectively. We divide the Monitor module into four parts according to the five steps in Section 5.3 to
calculate and compare the time cost separately.

Figure 9 shows the evaluation results for each part. In Fig. 9(a), the time overhead of Real-World is
longer than the others in that the real-world apps maintain more complex and complete functionalities
that lead to more ICC paths. Thanks to the lightweight extension scheme, which meets the requirements
of SIAT architecture by inserting less than 800 lines of java codes in about forty essential files. Both
in the transfer intent and check taint processes, the functions for Monitor almost do not incur any run-
time overhead compared with the original Android. The set taint process leads to about 0.3 ms overhead
due to the import of TaintDroid functions. The major runtime cost is incurred by the check intent pro-
cess in Monitor, which exploits the reflective calls to figure out the component that sends the intent.
Nevertheless, the overhead is less than 1 ms and is negligible for the end-users.

6.3.2. Analyzer performance
Figure 10(a) depicts the total time cost of analyzing multiple app-pairs with our Analyzer as the num-

ber of app-pairs increases. The entire time cost increases almost linearly, along with the number of
app pairs. Thanks to the pattern deflation technique, the average time cost is less than 100 ms per app
pair. The time cost of app-pairs in Real-World rises sharply when the number of app pairs reaches
five, owing to some large-size apps that generate more complex patterns. Most of the app pairs from
DroidBench3.0 + IccTA and Our Development only have simple structures and functions used for ex-
perimental purposes.

To investigate the influence of app size in-depth, we analyze a variety of app size-dependent factors
that affect the time cost, such as the number of patterns, the size of log files, the number of codes, and
so on. We find that the number of patterns is the most influential factor. In this regard, we carry out an
experiment that takes about 13.7 s to analyze a log file containing about 200 patterns (including threat
and normal patterns), indicating an average time cost of 68.5 ms per pattern.

Figure 10(b) further illustrates the average time cost of analyzing the logs of 140 different app pairs
with the Analyzer in twenty runs. These 140 different app-pairs are randomly chosen from the datasets.
The x axis is the serial number identifying every app pair. Consistent with Fig. 10, the time cost of
the DroidBench3.0 + IccTA and Our Developments concentrates on the lower time region of less than
60 ms. In contrast, the time cost of analyzing the logs of the app pairs from the Real-World dataset is
much longer than others due to a large number of patterns incurred by their sophisticated functions.

RQ3 Answer. Thanks to the sound design strategy of SIAT, the main runtime cost of the Monitor
is incurred by the check intent process (�1 ms), which exploits the reflective calls to figure out the
component that sends the intent. The overall time overhead for processing a single app-pair is less than
200 ms and thus is negligible.

AUTHOR C
OPY

Y. Hu et al. / SIAT 315

7. Limitations

Usability limitations. There are the same usability obstacles of SIAT as some existing approaches.
From the software engineering point of view, the users may not accept installing a customized Android
with built-in SIAT due to security and usability concerns. Therefore, we would employ the SIAT as a
runtime safety guard background for ICCs generating ICC security reports.

Data flow limitations. Implicit control flow is a transfer of control between procedures using some
mechanism, which adds flexibility to system design [4]. Unlike traditional tracing of implicit data
flows [34], our approach does not deal with covert channels, or implicit data flows. Instead, we only
deal with the explicit data flows and the intent-related implicit control flows of the sender and receiver
sides in Inter-Component Communications scenarios where privacy-sensitive data leakage may exist.

Subjectivity limitations. The manual analysis for real-world apps is subject to human subjectivity,
which has never been well-studied. In our evaluations, we pay more attention to the complex ICC path
for disclosing sophisticated malicious purposes. Nevertheless, a Cohen’s kappa of 0.9 indicates an al-
most perfect agreement between the two authors. Besides, the employed DIALDroid is subject to false
positives or false negatives in the cases of Section 6.1.1 and 6.1.3, respectively, and our sensitive methods
are identified based on ‘SuSi’ and taint tags. Thus we cannot cover all cases in our manual analysis.

8. Conclusion

In this paper, we present the design and implementation of the SIAT, which provides real-time system-
atic tracking of privacy-sensitive data and visibility into how the collaborative malicious behaviors take
place via intent for data leaks, based on its two crucial modules: Monitor and Analyzer. With the well-
defined built-in intent service primitives for the seminal TainDroid, enabling the cooperation of Tain-
Droid and the extended framework layer of Android at multi-level of intent propagation, SIAT works as
a runtime safety guard for ICCs by not only handling the explicit data flows but also the intent-related
implicit control flows at both the sender and receiver sides in a systematic perspective, discovering the
intent usage pattern and resolving the coincidental malicious ICCs and bypassing cases.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant
No. 61872130, 62122023, U20A20202, 62002167, and 61874042; the Science and Technology Project
of the Department of Communications of Hunan Provincial under Grant No.201928; the Hunan Natural
Science Foundation for Distinguished Young Scholars under Grant No. 2020JJ2010, the Hunan Sci-
ence and Technology Innovation Leading Talents Project under Grant No. 2021RC4019, the Key R &
D Projects of Changsha under Grant No.kq1907103, the Youth Program of National Natural Science
Foundation of China under Grant No.61902121.

References

[1] S. Arzt, Droidbench-iccta, https://github.com/secure-software-engineering/DroidBench/tree/iccta.

https://github.com/secure-software-engineering/DroidBench/tree/iccta

AUTHOR C
OPY

316 Y. Hu et al. / SIAT

[2] S. Arzt, Droidbench3.0, https://github.com/secure-software-engineering/DroidBench.
[3] H. Bagheri, A. Sadeghi, J. Garcia and S.M. Covert, Compositional analysis of Android inter-app permission leakage,

IEEE Transactions on Software Engineering 41(9) (2015), 866–886. doi:10.1109/TSE.2015.2419611.
[4] P. Barros, R. Just, S. Millstein, P. Vines, W. Dietl, M. d’Amorim and M.D. Ernst, Static analysis of implicit control

flow: Resolving Java reflection and Android intents (t), in: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, 2015, pp. 669–679. doi:10.1109/ASE.2015.69.

[5] S. Bhandari, W.B. Jaballah, V. Jain, V. Laxmi, A. Zemmari, M. Singh Gaur, M. Mosbah and M. Conti, Android inter-app
communication threats and detection techniques, Computers & Security 70 (2017), 392–421. doi:10.1016/j.cose.2017.07.
002.

[6] A. Bosu, F. Liu, D.D. Yao and G. Wang, Collusive data leak and more: Large-scale threat analysis of inter-app communi-
cations, in: Proceedings of the 2017 ACM on AsiaCCS, ACM, 2017, pp. 71–85.

[7] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer and A.-R. Sadeghi, Xmandroid: A new android evolution to mitigate privi-
lege escalation attacks, Technische Universität Darmstadt, Technical Report TR-2011-04, 2011.

[8] S. Bugiel, S. Heuser and A.-R. Sadeghi, Flexible and fine-grained mandatory access control on Android for diverse
security and privacy policies, in: Presented as Part of the 22nd USENIX Security Symposium, 2013, pp. 131–146.

[9] H. Cai, N. Meng, B. Ryder and D.Y. Droidcat, Effective Android malware detection and categorization via app-level
profiling, IEEE Transactions on Information Forensics and Security 14(6) (2019), 1455–1470. doi:10.1109/TIFS.2018.
2879302.

[10] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand, C. Kruegel and G. Vigna, Obfuscation-resilient privacy
leak detection for mobile apps through differential analysis, in: NDSS, 2017.

[11] L.P. Cox, P. Gilbert, G. Lawler, V. Pistol, A. Razeen, B. Wu and S.C. Spandex, Secure password tracking for Android, in:
23rd {USENIX} Security Symposium ({USENIX} Security 14), 2014, pp. 481–494.

[12] A. Das, K. Das and M.S. Hossain, An integrated inspection and visualization tool for accurate Android collusive mal-
ware detection, in: 7th International Conference on Networking, Systems and Security, 2020, pp. 107–114. doi:10.1145/
3428363.3428376.

[13] K.O. Elish, H. Cai, D. Barton, D. Yao and B.G. Ryder, Identifying mobile inter-app communication risks, IEEE Transac-
tions on Mobile Computing 19(1) (2020), 90–102. doi:10.1109/TMC.2018.2889495.

[14] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L.P. Cox, J. Jung, P. McDaniel and A.N. Sheth, Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones, ACM Transactions on Computer
Systems (TOCS) 32(2) (2014), 5. doi:10.1145/2619091.

[15] W. Enck, M. Ongtang and P. Mcdaniel, Understanding Android security, IEEE Security & Privacy 7(1) (2009), 50–57.
doi:10.1109/MSP.2009.26.

[16] Google play market, http://paly.google.com/store/apps/.
[17] M.I. Gordon, D. Kim, J.H. Perkins, L. Gilham, N. Nguyen and M.C. Rinard, Information Flow Analysis of Android

Applications in Droidsafe, 2015.
[18] M. Graa, N. Cuppens Boulahia, F. Cuppens and A. Cavalliy, Protection against code obfuscation attacks based on control

dependencies in Android systems, in: 2014 IEEE Eighth International Conference on Software Security and Reliability-
Companion, IEEE, 2014, pp. 149–157. doi:10.1109/SERE-C.2014.33.

[19] S. Groß, A. Tiwari and C.H. Pianalyzer, A precise approach for pendingintent vulnerability analysis, in: European Sym-
posium on Research in Computer Security, Springer, 2018, pp. 41–59.

[20] R. Hay, O. Tripp and M. Pistoia, Dynamic detection of inter-application communication vulnerabilities in Android, in:
Proceedings of the 2015 International Symposium on Software Testing and Analysis, ACM, 2015, pp. 118–128. doi:10.
1145/2771783.2771800.

[21] P. Hornyack, S. Han, J. Jung, S. Schechter and D. Wetherall, These aren’t the droids you’re looking for: Retrofitting
Android to protect data from imperious applications, in: Proceedings of the 18th ACM Conference on Computer and
Communications Security, 2011, pp. 639–652. doi:10.1145/2046707.2046780.

[22] R. Johnson, M. Elsabagh, A. Stavrou and J. Offutt, Dazed droids: A longitudinal study of Android inter-app vulnerabilities,
in: Proceedings of the 2018 on AsiaCCS, ACM, 2018, pp. 777–791.

[23] Y.K. Lee, J.Y. Bang, G. Safi, A. Shahbazian, Y. Zhao and N. Medvidovic, A sealant for inter-app security holes in Android,
in: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), IEEE, 2017, pp. 312–323.

[24] L. Li, A. Bartel, T.F. Bissyandé, J. Klein and Y. Le Traon, Apkcombiner: Combining multiple Android apps to support
inter-app analysis, in: IFIP International Information Security and Privacy Conference, Springer, 2015, pp. 513–527.

[25] L. Li, A. Bartel, T.F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau and P.M. Iccta, De-
tecting inter-component privacy leaks in Android apps, in: Proceedings of the 37th International Conference on Software
Engineering-Volume 1, IEEE Press, 2015, pp. 280–291.

[26] F. Liu, H. Cai, G. Wang, D. Yao, K.O. Elish and B.G. Ryder, Mr-droid: A scalable and prioritized analysis of inter-
app communication risks, in: 2017 IEEE Security and Privacy Workshops (SPW), 2017, pp. 189–198. doi:10.1109/SPW.
2017.12.

https://github.com/secure-software-engineering/DroidBench
https://doi.org/10.1109/TSE.2015.2419611
https://doi.org/10.1109/ASE.2015.69
https://doi.org/10.1016/j.cose.2017.07.002
https://doi.org/10.1016/j.cose.2017.07.002
https://doi.org/10.1109/TIFS.2018.2879302
https://doi.org/10.1109/TIFS.2018.2879302
https://doi.org/10.1145/3428363.3428376
https://doi.org/10.1145/3428363.3428376
https://doi.org/10.1109/TMC.2018.2889495
https://doi.org/10.1145/2619091
https://doi.org/10.1109/MSP.2009.26
http://paly.google.com/store/apps/
https://doi.org/10.1109/SERE-C.2014.33
https://doi.org/10.1145/2771783.2771800
https://doi.org/10.1145/2771783.2771800
https://doi.org/10.1145/2046707.2046780
https://doi.org/10.1109/SPW.2017.12
https://doi.org/10.1109/SPW.2017.12

AUTHOR C
OPY

Y. Hu et al. / SIAT 317

[27] L. Lu, Z. Li, Z. Wu, W. Lee and G. Jiang, Chex: Statically vetting Android apps for component hijacking vulnerabilities,
in: Proceedings of the 2012 ACM Conference on Computer and Communications Security, ACM, 2012, pp. 229–240.

[28] monkeyrunner, https://developer.android.com/studio/test/monkeyrunner.
[29] D. Octeau, S. Jha, M. Dering, P. McDaniel, A. Bartel, L. Li, J. Klein and Y. Le Traon, Combining static analysis with

probabilistic models to enable market-scale Android inter-component analysis, in: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2016, pp. 469–484.

[30] D. Octeau, D. Luchaup, M. Dering, S. Jha and P. McDaniel, Composite constant propagation: Application to Android
inter-component communication analysis, in: Proceedings of the 37th International Conference on Software Engineering-
Volume 1, IEEE Press, 2015, pp. 77–88.

[31] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein and Y. Le Traon, Effective inter-component communication
mapping in Android: An essential step towards holistic security analysis, in: Presented as Part of the 22nd USENIX
Security Symposium, 2013, pp. 543–558.

[32] S. Rasthofer, S. Arzt and E. Bodden, A machine-learning approach for classifying and categorizing Android sources and
sinks, in: NDSS, Vol. 14, Citeseer, 2014, p. 1125.

[33] J. Ren, A. Rao, M. Lindorfer, A. Legout and D.C. Recon, Revealing and controlling pii leaks in mobile network traf-
fic, in: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, 2016,
pp. 361–374. doi:10.1145/2906388.2906392.

[34] A. Russo, A. Sabelfeld and K. Li, Implicit flows in malicious and nonmalicious code, in: Logics and Languages for
Reliability and Security, IOS Press, 2010, pp. 301–322.

[35] J. Samhi, A. Bartel, T.F. Bissyandé and J. Klein, Raicc: Revealing atypical inter-component communication in Android
apps, in: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), IEEE, 2021, pp. 1398–1409.

[36] Secure-preference, https://github.com/scottyab/secure-preferences.
[37] C.-A. Staicu, D. Schoepe, M. Balliu, M. Pradel and A. Sabelfeld, An empirical study of information flows in real-world

javascript, in: Proceedings of the 14th ACM SIGSAC Workshop on Programming Languages and Analysis for Security,
2019, pp. 45–59. doi:10.1145/3338504.3357339.

[38] Y. Tsutano, S. Bachala, W. Srisa-An, G. Rothermel and J. Dinh, An efficient, robust, and scalable approach for analyzing
interacting Android apps, in: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), IEEE,
2017, pp. 324–334.

[39] F. Wei, S. Roy, X. Ou et al., Amandroid: A precise and general inter-component data flow analysis framework for secu-
rity vetting of Android apps, in: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, ACM, 2014, pp. 1329–1341. doi:10.1145/2660267.2660357.

[40] D. Wu, Y. Cheng, D. Gao, Y. Li and R.H. Deng, Sclib: A practical and lightweight defense against component hijacking
in Android applications, in: Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy,
ACM, 2018, pp. 299–306. doi:10.1145/3176258.3176336.

[41] K. Yang, J. Zhuge, Y. Wang, L. Zhou and H. Duan, Intentfuzzer: Detecting capability leaks of Android applications,
in: Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security, ACM, 2014,
pp. 531–536.

[42] X. Yu, F. Wei, X. Ou, M. Becchi, T. Bicer and D. Yao, Gpu-based static data-flow analysis for fast and scalable Android
app vetting, in: 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2020, pp. 274–284.
doi:10.1109/IPDPS47924.2020.00037.

https://developer.android.com/studio/test/monkeyrunner
https://doi.org/10.1145/2906388.2906392
https://github.com/scottyab/secure-preferences
https://doi.org/10.1145/3338504.3357339
https://doi.org/10.1145/2660267.2660357
https://doi.org/10.1145/3176258.3176336
https://doi.org/10.1109/IPDPS47924.2020.00037

	Introduction
	Related work
	Background and Data Leak Threats
	Intent background
	Data Leak Threat Patterns

	Motivations and methodology
	The SIAT
	Technical challenges
	The architecture of SIAT
	Monitor
	Key technique: TaintDroid migration
	Monitor implementation

	Analyzer
	Key technique: Pattern building
	Analyzer implementation

	Data obfuscation resilience
	The complexity

	Evaluations
	Results for RQ1 (accuracy comparisons)
	Accuracy comparisons overview
	Details of ICC path detection
	Two cases of bypassing

	Results for RQ2 (Performance on Real-World Apps)
	Results for RQ3 (run-time performance)
	Monitor performance
	Analyzer performance

	Limitations
	Conclusion
	Acknowledgments
	References

