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Abstract—With the rapid development of artificial intelligence,
a substantial number of computing-intensive applications have
emerged in Internet of Things (IoT) devices. The mobile-edge
computing (MEC) architecture enables the provision of abundant
computing and storage resources in close proximity to end users
(EUs), thereby effectively enhancing their Quality of Experience
(QoE). Nonetheless, both the MEC server and EUs are self-
interests, it is crucial to establish suitable incentive mechanism to
promote active engagement from both parties in the offloading
process. Therefore, we employ the Stackelberg game to describe
the interaction process between EUs and the MEC server, and
an optimal relationship between bandwidth and offloading task
size is established to simplify the decision problem for EUs.
Then, the optimal strategies for the MEC server and EUs are
solved using reverse induction. Given the limited resources of the
MEC server, we propose a dynamic programming-based resource
allocation (DPRA) algorithm to maximize the revenue of the
MEC server while ensuring the cost of each EU. The simulation
results demonstrate that the DPRA algorithm can reduce latency
and energy consumption costs, significantly outperforming other
comparative strategies in terms of performance at both EUs and
the MEC server.
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resource pricing, Stackelberg game, task offloading.
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I. INTRODUCTION

THE Internet of Things (IoT) is a crucial field in the 5G
era with vast application prospects. It can connect various

devices and objects, providing convenient, efficient, and secure
service experiences. The IoT technology has penetrated into
all aspects of human life, such as smart healthcare, intelligent
manufacturing, autonomous driving cars, virtual reality, and
so on [1]. It is predicted that the global IoT terminal count
is expected to reach 25 billion by 2025. With the rapid
development of artificial intelligence (AI), the demands for
computing-intensive applications are growing. These appli-
cations require more powerful and efficient computing and
storage resources to support complex tasks, such as deep
learning and big data processing [2]. Nonetheless, the physical
size of current devices is constrained, which in turn also limits
the computational capability and battery life of mobile devices.
As a result, it becomes challenging to ensure that end users
(EUs) receive the necessary Quality of Experience (QoE) [3].
Traditional cloud computing systems possess strong comput-
ing and storage resources. However, the performance of highly
time-sensitive task applications cannot always be effectively
guaranteed. This is because such applications require data
transmission over long distances, which may cause latency
issues [4].

Mobile-edge computing (MEC), as a new paradigm arising
from the convergence of mobile and cloud computing, deploys
computing and storage resources on edge servers (ESs) closer
to EUs, significantly reducing the amount of tasks sent to
remote clouds. By reducing the resource consumption of user-
owned devices, MEC provides better QoE for EUs. Compared
to cloud computing, MEC has several advantages, including
high reliability, low latency, low bandwidth demand, and data
privacy protection [5]. However, the MEC server typically
does not have as much resources as cloud computing center.
If a significant number of EUs offload their computing tasks
to the MEC server with limited computing and bandwidth
resources, it may result in wireless link congestion. This
congestion, in turn, negatively impacts the efficiency of task
offloading. Therefore, proper allocation and management of
wireless resources are crucial to ensure a smooth and efficient
task offloading process. To achieve this goal, joint optimization
of computing and related wireless resource allocation is nec-
essary [6]. Meanwhile, the MEC server is unwilling to engage
in the task offloading process without reward. Developing a
reasonable pricing strategy to value the resources is necessary.
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Therefore, it is essential to establish an appropriate incentive
mechanism between the MEC server and EUs for resources
allocation and pricing [7].

Some researchers have designed incentive strategies, such as
market-based pricing, auction theory-based, and game theory-
based. Among them, game theory serves as a mathematical
instrument for analyzing the interaction among multiple deci-
sion makers. Game theory considers the predicted behavior
and actual behavior of individuals in the game and explores
their optimal strategies. In particular, the Stackelberg game
is suitable for scenarios where game participants are in an
unequal status [8]. In this situation, the leader has a leadership
advantage and can take the initiative while followers need to
make decisions after the leader. All game participants are self-
interested and compete with each other to maximize their own
interests. In this article, the MEC server, as a leader, will price
its resources and sell them to EUs in need, while EUs will
adjust the amount of resources purchased based on the given
price. In addition, to our knowledge, there is a dearth of prior
research on the joint optimization of bandwidth and computing
resources based on Stackelberg game in MEC. Moreover,
previous research work often applied algorithms to formalized
problems, which resulted in high complexity when iteratively
executing multiple algorithms. The main contributions are
summarized as follows.

1) The interaction process between the MEC server and
EUs is modeled as a Stackelberg game, in which the
MEC server acts as a leader and maximizes its revenue
by setting the price of bandwidth resources, while EUs
act as followers and minimize their costs by deciding
how much bandwidth to purchase.

2) A quantitative relationship between optimal bandwidth
and offloading task size is established. The EUs’
multivariable offloading decision problem is transformed
into a single-variable optimization problem, and convex
optimization is used to determine the optimal bandwidth
for EUs.

3) Reverse induction is used to analyze the Stackelberg
game, demonstrating the existence of a distinct
Stackelberg equilibrium between the MEC server and
EUs. Subsequently, a dynamic programming-based
resource allocation (DPRA) algorithm is proposed for
achieving the optimal solution.

4) A substantial amount of experiments are carried out
to substantiate the efficacy of the proposed DPRA
algorithm. The results of the experiments show the
positive impact of the DPRA algorithm in reducing the
costs incurred by EUs and enhancing the revenue earned
by the MEC server, leading to a mutually beneficial
outcome for both parties.

The remaining organization of this article is as follows.
Section II presents the relevant literature in this field. In
Section III, the system model is introduced. After giving
the problem formulation in Section IV, the algorithm design
and analysis is proposed in Section V. Section VI includes
the parameter settings and performance evaluation. Finally,
Section VII provides a summary of the work in this article,

along with a discussion on future directions for further
exploration.

II. RELATED WORK

In this section, the optimization objective and offloading
schemes in the MEC architecture are discussed, followed by
resource allocation strategy based on economic theory.

A. Optimization Objective

The optimization objective is a critical element in MEC
architecture. To ensure the QoE of EUs, optimization objective
is typically quantified to express the EUs’ experience and
perception of the current network. Research often focuses
on optimizing two aspects: 1) latency and 2) energy con-
sumption. In [9], a combination of traditional optimization
methods and deep reinforcement learning was applied by
Zhu et al. to rapidly acquire the optimal offloading solu-
tion for tasks, aiming to minimize task computation latency.
Gu et al. [10] investigated a UAV-MEC system that incor-
porated energy harvesting capabilities. In order to achieve
an offloading solution that was both energy-efficient and
secure, it transformed the optimization objective into a uni-
variate convex problem. This algorithm helped alleviate the
energy constraint issues of UAVs. The optimization objective
of [11], [12], and [13] was minimizing latency and energy
consumption. Tong et al. [11] put forth an optimization
algorithm leveraging Lyapunov optimization technique, which
aimed to minimize the overall energy consumption while
ensuring long-term system stability within a specified time
frame. Zhang et al. [12] utilized a deep neural network to
acquire the optimal correlation between offloading ratios and
wireless channels, while employing convex optimization to
derive the solution for the subproblem of resource allocation.
The proposed algorithm exhibited superiority in minimizing
overall system energy consumption and achieving low process-
ing latency. Chen et al. [13] proposed cloud–edge collaborative
mobile computing offloading mechanism that integrated deep
reinforcement learning. This mechanism considered both com-
putational resources and offloading decisions. It featured fast
convergence, strong stability, and the ability to achieve optimal
offloading decisions with the lowest overall cost. In [14],
a reputation and voting-based consensus mechanism was
proposed by Liao et al. in MEC blockchain systems, which
showed excellent performance concerning time consumption
and consensus security.

The aforementioned research mainly focused on the techni-
cal aspect of resource allocation with the objective of striking a
balance between latency and energy consumption. However, an
economic perspective has not been considered. They assumed
that the MEC server would selflessly provide services to
EUs, without optimizing for both the MEC server and EUs
simultaneously.

B. Offloading Schemes

In current research on MEC architecture, there are mainly
two offloading schemes for computation tasks at the user end,
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namely, binary offloading and partial offloading. Specifically,
binary offloading refers to the task being treated as a whole,
where it is either completely offloaded to the MEC server
or executed entirely on the local device. Saleem et al. [15]
was based on MEC enabled device-to-device collaboration,
jointly addressing task allocation and power allocation, utiliz-
ing proximity-aware binary task offloading to accelerate task
execution. Alghamdi et al. [16] introduced a binary computing
offloading decision and then solved the offloading sequence
decision problem using the principle of optimal stopping
theory. Lin et al. [17] introduced a PDDQNLP algorithm
to optimize energy efficiency and task offloading fairness
in UAV-assisted MEC, demonstrating superior performance
in single-UAV scenarios. Wu et al. [18] presented a binary
offloading framework leveraging Lyapunov optimization and
actor–critic networks to minimize energy consumption, and
protect user privacy. In contrast to binary offloading, partial
offloading can split the computation task into two parts, which
can be executed on the local decides and the MEC server,
respectively. Wu et al. [19] proposed a delay-aware energy-
efficient task offloading algorithm that utilized virtual queues
and perturbed Lyapunov optimization to minimize energy
consumption and maintain low latency. Abouaomar et al. [20]
proposed a resource representation scheme that utilized the
Lyapunov optimization framework for dynamically allocating
resources to edge devices. The proposed method offered low
latency and optimal resource utilization services, outperform-
ing other benchmark methods. Qu et al. [21] proposed a
DMRO algorithm for efficient task offloading in heterogeneous
IoT–edge–cloud computing environments. It combined deep
reinforcement learning, meta-learning, and distributed comput-
ing to achieve optimal offloading decision making.

Our study belongs to the category of partial offloading. In
addition, compared to the aforementioned research, our tasks
can be executed concurrently on both local devices and the
MEC server. This approach effectively reduces EUs time costs
and improves execution efficiency.

C. Economic Pricing Strategy

Resource pricing contributes to achieving optimal resource
allocation, thereby enhancing economic efficiency. Auction
theory and Game theory are commonly regarded as the
primary and most frequently employed methods in the field
of resource pricing. Le et al. [22] proposed an auction-
based framework for bandwidth trading in colocation MEC
systems, which considers the tradeoff between delay and
energy consumption. Luong et al. [23] introduced an optimal
auction design utilizing deep learning techniques, and the
proposed approach could offer a valuable tool for optimizing
resource allocation in fog networks at large. In [24], a real
combinatorial auction mechanism was employed by Su et al.
to incentivize devices and edge clouds to participate in
offloading service transactions. Unlike auction theory, game
theory can investigate resource allocation problems involving
multiple participants, including cooperative games, competi-
tive games, and situations where cooperation and competition
coexist. Furthermore, game theory has advantages in terms of

interactions and dynamic changes, enabling better solutions
to resource allocation issues. On the basis of noncooperative
game theory, Li et al. [25] introduced a fine-grained computing
offloading algorithm to analyze the interaction between the
local and edge sides. Hossain et al. [26] combined vehicular
edge computing with noncooperative game theory, allowing
each vehicle to design its own offloading strategy to compete
for resources and maximize utility. The noncooperative game
mentioned above required the assumption that all participants
disclose their strategies simultaneously, which is not always
valid in practice. In contrast, the Stackelberg game enables
participants to disclose their strategies in a predetermined
order. Zhou et al. [27] adopted a Stackelberg game model
to depict the relationship between cloud server (CS) and
ES, enabling CS to allocate computing tasks to ES with
available computing resources, thus reducing its own work-
load and costs. Liu and Fu [28] analyzed the interaction
between users and MEC server based on the Stackelberg
game, aiming to address the issue of equal distribution of
edge cloud computing resources. However, this study did not
consider the energy consumption of user devices. Applying the
Stackelberg game to the three-tier architecture of cloud–edge–
terminal, Chang and Wei [29] achieved energy sustainability
and profit maximization. However, the tasks on the user side
and the cloud–edge side cannot be executed simultaneously
in this research. In [30], the interaction between the MEC
server and users was modeled as a Stackelberg game by
Tong et al. and the optimal solution was obtained using a
PSO-based algorithm. However, this study only considered the
optimization of a single resource and used equal distribution
for communication resources.

Table I presents a comparison of related works.

III. SYSTEM MODEL

A brief overview of the MEC model’s scenario is provided
at the beginning of this section. Furthermore, the local com-
puting model and the process of offloading tasks for execution
on the MEC server are discussed.

A. MEC Model

In this part, we consider a MEC model consisting of
multiple EUs and an MEC server, as depicted in Fig. 1. The
EUs are denoted as N = {1, 2, . . . , N}. During an offloading
period, EUs transmit their tasks to the MEC server through
wireless communication links. The MEC server located in
the region receives tasks and provides the computed results
back to the EUs after task execution. The tasks from EUs are
randomly generated. To enhance computing efficiency, partial
offloading is applied, allowing the EUs to divide their tasks
into two portions. One portion is processed locally, while the
other portions is simultaneously offloaded to the MEC server
for processing.

The communication part of this model utilizes frequency-
division multiple access (FDMA) technology. Multiple EUs
concurrently offload tasks to the MEC server by utilizing
dedicated sub-bands for task transmission. Furthermore, the
quasi-static channel model is adopted to approximate the
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TABLE I
OVERVIEW OF RECENT RESEARCHES

Fig. 1. Architecture of the multiuser MEC system.

channel properties during an offloading period. The symbols
used in this article are listed and explained in Table II.

B. Local Computing Model

To reflect the heterogeneity of the system, the amount of the
input data, the computing complexity of the input data, and
the local computing power of the user devices are all different.
For EU i, the total data size is denoted by Ri, the CPU cycles
to compute one bit of input data is denoted by Ci, and the
user device CPU frequency is denoted by f loc

i . Since the task
of EU i can be split, Di denotes the size of data that needs
to be offloaded to the MEC server. Therefore, the size of the

TABLE II
NOTATIONS AND EXPLANATION

task processed locally by EU i is (Ri − Di). The local latency
for EU i can be represented as

T loc
i = Ci(Ri − Di)

f loc
i

. (1)

The local energy consumption for EU i can be expressed as

Eloc
i = εi

(
f loc
i

)2
(Ri − Di)Ci (2)
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where εi is the power consumption coefficient determined by
the chip structure, and εi(f loc

i )2 is the energy consumption the
CPU running for a cycle.

C. Task Offloading and MEC Server Execution Model

The process of edge computing involves three steps:
1) uplink transmission; 2) tasks execution on the MEC server;
and 3) downlink transmission. Nevertheless, due to the small
data size in the downlink transmission, we opted to overlook
latency and energy consumption at this stage to streamline the
model [27], [31], [32].

1) Uplink Transmission: EUs offload their tasks to the
MEC server through wireless channels. According to the
Shannon formula, given the transmission power pi of EU i
and the channel gain hi between EU i and MEC server, the
transmission rate of EU i is

ri = Bi log2

(
1 + pihi

σ 2

)
(3)

where Bi is the bandwidth allocated to the EU i, and σ 2 is the
power spectral density of the noise.

Therefore, the uplink transmission latency for EU i can be
expressed as

T trans
i = Di

ri
. (4)

The energy consumption of uplink transmission for EU i
can be expressed as

Etrans
i = pi

Di

ri
. (5)

2) MEC Server Execution: The computing speed assigned
to the EU i by the MEC server is represented by f edge

i . To
facilitate analysis, this article assumes that the total computing
speed is equally distributed, i.e., f edge

i = f edge/N, where
f edge denotes the total computing speed of the MEC server,
namely, the total number of CPU frequency. Although this
allocation strategy is simple, it is sufficient for the majority of
MEC scenarios [30], [38], [39]. Therefore, the time generated
during MEC server execution can be expressed as

Texe
i = CiDi

f edge
i

. (6)

Similar to existing studies, such as [33] and [34], this article
focuses more on reducing energy consumption in battery-
limited terminal devices. In this stage, the tasks are processed
on the MEC server without consuming energy from user
devices. Due to the implementation of wired access technology
in the MEC server, energy scarcity is not a concern. Therefore,
the energy loss during this stage is disregarded.

IV. PROBLEM FORMULATION

In this section, the interaction process between EUs and the
MEC server is first established as a Stackelberg game. Then,
utility functions and optimization objectives of both the MEC
server and EUs are derived.

Fig. 2. Stackelberg game procedure.

A. Stackelberg Game in MEC System

In this article, we aim to optimize the utilities of both
the MEC server, and the EUs. To ensure QoE for EUs, the
model takes into consideration the optimization of both latency
and energy consumption in the system. The EUs are given
the ability to determine the size of tasks to be offloaded
to the MEC server, as well as the associated bandwidth.
Consequently, task assignment and bandwidth allocations are
employed at the user’s end to minimize the overall costs.
Specifically, these costs include latency, energy consumption,
and resource payment. On the MEC server side, the objective
is to maximize revenue by pricing and selling resources to
EUs. Furthermore, the pricing decision of the MEC server can
be observed by EUs and used as an input for their bandwidth
purchasing decision. The decision of EUs is constrained by
the decision of the MEC server. This participant situation
exhibits asymmetry, where one party takes a leading action and
assumes that the other party will make a rational choice based
on its own decision, which is consistent with the Stackelberg
game. Therefore, the interaction process between the MEC
server and EUs is taken as a single-leader–multi-follower
Stackelberg game [35], [36]. EUs act as followers, while the
MEC server assumes the role of the leader. The Stackelberg
game procedure in this MEC system is depicted in Fig. 2.

B. Utility Function and Optimization Problem of MEC
Server

Due to the maintenance and deployment costs of the MEC
server, it gains revenue by selling its bandwidth resources to
EUs. The utility of the MEC server can be described as

Uedge =
N∑

i=1

uiBi (7)

where the unit bandwidth price for EU i is defined as ui,
and the bandwidth resources purchased by EU i are defined
as Bi. The MEC server aims to maximize its revenue by
selling bandwidth resources at a reasonable price. Given
the practical constraints and the objective of maximizing
utility, the optimization problem of the MEC server can be
described as

P1: arg max Uedge(ui)
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Fig. 3. Latency structure.

s.t.
N∑

i=1

Bi ≤ Bedge (8)

where the constraint denotes that the total amount of band-
width purchased by EUs cannot exceed the total system
bandwidth.

C. Utility Function and Optimization Problem of EUs

For EUs, their costs consist of three parts: 1) latency;
2) energy consumption; and 3) payment to the MEC
server [21], [30], [39]. Since both local computing and MEC
server computing can be carried out concurrently in different
terminals, the latency structure in this article is illustrated in
Fig. 3.

The latency overhead for EU i can be described as

Ti = max
{

T loc
i , T trans

i + Texe
i

}
. (9)

Therefore, the overall cost incurred by EU i can be
expressed as

Uuser
i = wt

iTi + we
i

(
Eloc

i + Etrans
i

)
+ wp

i uiBi (10)

where 0 ≤ wt
i, we

i wp
i ≤ 1, respectively, denote the

weighting factors of latency, energy consumption, and pay-
ment [39], [40]. It should be noted that overall cost is defined
as a linear combination of these three indicators because
they can concurrently reflect the cost of task offloading.
That is, longer latency, higher energy consumption, and
higher resource procurement costs lead to increased EUs
costs. Parameters can be selected based on EUs preferences.
For example, when an EU has a low battery level, energy
consumption becomes more crucial. To enhance its importance
in overall optimization, we can dynamically adjust the energy
consumption parameter.

Equation (10) can be equivalently expressed in a more
specific form as

Uuser
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

we
i

(
εi
(
f loc
i

)2
(Ri − Di)Ci + pi

Di
ri

)
+

wt
i

(
(Ri−Di)Ci

f loc
i

)
+ wp

i uiBi , 0 ≤ Di ≤ xi

we
i

(
εi
(
f loc
i

)2
(Ri − Di)Ci + pi

Di
ri

)
+

wt
i

(
Di
ri

+ DiCi

f edge
i

)
+ wp

i uiBi , xi < Di ≤ Ri

(11)

where xi is equal to

xi = Ri

f loc
i

riCi
+ f loc

i

f edge
i

+ 1
. (12)

Based on the pricing strategy provided by the MEC server,
EUs tend to minimize their overall costs through their own
bandwidth purchasing and task offloading strategies. It is
required to ensure that the total purchased bandwidth by EUs
does not exceed the system’s bandwidth capacity. Meanwhile,
there is another practical constraint. Within one offloading
period, the MEC server has an upper limit on the available
CPU cycles for computing tasks, and the total amount of data
offloaded from all EUs to the MEC server must not exceed
this threshold [30]. It is worth noting that Fedge and f edge

represent the computing capacity and computing speed of the
MEC server’s CPU, respectively. Based on the optimal price
of MEC server u∗

i [41], the optimization problem of EU i can
be formulated as

P2: arg min Uuser
i

(
Bi, Di, u∗

i

)

s.t.
N∑

i=1

Bi ≤ Bedge

N∑
i=1

CiDi ≤ Fedge. (13)

It is evident that the optimization problems of P1 and P2
are coupled in a complex manner. The pricing strategy of the
MEC server will have an impact on the amount of resources
purchased by EUs, while the bandwidth purchased by EUs
will, in turn, affect the MEC server’s pricing strategy.

V. ALGORITHM DESIGN AND ANALYSIS

In this section, the optimization problem is first simplified
to a univariate convex optimization problem. Second, the exis-
tence of Nash equilibrium among EUs is proven. Subsequently,
the optimization problem of the MEC server is solved. Finally,
resource allocation is performed using the DPRA algorithm.

A. Problem Simplification

Reverse induction is a commonly used problem-solving
method in game theory. It can effectively solve problems
involving interdependent decision making between EUs and
the MEC server. The method adopts a two-stage game solu-
tion. In the first stage, problem P2 is solved, where EUs obtain
their optimal bandwidth purchase strategy B∗ and offloading
strategy D∗ by solving an optimization problem with given
price strategy u. In the second stage, problem P1 is solved,
where the MEC server obtains the optimal pricing strategy
u∗ by solving another optimization problem based on EUs’
optimal bandwidth strategy B∗ and offloading strategy D∗.

After the MEC server presents the bandwidth price for each
EU, the optimization problem P2 of EUs only involves the
purchased bandwidth and offloading task size. The compre-
hensive expenses of EU i can be simplified as

Uuser
i =

{
ki1Di + bi1, 0 ≤ Di ≤ xi

ki2Di + bi2, xi < Di ≤ Ri
(14)

where ki1, ki2, bi1, and bi2 are expressed as

ki1 = we
i pi/ri − wt

iCi/f loc
i − we

i εi

(
f loc
i

)2
Ci
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Fig. 4. Uuser
i with respect to slope. (a) ki1 ≤ 0 ≤ ki2, (b) 0 < ki1 < ki2,

(c) ki1 < ki2 < 0, and (d) Relationship between bandwidth and offloading
size.

ki2 = we
i pi/ri + wt

iCi/f edge
i + wt

i/ri − we
i εi

(
f loc
i

)2
Ci

bi1 = we
i εi

(
f loc
i

)2
RiCi + wp

i uiBi + wt
iCiRi/f loc

i

bi2 = we
i εi

(
f loc
i

)2
RiCi + wp

i uiBi. (15)

It is evident that ki1, ki2, bi1, and bi2 satisfy ki1 < ki2 and
0 < bi2 < bi1. According to the relationship between the slope
and 0, the relationship between bandwidth and offloading data
size is discussed under different circumstances, as shown in
Fig. 4.

As shown in Fig. 4(a), when ki1 ≤ 0 ≤ ki2, the bandwidth
of EU i satisfies qi1 ≤ Bi ≤ qi2, where

qi1 = we
i pi(

wt
iCi

f loc
i

+ we
i εi
(
f loc
i

)2
Ci

)
log2

(
1 + pihi

σ 2

) (16)

qi2 = wt
i + we

i pi(
we

i εi
(
f loc
i

)2
Ci − wt

iCi

f edge
i

)
log2

(
1 + pihi

σ 2

) . (17)

qi1 and qi2 denote the lower and upper bounds of bandwidth,
respectively.

As shown in Fig. 4(a), EU i achieves the minimum overall
cost at task offloading size xi when ki1 ≤ 0 ≤ ki2. At this
point, the task is not only executed locally but also partially
offloaded to the MEC server.

In Fig. 4(b), when 0 < ki1 < ki2, the overall cost of EU i
achieves its minimum at offloading size 0, indicating that task
is executed only locally.

In Fig. 4(c), when ki1 < ki2 < 0, the overall cost of EU i
achieves its minimum at task offloading size Ri, indicating the
whole task is computed on the MEC server.

To sum up, the optimal offloading strategy D∗
i for EU i

can be illustrated in Fig. 4(d). However, when EUs purchase
more bandwidth resources and conduct complete offloading,

it may lead to a few EUs monopolizing server computing
resources. In order to achieve resource balance and fairness,
when the situation shown in Fig. 4(c) occurs, the MEC server
incentivizes EUs to choose the amount of task offloading
xi. Additionally, this method can effectively utilize local
computing resources, reduce server load, and facilitate the
rational use of resources.

Through the above analysis, when EU i is about to perform
edge computing, the task offloading size is denoted as xi. In
this case, the overall cost of the two scenarios in (11) is equal.
Therefore, the utility function of EU i can be transformed as

Uuser
i (Bi) =

(
we

i pi

ri
− we

i εi

(
f loc
i

)2
Ci − wt

iCi

f loc
i

)
xi

+we
i εi

(
f loc
i

)2
Ci + wp

i uiBi + wt
iRiCi

f loc
i

. (18)

B. Optimization of EUs

Definition 1: There exists Nash equilibrium among EUs
with B∗ = {B∗

1, B∗
2, . . . , B∗

N}. At this point, there is a utility
function Uuser

i (B∗
i , B∗−i) > Uuser

i (Bi, B∗−i), where B∗−i is the
best strategy for other EUs excluding EU i.

Nash equilibrium possesses a desirable property of self-
stability in academia, enabling users in an equilibrium state
to attain mutually satisfactory solutions without any incentive
to deviate. This characteristic is crucial for price optimization
problems since individuals, as distinct entities, may act based
on their own interests.

Theorem 1: In the game, with the MEC server serving as
the leader and the EUs functioning as followers, the optimal
strategy for the bandwidth of EU i can be represented as

B∗
i =

√
αiRi log2

(
1 + pihi

σ 2

)
/wp

i ui − f loc
i /Ci

βi
(19)

where

αi = we
i pi

(
1 + f loc

i /f edge
i

)
+ we

i εi

(
f loc
i

)3 + wt
i (20)

βi =
(

1 + f loc
i /f edge

i

)
log2

(
1 + pihi

σ 2

)
. (21)

Proof: For EU i, the first-order derivative of the utility
function Uuser

i is equal to

∂Uuser
i

∂Bi
=

−αiRi log2

(
1 + pihi

σ 2

)

(
f loc
i /Ci + βiBi

)2 + wp
i ui. (22)

The second-order derivative of Uuser
i is equal to

∂2Uuser
i

∂2Bi
=

2αiλiRi log2

(
1 + pihi

σ 2

)

(
f loc
i /Ci + βiBi

)3 . (23)

As both the numerator and denominator are positive, the
second derivative of the utility function is positive. Therefore,
the utility function of EU i is strictly convex, indicating the
existence of a Nash equilibrium among EUs. According to (22)
and (23), the uniqueness of strategy B = {B∗

1,B∗
2, . . . , B∗

n} can
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be proven. When ∂Uuser
i /∂Bi = 0, we obtain the optimal

bandwidth for EUs from (22).
Lemma 1: For a given pricing strategy from the MEC

server, each EU has a unique optimal bandwidth strategy.
Proof: The first and second partial derivatives of the

optimal bandwidth B∗
i with respect to ui can be obtained as

follows:

∂B∗
i

∂ui
=

−
√

αRi log2

(
1 + pihi

σ 2

)

2βi

√
wp

i u
3
2

(24)

∂2B∗
i

∂2ui
=

−3

√
αiRi log2

(
1 + pihi

σ 2

)

4βi

√
wp

i u
5
2

. (25)

The negative values of the first and second partial derivatives
indicate that as the MEC server sets a lower price, EUs
tend to purchase more bandwidth. Furthermore, the optimal
bandwidth B∗

i is a monotonically decreasing upper convex
function of the pricing ui, resulting in a unique and optimal
strategy B∗

i .

C. Optimization of the MEC Server

Definition 2: If Uedge(u∗
i , B∗

i ) > Uedge(ui, B∗
i ), then a

unique Stackelberg equilibrium exists between EUs and the
MEC server.

Theorem 2: In the game, the MEC server, as the leader,
has an optimal pricing strategy for each EU, which can be
represented as

u∗
i =

αiRiC2
i log2

(
1 + pihi

σ 2

)

4wp
i

(
f loc
i

)2 . (26)

Proof: By substituting the optimal bandwidth strategy B∗
i

and the corresponding data size xi into the utility function
Uedge, we can obtain Uedge(ui, B∗

i ). The MEC server adjusts
pricing strategy to control the bandwidth purchased by EUs.
For the MEC server, the first-order derivative of the utility
function Uedge(ui, B∗

i ) to ui is

∂Uedge

∂ui
=

√
αiRi log2

(
1 + pihi

σ 2

)
/4wp

i ui − f loc
i /Ci

βi
. (27)

The second-order derivative of the utility function Uedge to
ui is

∂2Uedge

∂2ui
= −

√
αiRi log2

(
1 + pihi

σ 2

)

4βi

√
wp

i u
3
2

. (28)

According to the convex optimization theorem, the second
derivative of the utility function for the MEC server is
negative, indicating strict concavity of Uedge. Consequently, it
can be concluded that P1 is a convex optimization problem,
and the optimal pricing strategy u∗

i is unique at the same time.
Therefore, Theorem 2 is validated.

D. DPRA Algorithm

Based on the aforementioned analysis, we have determined
the optimal bandwidth pricing for EUs by the server in P1.
Additionally, in P2, the bandwidth purchase strategy for each
EU is B∗

i and the offloading size is xi. It is important to note
that, due to limited resources of the MEC server, the sum of the
optimal resource allocation for all EUs may exceed the system
limit. Therefore, we need to determine which EUs to allocate
resources to. An indicator function θi ∈ {0, 1} is needed to
determine which EUs can offload their tasks. This leads to the
formulation of optimization problem P3, where we transform
the objectives of solving resource allocation and pricing into
the decision of which EUs should receive resource allocation

P3: max
θi∈{0,1} Uedge =

N∑
i=1

θiu
∗
i B∗

i

s.t.
N∑

i=1

θiB
∗
i ≤ Bedge. (29)

The knapsack problem is NP-hard when expressed as
decision problems. Its possible solutions can be efficiently
verified in polynomial time, and it can be reduced to other
NP-complete problems using polynomially transformations.
For the optimization problem P3, the MEC server utility is
further increased when the EUs offload their tasks. Based
on this, the 0-1 knapsack problem can be translated into a
special case of maximizing MEC’s utility. Specifically, the set
of items to be placed in the knapsack in the 0-1 knapsack
problem is regarded as the EUs that offload their tasks on
the MEC in the problem. The weight of each item w[i] is
assigned as the bandwidth resources allocated to EU i in the
problem. Due to the limited communication capacity, the total
bandwidth of the system has an upper limit, which can be
regarded as the maximum capacity of the knapsack in the 0-1
knapsack problem. Therefore, the 0-1 knapsack problem can
be simplified as a special case of P3. So, if there exists an
algorithm to solve P3, it can also be used to solve the 0-1
knapsack problem, which means P3 is an NP-hard problem.

As for the value of the items v[i], there are two possibilities:
when the optimal bandwidth B∗

i is less than the lower bounds
of bandwidth qi1, the cost of local computing by EU i will
be smaller than partial offloading. Therefore, the value v[i]
obtained by offloading task for EU i is updated as 0 at this
time, and subsequent this EU will not be able to offload task.
Otherwise, the value of the item v[i] will be the revenue u∗

i B∗
i

obtained from MEC server performing the task of EU i. The
complete pseudocode process is presented in Algorithm 1.

The optimal value solution (OVS) algorithm consists of a
loop (lines 5–12) that is used to determine the value of items
for offloading. Consequently, the time complexity of the OVS
algorithm is O(N).

Since the knapsack problem is NP problem, finding the
optimal solution efficiently is not feasible [37]. To tackle this
problem, a method based on dynamic programming is adopted
to obtain the optimal solution of this problem.

ϕ[i][k] represents the maximum revenue that can be
obtained by the MEC server selling k units of bandwidth to the

Authorized licensed use limited to: China University of Petroleum. Downloaded on June 29,2024 at 02:04:44 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: STACKELBERG GAME-BASED BANDWIDTH ALLOCATION AND RESOURCE PRICING 23745

Algorithm 1 OVS

Input: Bedge, Ci, Fedge, Ri, f loc
i , f edge, hi, pi, σ 2

Output: B∗
i , xi, u∗

i , V = {v1, v2, ..., vN}
1: Initialize wt

i, we
i , wp

i ;
2: The MEC server decides the optimal unit price u∗

i of the
bandwidth for each EU according to Eq. (26);

3: Each EU decides the optimal bandwidth strategies B∗
i

according to Eq. (19);
4: Each EU decides the offloading strategies xi according to

Eq. (12);
5: for i = 1 to N do
6: EU i computes the lower bounds of bandwidth qi1;
7: if B∗

i < qi1 then
8: v[i] = 0;
9: else

10: v[i] = u∗
i B∗

i ;
11: end if
12: end for
13: return V

Algorithm 2 DPRA

Input: B∗
i , xi, Bedge, Fedge, V = {v1, v2, ..., vN}

Output: θi

1: for i = 0 to N do
2: for k = 0 to Bedge do
3: ϕ[i][k] = ϕ[i − 1][k];
4: if k < Bedge then
5: ϕ[i][k] = ϕ[i − 1][k];
6: else if ϕ[i − 1][k − B∗

i ] + v[i] > ϕ[i − 1][k] and∑i
s=1 θiCsxs + Cixi ≤ Fedge then

7: ϕ[i][k] = ϕ[i − 1][k − B∗
i ] + v[i];

8: else
9: ϕ[i][k] = ϕ[i − 1][k];

10: end if
11: end for
12: end for
13: for i = N to 1 do
14: if ϕ[i][k] = ϕ[i − 1][k] then
15: θi = 0;
16: else
17: θi = 1;
18: end if
19: end for

first i EUs. As shown in Algorithm 2, there are three possible
values for ϕ[i][k].

1) If the MEC server’s bandwidth and computing resources
are insufficient to complete the offloaded task of EU i,
the MEC server will not process the task of EU i. At
this time, the revenue of the MEC server is the same
as the value of the offloading strategy of the previous
(i − 1) EUs, which means ϕ[i][k] = ϕ[i − 1][k].

2) If the bandwidth and computing resources of the MEC
server can satisfy the requirements of EU i’s task, it
is still necessary to determine whether to offload the
task. This is because allowing task offloading does not

necessarily maximize the revenue of the MEC server.
The maximum benefit that the server can achieve when
the ith EU does not offload the task is ϕ[i − 1][k], and
the maximum revenue of the MEC server when the ith
EU offload the task is ϕ[i−1][k−B∗

i ]+v[i]. ϕ[i][k] will
be equal to the larger of the two values.

3) If the maximum benefit of the MEC server offloading
task for EU i is equal to the maximum benefit without
offloading the task, then it indicates that the value of
offloading the task for EU i is v[i] = 0. The MEC
server will not process the tasks for EU i, which means
ϕ[i][k] = ϕ[i − 1][k].

For the DPRA algorithm, it contains a two levels of loops
(lines 1–12). The first-level loop iterates N times, while the
second-level loop iterates Bedge times. Consequently, the time
complexity of this part is O(N × Bedge). After these steps,
backtracking is used to determine which EUs perform task
offloading (lines 12–19). Since it is necessary to traverse
the state space, the time complexity of this part is O(N).
In summary, the time complexity of the DPRA algorithm is
O(N × Bedge).

VI. NUMERICAL RESULTS

In this section, simulation experiments are conducted to
assess the efficacy of the proposed DPRA algorithm. First,
experimental validation is conducted on the previously math-
ematically proven Stackelberg game equilibrium. Second, the
influence of some parameters on the utilities of EUs and the
MEC server is evaluated. Finally, we compare the proposed
algorithm with other strategies.

A. Simulation Setting

The proposed algorithm is simulated using Python program-
ming language. The parameter values used in the experiments
are primarily derived from [28]. It is assumed that there are
30 EUs in the experiment, each with its own local computing
capability and generating different computing tasks. The power
spectral density of the noise is −174 dBm/Hz. The channel
gain from MEC server to EUs is uniformly distributed by the
set [−50, −30] dBm. This article considers three weighting
factors, namely, weighting factors for latency, energy con-
sumption, and payment to the MEC server. These factors can
be adjusted according to the actual requirements of the device.
In the energy-saving scenario, we

i > wt
i, whereas in the latency-

sensitive scenario, we
i < wt

i. In this article, we assume that all
three weighting factors are equal to 1/3 . In addition, Table III
summarizes other key parameters in the experiments.

B. Stackelberg Equilibrium

In Stackelberg equilibrium, the MEC server assumes that
it already knows what strategies the followers will adopt to
maximize their own interests and thus formulate the pricing
strategy. Then after learning of the strategy of the MEC
server, the EUs will choose their own optimal strategies.
After carefully considering their own interests in light of
the opponent’s response, both the MEC server and the EUs
can devise the optimal strategy to achieve their respective
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Fig. 5. Stackelberg equilibrium. (a) Optimal bandwidth of EU i. (b) Optimal price of the server.

Fig. 6. Influence of parameters. (a) Influence of data size. (b) Influence of bandwidth.

TABLE III
SIMULATION PARAMETERS SETTING

objectives. The optimal bandwidth for EU i is B∗
i , and the

optimal pricing for the MEC server to EU i is u∗
i , shown in

Fig. 5.
Fig. 5(a) is the utility of EU i with a fixed MEC server

price ui = u∗
i . The bandwidth of EU i is represented on the

horizontal axis, and the minimum overall cost is achieved
when the bandwidth is Bi = B∗

i . Similarly, Fig. 5(b) is the
revenue obtained by the MEC server from EU i with fixed
optimal bandwidth Bi = B∗

i . When the revenue of the MEC
server is maximized, the optimal pricing ui = u∗

i . The above
indicates that both EUs and the MEC server cannot change
their strategies to optimize their utilities in the Stackelberg
equilibrium.

C. Impact of Parameters

As shown in Fig. 6, the model parameters have a certain
impact on the experiment.

Fig. 6(a) illustrates the impact of task size on the MEC rev-
enue and the offloading ratio of EUs. As depicted in the figure,
the MEC server’s revenue rises as the task size increases and

then tends to converge. This is attributed to the fact that the
larger the task size, the more bandwidth resources are needed
by EUs, and the server sells more resources. However, as
the bandwidth and computing resources of the MEC server
reach the capacity limits, the sale of resources becomes
restricted, causing the revenue to converge. Furthermore, as
the task size of each EU expands, the limited resources
of the MEC server result in a reduction in the number of
EUs capable of obtaining offloading resources. Consequently,
the proportion of tasks that can be offloaded diminishes
gradually.

Fig. 6(b) shows the impact of total bandwidth capacity on
the MEC server revenue and the average cost of EUs. As the
total bandwidth increases, the number of EUs that can access
the bandwidth resources also increases, and the MEC server
sells more resources accordingly. This results in an increase in
MEC server revenue and a decrease in average cost for EUs.
However, as the bandwidth capacity of the MEC server reaches
a sufficiently large level, both the revenue and the average
cost for EUs tend to stabilize. On the one hand, this is due to
upper limit on the number of EUs, the bandwidth resources
are already abundant. On the other hand, although bandwidth
resources are increasing, the total computing capacity remains
unchanged. With an increasing number of EUs, the allocation
of computing resources to EUs becomes constrained, resulting
in higher average cost when there are 30 EUs compared to
10 EUs. Based on Fig. 6, both the MEC server and EUs
will benefit from the trade. When EUs offload more tasks to
the MEC server, EUs’ average cost decreases, and the MEC
server’s profits increase. That is to say the proposed DPRA
algorithm promotes collaboration between the MEC server and
EUs with a mutually beneficial outcome, demonstrating the
efficacy of the algorithm.
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Fig. 7. Comparison with numbers of EUs. (a) Revenue of MEC server. (b) Average cost for EUs.

Fig. 8. Comparison with channel bandwidth. (a) Revenue of MEC server. (b) Average cost for EUs.

D. Performance Comparison

Due to differences in experimental settings, utility functions,
etc. compared to other papers, it is difficult to directly compare
the proposed DPRA algorithm with the latest algorithms. In
order to assess the effectiveness of the our algorithm, we
conducted experiments to compare the DPRA algorithm with
the following bandwidth strategies across three dimensions: 1)
the number of EUs; 2) total bandwidth capacity; and 3) total
computing capacity. This comparative experiment aims to
evaluate the utility of the MEC server and the average cost
for EUs.

1) Random Bandwidth With Optimal Size (RBOS): In the
RBOS strategy, each EU selects the optimal offloading
data size, but the bandwidth is randomly generated
within a given range.

2) Uniform Bandwidth (UB): In the UB strategy, simi-
lar to [30], the bandwidth for each EU is uniformly
allocated and set to the middle value of the set P =
{(p11, p12), . . . , (pn1, pn2)} to maintain stable profit.

3) Local Offloading Computing (LOC): In the LOC strat-
egy, the whole task of EU i is executed locally without
task offloading.

The experiments for different numbers of EUs are shown
in Fig. 7. First, several strategies exhibit similar trends. As
depicted in Fig. 7(a), the sold bandwidth resources exhibit an
upward trend as the number of EUs in the system rises, leading
to a corresponding growth in the revenue of the MEC server.
However, due to the overall resource constraints of the server,
the final revenue tends to stabilize. As shown in Fig. 7(b),
the average cost for EUs increases with an expanding number
of EUs. This is because as the number of EUs grows, the
competition for bandwidth and computing resources becomes

more intense, leading to a decrease in the proportion of EUs
capable of performing task offloading. This, in turn, results in
increased latency and energy consumption costs.

The revenue of the MEC server and the average cost of
EUs under different strategies with varying total bandwidth
resources is shown in Fig. 8. Compared to other strategies,
the DPRA strategy significantly improves the profitability of
the MEC server, as experimental results demonstrate that
its revenue is twice that of the RBOS and UB algorithms.
Additionally, the DPRA strategy maintains the optimal average
cost for EUs, affirming the rationality of DPRA’s bandwidth
allocation. In contrast, the RBOS and UB algorithms fail to
adequately consider the individual demands of each EU and
perform differentiated allocation to maximize server revenue,
thus falling short of the effectiveness achieved by the DPRA
algorithm.

Fig. 9 displays the changes in MEC server revenue and
average cost for EUs under different computing capabili-
ties. Similar to Fig. 8, DPRA outperforms other strategies
in terms of MEC server profitability and average cost for
EUs. The proposed DPRA algorithm demonstrates optimal
performance in all the experiments conducted. In the RBOS
strategy, the allocation of computing resources is based on
the optimal relationship between task offloading size and
purchased bandwidth. However, due to the unreasonable allo-
cation of bandwidth resources, it also leads to inappropriate
allocation of computing resources, resulting in high overall
costs for users. In the UB strategy, although the task offloading
size is consistent with our proposed algorithm, unnecessary
delays and energy consumption costs are incurred during
transmission due to the inability of bandwidth to meet the
specific requirements of each EU. This also highlights the
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Fig. 9. Comparison with computing capacity. (a) Revenue of MEC server. (b) Average cost for EUs.

Fig. 10. Comparison with numbers of EUs. (a) Revenue of MEC server. (b) Average cost for EUs.

Fig. 11. Comparison with channel bandwidth. (a) Revenue of MEC server. (b) Average cost for EUs.

importance of reasonable allocation of bandwidth resources.
Both of these strategies result in low resource utilization,
impacting system performance and efficiency, due to inap-
propriate bandwidth allocation strategies. Finally, as a classic
benchmark test, the LOC strategy performs the worst in all the
experiments mentioned above. Therefore, this demonstrates
that task offloading in the MEC architecture can effectively
improve the QoE for EUs.

To conduct a more comprehensive evaluation of the
proposed DPRA algorithm, it is compared with various pricing
and offloading strategies.

1) Uniform Pricing (UP): In the UP strategy, the MEC
server uniformly price the bandwidth resources sold to
EUs based on the principle of fairness.

2) Optimal Bandwidth Offloading (OBO): In the OBO
strategy, EUs purchase an optimal amount of bandwidth,
but the amount of offloading data size is random.

As the number of EUs increases, the variations of MEC server
revenue and average costs for EUs under different strategies
are depicted in Fig. 10. First, the growth trends resemble those

observed in Fig. 7. Additionally, in Fig. 10(b), the rate of cost
reduction for EUs is slower compared to the MEC server’s
profit in Fig. 10(a). This is attributed to the noncooperative
competition among EUs within the system. With an increase in
the number of participating EUs in task offloading, the MEC
server can offload more tasks to boost its profitability. Second,
among all the strategies, DPRA exhibits the best performance.
This is because the UP strategy does not adjust bandwidth
pricing differently based on EUs’ varying levels of price
acceptance. Consequently, some EUs may incur excessive
costs or fail to obtain the desired QoE, thus not fully leveraging
the advantages of the MEC server. In the OBO strategy,
EUs are unable to fully utilize the MEC server’s computing
resources to minimize latency and energy consumption costs.

Due to the heterogeneity of the MEC system, the upper
limit of MEC system resources will not be the same value.
The impact of bandwidth resources and computing capacity
on the revenue of the MEC server and the average cost of
EUs under different strategies is shown in Figs. 11 and 12.
Both bandwidth and computing resources impose constraints
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Fig. 12. Comparison with computing capacity. (a) Revenue of MEC server. (b) Average cost for EUs.

on participants in the MEC architecture. Among the three
strategies, as resources increase, the MEC server revenue
shows an growth and then tends to stabilize, while the average
cost for EUs gradually decreases and eventually becomes
stable. As shown in Fig. 11, although the OBO strategy adopts
optimal bandwidth allocation, the impracticality of computing
resource allocation causes the assigned computing resources to
quickly reach their limit, thereby restricting the number of EUs
able to perform task offloading. This results in MEC profits
being only half of what our proposed algorithm achieves,
even when bandwidth resources are abundant. Similarly, as
illustrated in Fig. 12, when computing resources are insuffi-
cient (e.g., 1×109 cycles/slot), even with adequate bandwidth
resources, bandwidth sales will still be restricted due to failure
to meet EUs’ minimum requirements of computing resources.
As computing resources become sufficient, the algorithm
gradually improves its performance, but it still tends to reach a
balance due to the constraints of the bandwidth resource upper
limit.

VII. CONCLUSION AND FUTURE WORK

This article utilizes the Stackelberg game to depict the
interaction process between the MEC server and EUs. It
addresses the problem of revenue balance faced by the MEC
server in the presence of limited computing and communica-
tion resources, while ensuring the QoE for EUs. This article
first establishes the optimal relationship between bandwidth
and task offloading size to simplify decision making for EUs.
Subsequently, the optimal strategies for the MEC server and
EUs are derived through backward induction, and a collabora-
tive offloading strategy is devised using the DPRA algorithm.
Simulation experiments are conducted to evaluate the proposed
DPRA algorithm’s performance. The results demonstrate that
the DPRA algorithm outperforms other comparative strategies,
illustrating its effectiveness in optimizing resource utiliza-
tion and achieving lower latency and energy consumption
levels. This has practical significance in promoting the
development of MEC technology and enhancing the QoE
for EUs.

Future research can further explore more complex game
model, such as multiuser and multiserver game. Additionally,
establishing cooperative relationships among MEC servers
can facilitate offloading for EUs, meeting their increasing
computational demands.

REFERENCES

[1] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E.
K. Markakis, “A survey on the Internet of Things (IoT) forensics:
challenges, approaches, and open issues,” IEEE Commun. Surveys Tuts.,
vol. 22, no. 2, pp. 1191–1221, 2nd Quart., 2020.

[2] F. Al-Doghman, N. Moustafa, I. Khalil, N. Sohrabi, Z. Tari, and
A. Y. Zomaya, “AI-enabled secure microservices in edge computing:
Opportunities and challenges,” IEEE Trans. Services Comput., vol. 16,
no. 2, pp. 1485–1504, Mar./Apr. 2023.

[3] C. Tselios and G. Tsolis, “On QoE-awareness through virtualized probes
in 5G networks,” in Proc. IEEE 21st Int. Workshop Comput. Aided
Model. Design Commun. Links Netw. (CAMAD), 2016, pp. 159–164.

[4] A. Sunyaev, “Cloud computing” in Internet Computing: Principles of
Distributed Systems and Emerging Internet-Based Technologies. Cham,
Switzerland: Springer, 2020, pp. 195–236.

[5] H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, “Edge computing
with artificial intelligence: A machine learning perspective,” ACM
Comput. Surv., vol. 55, no. 9, pp. 1–35, 2023.

[6] A. J. Ferrer, J. M. Marquès, and J. Jorba, “Towards the decentralised
cloud: Survey on approaches and challenges for mobile, ad hoc, and
edge computing,” ACM Comput. Surv., vol. 51, no. 6, pp. 1–36, 2019.

[7] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O.
Wu, “Edge computing in industrial Internet of Things: Architecture,
advances and challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 4,
pp. 2462–2488, 4th Quart., 2020.

[8] X. Huang, B. Zhang, and C. Li, “Incentive mechanisms for mobile edge
computing: Present and future directions,” IEEE Netw., vol. 36, no. 6,
pp. 199–205, Nov./Dec. 2022.

[9] B. Zhu, K. Chi, J. Liu, K. Yu, and S. Mumtaz, “Efficient offloading
for minimizing task computation delay of NOMA-based multiaccess
edge computing,” IEEE Trans. Commun., vol. 70, no. 5, pp. 3186–3203,
May 2022.

[10] X. Gu, G. Zhang, M. Wang, W. Duan, M. Wen, and P.-H. Ho, “UAV-
aided energy-efficient edge computing networks: Security offloading
optimization,” IEEE Internet Things J., vol. 9, no. 6, pp. 4245–4258,
Mar. 2022.

[11] Z. Tong, J. Cai, J. Mei, K. Li, and K. Li, “Dynamic energy-
saving offloading strategy guided by Lyapunov optimization for IoT
devices,” IEEE Internet Things J., vol. 9, no. 20, pp. 19903–19915,
Oct. 2022.

[12] X. Zhang, X. Zhang, and W. Yang, “Joint offloading and resource alloca-
tion using deep reinforcement learning in mobile edge computing,” IEEE
Trans. Netw. Sci. Eng., vol. 9, no. 5, pp. 3454–3466, Sep./Oct. 2022.

[13] S. Chen, J. Chen, Y. Miao, Q. Wang, and C. Zhao, “Deep reinforcement
learning-based cloud-edge collaborative mobile computation offloading
in industrial networks,” IEEE Trans. Signal Inf. Process. Over Netw.,
vol. 8, pp. 364–375, May 2022.

[14] Z. Liao and S. Cheng, “RVC: A reputation and voting based blockchain
consensus mechanism for edge computing-enabled IoT systems,” J.
Netw. Comput. Appl., vol. 209, Jan. 2023, Art. no. 103510.

[15] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware
joint task scheduling and resource allocation for cooperative mobile
edge computing,” IEEE Trans. Wireless Commun., vol. 20, no. 1,
pp. 360–374, Jan. 2021.

[16] I. Alghamdi, C. Anagnostopoulos, and D. P. Pezaros, “Data quality-
aware task offloading in mobile edge computing: An optimal stopping
theory approach,” Future Gener. Comput. Syst., 117, pp. 462–479,
Apr. 2021.

Authorized licensed use limited to: China University of Petroleum. Downloaded on June 29,2024 at 02:04:44 UTC from IEEE Xplore.  Restrictions apply. 



23750 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 13, 1 JULY 2024

[17] N. Lin, H. Tang, L. Zhao, S. Wan, A. Hawbani, and M. Guizani, “A
PDDQNLP algorithm for energy efficient computation offloading in
UAV-assisted MEC,” IEEE Trans. Wireless Commun., vol. 22, no. 12,
pp. 8876–8890, Dec. 2023.

[18] G. Wu et al., “Combining Lyapunov optimization with actor–critic
networks for privacy-aware IIoT computation offloading,” IEEE Internet
Things J., early access, Jan. 22, 2024, doi: 10.1109/JIOT.2024.3357110.

[19] H. Wu, J. Chen, T. N. Nguyen, and H. Tang, “Lyapunov-guided delay-
aware energy efficient offloading in IIoT-MEC systems,” IEEE Trans.
Ind. Informat., vol. 19, no. 2, pp. 2117–2128, Feb. 2023.

[20] A. Abouaomar, S. Cherkaoui, Z. Mlika, and A. Kobbane,
“Resource provisioning in edge computing for latency-sensitive
applications,” IEEE Internet Things J., vol. 8, no. 14, pp. 11088–11099,
Jul. 2021.

[21] G. Qu, H. Wu, R. Li, and P. Jiao, “DMRO: A deep meta reinforcement
learning-based task offloading framework for edge-cloud comput-
ing,” IEEE Trans. Netw. Service Manag., vol. 18, no. 3, pp. 3448–3459,
Sep. 2021.

[22] T. H. T. Le et al., “Auction mechanism for dynamic bandwidth allocation
in multi-tenant edge computing,” IEEE Trans. Veh. Technol., vol. 69,
no. 12, pp. 15162–15176, Dec. 2020.

[23] N. C. Luong, Y. Jiao, P. Wang, D. Niyato, D. I. Kim, and Z.
Han, “A machine-learning-based auction for resource trading in
fog computing,” IEEE Commun. Mag., vol. 58, no. 3, pp. 82–88,
Mar. 2020.

[24] Y. Su, W. Fan, Y. Liu, and F. Wu, “A truthful combinatorial auction
mechanism towards mobile edge computing in industrial Internet of
Things,” IEEE Trans. Cloud Comput., vol. 11, no. 2, pp. 1678–1691,
Apr.–Jun. 2023.

[25] C. Li, Q. Zhang, and Y. Luo, “A jointly non-cooperative game-
based offloading and dynamic service migration approach in
mobile edge computing,” Knowl. Inf. Syst., vol. 65, pp. 2187–2223,
Jan. 2023.

[26] M. D. Hossain et al., “Dynamic task offloading for cloud-assisted
vehicular edge computing networks: A non-cooperative game theoretic
approach,” Sensors, vol. 22, no. 10, p. 3678, 2022.

[27] H. Zhou, Z. Wang, N. Cheng, D. Zeng, and P. Fan, “Stackelberg-
game-based computation offloading method in cloud–edge computing
networks,” IEEE Internet Things J., vol. 9, no. 17, pp. 16510–16520,
Sep. 2022.

[28] Z. Liu and J. Fu, “Resource pricing and offloading decisions in mobile
edge computing based on the Stackelberg game,” J. Supercomput.,
vol. 78, no. 6, pp. 7805–7824, 2022.

[29] Z.-L. Chang and H.-Y. Wei, “Flat-rate pricing for green
edge computing with latency guarantee: A Stackelberg game
approach,” in Proc. IEEE Glob. Commun. Conf. (GLOBECOM), 2019,
pp. 1–6.

[30] Z. Tong, X. Deng, J. Mei, L. Dai, K. Li, and K. Li, “Stackelberg game-
based task offloading and pricing with computing capacity constraint
in mobile edge computing,” J. Syst. Archit., vol. 137, Apr. 2023,
Art. no. 102847.

[31] S. Bi, L. Huang, H. Wang, and Y.-J. A. Zhang, “Lyapunov-guided
deep reinforcement learning for stable online computation offloading
in mobile-edge computing networks,” IEEE Trans. Wireless Commun.,
vol. 20, no. 11, pp. 7519–7537, Nov. 2021.

[32] Q. Wu et al., “Joint computation offloading, role, and location selection
in hierarchical multicoalition UAV MEC networks: A Stackelberg
game learning approach,” IEEE Internet Things J., vol. 9, no. 19,
pp. 18293–18304, Oct. 2022.

[33] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation
offloading for mobile cloud computing: A stochastic game-theoretic
approach,” IEEE Trans. Mobile Comput., vol. 18, no. 4, pp. 771–786,
Apr. 2019.

[34] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[35] G. Owen Game Theory. Bingley, U.K.: Emerald Group Publ., 2013.
[36] M. Maschler, S. Zamir, and E. Solan, Game Theory. Cambridge, U.K.:

Cambridge Univ. Press, 2020.
[37] D. S. Hochba, “Approximation algorithms for NP-hard problems,” ACM

Sigact News, vol. 28, no. 2, pp. 40–52, 1997.
[38] M. Wang, L. Zhang, P. Gao, X. Yang, K. Wang, and K.

Yang, “Stackelberg game-based intelligent offloading incentive
mechanism for a multi-UAV-assisted mobile edge computing
system,” IEEE Internet Things J., vol. 10, no. 17, pp. 15679–15689,
Sep. 2023.

[39] N. Zhao, Z. Ye, Y. Pei, Y.-C. Liang, and D. Niyato, “Multi-agent
deep reinforcement learning for task offloading in UAV-assisted mobile
edge computing,” IEEE Trans. Wireless Commun., vol. 21, no. 9,
pp. 6949–6960, Sep. 2022.

[40] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 319–333,
Feb. 2019.

[41] F. Li, H. Yao, J. Du, C. Jiang, and Y. Qian, “Stackelberg game-based
computation offloading in social and cognitive industrial Internet of
Things,” IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 5444–5455,
Aug. 2020.

Zhao Tong (Senior Member, IEEE) received the
Ph.D. degree in computer science from Hunan
University, Changsha, China, in 2014.

From 2017 to 2018, he was a Visiting Scholar with
Georgia State University, Atlanta, GA, USA. He is
currently an Associate Professor (the young back-
bone teacher of Hunan Province) with the College
of Information Science and Engineering, Hunan
Normal University, Changsha. He has published
more than 25 research papers in international con-
ferences and journals. His research interests include

parallel and distributed computing systems, resource management, machine
learning algorithm, and big data.

Dr. Tong is a Senior Member of the China Computer Federation.

Yuanyang Zhang is currently pursuing the master’s
degree with the College of Information Science and
Engineering, Hunan Normal University, Changsha,
China.

Her research interests mainly revolve around the
areas of mobile-edge computing and game theory.

Jing Mei (Member, IEEE) received the Ph.D.
degree in computer science from Hunan University,
Changsha, China, in 2015.

She is currently an Associate Professor with the
College of Information Science and Engineering,
Hunan Normal University, Changsha. She has
published 12 research articles in international
conference and journals. Her research interests
include parallel and distributed computing and cloud
computing.

Wei Ai received the Ph.D. degree from the College
of Computer Science and Electronic Engineering,
Hunan University, Changsha, China, in 2017.

Her research interests include date mining, big
data, parallel computing, and cloud computing.

Authorized licensed use limited to: China University of Petroleum. Downloaded on June 29,2024 at 02:04:44 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/JIOT.2024.3357110


TONG et al.: STACKELBERG GAME-BASED BANDWIDTH ALLOCATION AND RESOURCE PRICING 23751

Kenli Li (Senior Member, IEEE) received the
Ph.D. degree in computer science from Huazhong
University of Science and Technology, Wuhan,
China, in 2003.

He was a Visiting Scholar with the University
of Illinois at Urbana–Champaign, Champaign, IL,
USA, from 2004 to 2005. He is currently the
Dean and a Full Professor of Computer Science
and Technology with Hunan University, Changsha,
China, and the Deputy Director of National
Supercomputing Center in Changsha, Changsha. He

has published more than 150 research papers in international conferences
and journals, such as the IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE
TRANSACTIONS ON SIGNAL PROCESSING, ICPP, and CCGrid. His major
research areas include parallel computing, grid and cloud computing, and
high-performance computing.

Prof. Li serves on the editorial board of the IEEE TRANSACTIONS ON

COMPUTERS. He is an Outstanding Member of CCF.

Keqin Li (Fellow, IEEE) received the Ph.D. degree
in computer science from the University of Houston,
Houston, TX, USA, in 1990.

He is a SUNY Distinguished Professor of
Computer Science with the State University of
New York, New Paltz, NY, USA. He is also
a Distinguished Professor with Hunan University,
Changsha, China. He has authored or coauthored
over 850 journal articles, book chapters, and
refereed conference papers. His current research
interests include cloud computing, fog computing

and mobile-edge computing, energy-efficient computing and communication,
embedded systems and cyber–physical systems, heterogeneous computing
systems, high-performance computing, computer architectures and systems,
CPU–GPU hybrid and cooperative computing, computer networking, machine
learning, and intelligent and soft computing.

Dr. Li has received several best paper awards. He currently serves
or has served on the editorial boards of the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON

COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, the IEEE
TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS

ON SUSTAINABLE COMPUTING.

Authorized licensed use limited to: China University of Petroleum. Downloaded on June 29,2024 at 02:04:44 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


