
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024 3999

Multi-Objective DAG Task Offloading in MEC
Environment Based on Federated DQN With

Automated Hyperparameter Optimization
Zhao Tong , Senior Member, IEEE, Jiaxin Deng , Jing Mei , Yuanyang Zhang, and Keqin Li , Fellow, IEEE

Abstract—The widespread adoption of the Internet of Things
(IoT) has increased demand for task processing via mobile edge
computing (MEC). In this study, we designed a directed acyclic
graph (DAG) task offloading workflow in MEC. Traditional task
offloading often does not simultaneously take into account task
upload delay and task communication delay, failing to accurately
reflect real-world issues. The constraints between task execution
delay, upload delay and communication delay were introduced to
model system response time and energy consumption for optimiza-
tion. To satisfy task dependencies, the edge rank_u sorting (ERS)
algorithm is used to generate specific offloading queues. A federated
deep q-network (FDQN) algorithm addresses the offloading issue.
It is different from the traditional approach of uploading task
information data to the edge and facing data privacy risks. FDQN
deploies the model locally and only collects model parameters for
aggregation to update the local model. The algorithm improves the
performance and stability of the model while protecting user pri-
vacy. To automatically tune hyperparameters for multiple devices,
we used the tree of parzen estimators (TPE) algorithm, and named
the whole process federated DQN with automated hyperparameter
optimization (FDAHO). Experimental results show that FDAHO
outperforms other algorithms in scenarios of different task number,
task types, and user numbers, with consideration of benchmarks.

Index Terms—FDAHO, mobile edge computing, multi-objective
optimization, task offloading.

I. INTRODUCTION

IN THE past few years, the rapid proliferation of the Internet
of Things (IoT) devices has ushered in a transformative era,

reshaping the digital landscape [1]. From sensors, actuators to
smart home appliances, IoT devices have generated an unprece-
dented volume of data. It holds the potential to revolutionize var-
ious domains, including healthcare, industrial automation, and

Received 24 July 2024; revised 23 September 2024; accepted 26 September
2024. Date of publication 11 October 2024; date of current version 30 December
2024. This work was supported in part by the Program of National Natural
Science Foundation of China under Grant 62372172 and Grant 62072174, in
part by Distinguished Youth Science Foundation of Hunan Province China
under Grant 2023JJ10030, and in part by Graduate Research InnovationProgram
of Hunan Province under Grant CX20240548. (Corresponding authors: Zhao
Tong; Jing Mei.)

Zhao Tong, Jiaxin Deng, Jing Mei, and Yuanyang Zhang are with the College
of Information Science and Engineering, Hunan Normal University in Changsha,
Hunan 410081, China (e-mail: tongzhao@hunnu.edu.cn; baal@hunnu.edu.cn;
jingmei1988@163.com; 202270294009@hunnu.edu.cn).

Keqin Li is with the College of Information Science and Engineering, National
Supercomputing Center in Changsha, Hunan University, Hunan 410082, China,
and also with the Department of Computer Science, State University of New
York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TSC.2024.3478841

the development of smart cities. As IoT continues its widespread
integration into our lives, addressing the critical challenges
posed by the inherent constraints of computational resources
and energy resources in these devices becomes imperative.

Mobile edge computing (MEC) has risen as a pivotal tech-
nology. It holds the key to unlocking the full potential of IoT.
MEC leverages the proximity of edge servers to IoT devices,
enabling offloading computationally demanding tasks from lo-
cal node with finite resources to more potent edge nodes. This
paradigm shift offers the potential of optimizing the performance
and energy efficiency of IoT applications, playing crucial role
in the evolving landscape of 5G and beyond [2]. Moreover,
How to allocate resources reasonably and formulate offloading
strategies in MEC has been gaining increasing attention.

In addition, complicating the task offloading process is the
existence of directed acyclic graph (DAG) tasks. These tasks,
which involve dependencies between sub-tasks, are common
in IoT applications. For instance, in a video navigation app,
the final result depends on the results of graphical rendering,
video processing, and face detection [3]. In MEC offloading
design, the interdependence between these tasks must be taken
into account, unlike the traditional scenario where tasks can be
offloaded independently.

However, traditional heuristic algorithms often rely on pre-
defined rules and fixed strategies, which can be inflexible in
dynamic and complex environments. They may struggle to adapt
to changing conditions and fail to optimize long-term outcomes.
In contrast, reinforcement learning (RL) is instrumental in task
offloading and scheduling. It can be employed to formulate
intelligent decision-making strategies, aiding systems in making
optimal decisions for task offloading and scheduling according
to current environmental and task requirements. Through learn-
ing and optimization, RL algorithms can gradually adapt their
strategies to enhance overall system performance [4], [5]. In
traditional RL, a single agent learns a policy by interacting with
an environment and optimizing its actions based on rewards.

In the context of private MEC, users have private and sensitive
data. Users cannot share their personal data with each other.
Uploading this data to public servers for processing signifi-
cantly increases the risk of privacy breaches. Centralized model
training fails to meet this requirement. In a heterogeneous MEC
scenario, various types of edge computing resources and devices
are utilized to provide services. These devices have different

1939-1374 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid-org-s.libyc.nudt.edu.cn:443/0000-0002-8624-6364
https://orcid-org-s.libyc.nudt.edu.cn:443/0000-0002-5349-1398
https://orcid-org-s.libyc.nudt.edu.cn:443/0000-0002-6258-0114
https://orcid-org-s.libyc.nudt.edu.cn:443/0000-0001-5224-4048
mailto:tongzhao@hunnu-edu-cn-s.libyc.nudt.edu.cn:443
mailto:baal@hunnu-edu-cn-s.libyc.nudt.edu.cn:443
mailto:jingmei1988@163-com-s.libyc.nudt.edu.cn:443
mailto:202270294009@hunnu-edu-cn-s.libyc.nudt.edu.cn:443
mailto:lik@newpaltz-edu-s.libyc.nudt.edu.cn:443


4000 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

computing capabilities and bandwidth, etc. The heterogeneity of
devices can lead to suboptimal performance in distributed model
training. Federated reinforcement learning (FRL) combines re-
inforcement learning with federated learning (FL), aiming to
perform reinforcement learning tasks in a distributed environ-
ment while protecting data privacy [6]. FRL achieves this by
training models locally and only sharing model updates, thereby
safeguarding data privacy. It allows these distributed devices to
collaborate, thereby improving model performance.

In the model training process, hyperparameters are adjusted
to improve the model’s performance. Hyperparameters differ
from model parameters in that they are set before the training
begins and have a significant impact on the model’s performance.
The tree-structured parzen estimator (TPE) is a Bayesian opti-
mization method used to efficiently explore and optimize the
hyperparameter space [7]. TPE constructs probabilistic models
to guide the search process, making it more efficient compared
to traditional methods.

Our research is dedicated to addressing the multifaceted chal-
lenges associated with task offloading in MEC networks. These
challenges encompass:
� Task offloading: In MEC environments, effectively assign-

ing tasks to diverse edge nodes with varying computational
capabilities constitutes a complex optimization problem,
especially when considering dependencies in the DAG
task. This challenge is further compounded by the dy-
namics and diversity of IoT workloads. Traditional task
offloading often does not simultaneously take into account
task upload delay and task communication delay, failing to
accurately reflect real-world issues.

� Privacy preservation: Most current multi-user DAG of-
floading algorithms upload data information to a single
server for unified management and allocation, which may
lead to task information leakage during transmission. Pre-
serving the privacy of users’ data is paramount during the
offloading of tasks to edge servers. Traditional data-centric
method often fall short when faced with sensitive informa-
tion generated by IoT devices.

� Hyperparameter optimization: Hyperparameter optimiza-
tion is an indispensable process in RL. It is also a challenge
due to the vast number of possible hyperparameters com-
binations, high computational costs for model evaluation,
and complex, non-linear interactions between hyperparam-
eters. However, in previous offloading algorithms, hyper-
parameters were mostly adjusted manually. This method
cannot guarantee the accuracy of hyperparameters and also
incurs human labor and time costs in practical applications.

In response to these formidable challenges, our study in-
troduces an innovative multi-objective DAG task offloading
algorithm. The main contributions of this paper are summarized
as follows:
� In this study, a comprehensive and customized simulation

environment for MEC scenarios was constructed. The pa-
per details the intricacies of the model framework, con-
sidering various factors such as heterogeneous devices,
network dynamics, and resource limitations. This not only
enhances the realism of the experiments but also lays

the foundation for testing the effectiveness of different
algorithms.

� This research introduces a hybrid method called federated
deep q-network (FDQN). FDQN combines the knowledge
aggregation capability of FL with the decision-making
capacity of deep q-network (DQN). The cooperation of two
algorithm empowers the task offloading decision-making
process in MEC environments. It achieves an enhanced
balance between local adaptation and global optimization,
ultimately contributing to better task allocation strategies.
Additionally, since the training process takes place locally,
it effectively safeguards user privacy.

� The application of the TPE optimization algorithm for the
automatic fine-tuning of hyperparameters in DQN repre-
sents a significant advancement. This method enhances the
efficiency of hyperparameter optimization and boosts the
performance of the DQN algorithm. The use of TPE mit-
igates the labor and time costs associated with traditional
manual parameter adjustments. This enables more efficient
use of computing resources.

� Real data sets are used in the experiments. The effi-
cacy of FDQN with automated hyperparameter optimizatio
(FDAHO) algorithm is confirmed through rigorous bench-
marking with various cutting-edge algorithms on different
benchmark sets. Notably, the algorithm demonstrates good
results in optimizing both response time and energy con-
sumption, outperforming traditional techniques in these
critical indicators. The experimentation showcases the ro-
bustness and applicability of the algorithm across different
scenarios and use cases.

The remainder of this paper is structured as follows. Section II
is devoted to related work. Sections III and IV outlines the system
model and problem formulation. In Section V, the FDAHO
algorithm is presented. Numerical simulations are presented in
Section VI, with the conclusion provided in Section VII.

II. RELATED WORK

In this section, we first summarize the scheduling and offload-
ing methods for tasks. Second, we discuss study under different
architectural characteristic. Last, different DAG Offloading al-
gorithms are summarized.

A. Task Model

Generally or typically, in the research on task offloading,
tasks are categorized as either dependent tasks or independent
tasks. In [8], [9], [10], [11], tasks can be split, with a portion
offloaded to other devices. Baek et al. [8] used DRL to solve
the task partial offloading problem in fog networks. The authors
proposed a method for minimizing energy consumption in fog
networks by optimizing the scheduling of CPU resources and
computational offloading. Zhao et al. [9] proposed an intelli-
gent partial offloading scheme called IGNITE for vehicle edge
computing (VEC) that combines digital twin (DT) technology
and DRL algorithm. The goal is to optimize task offloading
decisions in VEC, considering large-scale data, low delay con-
straints, and dynamic network topologies. Khoobkar et al. [10]

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: MULTI-OBJECTIVE DAG TASK OFFLOADING IN MEC ENVIRONMENT BASED ON FDAHO 4001

discussed optimization of both latency and energy consumption
through partial offloading in fog-cloud computing environments.
They emphasized scalability issues in traditional game theory
models and insufficient consideration of dynamic changes in
fog environments. In [12], [13], [14], [15], tasks remain as a
distinct whole and cannot be split. Tran et al. [12] discussed the
combined problem of task offloading and resource allocation in
MEC networks with multiple servers. They proposed a solution
to maximize the users’ task offloading benefit. Liu et al. [13] dis-
cussed task offloading in VEC, addressing intermittent connec-
tions and task processing interruptions caused by high mobility
of vehicles. They proposed a task offloading solution utilizing
mobility analysis of multi-hop vehicle computation resources.
Tang et al. [14] solved the task offloading challenge in MEC, and
introduced a DRL distributed algorithm to handle the uncertain
load dynamics on device. In the above studies, independent tasks
were used. In this paper, the type of task we use is a dependent
DAG task.

B. The Scenario

Tasks with dependencies can be modeled as DAG tasks.
In [16], [17], [18], the focus is on studying the scheduling
problems of DAG tasks in the cloud. In order to better utilize
the computing resources in the cloud environment, Li et al. [16]
employed load balancing for task scheduling. This algorithm
can estimate the runtime of tasks in the cloud based on the
current environment state, while establishing a sorting model to
minimize the overall system latency. Zhang et al. [17] proposed
an algorithm named EPRD to address the task processing time of
priority-constrained workflow applications in a cloud environ-
ment. The algorithm first sorts tasks and then schedules them
based on the relative distance of virtual machines. In contrast to
centralized cloud computing, MEC places computing resources
at edge nodes closer to mobile devices, enabling more efficient
support for mobile devices and applications [19]. In [20], [21],
[22], research was conducted on issues related to DAG task
offloading in the MEC environment. Sahni et al. [21] explored
the optimization of multihop offloading for multiple DAG tasks
in collaborative edge computing (One user and multiple MEC
servers). Guo et al. [22] discussed the transmission power and
computation model for mobile devices offloading tasks to wire-
less access points and cloud computing (Multiple users and
single MEC server). It highlights the challenges of interference
and low data rates when multiple devices offload computation
simultaneously. However, the aforementioned studies did not
address the challenge of DAG task offloading among multiple
local devices and multiple edge servers.

C. Offloading Strategy

In [21], [23], heuristic algorithms is employed to solve the
DAG task offloading problem. Liang et al. [23] discussed the
problem of offloading computation-intensive tasks with prece-
dence constraints in a MEC environment with multiple servers.
The authors introduced task upload time and optimize maxi-
mum span by altering the offloading sequence and dynamically

adjusting frequencies. Pan et al. [24] proposed an optimiza-
tion approach for workflows in MEC, aiming to optimize the
cost, energy consumption, and deadline constraints of MEC
workflows. The method includes adaptive clustering, dynamic
adjustments of crossover and mutation probabilities, and the
utilization of historical information. However, these algorithms
cannot completely address more complex scenarios of DAG task
offloading. Such as dependency constraints between tasks and
systems, device heterogeneity, etc. Su et al. [25] proposed a deep
reinforcement learning-based algorithm for partial offloading
of DAG applications in the Internet of Vehicles, aiming to
optimize task execution time and energy consumption. Zhang
et al. [26] proposed a graph neural network-Augmented deep
reinforcement learning (GA-DRL) scheme for efficient DAG
task scheduling in vehicular clouds, optimizing task completion
time. However, these studies do not consider privacy protection
mechanisms or automated hyperparameter tuning mechanisms.

In this paper, we address the multi-objective optimization
problem of DAG task offloading in a scenario with multiple
users and edge hosts. To address this problem, we employ feder-
ated deep reinforcement learning and automated hyperparameter
optimization algorithms as a solution. Table I summarizes the
comparisons between our work and the related works.

III. SYSTEM MODEL

In this section, we provide an overview of the MEC system
architecture model, DAG task model, computation model and
communication model.

A. Architecture Model

In this MEC architecture, it consists of two layers of devices.
The first layer is the IoT device layer, which consists of n IoT
devices, namely local devices. The set of local devices is denoted
by N = {1, 2, . . ., N}. The second layer is the edge server
layer, which consists of a base station and multiple edge hosts
mounted on the base station. The set of edge hosts is denoted by
M = {1, 2, . . .,M} . Edge servers are placed on wireless access
points and communicate with local devices through wireless
channels. Each local device is equipped with a scheduler and a
decision maker. The scheduler is used to sorting DAG tasks, en-
suring that dependency relationships between tasks are satisfied.
The decision maker determines which device should execute the
tasks, ensuring the efficiency of task execution. The edge-IoT
two-tier architecture model is shown in Fig. 1.

A summary of the main concepts in this model is presented
in Table II.

B. Task Model

In this paper, the DAG task model is utilized, which consists
of a set of nodes and directed edges connecting them. Each
local device generates one or more DAG tasks, described by
G = {V,E}. The vertex setV includes multiple dependent tasks
denoted as V = {V1, V2, . . ., VS}. The set of edgesE represents
the communication relationships between tasks, indicating the

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



4002 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

TABLE I
COMPARISON OF EXISTING WORKS

Fig. 1. The edge-IoT two-tier architecture.

TABLE II
SUMMARY OF NOTIONS IN THE MODEL

dependency relationship. For instance, an edge (s, s′)∈E be-
tween task node s and s′ signifies that task Vs must be completed
before task Vs′ . Tasks without predecessors are enter tasks, and
those without successors are exit tasks. Each task is represented

Fig. 2. The DAG task model.

by a tuple Vs =< cs, ds >, where cs is the computational size,
andds is the offloading size [23]. The weight of the edge, denoted
as Cs,s′ , represents the communication data size from task Vs′

to Vs. The DAG task is illustrated in Fig. 2.

C. Computation Model

Tasks can be executed either on the local device or upload to
an edge host for execution. When the task s is executed locally,

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: MULTI-OBJECTIVE DAG TASK OFFLOADING IN MEC ENVIRONMENT BASED ON FDAHO 4003

its execution time is

tls =
cs
fl

, (1)

where cs denotes the computational size of task s, and fl denotes
the computational capacity of the local device. When task s is
executed locally, its execution energy consumption is

els = pcomp
l × tls, (2)

where pcomp
l denotes the local execution power.

When the task s is offloaded to the edge host m for execution,
its execution time is

tms =
cs
fm

, (3)

where fm represents the computing capacity of edge host m.
Similarly, its execution energy consumption is

ems = pcomp
m × tms , (4)

wherepcomp
m represents the computational power of edge hostm.

D. Communication Model

In the research, the communication model of single base
station and multiple users is used. Device communication in
this architecture utilizes full-duplex communication technol-
ogy, allowing both parties to send and receive information at
the same time. Local devices and base station communicate
wirelessly. The transmission of data between devices consumes
energy. In this model, communication between local devices
and edge hosts is facilitated through frequency division multi-
ple access (FDMA) technology. Communication between edge
hosts through wired connection. Each local device is assigned
a transmission bandwidth of Bl. Let H represent the channel
gain from the local device to the base station. Let N0 represent
the interference encountered during communication. Therefore,
following Shannon’s formula, the transmission rate between the
local device and edge host m is

r = Bl × log2

(
1 +

ptranl ×H

N0 ×Bl

)
, (5)

where ptran is the transmission power of the device and N0

is the noise density [27]. If expanded to a multi-base station
scenario, interference from signals of other base stations needs
to be added. The interference power I from other base stations
is expressed as I =

∑
j �=i Pj · hj , where Pj is the transmission

power of the j-th interfering base station, and hj is the channel
gain from that interfering base station to the receiving device.
The transmission rate under multi-base station interference is
given by r = Bl × log2 (1 +

ptran
l ×H

N0×B+I ).
When Task s is uploaded and executed on the edge host m,

the transmission time of its upload task is

tl,ms =
ds
rl

, (6)

where ds is the offloading size of the task and rl denotes the
transfer rate from the local device to the edge host m. In the
meantime, the transmission energy consumption of its upload

task is

el,ms = ptranl × tl,ms , (7)

where ptranl is the transmission power of the local device.
If two dependent tasks are offloaded to different devices, there

is communication time between them. Task s is the predecessor
task of task s′. Task s is offloaded locally and another task s′

is offloaded to edge host m. The transmission time for data
communication between task s and s′ is

tl,ms,s′ =
Cs,s′

rl
, (8)

where Cs,s′ denotes the size of the communication data trans-
mitted by task s to task s′, and rl is the transmission rate.
The transmission energy consumption for data communication
between tasks is

el,ms,s′ = ptranl × tl,ms,s′ . (9)

When the predecessor task s is executed on the edge host m and
the task s is executed locally, the computational formulas are
the same as (8) and (9).

Task s is executed on the edge host m, while another task
s′ is executed on the edge host m′. The transmission energy
consumption for data communication between tasks is

tm,m′
s,s′ =

Cs,s′

Bm′
m

, (10)

where Bm′
m is the transmission bandwidth from edge host m to

edge host m′. The transmission energy consumption for data
communication between task s and s′ is

em,m′
s,s′ = ptranm × tm,m′

s,s′ , (11)

where ptranm is the transmission power of edge host m.

IV. PROBLEM FORMULATION

In this section, the optimization indicators are presented, and
the optimization objective is elucidated.

A. Optimization Indicators

This paper considers two optimization indicators: the re-
sponse time and the energy consumption. The decision to offload
DAG tasks and determine the device for task execution is made
by the local device. Let the offloading decision of task s be αs,
αs ∈ {0} ∪M. The offloading decision, denoted by αs = 0,
signifies that the task is executed on local device. αs = m
indicates that the task is uploaded and executed on edge host m.

The arrival time of task s at device αs is denoted by load(αs).
The idle time of device αs is represented as avail(αs), while
ensuring that the available time slots are sufficient to accommo-
date the execution of tasks. ESTT (αs) stands for the theoretical
earliest start time of the task, indicating the earliest completion
time when communication data from all predecessor tasks arrive
at the current device αs. The actual earliest start time of the task
s on device αs is

ESTA(αs) = max{load(αs), avail(αs), ESTT (αs)}. (12)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



4004 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

If the task is executed locally, the completion time for task
upload is 0; if offloaded on edge host m, the theoretical upload
start time is the transmission channel idle time plus the task
upload time. Thus, the time when task s arrives at the device αs

is

load (αs) =

{
0, if αs = 0
wait(l,m) + tl,ms , if αs = m

, (13)

where wait(l,m) is the transmission channel idle time between
local device and edge hostm. The theoretical earliest start time of
task s is determined by the latest arrival time of all its predecessor
tasks. Thus, the theoretical earliest start time of the task is

ESTT (αs) = max
s′∈pred(s)

{EFT (αs) + wait (αs′ , αs)

+t
αs′ ,αs

s′,s }, (14)

where pred(s) denotes the set of predecessor tasks for task s.
When task s executes on the same device as its predecessor task
s′, the transfer time of its data communication is 0, that is

wait (αs′ , αs) + t
αs′ ,αs,comm
s′,s = 0.

The earliest completion time of task s at device αs is

EFT (αs) = ESTA(αs) + tαs
s . (15)

The total response time is

ttotal = max
s∈S

{EFT (αs)}, (16)

where S = {1, 2. . ., S} is the set of all tasks.
When a task is executed locally, there is no need to consider the

upload energy consumption of the task. The energy consumed
by task s is given by

EC(αs)=

{
eαs
s +

∑
s′∈pred(s) e

αs′ ,αs

s′,s , αs = 0

el,αs
s + eαs

s +
∑

s′∈pred(s) e
αs′ ,αs

s′,s , αs=m
.

(17)
The total energy consumption is

etotal =
S∑

s=1

EC(αs). (18)

B. Optimization Objective

The optimization objective in this paper is to minimize both
the total response time and energy consumption. The optimiza-
tion function is represented as

U = min
s∈S

{λ1ttotal + λ2etotal}, (19)

s.t. αs ∈ {0} ∪M, (19a)

fαs
� fmax

αs
, (19b)

N∑
Bl � Btotal

l , (19c)

load(αs) � avail(αs), (19d)

EFT (αs′) � ESTA(αs), s
′ ∈ pre(s), (19e)

[ESTA(αs), EFT (αs)]
⋂

[ESTA(αs∗), EFT (αs∗)],

s∗ �= s, αs∗ = αs, s∗ ∈ pro(αs). (19f)

Where the sum of the target weights is 1, that is, λ1 + λ2 = 1.
Constraint (19a) mandates that a task selects only one offloading
location. Constraint (19b) dictates that the computational capac-
ity of the device executing the task does not exceed its maximum
limit. Constraint (19c) states that the total allocated bandwidth
to devices must not exceed the available total bandwidth. Con-
straint (19d) mandates that the task’s start execution time must
be later than the time at which it reaches the device. Constraint
(19e) indicates that the processing of a task cannot begin until all
its predecessor tasks are completed, thereby ensuring the correct
execution order of the tasks. Constraint (19f) indicates that only
one task can be executed at a time on the same host, where
pro(αs) denotes the set of tasks that are on the same host as the
task s. The task s∗ may come from different users.

V. FDAHO OFFLOADING STRATEGY

In this section, the FDAHO algorithm is proposed. The al-
gorithm comprises three parts. The first part is the edge rank_u
sorting (ERS) based sorting algorithm. The second part is the
FDQN based offloading algorithm. The third part is the TPE
based hyperparameter optimization algorithm.

A. ERS Based Sorting Algorithm

The DAG tasks have constraint relationships between them.
Therefore, before task offloading, it is necessary to sort the tasks
to ensure the order of task execution. This paper employs the
ERS algorithm. ERS draw on the method in [28]. Topcuoglu et
al. [28] primarily focus on task scheduling in heterogeneous
cloud computing environments without explicitly addressing
the complexities introduced by task offloading in MEC. Unlike
traditional methods, the ERS algorithm focuses on optimizing
task offloading while considering the unique constraints and
requirements of MEC.

Initially, compute the rank value for each task, which is
composed of the following components: (1) the average exe-
cution time of the target task; (2) the maximum value of the
sum of the average communication time and rank values of its
successor tasks. Given that the exit task lacks successor tasks,
its rank value equals the average execution time of the exit task.
Subsequently, arrange tasks in descending order based on their
rank values. The offloading queue defined after task sorting is
φ = {φ1, φ2, . . ., φS}, φs ∈ S, φs′ ∈ S, s �= s′, φs �= φs′ . This
measure helps prioritize task nodes based on their positions in
the graph. ts is the average of the task’s execution times across all
devices. ts,s′ is the average transfer time for data communication
between tasks across all channels. The rank value of task s is
recursively calculated by

Rank(s) = ts + max
s′∈succ(s)

{
Rank (s′) + ts,s′

}
, (20)

where succ(s) is the set of all successor tasks. The average
execution time of task s on the device is

ts =
1

1 +M
×
(
tls +

M∑
m=1

tms

)
. (21)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: MULTI-OBJECTIVE DAG TASK OFFLOADING IN MEC ENVIRONMENT BASED ON FDAHO 4005

TABLE III
COMPUTATIONAL COSTS

Fig. 3. Total task response time of different sorting.

The average communication time for data transfer between task
s and task s′ on the channel is

ts,s′ =
tl,ms,s′ + tm,l

s,s′ +
∑M

m=1

∑
m �=m′ t

m,m′
s,s′

2 +

(
M
2

) . (22)

Assume that the DAG tasks in Fig. 2 have the computational
costs on three different edge host as shown in Table III. Each
host possesses varying computational capabilities or charac-
teristics. These capabilities impact task execution efficiency.
They also influence overall computational workload distribution
strategies. Compare different offloading sorting algorithms. As
shown in Fig. 3(a)–(c), they represent edge rank_u sorting,
edge rank_d sorting, and edge critical path sorting respectively.
The term “rank_u” represents the ranking calculated from the
bottom up, commencing from the exit task. Tasks are then
sorted in descending order according to their rank values to
ascertain the offloading sequence. The resulting task offload-
ing order is φrank_u = {T1, T3, T2, T8, T5, T6, T4, T7, T9}. The
term “rank_d” signifies the ranking calculated from the top
down, starting from the enter task. Tasks are then sorted
in ascending order according to their rank values to deter-
mine the offloading sequence. The resulting task offloading or-
der is φrank_d = {T1, T2, T3, T4, T5, T7, T6, T8, T9}. The term
“critical path” refers to the strategy of summing the rank_u
and rank_d values for each task, and prioritizing the offload-
ing of tasks that have the highest combined value on this
path. The resulting task offloading order is φcritical_path =
{T1, T3, T8, T6, T7, T2, T5, T4, T9}. When each task is offloaded

Fig. 4. FDAHO model.

to the device with the shortest response time, the total cor-
responding time of edge rank_u sorting, edge rank_d sorting,
and edge critical path sorting is 97ms, 99ms, and 116ms, re-
spectively [28], [29]. The total time is the shortest with edge
rank_u sorting. The reason is that edge rank_u based sorting
tends to prioritize scheduling tasks that affect the execution of
subsequent tasks, thereby more effectively reducing the overall
execution time.

B. FDQN Based Offloading Algorithm

The algorithm flowchart of the FDAHO model is shown
in Fig. 4. First, after generating the task offloading queue,
tasks are sequentially placed into the DQN environment. The
evaluation network is trained based on the state and available
actions, selecting the action with the highest Q-value. The next
state and reward obtained are stored in the cache. Additionally,
every C steps, the evaluation network is copied to the target
network to calculate the DQN loss value. The parameters of all
device models are aggregated and updated. TPE evaluates the
performance of parameters by setting different hyperparameters
and assessing the average loss value after DQN execution. The
process occurs during the training phase of FDAHO and does
not affect system response time and energy consumption during
the testing phase. Once the model training is completed, there
is no need to update hyperparameters in real-time; instead, we
directly use the optimized DQN model for task offloading. This
is an offline training and online deployment mechanism.

1) DQN Algorithm: For each DAG task, the optimal device
needs to be selected for offloading and execution. However,
traditional algorithms struggle to effectively handle the high-
dimensional state space of data. Therefore, we introduce the
DQN algorithm from DL to address this issue. DQN extends
Q-learning by incorporating deep neural networks to handle
more complex state spaces. Compared to other DL algorithms,
the DQN method is more suitable for problems with discrete
action spaces. The model comprises an evaluation network and
a target network, both sharing same structures. The evaluation

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



4006 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

network is responsible for action selection and assessing the cur-
rent policy. During training, its parameters are updated through
gradient descent to estimate the optimal Q-value function. The
target network is employed for computing target Q-value, and its
parameters remain frozen throughout training, avoiding changes
with each update. it periodically obtains the parameters of the
evaluation network to ensure stable target Q-value computation
over the entire training process. Thus, The Q-value in DQN
update formula is:

Qt+1(s, a) = Qt(s, a) + α

× (r + γ ×max
a′

Qt(s
′, a′)−Qt(s, a)), (23)

where α represents the learning rate, determining the extent to
which the error is learned, while γ serves as the discount factor,
denoting the degree to which future rewards are discounted.
For action selection, DQN employs an ε-greedy strategy. The
formula for this strategy is expressed as follows:

a =

{
random(a), 0 ≤ e < ε
argmax

a
Q(s, a; θ), ε ≤ e ≤ 1 , (24)

where e (e ∈ [0, 1]) represents a random value. ε diminishes
with an increase in the iteration count, ensuring the accuracy of
the converged model. Finally, the predicted loss value for the
current round is calculated:

L(θ) = E(r + γ ×max
a′

Qt(s
′, a′; θ′)−Qt(s, a; θ)), (25)

where θ′ indicates the parameters of the evaluate network, while
θ indicates the parameters of the target network. The evaluate
network is updated based on the feedback of L(θ). The target
network acquires parameters every C iterations. This approach
ensures stable updates of the algorithm and reduces errors.

Based on the properties of the algorithm described above, the
whole overall procedure can be depicted as a markov decision
process (MDP) [30], [31]. Crucial components of MDP are
designed as follows:
� State Space: At each time step t, an offloading decision is

made for a task. The state space of the DQN consists of
response time and energy consumption of tasks on different
devices. i = 0 represents the local device, and i ∈ [1,m]
represents edge devices. sit represents the response time
and energy consumption of a task offloaded to device i.
The current state is represented as a vector, defined as

st = (s0t , s
1
t , . . ., s

m
t ),

sit = λ1dv
i
t + λ2e

i
t i ∈ [0,m]. (26)

� Action Space: The action space of the DQN is determined
by the location where the task is offloaded. Each task can
only be offloaded to a location. We use a vector to ensure
uniqueness, such as at = (1, 0, . . ., 0) where a0t = 1 and
a1t = a2t = . . . = amt = 0, which indicates executing the
task locally. The action space is specified as

at = (a0t , a
1
t , . . ., a

m
t ),{

ait ∈ {0, 1}∑m+1
i ait = 1.

(27)

Algorithm 1: DQN Algorithm.
Require: State set S, action set A
Ensure: Offloading action a
1: Initialize target network Q̂ and evaluation network Q
2: Set the size of the experience replay buffer D to Cep

3: for all e = 1, E do
4: Initialize s1
5: for all t = 1, T do
6: Compute two indicators of current task on all

devices by (29) and (30)
7: choose action at by (24)
8: Executing at and observing st+1 and rt
9: Storing experiences (st, at, rt, st+1) in D

10: Set yj =

{
rj , if episode terminates at step j + 1

rj + γmaxa′Q̂(sj+1, a
′; θ′), otherwise

11: Randomly sampling from the experience replay
buffer and conducting training

12: Performing one step Q-learning training
13: Calculate L(θ) by (25) and record
14: Every C time steps, transfer the parameters of Q to

Q̂
15: end for
16: end for

� Reward: After choosing an action in the current state,
the agent gets an instant reward. The reward function
is a measure of the quality of the agent’s behaviour in
the environment. The reward function is expressed as the
weighted sum of response time and energy consumption
of the task in the current state. Specifically, the reward is
defined as the difference between the total response time
of the task in the current state and the previous state, along
with the total energy consumption of the task. The reward
formula is

rt = −(λ1dvt + λ2et). (28)

If task φs is offloaded at time step t, the response time of task
φs is defined as the difference between the response times of all
remaining tasks from time step t to time step t− 1. The response
time of the task in the current time step t is denoted by:

dvt = max

{
EFT (αφs

), max
φs′ ∈pre(φs)

{EFT (αφs′ )}
}

− max
φs′ ∈pre(φs)

{EFT (αφs′ )}, (29)

where pre(φs) represents all tasks that has been offloaded be-
fore, pre(φs) = (φ1, φ2, . . ., φs−1). The energy consumption of
the task at the current time step t is

et = EC(αφs
). (30)

The comprehensive procedure of the DQN algorithm is de-
picted in Algorithm 1, with a time complexity of O(E × T ),
where E is the number of episodes and T is the size of the total
timestamp.

2) Federated Averaging Algorithm: Each local device has
limited and independent task data. However, the DQN algorithm

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: MULTI-OBJECTIVE DAG TASK OFFLOADING IN MEC ENVIRONMENT BASED ON FDAHO 4007

improves its performance based on a large number of samples.
In a distributed scenario, FL can have a positive impact on DQN
or other deep reinforcement learning models. FL enables local
device-based model training without transferring raw data to
a central server. This approach helps protect user privacy as
individual data does not leave the device directly. Through FL,
the central server can coordinate these local models to form a
global model. This is beneficial for reducing communication
burdens on the central server and enabling model training in
MEC. FL allows the sharing of learned knowledge among
different devices, and collaborative training can enhance the
performance of the global model. For DQN, this collaborative
approach can assist the model in better adapting to diverse local
environments and user behaviors, thereby improving the model’s
generalization performance [32], [33].

Next, the algorithm process is introduced. After K de-
vices undergoes C rounds of training, local model parameters
{W 1

t ,W
2
t , . . .,W

K
t } are transmitted to the edge server. The

edge server collects local model parameters and performs ag-
gregation averaging. In FL, the federated averaging algorithm
is used to generate global model parameters with the formula
represented as

Wg =
1

K
×

K∑
k=1

W k
t , (31)

where g is number of rounds of aggregation. Finally, the global
model parameters are delivered to each local device. The formula
for this is

W k
t+1 = Wg . (32)

The FDQN is derived from the combination of FL and DQN.
The comprehensive procedure of the FDQN is depicted in
Algorithm 2, with a time complexity of O(K × E × T ).

C. TPE Based Hyperparameter Optimization Algorithm

Well-tuned hyperparameters can enhance the performance
of the algorithm. Therefore, before running the FDQN model,
it is necessary to perform hyperparameter optimization. This
paper employs the TPE hyperparameter optimization algorithm.
Compared to traditional parameter optimization methods, it can
quickly find relatively optimal solutions.

The TPE algorithm comprises the following steps. First,
collect and analyze the observational data, denoted as Z =
{(x(1), y(1)), . . ., (x(k), y(k))}. Subsequently, define a probabil-
ity density function as

p(x|y) =
{
o1(x), y∗ ≤ y
o2(x), y∗ > y

, (33)

where o1(x) is formed using the remaining observations. o2(x)
is formed by observed variables {x(i)} such that y∗ > yi. y∗ is
chosen to be a quantile η of the remaining observed y values,
where p(y∗ > y) = η. All in all, o1(x) models the density of
poorly observed values, while o2(x) models the density of
well-observed values. Next, observations are segmented into
sets Zo1

and Zo2
for model construction. This segmentation

is accomplished by sorting the observations according to their

Algorithm 2: FDQN Algorithm.
Require: Task offloading sequence and device states
Ensure: System response time and energy consumption
1: Edge Server: At the initial time step, the global

parameter w0 is initialized and issued to the local device
2: Local Device: Obtain w0 from Edge server and run the

DQN algorithm at the initial time step
3: for all round g = 1, 2, . . ., G do
4: Edge Server:
5: Waiting to receive device parameters wk

t

6: Calculate wg by formula (31) and sent to each local
device at time step t+ 1

7: Local Devices :
8: for all local device k ∈ K in parallel do
9: for all time step t = 1,2,... do
10: Execute lines 6-15 of the Algorithm 1
11: if t%C == 0 then
12: Transmit the model parameters wk

t of the
current time step t to the edge server

13: Wait to receive the aggregated model
parameters Wg

14: Update the model parameters at t+ 1
15: end if
16: end for
17: end for
18: end for

corresponding y values. The infill criterion utilized by TPE is
the following expected improvement (EI) function:

EIy∗(x) =

∫ ∞

−∞
max(y∗ − y, 0)× p(y|x)dy

=

∫ y∗

−∞
(y∗ − y)× p(y|x)dy

∝ (η + (1− η)× o1(x)

o2(x)
)
−1

. (34)

The final step involves selecting the candidatex∗ with the highest
EI value [7], [34].

Next, we set the search space for hyperparameters to be

x∗=

⎧⎨
⎩

B ∈ {16, 32, 64, 128}
γ ∈ [0.5, 1]

AF ∈ {softplus, relu, tanh, sigmoid}
, (35)

where B is batch size. In DQN model training, it indicates
the number of data samples used in each parameter update.
The choice of batch size affects the training speed, memory
requirements, optimization stability, and the model’s ability to
generalize. γ is discount factor. It determines the present value
of future rewards in a sequence of actions. The discount factor
influences how much importance an agent places on future re-
wards compared to immediate rewards during decision-making.
AF is active function. The activation function in neural networks
determines the output of a neuron based on its input. The choice
of activation function affects the network’s capacity to learn

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



4008 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

Algorithm 3: TPE Algorithm.
Require: Observational data set Z
Ensure: The optimal hyperparameter combination in set Z
1: Initialize the probability density function
2: for all i = 1, ni do
3: Zo2

=
{(x, y)|x with the best- 
η × |Z|� y values in Z}

4: Zo1
= Z\Zo2

5: Build o1(x) and o2(x) separately
6: C = {x(i,j) ∼ o2(x)|j = 1, . . ., nc}
7: x∗ = argmaxx∈CEIy∗(x) select the best candidate
8: Use x∗ as the hyperparameter for Algorithm 1
9: Calculate y∗ value by (36)
10: Z = Z

⋃{(x∗, f(x∗))}
11: end for

and its ability to model complex relationships within the data.
The average loss of DQN is defined as the objective value
that needs to be minimized. Therefore, the objective value for
hyperparameter optimization is

y∗ =
1

E
× 1

T
×

E∑
e=1

T∑
t=1

L(θ), (36)

where E is the number of training rounds for DQN, and T is the
number of DAG tasks. The overall process of the TPE algorithm
is illustrated in Algorithm 3, with a time complexity of O(ni ×
E × T ), where ni is the number of iterations.

VI. NUMERICAL SIMULATION

In this section, we first construct the experimental platform
and environment. Subsequent selections are made for the hy-
perparameters of the experiment. Following this, the weights
are determined for optimizing the objectives. Lastly, the per-
formance of the FDHAO is analyzed and compared against the
traditional training algorithm.

A. Experimental Settings

This experiment utilizes Python as the simulation platform
and employs TensorFlow to construct the neural network. The
DAG parsing library is utilized to generate and parse information
related to DAG tasks. The data center library is employed to
simulate parameters of edge server and local devices, including
virtual machines, hosts, base stations, and so forth. The local
device is used as follows: (1) Generate DAG tasks. (2) Sort and
offload tasks. (3) Execute tasks locally. The role of edge servers
is as follows: (1) Provide remote computing capabilities. (2)
Collect system information and resource status. (3) Aggregate
model parameters. The task library is responsible for defining
DAG tasks, subtasks, as well as input and output file information
among tasks. The shared library serves as a repository for sharing
information between devices. Meanwhile, the offloading library
defines various offloading algorithms to simulate the offloading
process. The experimental workflow is structured as follows:
(1) Create edge and local devices. (2) Generate tasks from local

TABLE IV
EXPERIMENTAL SIMULATION PARAMETERS

Fig. 5. Convergence of TPE Algorithm.

devices. (3) Parse the DAG task information. (4) Choose an
appropriate task offloading algorithm. (5) Collate and analyze
experimental results and data. The devices are heterogeneous.
The relevant parameters of heterogeneous devices for the exper-
iment are presented in Table IV.

In the research on DAG task offloading, information such
as the computational size of tasks is generally known and can
be approximately analyzed. Although there may be some minor
errors, they can be ignored. For datasets, we utilize real scientific
workflows sourced from the Pegasus workflow management
system, including workflows such as Inspiral, Sipht, Montage,
and CyberShake and so on [35], [36]. These workflows are pro-
vided in DAX format in XML. These workflows have different
characteristics and structures, serving as common benchmarks
for evaluating the effectiveness of workflow scheduling algo-
rithms [37].

B. Hyperparameter Optimization Experiments

The performance of the DQN algorithm is influenced by
several key hyperparameters. The active function, batch size and
discount factor are mainly selected as objects for automatic hy-
perparameter optimization of TPE. The average loss of the DQN
algorithm is used as an indicator to evaluate the performance of
the selected parameters. A smaller average loss suggests that the
selected hyperparameters positively influence the algorithm’s
performance. The TPE algorithm initially guesses the hyper-
parameters corresponding to optimal values and subsequently
validates them. The relationship between the number of TPE
iterations and the objective value is depicted in Fig. 5. The
TPE algorithm quickly identifies a relatively optimal set of
hyperparameters. Around 170 iterations, it becomes evident that

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: MULTI-OBJECTIVE DAG TASK OFFLOADING IN MEC ENVIRONMENT BASED ON FDAHO 4009

TABLE V
HYPERPARAMETERS SETTING

Fig. 6. Convergence of DQN Algorithm.

favorable results emerge when the hyperparameters fall within
a specific range. As the iterations progress to 400, 600, and 800,
there is an increasing consistency in selecting hyperparameters
within a certain range. This is attributed to the TPE algorithm
relying on guessing, preventing it from gradually converging
to the optimal value as the number of iterations increases. But
it prevents leading to local optimal solutions and takes less
time to find the optimal solution. After conducting numerous
experiments, hyperparameters corresponding to the minimum
average loss were chosen. The activation function is “Relu”, the
discount factor is 0.906, and the batch size is 64. The settings
for all hyperparameters of the DQN are detailed in Table V.

Next, the convergence of the ultimately selected hyperparam-
eters is tested using datasets owned by different users. Taking
tasks generated by four different users with varying DAG types
as an example, the convergence of the DQN is depicted in Fig. 6.
The graph indicates that with an increase in the number of
iterations, the loss value for all four users gradually decreases
and eventually stabilizes. By the time it reaches 1300 iterations,
the loss value no longer exhibits significant fluctuations. This
indicates that the selected hyperparameters can provide the
algorithm with good stability and performance.

C. Weight Selection Experiments

To measure the significance of optimization objectives in
practical MEC scenarios, setting appropriate weighting factors is
crucial. Different users may prioritize distinct indicators. Exper-
iments were conducted by varying the weight of response time
from 0.1 to 0.9, with response times and energy consumption
recorded at each weight value. The average response time and

Fig. 7. The response time and energy consumption under different weights.

energy consumption indicators are obtained by experiments with
multiple groups of data. The average response time and average
energy consumption corresponding to different weightings are
depicted in Fig. 7. With an increase in the weight assigned to
response time, the response time decreases while the energy
consumption increases. When the weight is around 0.4, the av-
erage response time and average energy consumption intersect,
indicating a balanced proportion between the weightings of these
indicators. A weight of 0.4 was selected as the balancing point
between response time and energy consumption for subsequent
algorithm performance experiments.

D. Performance Experiments

To evaluate the effectiveness of the FDAHO algorithm, we
conducted a comparison with Q-learning and DQN. The primary
distinction between these algorithms and FDAHO lies in the
training methods. Additionally, we also used the local offloading
algorithm as a reference.

By controlling experimental variables, the experiment tested
performance indicators in different scenarios. To ensure fairness
in task offloading among users, a random strategy is used to
select the user offloading order. First, a MEC environment
consisting of 4 local devices and 4 edge hosts was constructed.
When each local device had distinct types of DAG tasks, the
performance of the algorithm was tested under scenarios with
average task numbers of 30, 50, 100, and 500, respectively. The
performance indicators for all devices were averaged to obtain
the average response time and average energy consumption. The
experimental results are illustrated in Fig. 8. Whereas Fig. 8(a)
compares the average response time of the algorithms for task
offloading, Fig. 8(b) contrasts the average energy consump-
tion of the task offloading algorithms. As the number of tasks
increases, both indicators also increase accordingly. The line
graphs in the figure illustrate the average performance values
of the algorithms across the four different task counts. This
provides a more intuitive way to compare the performance
results of the algorithms. For example, in the scenario where
different users execute different types of DAG tasks but with the
same number of tasks, the black line represents the average value
obtained by summing the corresponding values of FDAHO for
task numbers 30, 50, 100, and 500 and then taking the average. In

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



4010 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

Fig. 8. Comparing indicators in scenarios where different users utilize DAG
tasks of varying types but with the same number of tasks.

this scenario, FDAHO improves response time by 15.8%, 12.1%,
and 67.9% compared to DQN, Q-learning, and Local offloading
algorithms, respectively. Energy consumption improvements are
3.9%, 6.2%, and 32.9%, respectively. Testing with various task
numbers, the FDAHO algorithm demonstrates a better reduction
in both indicators. Simultaneously, since the training data does
not need to be uploaded to the edge server, it will not cause data
leakage, thus protecting the privacy of users.

Another scenario involves local devices with the same type of
tasks but a different number of generated tasks. The experimental
results are depicted in Fig. 9. Taking the first horizontal axis
value from the graph as an example, it indicates that each local
device utilized a “Montage” type dataset. However, the quantity
of DAG tasks generated by each local device varied within
the range of 30 to 500. The meanings of the other horizontal
axis values are similar. We tested datasets such as Montage,
CyberShake, Sipht, and Inspirial. Each type of dataset possesses
distinct node information and varying graph structures for the
DAG tasks. Due to the varying task types, both indicators are
illustrated in Fig. 9(a) and (b), respectively. In the scenario
where different users execute the same type of DAG tasks but
with varying numbers of tasks, the black line represents the
average value obtained by summing the corresponding values
of FDAHO for task types Montage, CyberShake, Sipht, and
Inspiral and then taking the average. In this scenario, FDAHO
improves response time by 22.5%, 32.5%, and 77.5% compared
to DQN, Q-learning, and Local offloading algorithms, respec-
tively. Energy consumption improvements are 1.0%, 3.1%, and
31.4%, respectively. The FDAHO algorithm demonstrates more

Fig. 9. Comparing indicators in scenarios where different users utilize DAG
tasks of the same type but with varying numbers of tasks.

pronounced improvements in response time of the task compared
to Q-learning and DQN. This is attributed to the similarity in the
data types used by local devices, enabling FL to better integrate
model parameters and enhance model performance. While the
optimization in terms of energy consumption is modest, it still
slightly outperforms the other two traditional machine learning
algorithms. This is the result of balancing between reducing re-
sponse time and increasing energy consumption. Therefore, it’s
challenging to optimize both metrics simultaneously. However,
the FDAHO algorithm strives to strike a balance between the
two.

The third testing scenario involves each device generating
one or multiple DAGs with random numbers and types. The
experiments were conducted to measure the response time and
energy consumption for user counts of 2, 4, 6, and 8. The
results are presented in Fig. 10. In the scenario where different
users execute DAG tasks with random numbers and types, the
black line represents the average value obtained by summing
the corresponding values of FDAHO for user numbers 2, 4, 6,
and 8 and then taking the average. In this scenario, the FDAHO
improves response time by 17.1%, 31.1%, and 53.8% compared
to DQN, Q-learning, and Local offloading algorithms, respec-
tively. Energy consumption improvements are 0.9%, 3.8%, and
34.1%, respectively. Due to the random datasets used by each
local device, after multiple experiments, it’s not guaranteed that
the average response time and energy consumption will increase
with the number of users. For instance, with 8 users, there might
be instances where some devices generate fewer tasks, leading
to a lower response time and energy consumption compared

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: MULTI-OBJECTIVE DAG TASK OFFLOADING IN MEC ENVIRONMENT BASED ON FDAHO 4011

Fig. 10. Comparing indicators in scenarios where different users utilize DAG
tasks of random numbers and types.
.

to other user counts. However, our algorithm still demonstrates
superior experimental performance.

The experimental results above indicate that the FDAHO
algorithm performs better in terms of both response time and
energy consumption compared to Q-learning and DQN algo-
rithms. Additionally, it exhibits significant advantages over local
offloading methods.

VII. CONCLUSION

The paper introduces a task offloading algorithm named
FDAHO. This algorithm is designed to address multi-objective
optimization for DAG task offloading in an MEC environment,
all while ensuring user privacy. The components of this algo-
rithm include various techniques such as the ERS based sorting
algorithm, FDQN based offloading algorithm, and TPE based
hyperparameter optimization algorithm. Experiments were con-
ducted under various scenarios, considering different types of
tasks, varying task size, and distinct user counts. The experimen-
tal outcomes demonstrate that the FDAHO algorithm effectively
reduces both response time and energy consumption of the task
while safeguarding user privacy.

REFERENCES

[1] Y. Qi and M. S. Hossain, “Harnessing federated generative learning for
green and sustainable Internet of Things,” J. Netw. Comput. Appl., vol. 222,
2024, Art. no. 103812.

[2] M. Liyanage, P. Porambage, A. Y. Ding, and A. Kalla, “Driving forces for
multi-access edge computing (MEC) IoT integration in 5G,” ICT Express,
vol. 7, no. 2, pp. 127–137, 2021.

[3] F. Liu, J. Huang, and X. Wang, “Joint task offloading and resource al-
location for device-edge-cloud collaboration with subtask dependencies,”
IEEE Trans. Cloud Comput., vol. 11, no. 3, pp. 3027–3039, Third Quarter
2023.

[4] X. Chen and G. Liu, “Energy-efficient task offloading and resource allo-
cation via deep reinforcement learning for augmented reality in mobile
edge networks,” IEEE Internet Things J., vol. 8, no. 13, pp. 10 843–10
856, Jul. 2021.

[5] J. Yang, X. You, G. Wu, M. M. Hassan, A. Almogren, and J.
Guna, “Application of reinforcement learning in UAV cluster task
scheduling,” Future Gener. Comput. Syst., vol. 95, pp. 140–148,
2019.

[6] B. Liu, L. Wang, and M. Liu, “Lifelong federated reinforcement learning:
A learning architecture for navigation in cloud robotic systems,” IEEE
Trans. Robot. Autom., vol. 4, no. 4, pp. 4555–4562, Oct. 2019.

[7] H.-P. Nguyen, J. Liu, and E. Zio, “A long-term prediction approach based
on long short-term memory neural networks with automatic parameter
optimization by tree-structured parzen estimator and applied to time-
series data of NPP steam generators,” Appl. Soft Comput., vol. 89, 2020,
Art. no. 106116.

[8] J. Baek and G. Kaddoum, “Online partial offloading and task scheduling
in SDN-Fog networks with deep recurrent reinforcement learning,” IEEE
Internet Things J., vol. 9, no. 13, pp. 11 578–11 589, Jul. 2022.

[9] L. Zhao et al., “A digital twin-assisted intelligent partial offloading ap-
proach for vehicular edge computing,” IEEE J. Sel. Areas Commun.,
vol. 41, no. 11, pp. 3386–3400, Nov. 2023.

[10] M. H. Khoobkar, M. D. T. Fooladi, M. H. Rezvani, and M. M. G.
Sadeghi, “Joint optimization of delay and energy in partial offloading using
dual-population replicator dynamics,” Expert Syst. Appl., vol. 216, 2023,
Art. no. 119417.

[11] Z. Zabihi, A. M. Eftekhari Moghadam, and M. H. Rezvani, “Reinforcement
learning methods for computation offloading: A systematic review,” ACM
Comput. Surv., vol. 56, no. 1, pp. 1–41, 2023.

[12] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation for
multi-server mobile-edge computing networks,” IEEE Trans. Veh. Technol,
vol. 68, no. 1, pp. 856–868, Jan. 2019.

[13] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi, “Mobility-
aware multi-hop task offloading for autonomous driving in vehicular edge
computing and networks,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 2,
pp. 2169–2182, Feb. 2023.

[14] M. Tang and V. W. Wong, “Deep reinforcement learning for task offloading
in mobile edge computing systems,” IEEE Trans. Mobile Comput., vol. 21,
no. 6, pp. 1985–1997, Jun. 2022.

[15] K. Liu, J. Peng, H. Li, X. Zhang, and W. Liu, “Multi-device task offloading
with time-constraints for energy efficiency in mobile cloud computing,”
Future Gener. Comput. Syst., vol. 64, pp. 1–14, 2016.

[16] C. Li, J. Tang, T. Ma, X. Yang, and Y. Luo, “Load balance based workflow
job scheduling algorithm in distributed cloud,” J. Netw. Comput. Appl.,
vol. 152, 2020, Art. no. 102518.

[17] L. Zhang, L. Zhou, and A. Salah, “Efficient scientific workflow scheduling
for deadline-constrained parallel tasks in cloud computing environments,”
Inf. Sci., vol. 531, pp. 31–46, 2020.

[18] R. NoorianTalouki, M. H. Shirvani, and H. Motameni, “A heuristic-based
task scheduling algorithm for scientific workflows in heterogeneous cloud
computing platforms,” J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 8,
pp. 4902–4913, 2022.

[19] Q. Chen, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “An integrated
framework for software defined networking, caching, and computing,”
IEEE Netw., vol. 31, no. 3, pp. 46–55, May/Jun. 2017.

[20] B. Cheng, “Multi-population cooperative elite algorithm for efficient com-
putation offloading in mobile edge computing,” J. Grid Comput., vol. 21,
no. 4, 2023, Art. no. 54.

[21] Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multihop offloading of multiple DAG
tasks in collaborative edge computing,” IEEE Internet Things J., vol. 8,
no. 6, pp. 4893–4905, Mar. 2021.

[22] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dy-
namic offloading and resource scheduling in mobile cloud comput-
ing,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016,
pp. 1–9.

[23] J. Liang, K. Li, C. Liu, and K. Li, “Joint offloading and scheduling deci-
sions for DAG applications in mobile edge computing,” Neurocomputing,
vol. 424, pp. 160–171, 2021.

[24] L. Pan, X. Liu, Z. Jia, J. Xu, and X. Li, “A multi-objective clustering
evolutionary algorithm for multi-workflow computation offloading in
mobile edge computing,” IEEE Trans. Cloud Comput., vol. 11, no. 2,
pp. 1334–1351, Second Quarter 2023.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 



4012 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

[25] S. Su, P. Yuan, and Y. Dai, “Reliable computation offloading of DAG appli-
cations in Internet of Vehicles based on deep reinforcement learning,” IEEE
Trans. Veh. Technol, to be published, doi: 10.1109/TVT.2024.3385108.

[26] Z. Liu, L. Huang, Z. Gao, M. Luo, S. Hosseinalipour, and H. Dai, “GA-
DRL: Graph neural network-augmented deep reinforcement learning for
DAG task scheduling over dynamic vehicular clouds,” IEEE Trans. Netw.
Service Manag., vol. 21, no. 4, pp. 4226–4242, Aug. 2024.

[27] R. Chen and X. Wang, “Maximization of value of service for mobile
collaborative computing through situation-aware task offloading,” IEEE
Trans. Mobile Comput., vol. 22, no. 2, pp. 1049–1065, Feb. 2023.

[28] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-
complexity task scheduling for heterogeneous computing,” IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

[29] J. Chen, Y. He, Y. Zhang, P. Han, and C. Du, “Energy-aware scheduling for
dependent tasks in heterogeneous multiprocessor systems,” J. Syst. Archit.,
vol. 129, 2022, Art. no. 102598.

[30] X. Gao, M. C. Ang, and S. A. Althubiti, “Deep reinforcement learning and
markov decision problem for task offloading in mobile edge computing,”
J. Grid Comput., vol. 21, no. 4, 2023, Art. no. 78.

[31] S. S. Shinde and D. Tarchi, “A Markov decision process solution for
energy-saving network selection and computation offloading in vehicular
networks,” IEEE Trans. Veh. Technol, vol. 72, no. 9, pp. 12 031–12 046,
Sep. 2023.

[32] Z. Tong, J. Wang, J. Mei, K. Li, W. Li, and K. Li, “Multi-type task
offloading for wireless Internet of Things by federated deep reinforcement
learning,” Future Gener. Comput. Syst., vol. 145, pp. 536–549, 2023.

[33] W. Hou, H. Wen, H. Song, W. Lei, and W. Zhang, “Multiagent deep
reinforcement learning for task offloading and resource allocation in
cybertwin-based networks,” IEEE Internet Things J., vol. 8, no. 22, pp. 16
256–16 268, Nov. 2021.

[34] S. Tao, P. Peng, Y. Li, H. Sun, Q. Li, and H. Wang, “Supervised contrastive
representation learning with tree-structured parzen estimator Bayesian
optimization for imbalanced tabular data,” Expert Syst. Appl., vol. 237,
2024, Art. no. 121294.

[35] R. F. Da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman, “Community
resources for enabling research in distributed scientific workflows,” in
Proc. IEEE 10th Int. Conf. E-Sci., 2014, pp. 177–184.

[36] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi,
“Characterization of scientific workflows,” in Proc. IEEE 3rd Workshop
Workflows Support Large-Scale Sci., 2008, pp. 1–10.

[37] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K.
Vahi, “Characterizing and profiling scientific workflows,” Future Gener.
Comput. Syst., vol. 29, no. 3, pp. 682–692, 2013.

Zhao Tong (Senior Member, IEEE) received the PhD
degree in computer science from Hunan University,
Changsha, China in 2014. He was a visiting scholar
with the Georgia State University from 2017 to 2018.
He is currently an professor with the College of In-
formation Science and Engineering of Hunan Normal
University, the young backbone teacher of Hunan
Province, China. His research interests include paral-
lel and distributed computing systems, resource man-
agement, Big Data and machine learning algorithm.
He has published more than twenty five research

papers in international conferences and journals, such as IEEE Transactions
on Parallel and Distributed Systems, Information Sciences, Future Generation
Computer Systems, Neural Computing and Applications, and Journal of Parallel
and Distributed Computing, PDCAT, etc. He is a senior member of the China
Computer Federation (CCF).

Jiaxin Deng received the BS degree in computer
science and technology from Hunan City University,
Yiyang, China, in 2022. He is currently working
toward the MS degree with the College of Information
Science and Engineering, Hunan Normal University,
Changsha, China. His research focuses on resource
scheduling and task offloading in mobile edge com-
puting.

Jing Mei received the PhD degree in computer sci-
ence from Hunan University, China, in 2015. She is
currently an associate professor with the College of
Information Science and Engineering in Hunan Nor-
mal University. Her research interests include cloud
computing, fog computing and mobile edge comput-
ing, high performance computing, task scheduling
and resource management, etc. She has published
more than thirty research articles in international con-
ference and journals, such as IEEE Transactions on
Computers, IEEE Transactions on Parallel and Dis-

tributed System, IEEE Transactions on Service Computing, Cluster Computing,
Journal of Grid Computing, Journal of Supercomputing.

Yuanyang Zhang is currently working toward the
master’s degree with the College of Information Sci-
ence and Engineering, Hunan Normal University,
located in Changsha, China. Her research interests
mainly revolve around the areas of mobile edge com-
puting and game theory.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Univer-
sity of New York. He is also a National distinguished
professor with Hunan University, China. His current
research interests include cloud computing, fog com-
puting and mobile edge computing, energy–efficient
computing and communication, embedded systems
and cyber–physical systems, heterogeneous comput-
ing systems, Big Data computing, high–performance
computing, CPU–GPU hybrid and cooperative com-
puting, computer architectures and systems, com-

puter networking, machine learning, intelligent and soft computing. He has
authored or coauthored more than eight hundred fifty journal articles, book chap-
ters, and refereed conference papers, and has received several best paper awards.
He holds more than seventy patents announced or authorized by the Chinese
National Intellectual Property Administration. He is among the world’s top five
most influential scientists in parallel and distributed computing in terms of both
single–year impact and career–long impact based on a composite indicator of
Scopus citation database. He has chaired many international conferences. He is
currently an associate editor of ACM Computing Surveys and CCF Transactions
on High Performance Computing. He has served on the editorial boards of
IEEE Transactions on Parallel and Distributed Systems, IEEE Transactions
on Computers, IEEE Transactions on Cloud Computing, IEEE Transactions on
Services Computing, and IEEE Transactions on Sustainable Computing. He is
an AAIA Fellow. He is also a member of Academia Europaea (Academician of
the Academy of Europe).

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on January 07,2025 at 12:30:10 UTC from IEEE Xplore.  Restrictions apply. 

https://dx-doi-org-s.libyc.nudt.edu.cn:443/10.1109/TVT.2024.3385108


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


