
Journal of Systems Architecture 137 (2023) 102847

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Stackelberg game-based task offloading and pricing with computing capacity
constraint in mobile edge computing
Zhao Tong a,∗, Xin Deng a, Jing Mei a, Longbao Dai a, Kenli Li b, Keqin Li c

a College of Information Science and Engineering, Hunan Normal University, Changsha, 410012, China
b College of Information Science and Engineering, Hunan University, and National Supercomputing Center in Changsha, 410082, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

A R T I C L E I N F O

Keywords:
Mobile edge computing
Pricing
PSO
Stackelberg game
Task offloading

A B S T R A C T

The task offloading technology in mobile edge computing can improve the benefits of each device. Moreover,
designing reasonable prices for computing resources is critical to balancing the interests of end servers and
devices. However, unbalanced information availability complicates this issue. To address this problem, the
Stackelberg game is introduced to describe the relationship between the MEC server and end users (EUs). Then,
the task offloading decision problem of EUs is simplified and proved by derivation. Last, uniform pricing and
differentiated pricing algorithms are proposed. The differentiated pricing strategy is proposed by the PSO-based
pricing optimization algorithm (DPOA), which can precisely constrain the offloading of each EU. Simulation
results show the DPOA effectively improve profit of the server, and reduce latency of EUs.
1. Introduction

With the booming development of the Internet of Things (IoT)
and the widespread popularity of Fifth-Generation (5G) communication
technology, the era of Internet of Everything is accelerating. IoT tech-
nology has been widely used in the domains of smart transportation,
smart medical care, smart education and intelligent security, etc. [1,2].
According to estimates from the Cisco Internet Annual Report (2018–
2023) white paper, the number of connected devices worldwide will
increase to 29.3 billion by 2023, up from 18.4 billion in 2018 [3].
Simultaneous high-speed operation of hundreds of millions of devices
is bound to generate enormous amounts of data and information [4].
Cloud computing has virtually unlimited capacity in terms of storage
and processing power, which opens up possibilities for the implemen-
tation of IoT [5]. IoT devices request services from the cloud platform
according to needs and pay for them on demand [6]. Moreover, end
users (EUs, end devices in IoT such as smart watches, smart cars, real-
time monitoring and UAVs, etc.) that implement the collection of data
and send it to the MEC server, aim to obtain a relatively desirable
Quality of Experience (QoE).

However, with the explosive growth of IoT devices and data, cen-
tralized cloud-based services are gradually revealing shortcomings in
real-time, privacy protection, resource expense and reliability [7]. To
mitigate these shortcomings of cloud computing, mobile edge com-
puting (MEC) has been proposed as a new paradigm. MEC is a novel

∗ Corresponding author.
E-mail addresses: tongzhao@hunnu.edu.cn (Z. Tong), 202120293782@hunnu.edu.cn (X. Deng), Meijing@hunnu.edu.cn (J. Mei),

202120293781@hunnu.edu.cn (L. Dai), lkl@hnu.edu.cn (K. Li), lik@newpaltz.edu (K. Li).

architecture that provides intelligent services at the edge of the network
close to devices or data source [8]. Compared to cloud computing,
MEC has the following merits: (1) It processes EUs’ tasks on the edge
side of the network, which relieves stress on remote cloud computing
centers and network bandwidth. (2) The combination of MEC and 5G
technology provides localized services to diverse end devices, improv-
ing the response time of enhanced services [9]. Nevertheless, the MEC
system cannot possess as abundant computational capacity as the cloud
computing system. A large number of EUs offload computation tasks to
the MEC server, putting tremendous pressure on the limited wireless
bandwidth and computing resources. The quality of task offloading
directly affects the execution efficiency of the MEC system [10]. At the
same time, it is a challenge for the MEC server to develop a reasonable
pricing strategy and for EUs to determine the optimal amount of tasks
to offload. It must take into account the heterogeneity of EUs and their
task properties. For example, EUs may differ in computing abilities, the
size of the generated tasks and their latency requirements. Additionally,
EUs in the system may be selfish individuals, so they are only interested
in optimizing their own performance. Thus, the development of task
offloading and pricing in MEC systems should be carried out in accor-
dance with individual interests and task requirements of heterogeneous
devices. In this paper, we focus on the problem of task offloading and
pricing in the MEC system where multiple EUs compete for resources
of a single MEC server.
vailable online 20 February 2023
383-7621/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2023.102847
Received 22 November 2022; Received in revised form 22 January 2023; Accepted
 15 February 2023

https://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:tongzhao@hunnu.edu.cn
mailto:202120293782@hunnu.edu.cn
mailto:Meijing@hunnu.edu.cn
mailto:202120293781@hunnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.sysarc.2023.102847
https://doi.org/10.1016/j.sysarc.2023.102847

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.
We adopt a Stackelberg game scheme to overcome such a challenge.
Game theory is a useful approach for achieving satisfactory solutions
for all devices in scenarios of a competitive nature. The Stackelberg
game, as a leader–follower game, is appropriate for analyzing com-
petitive relationship between the MEC server and multiple EUs, all
of whom are only concerned with their own interests. Specifically, as
the leader, the MEC server prices its own computational resources and
sells them to EUs that need to offload tasks. The EUs with task latency
constraints then act as followers to develop a reasonable task offloading
strategy based on the price given by the leader. The MEC server seeks
to maximize profits, and EUs pursue the smallest cost. The cost is the
weighted sum of fees paid to the MEC server, energy consumption
and latency. We build relationship between the price set by the MEC
server and task offloading ratio decided by EUs. Then, a uniform pricing
strategy and a differentiated pricing strategy are proposed to hunt for
the optimal price made by the MEC server, separately.

In summary, the contributions of this paper are listed as follows:
∙ The task offloading problem of multiple heterogeneous EUs com-

peting for limited computational resources from a single server is
considered for a MEC scenario. Under the proposed two-layer resource
management model, the system benefit is maximized by regulating the
price to constrain task offloading.

∙ The principle between the MEC server and EUs is modeled as a
Stackelberg game. In the task attributes, the response time tolerance
as a delay constraint is added to influence the EUs’ decision. The MEC
server acts as a leader to decide unit price of the resource to maximize
its revenue. Each EU that acts as a follower decides the size of tasks
offloaded to the edge to minimize its cost.

∙ Through a series of derivations, the relationship between the
pricing strategy of the MEC server and task offloading decisions of
EUs is built. The PSO-based pricing optimization algorithm (DPOA) is
proposed to resolve differentiated pricing scheme. The DPOA filters out
pricing schemes that are highly profitable for the server.

∙ Extensive experiments are conducted to verify efficiency and per-
formance of the proposed algorithm. Experimental results demonstrate
superiority of the proposed DPOA in terms of increasing profitability of
the MEC server, reducing latency of EUs, and increasing task offloading
ratio.

The remainder of this paper is organized as follows. We present the
related work of this paper in Section 2, then we introduce Stackelberg
game theory and provide the problem definition of the model in
Section 3. Section 4 gives the formulaic description of the problem.
Section 5 gives solutions of the proposed Stackelberg game model. In
Section 6, we provide the experimental parameter settings and perfor-
mance evaluation of the experimental results. Finally, the conclusion is
discussed in Section 7.

2. Related work

In this section, the objectives of task offloading and its current state
of research in cloud computing and MEC are discussed. The innovations
of the paper are demonstrated subsequently. A comparison of related
work for task offloading is listed in Table 1.

2.1. Task offloading objectives

As a key technology of MEC, task offloading has become a preva-
lent subject among researchers. A great deal of research has focused
on reducing system latency with the aim of improving the QoE and
enhancing the user experience [11–14]. For example, Hu et al. [14]
presented a deep reinforcement learning-based computation offloading
method to mitigate task latency and energy consumption in dynamic
MECs with large-scale EUs. In [15], Duan et al. considered mobile
awareness and proposed an online task offloading strategy with adap-
tive load balancing in MEC systems. This approach is effective in
reducing computing costs for users and achieving load balancing. Wu
2

et al. [16] proposed an offloading strategy for vehicular networks
under MEC systems. The greatest innovation is to consider the practical
limitations of imperfect channels due to the high mobility of vehicles.
Mao et al. [17] tackled the computational offloading problem caused
by limited battery of the device through energy harvesting techniques.
They proposed a dynamic computational offloading algorithm based on
Lyapunov optimization, which not only lowered the execution cost but
also reduced the task failures. Using the same method, Tong et al. [18]
proposed Lyapunov online energy consumption optimization algorithm
to balance the queue backlog and energy consumption of the system.
Besides, from the economic point of view, Li et al. [19] proposed a
partial offloading algorithm based on minimizing the cost of vehicles
in vehicular networks. Du et al. [20] studied the maximization prob-
lem of the long-term average payoff of miners in an MEC blockchain
system. They proposed a low-complexity algorithm based on the A3C
deep reinforcement learning algorithm that boosts the total reward of
miners.

The aforementioned investigations have good performance in solv-
ing task offloading and resource allocation problems. However, they
do not consider either the impact of resource pricing or simultaneous
optimization of the purposes of the MEC server and EUs.

2.2. Cloud-based task offloading strategies

To improve the flexibility of cloud resources, resource management
in cloud networks requires robust pricing design to address many
issues [31]. As a result, much research has been conducted on the
issue of resource allocation and pricing strategies for cloud resources.
Auction theory is a state-of-the-art approach focused on pricing prob-
lems [21,22,32]. To facilitate resource transactions between resource
owners and mobile users, Wang et al. [22] constructed an auction
model and subsequently proposed an effective payment evaluation
mechanism to prevent the dishonest behavior of sellers in transactions.
Kantere et al. [23] proposed a price-demand model and a dynamic
pricing model to maximize profits and guarantee user satisfaction.
Game theory is a popular method for solving resource allocation and
pricing problems in cloud computing (CC) [24,25]. Liu et al. [24]
formulated the request migration strategy between multiple servers
as a noncooperative game between multiple servers in a distributed,
noncooperative and competitive environment. The goal of the study
was to minimize the disutility of servers. In [25], a multi-cloud interme-
diary framework for streaming big data computing was proposed. The
pricing-repurchasing problem was modeled as a two-stage Stackelberg
game to maximize the revenue of intermediaries.

2.3. MEC-based task offloading strategies

By comparison, resource allocation and pricing in mobile edge cloud
environments is still in the nascent stage. Most studies, such as [11–
14], assume that edge servers provide services for free. However, costs
are needed for the deployment and maintenance of MEC servers. In
addition, considering pricing of MEC servers is consistent with realistic
scenarios. The distributed nature of game theory makes it a good match
for multi-EU offloading situation [33]. In particular, the Stackelberg
game has become a widespread method for resource allocation and
pricing in wireless networks. To solve the resource allocation problem
between multiple heterogeneous mobile edge clouds and EUs, Chen
et al. [26] proposed a Stackelberg game framework to reconcile the
interests of both sides of the problem, and then decomposed the prob-
lem into a set of subproblems. They concluded that an EU with spare
resources can play the role of MEC. Liu et al. [27] investigated how to
ensure effective power allocation during the task offloading under in-
creasing intelligent jamming attacks. A Stackelberg defence mechanism
based on deep neural networks is proposed. Simulation experiments
demonstrate its effectiveness. Wang et al. [28] investigated a tiered
dynamic pricing mechanism for cloud–edge-client cooperation with

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.
Table 1
Overview of recent researches.

Ref. Tech. Obj. Arch. Adv. Disad.

[11] Pso, genetic algorithm, greedy
algorithm

Average task response time MEC Achieving a lower average task
response time

Not considering energy
consumption

[12] Block Coordinate Descent
(BCD) method

Latency MEC Minimizing the average latency,
linear computational complexity

Ignoring economic benefits

[13] KKT conditions End-to-end delay MEC Improving the QoE Not considering monetary
costs

[14] Reinforcement learning Latency, energy consumption MEC Suitable for large-scale user devices Ignoring the limited
computing capacity of
MEC server

[15] Reinforcement learning Total computation costs MEC Considering the mobility of users Ignoring complexity
analysis

[16] Deep reinforcement learning The system cost MEC Considering the imperfect channel
estimation

Weak energy model

[17] Lyapunov optimization The execution cost MEC Low-complexity, requiring little prior
knowledge

Ignoring privacy
assessments

[18] Lyapunov optimization Energy, delay MEC balance the queue backlog and
energy consumption

Ignoring the cost of server

[19] Mathematical derivation Cost for vehicles MEC Enhancing revenue Lack of time complexity
analysis

[20] Blockchain, A3C deep
reinforcement learning

Rational total profit of miners MEC Converging fast No privacy evaluation

[21] Auction theory Revenue of server CC Real test environment, near optimal
profit

Ignoring network-related
costs

[22] Auction theory Budget balance MCC Improving auction fairness and
individual rationality

Ignoring latency
requirements

[23] MINLP The cloud profit CC Simultaneously considering QoS and
profit

Weak energy model

[24] Non-cooperative game,
variational inequality

The expected response times
of all servers

CC Converging to a Nash equilibrium
quickly

Not considering energy
consumption of servers

[25] Stackelberg game Revenue of the multiple cloud CC Analyzing the game equilibrium, low
time complexity

Ignoring the time tolerance

[26] Stackelberg game, KKT
conditions

Revenue of both MECs and
EUs

MEC Demonstrating that an EU with idle
resources can play the role of an
MEC

Not considering the energy
efficiency of EUs

[27] Stackelberg game Power allocation MEC Considering intelligent jamming
attacks

Ignoring latency
requirements

[28] Stackelberg game Utility of all participants MEC Improving QoE, reaching the
maximum benefit equilibrium for
servers

Ignoring latency
requirements and time
complexity analysis

[29] Stackelberg game Revenue, latency MEC Limited server computation resources Ignoring edge cost model

[30] Stackelberg game, differential
evolution algorithm

Revenue, QoE MEC Considering cost of server, improving
the profit of the MEC server

Not considering time
tolerance
incomplete information. A two-tier Stackelberg game was introduced to
describe cloud–edge-client collaboration. The approach improved the
service quality of users and the benefits of service providers compared
to traditional pricing schemes. However, the study did not consider
system energy consumption. To address the problem of server pricing
and user offloading for a single MEC server and multi-user cases, Liu
et al. [29] investigated a price-based distributed approach where the
edge server with limited computational power set prices to maximize
its income, whereas each user made offloading decisions locally to
minimize its own expenses. Nevertheless, they did not consider the
cost in the expression of utility function of the MEC server. On the
basis of [29], Tao et al. [30] proposed a pricing and offloading strategy
based on the Stackelberg game. The optimal policy was then solved
by a differential evolutionary algorithm. However, even though this
work considered the latency of task local computation and offloading
computation, they ignored the response time tolerance of each EU,
which is given as a condition to constrain the task offloading of the
EUs.

Based on the above related works, this paper models the resource
pricing and task offloading problems under resource-limited edge
servers as a Stackelberg game model. Compared with peer studies, this
paper adds a delay constraint in task attributes to ensure QoE. The
3

energy consumption of the MEC server and the integration overhead of
the EU side are also considered comprehensively. Then, a PSO-based
differentiated pricing algorithm is proposed to optimize the pricing of
the server.

3. Stackelberg game and MEC model

In this section, the principles of the Stackelberg game are described
first. Then, the scenario of the proposed model is defined.

3.1. Stackelberg game

Game theory is a powerful tool for studying distributed mechanisms
that enables all EUs in a system to achieve mutually satisfactory solu-
tions [34]. A complete game contains ingredients such as game players,
game actions, game information, game order and outcomes. Among
them, game players are rational participants that act in the game to
maximize their own interests. Game actions present a set of executable
action plans for players to choose [35]. Game information refers to
the knowledge that players possess about the game, and game order
describes the order in which players make their decisions. Outcomes

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.
Fig. 1. Interaction architecture between the server and EUs in MEC system. Multiple EUs offload tasks to the server for computation and the results are returned to the EUs,
where both sides play to maximize their benefits.
represent the gain or loss of each player at the end of the game.
According to the relationship between players, games can be divided
into cooperative games and non-cooperative games. Moreover, games
can be grouped into static games and dynamic games with respect to
the time series of the game. Because dynamic games carry a more
complex theory than general static games, researchers have paid more
attention to dynamic games.

The Stackelberg game is a typical dynamic game. Two types of
players are involved: the leader, defines his strategy first, and followers,
act after the leader’s decision [36]. Taking the market as an example,
position between competing manufacturers is asymmetric, leading to
different decision sequences. The large manufacturer has more market
information and makes decisions first, then small manufacturers make
their own decisions by taking the behavior of the large manufacturer
into account. Based on this qualification, we construct a Stackelberg
game model for the single-server multi-user system such that all devices
in the MEC system are in a normal game state.

3.2. MEC model

The overview of the single-server, multi-EU MEC system model is
shown in Fig. 1. Considering that during one offloading cycle, a large
number of IoT EUs request task offloading over a wireless link. The
MEC server in the area accepts the requested computation task, and
returns the results to the EUs after completing the computation. The
task offloading style for EUs is the partial offloading, which means that
the task can be arbitrarily split into two parts for execution. Part tasks
are left locally to be calculated, another part tasks are transmitted to
the MEC server.

The total channel bandwidth between the MEC server and EUs is
B, and it can be shared evenly among EUs. Each EU has mutually
non-overlapping computing frequencies to simultaneously offload task
to the MEC server. The quasi-static channel model is considered for
task offloading, i.e., the channel remains unchanged during an of-
floading cycle but may change over different offloading cycles. The
frequency division multiple access (FDMA) technique is applied to
divide the channel into multiple equally frequency sub-channels. It
achieves channel sharing among EUs. Assume that the task offloading
can be performed in one cycle. To illustrate, the symbols used in this
paper are listed in Table 2.

4. Problem formulation

Under the above scenario, this section models the latency and
energy consumption of local computation and task offloading to the
MEC server separately. Then, the Stackelberg-based offloading model
is proposed.
4

Table 2
Definition of notations.

Symbol Definition

𝐵 Total transmission bandwidth
𝐶𝑒𝑑𝑔𝑒 Energy cost of the MEC server
𝐸𝑖

𝑙𝑜𝑐 Energy consumption for EU 𝑖 local computing
𝐸𝑖

𝑜𝑓𝑓 Energy consumption from sending task of EU 𝑖
𝐹𝑒𝑑𝑔𝑒 CPU cycles owned by the MEC server
𝑁0 Noise power spectrum density
𝑓𝑒𝑑𝑔𝑒 CPU computing frequency of the MEC server
𝑓 𝑖
𝑒𝑑𝑔𝑒 CPU computation frequency allocated to EU 𝑖

𝑓 𝑖
𝑙𝑜𝑐 Local CPU computing frequency of EU 𝑖

ℎ𝑖 Channel gain between EU 𝑖 and the MEC server
𝑘𝑚 Power consumption factor in local computing
𝑝𝑖 Transmitting power of EU 𝑖 for offloading tasks
𝑞𝑖 Data amount owned by the EU 𝑖
𝑟𝑖 Transmission rate of EU 𝑖 offloading tasks
𝑡𝑖𝑒𝑥𝑒 Execution energy consumption of the EU 𝑖
𝑡𝑖𝑙𝑜𝑐 Local computational latency of EU 𝑖
𝑡𝑖𝑜𝑓𝑓 Uplink transmission delay of EU 𝑖
𝑢𝑖 Price given to EU 𝑖 by the MEC server
𝛼𝑖 Task offloading strategy of EU 𝑖
𝜏𝑖 Task response time tolerance of EU 𝑖

4.1. Local computing model

Assume that there are 𝑛 EUs in this model, denoted as 𝑁 =
{1, 2,… , 𝑛}. The task of EU 𝑖 is characterized by the triple 𝐴𝑖 = (𝑐𝑖, 𝑞𝑖, 𝜏𝑖),
where 𝑐𝑖 is the CPU cycles needed to compute 1 bit of data for EU 𝑖.
Each EU is expected to execute 𝑞𝑖 bits of data, and the latency tolerance
of EU 𝑖 for its own task execution is 𝜏𝑖. The expense of EU 𝑖 in local com-
puting is the task local computation delay and the electricity consumed
in this process. The CPU processing capacity (i.e., the number of CPU
revolutions per unit time of the device) of EU 𝑖 is 𝑓 𝑖

𝑙𝑜𝑐 .
Each EU 𝑖 arbitrarily selects the amount of data to be offloaded to

the MEC server according to the needs, and we note it as 𝛼𝑖, where
0 ≤ 𝛼𝑖 ≤ 1. Therefore, the amount of data that EU 𝑖 has to execute
locally is 𝑞𝑖(1 − 𝛼𝑖). In that case, the time expense that EU 𝑖 spends in
the local device is

𝑡𝑖𝑙𝑜𝑐 =
(1 − 𝛼𝑖)𝑞𝑖𝑐𝑖

𝑓 𝑖
𝑙𝑜𝑐

. (1)

The energy consumption generated in the local computing is ex-
pressed as

𝐸𝑖
𝑙𝑜𝑐 = 𝑘𝑚𝑓

𝑖
𝑙𝑜𝑐

2(1 − 𝛼𝑖)𝑞𝑖𝑐𝑖, (2)

where 𝑘𝑚𝑓 𝑖
𝑙𝑜𝑐

2 is the energy consumption generated by each CPU cycle
of EU 𝑖 and 𝑘𝑚 is a power consumption factor determined by the chip
structure, which is a constant.

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.

w
b
d

𝑡

T
t

𝐸

C
c

c

𝑡

b
c
s
∑

w
N
t

4

o
p
t
r
s
c

c
i
u
f
p
i
a
a
s
{
b

t
d
t
T
l
l
o
c

𝑡

h

w
c
f
d
f

a
a
e
𝜔
t
T

4.2. Task offloading model

When an EU offloads its computational task to the MEC server,
the cost (e.g., latency cost and energy cost) normally includes uplink
transmission cost, offloading process cost and downlink transmission
cost. The downlink transmission delay is negligible because result data
is relatively small.

4.2.1. Uplink transmission process
EUs deliver their tasks to the MEC server for execution in proportion

according to the task offloading strategy. The EU first transmits the
task to the base station through the wireless channel. The base station
further transmits them to the MEC server via a high-speed fiber. The
total transmission bandwidth between the server and EUs is denoted
as 𝐵, which can be equally divided among the EUs. Then, the task
transmission rate for EU 𝑖 is

𝑟𝑖 =
𝐵
𝑛
log2

(

1 +
𝑝𝑖ℎ𝑖
𝐵𝑁0

)

, (3)

here 𝑝𝑖 denotes the transmission power of EU 𝑖, ℎ𝑖 is the channel gain
etween EU 𝑖 and the MEC server, and 𝑁0 is the noise power spectrum
ensity.

The uplink transmission delay can be expressed as
𝑖
𝑜𝑓𝑓 =

𝛼𝑖𝑞𝑖
𝑟𝑖

. (4)

herefore, the energy consumption generated by EU 𝑖 during uplink
ransmitting is obtained, defined as
𝑖
𝑜𝑓𝑓 =

𝛼𝑖𝑞𝑖
𝑟𝑖

𝑝𝑖. (5)

4.2.2. Task execution process
The MEC server processes the computation tasks submitted by EUs

after receiving them. The total computing resource held by the MEC
server is denoted by 𝑓𝑒𝑑𝑔𝑒, here the computing resource refers to the

PU computing frequency. For all EUs, the frequency of each EU 𝑖
annot be greater than the total frequency of the server, i.e. ∑𝑛

𝑖=1 𝑓
𝑖
𝑒𝑑𝑔𝑒 ≤

𝑓𝑒𝑑𝑔𝑒. Note that 𝑓 𝑖
𝑒𝑑𝑔𝑒 denotes the computational frequency assigned by

the MEC server to EU 𝑖. To simplify the problem, this paper considers
an equal allocation of 𝑓𝑒𝑑𝑔𝑒[11,29], and we have

𝑓 𝑖
𝑒𝑑𝑔𝑒 =

𝑓𝑒𝑑𝑔𝑒
𝑛

. (6)

The latency of EU 𝑖 during the execution of tasks at the edge server
an be obtained, denoted as
𝑖
𝑒𝑥𝑒 =

𝛼𝑖𝑐𝑖𝑞𝑖
𝑓 𝑖
𝑒𝑑𝑔𝑒

. (7)

Meanwhile, we consider a realistic condition that there is an upper
ound on the number of CPU cycles available for the MEC server to
ompute in an offloading period. The sum of the data offloaded to the
erver by all EUs cannot exceed this threshold. It can be expressed as
𝑛

𝑖=1
𝛼𝑖𝑐𝑖𝑞𝑖 ≤ 𝐹𝑒𝑑𝑔𝑒, (8)

here 𝐹𝑒𝑑𝑔𝑒 is the CPU quantity of the MEC server for task offloading.
ote that 𝐹𝑒𝑑𝑔𝑒 and 𝑓𝑒𝑑𝑔𝑒 indicate different values, and 𝑓𝑒𝑑𝑔𝑒 represents

he CPU operating speed of the MEC server.

.3. Two-stage Stackelberg game model

In the considered model, EUs purchase the computing resources
f the MEC server to execute their tasks. The MEC server makes a
rofit with the assurance that the amount of data that the CPU needs
o process does not exceed its computational quantity. To adjust this
elationship between the supply and demand of resources, the MEC
erver adopts a price-control means to charge for the number of CPU
ycles 𝛼 𝑞 𝑐 required for the computational tasks of EU 𝑖.
5

𝑖 𝑖 𝑖 u
The interactive decision process between the MEC server and EUs
an be modeled as a two-stage Stackelberg game. The game model
nvolves four components: the leader, followers, action strategy and
tility function. The MEC server acts as the leader and EUs act as the
ollowers. In the first stage, the MEC server (leader) announces the
rice of CPU cycles to each EU. In the second stage, EUs (followers)
ndependently divide the task into two parts, local computation part
nd offloading computation part, based on the published prices. The
ction strategy consists of the price set and the task offloading strategy
et. Assume that the pricing set of the MEC server is represented by 𝑢 =
𝑢1, 𝑢2,… , 𝑢𝑛}, and the task offloading strategy set of EUs is represented
y 𝛼 = {𝛼1, 𝛼2,… , 𝛼𝑛}. The utility functions of the MEC server and EUs

reveal the satisfaction level of participants with their current action
strategy and are defined as follows [37].

4.3.1. The utility function of the MEC server
The utility function of the MEC server is defined as the difference

between the charge of the resources purchased by EUs and the cost of
energy consumed by the server to execute the computation. We denote
it as

𝑈𝑒𝑑𝑔𝑒 =
𝑛
∑

𝑖=1
𝑢𝑖𝛼𝑖𝑐𝑖𝑞𝑖 − 𝜀

𝑛
∑

𝑖=1
𝜂𝑡𝑖𝑒𝑥𝑒, (9)

where 𝜀 is the coefficient factor, which assigns the appropriate weight
to the computation energy consumption. 𝜂 is the impact factor of CPU
cycles in the MEC system.

The MEC server wants to maximize its revenue by setting reasonable
prices for selling the computation resources. Meanwhile, we consider
the practical constraint of Eq. (8). Therefore, the optimal pricing 𝑢∗ of
MEC should satisfy

(P1) : 𝑢∗ = argmax𝑈𝑒𝑑𝑔𝑒(𝛼∗)

s.t.
𝑛
∑

𝑖=1
𝛼𝑖𝑐𝑖𝑞𝑖 ≤ 𝐹𝑒𝑑𝑔𝑒,

(10)

where 𝛼∗ denotes the optimal task offloading strategy that is satisfied
by all EUs.

4.3.2. The utility function of EUs
For EU 𝑖, the task offloading strategy 𝛼𝑖 is actually the function of

he price 𝑢𝑖. This is because the willingness of the EUs to offload the
ata to the edge depends on the prices assigned by the MEC server. In
his model, we consider the minimum comprehensive costs of the EUs.
he main costs of EU 𝑖 during computational task offloading include

atency cost, energy consumption cost and payment to the edge. The
ocal execution of computational tasks and the MEC server processing
f computational tasks can be performed simultaneously, so the latency
ost for EU 𝑖 is

𝑖 = max{𝑡𝑖𝑙𝑜𝑐 , 𝑡
𝑖
𝑜𝑓𝑓 + 𝑡𝑖𝑒𝑥𝑒}. (11)

After normalizing and weighing the individual costs, the compre-
ensive cost of the EU 𝑖 can be expressed as

𝑈𝑖 = 𝜔𝑡
𝑖𝜂

𝑡
𝑖 𝑡𝑖 + 𝜔𝑒

𝑖 𝜂
𝑒
𝑖 (𝐸

𝑖
𝑙𝑜𝑐 + 𝐸𝑖

𝑜𝑓𝑓) + 𝜔𝑝
𝑖 𝜂

𝑝
𝑖 𝑢𝑖𝛼𝑖𝑐𝑖𝑞𝑖, (12)

here 0 < 𝜂𝑡𝑖 , 𝜂
𝑒
𝑖 , 𝜂

𝑝
𝑖 , 𝜔𝑡

𝑖, 𝜔
𝑒
𝑖 , 𝜔

𝑝
𝑖 < 1. 𝜂𝑡𝑖 , 𝜂

𝑒
𝑖 and 𝜂𝑝𝑖 are the normalized

oefficients of delay cost, energy consumption cost and resource cost
or each EU, respectively. 𝜔𝑡

𝑖 and 𝜔𝑒
𝑖 denote the adjustment factors of

elay and energy consumption for EU 𝑖, and 𝜔𝑝
𝑖 denotes the discount

actor of resource pricing for each EU.
The adjustment of 𝜔𝑡

𝑖, 𝜔𝑒
𝑖 and 𝜔𝑝

𝑖 is flexible and can be adjusted
ccording to the actual conditions of the equipment required by the
pplication. For example, if the device has higher requirements for user
xperience, it may pay more attention to the latency cost and will adjust
𝑡
𝑖 higher. If the device is at a low battery, it may pay more attention

o energy consumption when developing the task offloading strategy.
herefore, a higher 𝜔𝑒

𝑖 will be chosen. Additionally, if the device is
𝑝
nder budgeted for resource costs, a higher 𝜔𝑖 will be picked.

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.
Due to 𝑡𝑖 = max{𝑡𝑖𝑙𝑜𝑐 , 𝑡
𝑖
𝑜𝑓𝑓 + 𝑡𝑖𝑒𝑥𝑒}, we can obtain

𝑡𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1 − 𝛼𝑖)𝑞𝑖𝑐𝑖
𝑓 𝑖
𝑙𝑜𝑐

, 0 ≤ 𝛼𝑖 ≤ 𝜙𝑖,

𝛼𝑖𝑞𝑖
𝑟𝑖

+
𝛼𝑖𝑐𝑖𝑞𝑖
𝑓 𝑖
𝑒𝑑𝑔𝑒

, 𝜙𝑖 < 𝛼𝑖 ≤ 1,
(13)

where 𝜙𝑖 is expressed as

𝜙𝑖 =
1

1 + 𝑓𝑙𝑜𝑐
𝑐𝑖𝑟𝑖

+
𝑓 𝑖
𝑙𝑜𝑐

𝑓 𝑖
𝑒𝑑𝑔𝑒

. (14)

Substituting coefficients and the Eq. (13) into the Eq. (12), it can be
equivalently expressed as

𝑈𝑖 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜔𝑡
𝑖𝜂

𝑡
𝑖

(

(1 − 𝛼𝑖)𝑞𝑖𝑐𝑖
𝑓 𝑖
𝑙𝑜𝑐

)

+ 𝜔𝑝
𝑖 𝜂

𝑝
𝑖 𝑢𝑖𝛼𝑖𝑐𝑖𝑞𝑖+

𝜔𝑒
𝑖 𝜂

𝑒
𝑖

(

𝑘𝑚(𝑓 𝑖
𝑙𝑜𝑐)

2(1 − 𝛼𝑖)𝑞𝑖𝑐𝑖 +
𝛼𝑖𝑞𝑖𝑝𝑖
𝑟𝑖

)

,

0 ≤ 𝛼𝑖 ≤ 𝜙𝑖,

𝜔𝑡
𝑖𝜂

𝑡
𝑖

(

𝛼𝑖𝑞𝑖
𝑟𝑖

+
𝛼𝑖𝑐𝑖𝑞𝑖
𝑓 𝑖
𝑒𝑑𝑔𝑒

)

+ 𝜔𝑝
𝑖 𝜂

𝑝
𝑖 𝑢𝑖𝛼𝑖𝑐𝑖𝑞𝑖+

𝜔𝑒
𝑖 𝜂

𝑒
𝑖

(

𝑘𝑚(𝑓 𝑖
𝑙𝑜𝑐)

2(1 − 𝛼𝑖)𝑞𝑖𝑐𝑖 +
𝛼𝑖𝑞𝑖𝑝𝑖
𝑟𝑖

)

,

𝜙𝑖 < 𝛼𝑖 ≤ 1.

(15)

Following the prices given by the MEC server, EUs prefer to min-
imize their comprehensive costs within the constraints of task latency
through their own strategies. We denote it as

(P2) : 𝛼∗𝑖 =argmin𝑈𝑖(𝛼𝑖, 𝑢∗𝑖)

s.t. 𝑡𝑖 ≤ 𝜏𝑖.
(16)

It is worth noting that the resource cost terms in P1 and P2 are
mutually exclusive. P1 and P2 in the model are coupled together in a
complex way. That is, the pricing strategy of the MEC server affects the
EUs’ task offloading strategies. In turn, the EUs’ offloading strategies
also have an impact on the pricing strategy of the MEC server.

5. Solutions for two-stage stackelberg game

In this section, the range of optimal pricing for the MEC server is
firstly derived. Then, the uniform pricing scheme and the differentiated
pricing scheme are considered, separately.

5.1. Optimal pricing range

For a given price set, the optimal task offloading strategy 𝛼∗ of the
EUs can be obtained by solving P2. After the server receives the optimal
response 𝛼∗ from the EUs, it adjusts its strategy by solving P1 to obtain
the optimal pricing scheme to maximize its profit. The process is called
backward induction.

After the MEC server determines the resource price of EU 𝑖, the
problem P2 of EU 𝑖 can be deduced as a segmentation function related
only to its own task offloading strategy 𝛼𝑖, i.e.

𝑈𝑖 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

(𝜔𝑒
𝑖 𝜂

𝑒
𝑖 𝑞𝑖𝑝𝑖
𝑟𝑖

+ 𝜔𝑝
𝑖 𝜂

𝑝
𝑖 𝑢𝑖𝑐𝑖𝑞𝑖 − 𝜔𝑒

𝑖 𝜂
𝑒
𝑖 𝑘𝑚(𝑓

𝑖
𝑙𝑜𝑐)

2𝑞𝑖𝑐𝑖−

𝜔𝑡
𝑖𝜂

𝑡
𝑖𝑞𝑖𝑐𝑖

𝑓 𝑖
𝑙𝑜𝑐

)

𝛼𝑖 +
𝜔𝑡
𝑖𝜂

𝑡
𝑖𝑞𝑖𝑐𝑖

𝑓 𝑖
𝑙𝑜𝑐

+ 𝜔𝑒
𝑖 𝜂

𝑒
𝑖 𝑘𝑚(𝑓

𝑖
𝑙𝑜𝑐)

2𝑞𝑖𝑐𝑖,

max{0, 𝛽𝑖,1} ≤ 𝛼𝑖 ≤ 𝜙𝑖,
(𝜔𝑒

𝑖 𝜂
𝑒
𝑖 𝑞𝑖𝑝𝑖
𝑟𝑖

+ 𝜔𝑝
𝑖 𝜂

𝑝
𝑖 𝑢𝑖𝑐𝑖𝑞𝑖 − 𝜔𝑒

𝑖 𝜂
𝑒
𝑖 𝑘𝑚(𝑓

𝑖
𝑙𝑜𝑐)

2𝑞𝑖𝑐𝑖+

𝜔𝑡
𝑖𝜂

𝑡
𝑖
𝑞𝑖
𝑐𝑖

+ 𝜔𝑡
𝑖𝜂

𝑡
𝑖
𝑐𝑖𝑞𝑖
𝑓 𝑖
𝑒𝑑𝑔𝑒

)

𝛼𝑖 + 𝜔𝑒
𝑖 𝜂

𝑒
𝑖 𝑘𝑚(𝑓

𝑖
𝑙𝑜𝑐)

2𝑞𝑖𝑐𝑖,

(17)
6

⎩

𝜙𝑖 < 𝛼𝑖 ≤ min{𝛽𝑖,2, 1},
Fig. 2. 𝑈𝑖 with respect to slope.

where 𝛽𝑖,1 and 𝛽𝑖,2 are expressed as

𝛽𝑖,1 = 1 −
𝜏𝑖𝑓 𝑖

𝑙𝑜𝑐
𝑞𝑖𝑐𝑖

(18)

and

𝛽𝑖,2 =
𝜏𝑖𝑟𝑖𝑓 𝑖

𝑒𝑑𝑔𝑒

𝑞𝑖(𝑓𝑒𝑑𝑔𝑒 + 𝑐𝑖𝑟𝑖)
. (19)

Based on the oblique equation of the line, Eq. (17) can be simplified
as

𝑈𝑖 =

{

𝑘𝑖,1𝛼𝑖 + 𝑏𝑖,1, max{0, 𝛽𝑖,1} ≤ 𝛼𝑖 ≤ 𝜙𝑖,

𝑘𝑖,2𝛼𝑖 + 𝑏𝑖,2, 𝜙𝑖 < 𝛼𝑖 ≤ min{𝛽𝑖,2, 1},
(20)

where 𝑘𝑖,1, 𝑘𝑖,2, 𝑏𝑖,1, 𝑏𝑖,2 are respectively expressed as the corresponding
parts in Eq. (17) and satisfy 𝑘𝑖,2 > 𝑘𝑖,1 and 𝑏𝑖,1 > 𝑏𝑖,2.

Considering the resource price of EU 𝑖 has been given, we classify 𝑈𝑖
according to the slope of it and then discuss the optimal task offloading
strategy for EU 𝑖. The diagram of 𝑈𝑖 with respect to the slope is shown
in Fig. 2.

As shown in Fig. 2(a), when 𝑘𝑖,1 < 0 < 𝑘𝑖,2, i.e., the pricing of the
MEC server satisfies

𝜇1 − 𝜇2 − 𝜇3

(

1
𝑟 𝑐

+ 1
𝑖

)

≤ 𝑢𝑖 ≤ 𝜇1 +
𝜇3
𝑖 − 𝜇2, (21)
𝑖 𝑖 𝑓𝑒𝑑𝑔𝑒 𝑓𝑙𝑜𝑐

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.

𝜇

𝜇

R

𝜆

𝜆

b
e
s
s
a
c
r

t
c

𝛼

T
t
e
o
o
I
p

0

where 𝜇1, 𝜇2 and 𝜇3 are expressed as

1 =
𝑤𝑒

𝑖 𝜂
𝑒
𝑖 𝑘𝑚(𝑓

𝑖
𝑙𝑜𝑐)

2

𝜔𝑝
𝑖 𝜂

𝑝
𝑖

, (22)

𝜇2 =
𝜔𝑒
𝑖 𝜂

𝑒
𝑖 𝑝𝑖

𝑟𝑖𝜔
𝑝
𝑖 𝜂

𝑝
𝑖 𝑐𝑖

, (23)

3 =
𝜔𝑡
𝑖𝜂

𝑡
𝑖

𝜔𝑝
𝑖 𝜂

𝑝
𝑖
. (24)

espectively, let

1
𝑖 ≜ 𝜇1 − 𝜇2 − 𝜇3

(

1
𝑟𝑖𝑐𝑖

+ 1
𝑓 𝑖
𝑒𝑑𝑔𝑒

)

, (25)

2
𝑖 ≜ 𝜇1 +

𝜇3
𝑓 𝑖
𝑙𝑜𝑐

− 𝜇2 (26)

e the upper and lower thresholds of the price 𝑢𝑖. Eq. (21) can be
xpressed as 𝜆1𝑖 ≤ 𝑢𝑖 ≤ 𝜆2𝑖 . In this case, the optimal task offloading
trategy 𝛼∗𝑖 for each EU to minimize the comprehensive cost is 𝜙𝑖. This
ituation shows that when the MEC server prices between the upper
nd lower thresholds, EUs will consider both local and edge computing
apabilities. Then, each EU chooses the appropriate task offloading
atio to minimize its comprehensive cost.

As shown in Fig. 2(b), when 0 < 𝑘𝑖,1 < 𝑘𝑖,2, i.e., 𝑢𝑖 > 𝜆2𝑖 , EUs prefer
o compute all data locally. Since the task response time tolerance is
onsidered, the optimal task offloading policy for EU 𝑖 is

∗
𝑖 = max

{

0, 1 −
𝜏𝑖𝑓 𝑖

𝑙𝑜𝑐
𝑞𝑖𝑐𝑖

}

. (27)

This indicates that when the published price of the MEC server is higher
than a threshold, EUs are inclined to local computing considering the
comprehensive cost. The revenue of MEC server will be greatly reduced
in this case. While the server wants to maximize its own benefits, it will
avoid setting prices smaller than this threshold.

As shown in Fig. 2(c), when 𝑘𝑖,1 < 𝑘𝑖,2 < 0, i.e., 𝑢𝑖 < 𝜆1𝑖 , EUs tend
to offload all tasks to the edge side for execution. However, due to the
response time tolerance, its task offloading strategy is

min
{ 𝜏𝑖𝑟𝑖𝑓 𝑖

𝑒𝑑𝑔𝑒

𝑞𝑖(𝑓𝑒𝑑𝑔𝑒 + 𝑐𝑖𝑟𝑖)
, 1
}

. (28)

his case suggests that when the price of the MEC server is below a
hreshold, EUs will be attracted to offload all tasks to the edge for
xecution. Then a large number of EUs request computation simultane-
usly, making a slowdown of execution at the edge. EUs may put some
f their tasks to be executed locally considering the execution latency.
n addition, the MEC server sells all the computing resources at a low
rice. Such pricing is not cost-effective.

In particular, without considering the execution delay, when 𝑘𝑖,1 <
≤ 𝑘𝑖,2, we have 𝑢𝑖 = 𝜆1𝑖 , 𝛼

∗
𝑖 ∈ (𝜙∗

𝑖 , 1). Instead, when 𝑘𝑖,1 ≤ 0 < 𝑘𝑖,2,
we have 𝑢𝑖 = 𝜆2𝑖 , 𝛼∗𝑖 ∈ (0, 𝜙∗

𝑖). EUs have a selfish nature. When the
cost is the same within a range of the amount of data offloaded to the
server, they will offload as many tasks as possible to the MEC server
for execution, i.e., take the right endpoint.

Based on the above analysis, the relationship between the optimal
task offloading strategy of the EU 𝑖 and the pricing strategy of the MEC
server can be expressed as

𝛼𝑖 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
{ 𝜏𝑖𝑟𝑖𝑓 𝑖

𝑒𝑑𝑔𝑒

𝑞𝑖(𝑓𝑒𝑑𝑔𝑒 + 𝑐𝑖𝑟𝑖)
, 1
}

, 𝑢𝑖 ≤ 𝜆1𝑖 ,

𝜙𝑖, 𝜆1𝑖 < 𝑢𝑖 ≤ 𝜆2𝑖 ,

max
{

0, 1 −
𝜏𝑖𝑓 𝑖

𝑙𝑜𝑐
𝑞𝑖𝑐𝑖

}

, 𝑢𝑖 > 𝜆2𝑖 .

(29)

We simulate three cases of the server pricing. The result data show
that the case 𝜆1𝑖 < 𝑢𝑖 ≤ 𝜆2𝑖 has good superiority against the other two
cases in terms of reducing latency, and improving the server’s profit and
offloading rates of EUs. Thus, the MEC server tends to explore uniform
and differentiated pricing schemes based on this case.
7

5.2. Uniform pricing scheme

The uniform pricing scheme means the MEC server prices per unit
of resource the same for each EU, denoted as 𝑢′. Obviously, 𝑢1 = 𝑢2 =
⋯ = 𝑢𝑛 = 𝑢′.

The MEC server sets the price at a middle value to keep the profit
at a steady state. First, discard the values less than 0 in the set 𝑅 =
{𝜆11, 𝜆

1
2,… , 𝜆1𝑛, 𝜆

2
1, 𝜆

2
2,… , 𝜆2𝑛} and only retain the values greater than 0,

denoted as the set 𝑅+. Then, the server obtains the average value of the
elements in the set 𝑅+, denoted as 𝑢∗, which is the server’s strategy.

In practice, sellers usually give priority to buyers with high purchas-
ing quantity. The MEC server receives EUs’ task offloading strategies
and sorts the EUs according to the size of the offloading radio. Then, the
server sells resources to the EUs in descending order of the offloading
ratio until all resources are sold out. The remaining EUs have an task
offloading strategy of 0.

The interaction process between the MEC server and the EUs during
uniform pricing can be expressed as the following steps. Firstly, with
the basic information about the EUs, the MEC server obtains the set
𝑅+ based on the expressions of 𝜆1𝑖 and 𝜆2𝑖 . Secondly, the MEC server
obtains the average value of the elements of the set 𝑅+ and then
broadcasts the price 𝑢∗ to the EUs. Thirdly, the EU 𝑖 decides the task
offloading ratio 𝛼𝑖 based on the given price 𝑢∗ and conveys the set 𝛼
to the MEC server. Then, the server receives the best responses from
EUs and then sorts them in descending order based on the size of their
task offloading ratios. Finally, the MEC server sells resources to EUs
according to the descending order of the task offloading ratios and
judges whether ∑𝑘

𝑖=1 𝛼
∗
𝑖 𝑐𝑖𝑞𝑖 ≤ 𝐹𝑒𝑑𝑔𝑒 is satisfied. Here, 𝑘 is the EU to

whom the server is currently selling resources. If not satisfied, the MEC
server ends the transaction. The task offloading ratio for the latter EUs
is 0. The pseudocode for the entire process is presented in Algorithm
1.

From the procedure, lines 2 to 5 are numerical calculations. Lines
6 to 12 are performing loop statements to determine the offloading
strategy for EUs, and 𝑛 iterations are executed. Thus, the time com-
plexity of the uniform pricing strategy is 𝑂(𝑛). The execution time of
the algorithm is linearly related to the number of EUs.

Algorithm 1: Uniform Pricing Strategy
Input: Gaming environment parameters
Output: 𝑢∗ and 𝛼∗

1 for episode = 1 to E do
2 Initialize 𝐴𝑖, 𝜔𝑡

𝑖, 𝜔
𝑒
𝑖 , 𝜔

𝑝
𝑖 , 𝛼 and 𝑢;

3 Obtain set 𝑅 = {𝜆11, 𝜆
1
2,… , 𝜆1𝑛, 𝜆

2
1, 𝜆

2
2,… , 𝜆2𝑛} from calculating

𝑛 triples and environment parameters;
4 Get 𝑅+ by discard the values less than 0 in 𝑅, and derive 𝑢∗;
5 Obtain task offloading strategy and sort EUs in descending

order;
6 for i = 1 to n do
7 if ∑𝑖

𝑘=1 𝛼
∗
𝑘𝑐𝑘𝑞𝑘 ≤ 𝐹𝑒𝑑𝑔𝑒 then

8 Update task offloading strategy 𝛼∗𝑖 = 𝛼𝑖;
9 else
10 Update task offloading strategy 𝛼∗𝑖 = 0;
11 end
12 end
13 end
14 return 𝑢∗ and 𝛼∗

5.3. Differentiated pricing scheme

Differentiated pricing means that the MEC server charges different
fees for CPU resources for different EUs. PSO is an evolutionary search
algorithm in which the particles maintain only two characteristics,
position and velocity [38]. In PSO, position represents the direction of

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.

p

motion. In the 𝑗th iteration, current position and velocity of the 𝑖th
article can be represented by 𝑋𝑗

𝑖 and 𝑉 𝑗
𝑖 , respectively. Suppose the

particle population size is 𝑝𝑜𝑝𝑆𝑖𝑧𝑒. In this model, position represents
the optimal price of EU 𝑖 found during the current iteration. The
velocity indicates step length that particles move toward the optimal
price.

The standard PSO is used to solve this problem. The position and
velocity are adjusted based on the following principles

𝑥𝑗+1𝑖 = 𝑥𝑗𝑖 + 𝑣𝑗𝑖 , (30)

𝑣𝑗+1𝑖 = 𝜔𝑣𝑗𝑖 + 𝑐1𝑟
𝑗
𝑖 (𝑝𝑏𝑒𝑠𝑡

𝑗
𝑖 − 𝑥𝑗𝑖) + 𝑐2𝑟

𝑗
2(𝑔𝑏𝑒𝑠𝑡

𝑗 − 𝑥𝑗𝑖), (31)

where 𝜔 is the inertia weight that regulates the searching range of
the solution space. 𝑐1 and 𝑐2 are acceleration factors that regulate the
maximum step size of learning. In addition, 𝑟1 and 𝑟2 are two random
numbers, generated in the range of 0 to 1, increasing randomness of
the search. All particles determine fitness value based on the fitness
function to evaluate if the current position is good or bad. In this
experiment, Eq. (9) works as the fitness function. The 𝑝𝑏𝑒𝑠𝑡𝑗𝑖 represents
the best position experienced by particle 𝑖, and 𝑝𝑏𝑒𝑠𝑡𝑗 represents the
best position experienced by all particles.

By the PSO, the differentiated pricing process by the MEC server
for EUs can be summarized in the following steps. Firstly, randomly
initialize the positions and velocities of the particle swarm. Secondly,
calculate the fitness value of each particle based on the utility function
of the MEC server. Thirdly, record the individual optimal position of
each particle in each vector 𝑝𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟, and mark the position with the
optimal adaptation value in 𝑝𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟 as 𝑔𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟. Then, update the
position and velocity of each particle according to Eqs. (30) and (31).
Finally, if iteration count is not reached, return to the second step.
Otherwise, end the algorithm, at which point the vector 𝑝𝑏𝑒𝑠𝑡𝑖𝑡𝑒𝑟 is
the optimal pricing of the MEC server. The pseudocode for the above
process is shown in Algorithm 2.

Next, we analyze the time complexity of the DPOA. In each time
slice, all EUs perform the actions in parallel in lines 3–9 of Algorithm
2, which are mainly basic numerical computations. From line 10, the
iteration of the algorithm starts. The number of iterations is 𝑖𝑡𝑒𝑟𝑁𝑢𝑚
and the problem size is 𝑠𝑖𝑧𝑒𝑃 𝑜𝑝. The time complexity of the DPOA is
𝑂(𝑖𝑡𝑒𝑟𝑁𝑢𝑚 × 𝑠𝑖𝑧𝑒𝑃 𝑜𝑝). Thus, the larger the 𝑖𝑡𝑒𝑟𝑁𝑢𝑚 and 𝑠𝑖𝑧𝑒𝑃 𝑜𝑝, the
larger the time complexity. In terms of complexity, the time complexity
of the DPOA is greater than that of the uniform pricing strategy. This
means that the accuracy of the pricing affects the time spent. Overall,
the execution time of the DPOA is reasonable.

6. Performance evaluation

In this section, experiments are conducted to simulate the proposed
DPOA. We evaluate the performance of the algorithm in terms of
improving latency, enhancing server efficiency and improving task
offloading rate, and make a comparison with the uniform pricing
algorithm.

6.1. Experimental setup

The entire simulation is performed in MATLAB to emulate the
task offloading process in the IoT scenario. The parameter values for
the simulation experiments are mainly referred to [39,40]. There are
𝑁 = 60 EUs with various computing tasks. The local CPU computing
capability of EU 𝑖 is selected uniformly from the set [0.1, 1] GHz, and
the number of CPU cycles needed to execute 1 bit of data for EU 𝑖 is
uniformly distributed by the set [500, 1500] cycles/slot. The maximum
CPU that the server can perform computation is 6 × 109 cycles/slot.
Factors influencing the weight of the resource cost paid to the server,
latency and energy consumption on the EUs’ utilities can be adjusted
according to practical needs. Specifically, the three weighting factors
are assumed to be equal to 1/3. If not otherwise specified, the critical
simulation parameters are listed in Table 3.
8

Algorithm 2: DPOA Pricing Strategy
Input: Gaming environment parameters; Particle population

parameters
Output: 𝑢 ∗ and 𝛼 ∗

1 Initialize 𝜔𝑡
𝑖, 𝜔

𝑒
𝑖 , 𝜔

𝑝
𝑖 ;

2 for episode = 1 to e do
3 Initialize 𝐴𝑖 and 𝑝𝑜𝑝0;
4 Initialize 𝛼 and 𝑢;
5 Adjust 𝛼 under the constraint ∑𝑘

𝑖=1 𝛼
∗
𝑖 𝑐𝑖𝑞𝑖 ≤ 𝐹𝑒𝑑𝑔𝑒;

6 Obtain the thresholds of velocity 𝑝𝑜𝑝𝑣0 and position 𝑝𝑜𝑝𝑥0

according to 𝜆1𝑖 and 𝜆2𝑖 ;
7 Set the initial position as the 𝑝𝐵𝑒𝑠𝑡0 for each particle;
8 Calculate 𝑝𝐵𝑒𝑠𝑡𝑖.𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 of each particle;
9 Obtain the optimal position 𝑔𝐵𝑒𝑠𝑡0;
10 for iter = 1 to iterNum do
11 for i = 1 to sizePop do
12 Dynamically update 𝑐1 and 𝑐2;
13 Calculate 𝑝𝑜𝑝𝑣𝑖𝑡𝑒𝑟 and 𝑝𝑜𝑝𝑥𝑖𝑡𝑒𝑟;
14 Judge and perform boundary processing;
15 end
16 Calculate 𝑝𝑜𝑝𝑖𝑡𝑒𝑟𝑖 .𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 of each particle;
17 for i = 1 to sizePop do
18 if 𝑝𝑜𝑝𝑖𝑡𝑒𝑟𝑖 .𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑝𝐵𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒𝑖𝑡𝑒𝑟𝑖 then
19 Set 𝑝𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟𝑖 = 𝑝𝑜𝑝𝑥𝑖𝑡𝑒𝑟𝑖 ;
20 end
21 if 𝑝𝑜𝑝𝑖𝑡𝑒𝑟𝑖 .𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑔𝐵𝑒𝑠𝑡𝑣𝑎𝑙𝑢𝑒𝑖𝑡𝑒𝑟 then
22 Set 𝑔𝐵𝑒𝑠𝑡 = 𝑝𝑜𝑝𝑥𝑖𝑡𝑒𝑟𝑖 ;
23 end
24 end
25 Calculate task offloading ratio and average task latency;
26 end
27 end
28 return 𝑢∗ = 𝑔𝐵𝑒𝑠𝑡 and 𝛼∗ = 𝛼

Table 3
Configurations of simulation parameters.

Parameters Value

Iteration of 𝑒 200
Iteration of iterNum 70
The computing power of the server 100 GHz
The task size of EU 𝑖 [100, 500] KB
The total Channel Bandwidth 30 MHz
The electricity consumption factor 10−12

The transmission power of EU 𝑖 0.1 W
The maximum tolerance time of EU 𝑖 [0.2, 1] s
The noise power spectrum density 10−8

Unit energy consumption of the server 4 J/GHz

6.2. Result analysis

6.2.1. Experiments on pricing range selection
In the previous derivation, three pricing intervals are obtained, as

presented in Eq. (29). To demonstrate that the pricing of the MEC server
needs to be in a moderate range, a set of comparative experiments have
been performed. As shown in Fig. 3, we define the three pricing ranges
as ‘‘Lower Pricing’’, ‘‘Moderate Pricing’’ and ‘‘Higher Pricing’’. With a
fixed number of EUs, the impact of the three pricing ranges on profit
of the server, and the number of EUs offloading task is explored. Form
the curves, growth trend of the MEC server’s profit and EUs’ offloading
rate is generally consistent.

The effects of pricing ranges on the profitability of the MEC server is
shown in Fig. 3(a). At the higher pricing scenario, the MEC server is the
least profitable. As the number of EUs increases, the profit increases in
an approximately linear trend. This is because the server has sufficient

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.

c
a
s
h
t
w
W
t
s
r
c

d
i
m
p
3
c
c
E
a
c

r
w
a
r

6

a
i
o
b
s
w
m
1

e
F
a
i
o
T
h
t
t

Fig. 3. Comparison of different pricing range.
omputing capability to meet the demand of EUs that choose to offload,
s shown in Fig. 3(c). For the case of lower pricing, the profit of the
erver rises initially as the number of EUs increases. However, the
ighest point is reached relatively quickly. As low prices attract EUs
o offload all tasks, the CPU capacity of the MEC server is used up
hen EUs grow to 30. Profit does not increase with the number of EUs.
ith moderate pricing, profits for 10, 20 and 30 EUs increase faster

han for 40, 50 and 60 EUs. This is because in the former case, the
erver’s computing resources are sufficient. The demand for computing
esources exceeds the supply for 40, 50 and 60 EUs. At the time, fierce
ompetition makes profit still in a rising trend.

The changes in the number of EUs that choose to offload for
ifferent numbers of EUs in the three pricing scenarios are plotted
n Fig. 3(b). All EUs choose to offload tasks at both low pricing and
oderate pricing when the number of EUs is 10 and 20. At low
ricing, the number of EUs performing offloading remains stable from
0 onward. This is because the EUs that arrive first have filled up the
omputing capacity, as shown in Fig. 3(c). Therefore, the later EUs
an only execute tasks wholly locally. In the case of moderate pricing,
Us generally weigh the cost against latency and energy consumption,
nd perform a portion of the tasks locally. Thus more EUs can share
omputing resources of the MEC server.

In summary, if the MEC server sets the price too high, EUs are
eluctant to offload tasks due to their limited budget. Considering the
eak competition among EUs, the server also avoids selling resources
t low prices. Therefore, it would stabilize the prices in a moderate
ange.

.2.2. Experiments on PSO parameter selection
In the standard PSO algorithm, the learning factors are usually taken

s a constant 2. To choose the optimal learning factors, we fix the
nertia weight 𝜔 = 0.7298, and explore the effect of dynamic changes
f 𝑐1 and 𝑐2 on the algorithm. The dynamic selection strategies for
oth learning factors 𝑐1 and 𝑐2 are: increasing strategy of 𝑐 = 1 +
in(𝑡𝜋∕max𝐷𝑇) and decreasing strategy of 𝑐 = 2 − sin(𝑡𝜋∕max𝐷𝑇),
here 𝑡 represents the current number of iterations and max𝐷𝑇 is the
aximum number of iterations. A classical set of values with 𝑐1 = 𝑐2 =
.4962 is taken with reference to the experiments.

The experiment is implemented in five groups. The detailed param-
ter settings and convergence trends of the curves are presented in
ig. 4. When 𝑐1 is increasing with a fixed 𝜔, the optimization-seeking
ccuracy of PSO improves. When other conditions are kept static and 𝑐2
s ascending, the speed of PSO seeking improves. In addition, the curve
f 𝑐1 = 𝑐2 = 1.4962 puts profit of the server in an intermediate state.
he gray curve in Fig. 4 achieves convergence first and converges with
igh accuracy. This is because it has increasing 𝑐1 and 𝑐2. Therefore, in
he later experiments, we will choose the parameters of the gray curve
9

o attain better results.
Fig. 4. The convergence of PSO.

6.2.3. Comparative experiments on the capacity of MEC
We perform comparison experiments on the proposed two pricing

schemes regarding the computational capacity of the MEC server. The
performance is compared with respect to profit of the server, average
latency, task offloading rate of tasks and capacity utilization of the
server, as shown in Fig. 5. The number of EUs in this experiment is
fixed at 20.

Both uniform and differentiated pricing improve as the computing
capacity of the server increases, as shown in Fig. 5(a). Differentiated
pricing is more advantageous in terms of profit due to more precise
resource allocation. The changes in average latency of the two pricing
approaches as the server’s computing capacity increases are illustrated
in Fig. 5(b). Both curves first decrease and then gradually stabilize.
The computational capacity of the MEC server is used up when the
computational capacity is 1 and 2, as shown in Fig. 5(d). At this point,
the computational capacity of the server is in short supply, so local
computational delay is the main delay overhead. As the computational
capacity increases, the server gradually meets EUs’ demand. When the
computational capacity is 4, there is a cliff-like drop in the latency
of differentiated pricing. This is because the EUs have experienced a
change in the resources from tight to sufficient. The average latency
performance of the blue curve representing the uniform pricing strategy
is inferior to that of the red curve. This is because uniform pricing
fails to make full use of the server’s resources. For comparison, we
also considered the fully local computing scheme. Compared to the
two proposed pricing schemes, fully local computing scheme has the
worst performance, as the latency does not vary with the computational

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.
Fig. 5. Comparison with capacity.
Fig. 6. Comparison with numbers of EUs.
capacity. As shown in Fig. 5(c), the task offloading ratio for both pricing
strategies increases and then stabilizes as the server’s computing capac-
ity increases. Eventually, the EUs’ task offloading rate is remarkably
higher at differentiated pricing than at uniform pricing. Combined with
Fig. 5(d), the EUs’ task offloading rate increases as capacity increases
when the MEC capacity utilization rate approaches 1. Conversely, when
the capacity utilization rate is less than 1, it indicates that demand of
EUs has been satisfied and the task offloading rate slowly plateaus.

6.2.4. Comparative experiments on the numbers of EUs
Performance between the uniform pricing scheme and the differen-

tiated pricing scheme regarding the change in the number of EUs are
compared in Fig. 6. In this experiment, the computational capacity of
the MEC server is fixed at 6 × 109 cycles/slot. The number of EUs is
incremented from 10 to 60.

A similar conclusion as in Fig. 5 can be obtained regarding compar-
ison of the two proposed pricing schemes and the fully local computing
scenario. As shown in Fig. 6(a), competition among EUs becomes fiercer
as the number of EUs increases, resulting in higher resource pricing and
higher profit for the MEC server. The trend in average latency is plotted
in Fig. 6(b). The red and blue lines are steeper at the EUs count of 40 to
10
60 than at 10 to 30. The MEC capacity is sufficient when the number of
EUs is 10 to 30. As the number increases, the frequency of computation
allocated to each EU 𝑖 decreases, resulting in slower execution of tasks
and increased latency. As the number of EUs changes from 40 to 60,
the computational capacity is almost exhausted, as shown in Fig. 6(d).
At this point, the rising number of EUs leads to an increase in the
percentage of latency generated by local computation, so the average
latency rises faster. Consistent with the analysis above, in the curves
of Fig. 6(c), EUs have the opportunity to offload more tasks to edge
when the number of EUs is low. The task offloading rate is almost equal
for both pricing schemes as the number of EUs increases to 50. At this
point, the server could gain higher profit due to the precise pricing of
differentiated pricing scheme.

6.2.5. Comparative experiment on channel bandwidth
Channel bandwidth affects efficiency of task offloading. For exam-

ple, when the bandwidth is high, the tasks are transferred quickly and
the overall latency will be relatively low for the EUs. It also has an
impact on the task offloading ratio and profit of the MEC server. The
number of EUs in this experiment is fixed at 60. The effect of channel
bandwidth on performance of the DPOA is shown in Fig. 7.

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.

b
r
o
T
s
l
h
t
l
v
o

7

d
o
c
m
s
s
b
S
a
p

s
t
l

D

c
i

D

Fig. 7. The influence of channel bandwidth.

Both the average latency and the profit of the MEC server have
etter performance as the bandwidth increases. Trends of the curves
eveal that profit of the server and average latency conflict with each
ther. When the profit is low, EUs purchase fewer computing resources.
he corresponding latency is higher. Conversely, when the profit of the
erver is high, the task execution is efficient, and therefore the latency is
ow. When the channel bandwidth increases, EUs can be distributed at a
igher computation frequency and perform tasks faster. Thus, EUs tend
o offload tasks to the MEC server to improve QoE. This also leads to
ower average latency and higher profit of the server. An intermediate
alue 𝐵 = 30 was chosen in the experiment to ensure the performance
f the edge and ends.

. Conclusions and future work

The advent of IoT enables end devices to pay for resources on
emand to edge devices. In this paper, we study the problem of task
ffloading and resource allocation in the MEC system with limited
omputational resources. The two-stage Stackelberg game is applied to
odel the EU-server interaction problem. In the first stage, the server

ets the resource prices based on EUs’ task attributes. In the second
tage, EUs determine their requirements based on the prices decided
y the server. The simulation results show that the DPOA based on the
tackelberg game can effectively improve the task processing capacity
nd resource utilization efficiency of the system through differentiated
ricing.

In future work, we will introduce more complex multi-EU multi-
erver MEC scenarios, where both the EU side and the MEC side execute
asks using energy harvested from nature. In addition, algorithms with
ower time complexity will be proposed to save energy.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability
11

The authors do not have permission to share data.
Acknowledgments

The authors thank the editors and reviewers for their insightful
comment and valuable suggestions. This work was supported by the
Program of National Natural Science Foundation of China (grant No.
62072174, 61502165), National Natural Science Foundation of Hunan
Province, China (grant No. 2022JJ40278, 2020JJ5370), Scientific Re-
search Fund of Hunan Provincial Education Department, China (Grant
No. 22A0026).

References

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges,
IEEE Internet Things J. 3 (5) (2016) 637–646.

[2] S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, X. Shen, Distributed artificial
intelligence empowered by end-edge-cloud computing: A survey, IEEE Commun.
Surv. Tutor. (2022) http://dx.doi.org/10.1109/COMST.2022.3218527.

[3] Cisco Annual Internet Report (2018–2023) White Paper, Cisco, San Jose, CA,
USA, 2020.

[4] F. Lyu, J. Ren, N. Cheng, P. Yang, M. Li, Y. Zhang, X.S. Shen, LEAD: Large-
scale edge cache deployment based on spatio-temporal WiFi traffic statistics,
IEEE Trans. Mob. Comput. 20 (8) (2020) 2607–2623.

[5] M. Díaz, C. Martín, B. Rubio, State-of-the-art, challenges, and open issues in the
integration of Internet of things and cloud computing, J. Netw. Comput. Appl.
67 (C) (2016) 99–117.

[6] T. Wang, Y. Mei, X. Liu, J. Wang, H.-N. Dai, Z. Wang, Edge-based auditing
method for data security in resource-constrained internet of things, J. Syst.
Archit. 114 (5) (2021) 101971.

[7] I.A. Elgendy, W. Zhang, Y.-C. Tian, K. Li, Resource allocation and computation
offloading with data security for mobile edge computing, Future Gener. Comput.
Syst. 100 (2019) 531–541.

[8] Y. Liu, M. Peng, G. Shou, Y. Chen, S. Chen, Toward edge intelligence: Multiaccess
edge computing for 5G and Internet of Things, IEEE Internet Things J. 7 (8)
(2020) 6722–6747.

[9] A. Zhu, Y. Wen, Computing offloading strategy using improved genetic algorithm
in mobile edge computing system, J. Grid Comput. 19 (3) (2021) 1–12.

[10] Z. Tong, H. Chen, X. Deng, K. Li, K. Li, A scheduling scheme in the
cloud computing environment using deep Q-learning, Inform. Sci. 512 (2020)
1170–1191.

[11] Z. Chen, H. Zheng, J. Zhang, X. Zheng, C. Rong, Joint computation offloading
and deployment optimization in multi-UAV-enabled MEC systems, Peer-To-Peer
Netw. Appl. 15 (1) (2022) 194–205.

[12] W. Feng, H. Liu, Y. Yao, D. Cao, M. Zhao, Latency-aware offloading for mobile
edge computing networks, IEEE Commun. Lett. 25 (8) (2021) 2673–2677.

[13] J. Ren, G. Yu, Y. Cai, Y. He, Latency optimization for resource allocation
in mobile-edge computation offloading, IEEE Trans. Wireless Commun. 17 (8)
(2018) 5506–5519.

[14] Z. Hu, J. Niu, T. Ren, B. Dai, Q. Li, M. Xu, S.K. Das, An efficient online
computation offloading approach for large-scale mobile edge computing via deep
reinforcement learning, IEEE Trans. Serv. Comput. 15 (2) (2021) 669–683.

[15] S. Duan, F. Lyu, H. Wu, W. Chen, H. Lu, Z. Dong, X. Shen, Moto: Mobility-aware
online task offloading with adaptive load balancing in small-cell mec, IEEE Trans.
Mob. Comput. (2022) http://dx.doi.org/10.1109/TMC.2022.3220720.

[16] Y. Wu, J. Xia, C. Gao, J. Ou, C. Fan, J. Ou, D. Fan, Task offloading for
vehicular edge computing with imperfect CSI: A deep reinforcement approach,
Phys. Commun. 55 (2022) 101867.

[17] Y. Mao, J. Zhang, K.B. Letaief, Dynamic computation offloading for mobile-edge
computing with energy harvesting devices, IEEE J. Sel. Areas Commun. 34 (12)
(2016) 3590–3605.

[18] Z. Tong, J. Cai, J. Mei, K. Li, K. Li, Dynamic energy-saving offloading strategy
guided by Lyapunov optimization for IoT devices, IEEE Internet Things J. (2022)
http://dx.doi.org/10.1109/JIOT.2022.3168968.

[19] L. Li, T. Lv, P. Huang, P.T. Mathiopoulos, Cost optimization of partial compu-
tation offloading and pricing in vehicular networks, J. Signal Process. Syst. 92
(12) (2020) 1421–1435.

[20] J. Du, W. Cheng, G. Lu, H. Cao, X. Chu, Z. Zhang, J. Wang, Resource pricing
and allocation in MEC enabled blockchain systems: An A3C deep reinforcement
learning approach, IEEE Trans. Netw. Sci. Eng. 9 (1) (2021) 33–44.

[21] A.N. Toosi, K. Vanmechelen, F. Khodadadi, R. Buyya, An auction mechanism for
cloud spot markets, ACM Trans. Auton. Adapt. Syst. (TAAS) 11 (1) (2016) 1–33.

[22] X. Wang, Y. Sui, J. Wang, C. Yuen, W. Wu, A distributed truthful auction
mechanism for task allocation in mobile cloud computing, IEEE Trans. Serv.
Comput. 14 (3) (2018) 628–638.

[23] V. Kantere, D. Dash, G. Francois, S. Kyriakopoulou, A. Ailamaki, Optimal
service pricing for a cloud cache, IEEE Trans. Knowl. Data Eng. 23 (9) (2011)
1345–1358.

http://refhub.elsevier.com/S1383-7621(23)00026-7/sb1
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb1
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb1
http://dx.doi.org/10.1109/COMST.2022.3218527
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb3
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb3
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb3
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb4
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb4
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb4
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb4
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb4
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb5
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb5
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb5
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb5
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb5
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb6
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb6
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb6
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb6
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb6
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb7
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb7
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb7
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb7
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb7
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb8
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb8
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb8
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb8
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb8
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb9
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb9
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb9
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb10
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb10
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb10
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb10
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb10
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb11
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb11
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb11
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb11
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb11
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb12
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb12
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb12
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb13
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb13
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb13
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb13
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb13
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb14
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb14
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb14
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb14
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb14
http://dx.doi.org/10.1109/TMC.2022.3220720
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb16
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb16
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb16
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb16
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb16
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb17
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb17
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb17
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb17
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb17
http://dx.doi.org/10.1109/JIOT.2022.3168968
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb19
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb19
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb19
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb19
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb19
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb20
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb20
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb20
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb20
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb20
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb21
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb21
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb21
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb22
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb22
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb22
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb22
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb22
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb23
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb23
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb23
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb23
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb23

Journal of Systems Architecture 137 (2023) 102847Z. Tong et al.
[24] C. Liu, K. Li, K. Li, A game approach to multi-servers load balancing with load-
dependent server availability consideration, IEEE Trans. Cloud Comput. 9 (1)
(2018) 1–13.

[25] H. Li, M. Dong, K. Ota, M. Guo, Pricing and repurchasing for big data processing
in multi-clouds, IEEE Trans. Emerg. Top. Comput. 4 (2) (2016) 266–277.

[26] Y. Chen, Z. Li, B. Yang, K. Nai, K. Li, A stackelberg game approach to multiple
resources allocation and pricing in mobile edge computing, Future Gener.
Comput. Syst. 108 (2020) 273–287.

[27] J. Liu, X. Wang, S. Shen, Z. Fang, S. Yu, G. Yue, M. Li, Intelligent jamming
defense using DNN Stackelberg game in sensor edge cloud, IEEE Internet Things
J. 9 (6) (2021) 4356–4370.

[28] T. Wang, Y. Lu, J. Wang, H.-N. Dai, X. Zheng, W. Jia, EIHDP: Edge-intelligent
hierarchical dynamic pricing based on cloud-edge-client collaboration for IoT
systems, IEEE Trans. Comput. 70 (8) (2021) 1285–1298.

[29] M. Liu, Y. Liu, Price-based distributed offloading for mobile-edge computing
with computation capacity constraints, IEEE Wirel. Commun. Lett. 7 (3) (2017)
420–423.

[30] M. Tao, K. Ota, M. Dong, H. Yuan, Stackelberg game-based pricing and offloading
in mobile edge computing, IEEE Wirel. Commun. Lett. 11 (5) (2021) 883–887.

[31] K. Kang, S.X. Xu, R.Y. Zhong, B.Q. Tan, G.Q. Huang, Double auction-based
manufacturing cloud service allocation in an industrial park, IEEE Trans. Autom.
Sci. Eng. 19 (1) (2022) 295–307.

[32] N.C. Luong, P. Wang, D. Niyato, Y. Wen, Z. Han, Resource management in
cloud networking using economic analysis and pricing models: A survey, IEEE
Commun. Surv. Tutor. 19 (2) (2017) 954–1001.

[33] H. Lin, S. Zeadally, Z. Chen, H. Labiod, L. Wang, A survey on computation
offloading modeling for edge computing, J. Netw. Comput. Appl. 169 (2020)
102781.

[34] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for
mobile-edge cloud computing, IEEE/ACM Trans. Netw. 24 (5) (2015) 2795–2808.

[35] S. Tadelis, Game Theory: An Introduction, Princeton University Press, 2013.
[36] A. Jakóbik, F. Palmieri, J. Kołodziej, Stackelberg games for modeling defense

scenarios against cloud security threats, J. Netw. Comput. Appl. 110 (15) (2018)
99–107.

[37] B. Yang, D. Wu, H. Wang, Y. Gao, R. Wang, Two-layer Stackelberg game-based
offloading strategy for mobile edge computing enhanced FiWi access networks,
IEEE Trans. Green Commun. Netw. 5 (1) (2020) 457–470.

[38] F. Guo, H. Zhang, H. Ji, X. Li, V.C. Leung, An efficient computation offloading
management scheme in the densely deployed small cell networks with mobile
edge computing, IEEE/ACM Trans. Netw. 26 (6) (2018) 2651–2664.

[39] F. Li, H. Yao, J. Du, C. Jiang, Y. Qian, Stackelberg game-based computation
offloading in social and cognitive industrial Internet of Things, IEEE Trans. Ind.
Inform. 16 (8) (2019) 5444–5455.

[40] Z. Liu, J. Fu, Y. Zhang, Computation offloading and pricing in mobile edge
computing based on Stackelberg game, Wirel. Netw. 27 (7) (2021) 4795–4806.

Zhao Tong received the Ph.D degree in computer science
from Hunan University, Changsha, China in 2014. He was a
visiting scholar at the Georgia State University from 2017 to
2018. He is currently an associate professor at the College
of Information Science and Engineering of Hunan Normal
University, the young backbone teacher of Hunan Province,
China. His research interests include parallel and distributed
computing systems, resource management, big data and
machine learning algorithm. He has published more than 25
research papers in international conferences and journals,
such as IEEE-TPDS, Information Sciences, FGCS, NCA, and
JPDC, PDCAT, etc. He is a senior member of the China
Computer Federation (CCF) and a Member of the IEEE.

Xin Deng received the B.S. degree in computer science and
technology from Hengyang Normal University, Hengyang,
China, in 2020. She is currently working toward the M.S.
degree at the College of Information Science and Engi-
neering, Hunan Normal University, Changsha, China. Her
research interests focus on distributed parallel computing,
modeling and resource pricing and allocation in mobile edge
computing systems, and game theory.
12
Jing Mei received the Ph.D. degree in computer science
from Hunan University, Changsha, China, in 2015. She is
currently a Lecturer with the College of Information Science
and Engineering, Hunan Normal University, Changsha. She
has published more than 15 research articles in international
conferences and journals, such as IEEE TRANSACTIONS
ON COMPUTERS, IEEE-SC, IEEE TRANSACTIONS ON PAR-
ALLEL AND DISTRIBUTED SYSTEMS, Cluster Computing,
Journal of Gastric Cancer, The Journal of Supercomput-
ing, and ICPP. Her research interests include parallel and
distributed computing, cloud computing, and combinatorial
optimization. Dr. Mei is a member of the China Computer
Federation.

Longbao Dai received the B.S. degree in computer science
and technology from Hunan University of Science and Engi-
neering, Yongzhou, China, in 2020. He is currently working
toward the M.S. degree at the College of Information Sci-
ence and Engineering, Hunan Normal University, Changsha,
China. His research interests focus on distributed parallel
computing, modeling and resource pricing and allocation in
mobile edge computing systems, and game theory.

Kenli Li received the Ph.D. degree in computer science from
Huazhong University of Science and Technology, China, in
2003. He was a visiting scholar at University of Illinois
at Urbana-Champaign from 2004 to 2005. He is currently
the dean and a full professor of computer science and
technology with Hunan University and deputy director of
National Supercomputing Center in Changsha. His major
research areas include parallel computing, high-performance
computing, grid and cloud computing. He has published
more than 150 research papers in international conferences
and journals such as the IEEE Transactions on Computers,
the IEEE Transactions on Parallel and Distributed Systems,
the IEEE Transactions on Signal Processing, the Journal
of Parallel and Distributed Systems, ICPP, and CCGrid. He
serves on the editorial board of the IEEE Transactions on
Computers. He is an outstanding member of CCF. He is a
senior member of the IEEE.

Keqin Li is a SUNY Distinguished Professor of computer
science with the State University of New York. He is
also a Distinguished Professor at Hunan University, China.
His current research interests include cloud computing,
fog computing and mobile edge computing, energy-efficient
computing and communication, embedded systems and
cyber–physical systems, heterogeneous computing systems,
big data computing, high-performance computing, CPU–GPU
hybrid and cooperative computing, computer architectures
and systems, computer networking, machine learning, intel-
ligent and soft computing. He has authored or coauthored
over 850 journal articles, book chapters, and refereed
conference papers, and has received several best paper
awards. He currently serves or has served on the editorial
boards of the IEEE Transactions on Parallel and Distributed
Systems, the IEEE Transactions on Computers, the IEEE
Transactions on Cloud Computing, the IEEE Transactions
on Services Computing, and the IEEE Transactions on
Sustainable Computing. He is an IEEE Fellow.

http://refhub.elsevier.com/S1383-7621(23)00026-7/sb24
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb24
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb24
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb24
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb24
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb25
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb25
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb25
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb26
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb26
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb26
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb26
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb26
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb27
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb27
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb27
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb27
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb27
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb28
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb28
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb28
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb28
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb28
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb29
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb29
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb29
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb29
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb29
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb30
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb30
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb30
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb31
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb31
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb31
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb31
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb31
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb32
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb32
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb32
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb32
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb32
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb33
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb33
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb33
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb33
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb33
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb34
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb34
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb34
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb35
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb36
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb36
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb36
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb36
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb36
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb37
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb37
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb37
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb37
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb37
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb38
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb38
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb38
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb38
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb38
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb39
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb39
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb39
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb39
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb39
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb40
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb40
http://refhub.elsevier.com/S1383-7621(23)00026-7/sb40

	Stackelberg game-based task offloading and pricing with computing capacity constraint in mobile edge computing
	Introduction
	Related Work
	Task Offloading Objectives
	Cloud-based Task Offloading Strategies
	MEC-based Task Offloading Strategies

	Stackelberg Game and MEC Model
	Stackelberg Game
	MEC Model

	Problem Formulation
	Local Computing Model
	Task Offloading Model
	Uplink Transmission Process
	Task Execution Process

	Two-Stage Stackelberg Game Model
	The Utility Function of the MEC Server
	The Utility Function of EUs

	Solutions For Two-Stage Stackelberg Game
	Optimal Pricing Range
	Uniform Pricing Scheme
	Differentiated Pricing Scheme

	Performance Evaluation
	Experimental Setup
	Result Analysis
	Experiments on Pricing Range Selection
	Experiments on PSO Parameter Selection
	Comparative Experiments on the Capacity of MEC
	Comparative Experiments on the Numbers of EUs
	Comparative Experiment on Channel Bandwidth

	Conclusions and Future Work
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

