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Abstract—Mobile-Edge Cloud Computing (MECC) plays a cru-
cial role in balancing low-latency services at the edge with the
computational capabilities of cloud data centers (DCs). However,
many existing studies focus on single-provider settings or limit
their analysis to interactions between mobile devices (MDs) and
edge servers (ESs), often overlooking the competition that occurs
among ESs from different providers. This article introduces an
innovative two-layer game framework that captures independent
self-interested competition among MDs and ESs, providing a more
accurate reflection of multi-vendor environments. Additionally, the
framework explores the influence of cloud-edge collaboration on ES
competition, offering new insights into these dynamics. The pro-
posed model extends previous research by developing algorithms
that optimize task offloading and resource allocation strategies for
both MDs and ESs, ensuring the convergence to Nash equilibrium
in both layers. Simulation results demonstrate the potential of the
framework to improve resource efficiency and system responsive-
ness in multi-provider MECC environments.

Index Terms—Computation offloading, game theory, mobile-
edge cloud computing, nash equilibrium, resource allocation.

I. INTRODUCTION

A. Motivation

MOBILE Edge Computing (MEC) has become a foun-
dational pillar in modern computing, bringing compu-

tational resources closer to end-users. This proximity allows
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mobile devices (MDs) such as smartphones, PDAs, and wear-
ables to overcome inherent limitations in processing power,
communication bandwidth, storage, and battery life [1], [2], [3].
By leveraging MEC, MDs are now capable of delivering a wide
array of advanced services, including multiplayer online gam-
ing, high-definition image processing, and intelligent personal
assistants [4]. The proliferation of MEC has not only accelerated
the evolution of mobile applications but has also significantly
transformed social interaction, commerce, and entertainment.

Nevertheless, as the number of MDs grows and the demand
for high-computation, low-latency services escalates, the lim-
itations of MEC are becoming more pronounced. While edge
servers (ESs) are effective for handling latency-sensitive tasks,
they possess significantly fewer computational resources com-
pared to cloud data centers (DCs) [5]. High-computation tasks
that demand extensive processing power are better suited for
DCs, thereby preventing the overburdening of edge resources.

In response to these challenges, Mobile-Edge Cloud Com-
puting (MECC) has emerged as a vital paradigm. MECC inte-
grates the strengths of both ESs and DCs, ensuring that latency-
sensitive tasks are handled at the edge, while computationally
intensive tasks are offloaded to the cloud. This balanced ap-
proach offers the flexibility required to support increasingly
complex mobile applications [6], [7], [8]. Recent advancements,
such as cross-layer collaborative computation offloading [9] and
hierarchical federated learning [10], further underscore the crit-
ical role of cloud-edge collaboration in achieving the necessary
performance and scalability [11], [12].

As mobile computing continues to advance, future scenarios
are expected to feature multiple MEC service providers and a
growing number of users, creating an increasingly competitive
and intricate landscape [13], [14]. Within this environment,
both MDs and ESs will face distinct challenges and opportu-
nities. For MDs, the increasing number of service providers
necessitates careful selection of optimal computing platforms
for task offloading to enhance computational efficiency. The
limited resources at the edge intensify competition among MDs.
For ESs, the challenge lies in enhancing service quality while
attracting more MDs. ESs must efficiently manage their compu-
tational resources and collaborate with DCs to optimize service
delivery. Effective cloud-edge collaboration ensures that these
resources are fully leveraged, maximizing revenue by attracting
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more users while minimizing costs associated with underutilized
resources [15], [16], [17].

Despite significant advancements in computation offloading
and resource allocation strategies within MEC, particularly
through the application of game theory models to explore in-
teractions between MDs and ESs, several critical limitations
remain. Much of the existing research focuses exclusively on
scenarios involving single vendors or centralized resource con-
trol, assuming that all computational resources are managed
by a single provider or entity. These assumptions oversimplify
the complexities inherent in multi-vendor environments, where
competitive dynamics among ESs controlled by different service
providers play a crucial role in resource optimization. Moreover,
while several two-layer or hierarchical game frameworks have
been proposed, they typically address either the interactions
among MDs or between MDs and ESs, without fully capturing
the coexistence of inter-ES competition alongside MD interac-
tions. These models also fail to delve into the coupling relation-
ships between these games and their collective impact on overall
system performance. Additionally, although some research has
considered cloud-edge collaboration, it often overlooks how
this collaboration influences the competitive dynamics among
ESs, thus missing the potential impact of such collaboration
on inter-ES competition. It is crucial to recognize and address
these limitations to ensure the effective implementation of future
MECC applications.

B. Our Contributions

To address these challenges, our research introduces an in-
novative framework that integrates self-interested games among
MDs with those among ESs, while also considering the impact of
competitive dynamics in cloud-edge collaboration on ES games.
Unlike existing works, our two-layer game model explicitly ac-
counts for the competitive nature of multi-vendor environments,
where ESs and MDs operate independently and competitively.
This model more accurately reflects the complexities of resource
allocation and computation offloading in real-world applica-
tions. Consequently, our framework offers a comprehensive
and effective solution for MECC environments dominated by
multiple vendors, advancing both theoretical understanding and
practical implementation.

In the first layer, MDs compete to offload their computational
tasks to ESs, aiming to reduce execution latency. In the second
layer, ESs engage in self-interested competition to strategically
allocate resources between local processing and cloud offload-
ing. The goal is to improve resource utilization to enhance
service quality, attract a larger user base, reduce the costs of
underutilized resources, and indirectly increase revenue. The
primary objective of this work is to develop algorithms that de-
termine the optimal computation offloading strategies for MDs
and the optimal resource allocation and offloading strategies for
ESs, achieving a balanced and self-interested equilibrium for all
participants.

Our key contributions are summarized as follows:
� We introduce a comprehensive mathematical framework

that models the two-layer game in the MECC environment.

This framework rigorously defines the self-interested ob-
jectives of both MDs and ESs, capturing the competitive
dynamics within and between these layers.

� We formally define two non-cooperative games within this
two-layer structure and provide proof of the existence of
Nash equilibria for each game, ensuring that the strategies
adopted by MDs and ESs lead to stable outcomes.

� We develop a set of algorithms that identify the optimal
strategies for both MDs in their computation offloading
game and for ESs in their resource allocation and offloading
game. Additionally, we propose an iterative algorithm that
ensures the simultaneous convergence of both layers to a
Nash equilibrium in the MECC environment.

� We conduct extensive numerical simulations and compar-
ative experiments to validate the effectiveness and robust-
ness of the proposed framework.

The structure of this paper is as follows: Section II reviews
related work. Section III introduces mathematical models for the
MECC environment. Section IV formulates the two-layer game
framework and demonstrates the existence of Nash equilibria.
Section V presents the algorithms for optimal player responses.
Section VI includes numerical examples, performance data, and
comparative experiments. Section VII concludes the paper and
discusses future research directions.

II. RELATED WORK

In this section, we categorize the existing research into three
primary areas based on focus and methodology: Resource Man-
agement and Offloading Strategies in Single-Provider Envi-
ronments, Optimal Resource Allocation and Task Offloading
Using Hierarchical Game Models, and Cloud-Edge Collabo-
ration and Competition in Multi-Provider Environments. This
categorization facilitates a systematic review of the literature
and underscores the unique contributions of our work in contrast
to previous studies. For a more comprehensive understanding of
the current research landscape, readers are encouraged to consult
relevant surveys [18], [19], [20].

A. Resource Management and Offloading Strategies in
Single-Provider Environments

In single-provider environments, considerable research has
focused on optimizing resource management and computation
offloading strategies to enhance the performance and efficiency
of MEC systems. These studies often employ game-theoretic
approaches to address the complex challenges of resource allo-
cation, where users compete for limited edge resources managed
by a centralized provider.

For example, Zhou et al. [21] developed a game-theoretic
strategy for partial computation offloading in multi-user MEC
environments, effectively reducing system latency and energy
consumption. Similarly, Li [22] proposed a non-cooperative
game framework to stabilize MEC environments by minimizing
individual costs and ensuring efficient resource utilization when
multiple MDs contend for ES resources.

Building on these foundations, Wang et al. [23] introduced a
Stackelberg game model in MEC systems with Non-Orthogonal
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Multiple Access (NOMA), optimizing resource allocation by
modeling the leader-follower dynamics between users and the
ES. Guo et al. [24] explored energy harvesting in MEC systems,
proposing a game-theoretic method that balances task delay
reduction with sustainable energy use.

In specialized network architectures, Messous et al. [25]
applied a game-theoretic framework to optimize computation of-
floading in Unmanned Aerial Vehicle (UAV) networks, achiev-
ing reductions in latency and energy consumption. Chu et al. [26]
addressed multi-channel resource allocation in MEC with a
distributed game-theoretic algorithm that improves response
times and reduces energy consumption among competing MDs.

Beyond game-theoretic methods, Liu et al. [27] introduced
a service mechanism for optimizing profits in centralized com-
puting environments, offering insights into resource allocation
and pricing models. Xiao et al. [28] developed CASpMV, an
accelerated framework for Sparse Matrix-Vector Multiplication
on the Sunway TaihuLight supercomputer, contributing to com-
putational resource optimization in centralized systems.

However, these studies predominantly assume a centralized,
single-provider environment. This assumption oversimplifies
the complex and competitive dynamics present in multi-provider
MEC scenarios. Consequently, the competitive interactions be-
tween multiple edge servers managed by different providers,
increasingly common in real-world deployments, are not ade-
quately addressed.

B. Optimal Resource Allocation and Task Offloading Using
Hierarchical Game Models

Hierarchical game-theoretic models have emerged as essen-
tial tools for optimizing computation offloading strategies across
multiple layers of decision-making in MEC systems. These
models typically involve interactions among various stakehold-
ers, such as MDs, ESs, and DCs, each operating at different
hierarchical levels to achieve optimal resource allocation and
task offloading.

Xu et al. [29] proposed a two-stage algorithm for cloud-
edge collaboration, where offloading decisions are made first,
followed by resource allocation. Similarly, You et al. [30] in-
troduced a three-tier model for MEC, considering interactions
among MDs, ESs, and DCs to minimize latency and optimize
resource utilization.

Further exploring hierarchical interactions, Lyu et al. [31]
developed a multi-leader, multi-follower Stackelberg game to
address resource allocation in competitive MEC environments,
focusing on the hierarchical decision-making of providers and
users. Ning et al. [32] expanded this concept by exploring
dynamic resource allocation in UAV-enabled MEC, enhancing
system performance in rapidly changing environments.

In dense network environments, Lu et al. [33] proposed an
evolutionary game-theoretic approach for adaptive computation
offloading. Guo et al. [34] applied game theory to NOMA
in MEC, optimizing resource allocation in IoVT networks.
Similarly, Liu et al. [35] introduced a cooperative game-based
job offloading approach designed to meet strict deadlines in
MEC environments, emphasizing the importance of cooperation

among ESs to optimize resource utilization and ensure timely
task completion.

While these studies have successfully applied hierarchical
game models to optimize resource allocation and task offloading,
they often focus on either the interactions among MDs, between
MDs and ESs, or between ESs and DCs, typically assuming
cooperation across these layers. However, they generally over-
look the full complexity of inter-ES competition that can arise
alongside MD interactions, particularly in scenarios where mul-
tiple providers operate independently without inter-layer coop-
eration. Addressing this gap is essential for accurately modeling
and optimizing real-world MEC environments characterized by
competitive multi-provider dynamics.

C. Cloud-Edge Collaboration and Competition in
Multi-Provider Environments

In multi-provider environments, cloud-edge collaboration and
competition strategies are vital for optimizing resource alloca-
tion and task offloading. These strategies address the complex
interactions between providers to enhance service quality, man-
age resources efficiently, and maximize profits.

Sun et al. [36] proposed a game-theoretic approach for
vehicular edge computing networks that optimizes resource
allocation and task offloading, considering the collaborative
dynamics among ESs managed by different providers. Pham
et al. [37] similarly explored partial computation offloading in
parked vehicle-assisted MEC environments, using game theory
to ensure efficient resource allocation among multiple ESs. Ad-
ditionally, Tong et al. [38] introduced a bilateral game approach
for task outsourcing in multi-access edge computing, where ESs
strategically outsource tasks to other servers or cloud resources
to maximize utility, which is particularly relevant when multiple
providers must collaborate despite operating independently.

Further highlighting cooperation, Diamanti et al. [39] devel-
oped an incentive mechanism combined with resource allocation
strategies for edge-fog networks, integrating contract theory and
game theory to motivate providers to improve service quality.
Cui et al. [40] examined interference-aware device allocation
in MEC, emphasizing strategic interference management in
multi-provider environments to optimize performance. Xiao
et al. [41] investigated heat-aware vehicular task offloading using
a game-theoretic method, where ESs collaborate to manage heat
dissipation while maintaining service quality. Cui et al. [42]
presented a two-phase game-theoretical approach for demand
response in NOMA-based MEC, optimizing energy consump-
tion and resource allocation in dynamic demand scenarios,
highlighting the need for adaptable strategies in multi-provider
environments.

Li et al. [43] discussed energy-efficient stochastic task
scheduling in heterogeneous computing systems, offering in-
sights into optimizing scheduling and energy management in
multi-provider environments. Although not directly focused on
MEC or game theory, their work is relevant to multi-provider
resource optimization.

Although these studies explore the dynamics of cloud-edge
collaboration and competition in multi-provider environments,
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Fig. 1. Overview of the MECC environment.

they often overlook how cloud-edge collaboration influences
the competitive dynamics among ESs. Furthermore, while they
address competition and cooperation, these studies do not fully
explore how these interactions impact overall system perfor-
mance.

D. Summary of Differences and Innovations

Our research addresses several critical limitations in exist-
ing studies. First, previous research on single-provider envi-
ronments has not effectively tackled the competitive interac-
tions that occur between multiple ESs managed by different
providers. Second, while earlier studies on hierarchical game
models have focused on competition among MDs, between MDs
and ESs, or between ESs and DCs, they have often overlooked
the competition among ESs from different providers, which is
becoming increasingly important. Our study uniquely considers
the coexistence of independent competition among both MDs
and ESs, reflecting a more realistic situation where each group
competes within its own dynamics without considering the
other’s internal competition. This approach offers a new way
to achieve equilibrium in multi-provider MEC environments.
Finally, while some studies have explored cloud-edge collabo-
ration and competition in multi-provider settings, they often miss
the complex dependencies and feedback loops between cloud-
edge collaboration and competition among ESs. Our research
examines these feedback loops, highlighting how cloud-edge
collaboration influences ES competition and providing a clearer
understanding of how these interactions affect overall system
performance.

III. PRELIMINARIES

In this section, we present the necessary preliminaries, in-
cluding definitions, notations, and models that will be utilized
throughout the paper. Due to space constraints, a detailed sum-
mary of notations and definitions is provided in Section I of the
supplementary material for better readability and easy reference,
available online.

A. The Mobile-Edge Cloud Computing Environment

In this section, we outline the key characteristics of the MECC
environment considered in this paper.

The MECC environment comprises multiple heterogeneous
computing nodes, including multiple MDs, multiple ESs, and
a single DC. These nodes form a three-tier architecture, where
MDs offload computational tasks to ESs, and ESs may further
offload some tasks to the DC, as illustrated in Fig. 1.
� Mobile Device Layer: The mobile device layer consists

of n competitive and self-interested MDs (denoted as
MD1,MD2, . . . ,MDn) that compete for edge resources by
offloading their computational tasks to multiple heteroge-
neous ESs within a geographic region, aiming to minimize
the average response latency for their tasks. Each MD’s
decision involves selecting multiple ESs as offloading tar-
gets and determining the corresponding offloading ratios.
The average response latency for each MD is influenced
by both local processing and the offloading strategy.

� Edge Server Layer: This layer consists of k competitive
and self-interested ESs (denoted as ES1,ES2, . . . ,ESk)
that compete with each other to attract more MDs by
strategically utilizing their computing and cloud resources
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to enhance service quality, specifically by minimizing the
average response latency of tasks executed on each ES.
To achieve this, each ES must define both its offloading
scheme (i.e., the proportion of tasks to be offloaded to the
DC) and its resource allocation scheme (i.e., the allocation
of computing resources to the MDs it serves), ensuring
efficient task processing and optimized resource usage.

� Data Center Layer: The data center layer consists of
a remote DC with theoretically limitless computational
resources. Tasks offloaded to the DC are assumed to be
executed within predetermined time constraints. However,
due to the significant geographical distance between the
DC and the ESs, transmission and propagation latencies
are introduced during the task upload process. The DC’s
role is limited to providing flexible offloading services to
the ESs, without engaging in direct competition or gaming
activities, focusing exclusively on processing computation-
intensive tasks offloaded by the ESs.

The interaction between MDs and ESs is driven by their
respective goals: MDs seek to minimize their average response
latency by optimizing offloading decisions, including selecting
ESs and offloading ratios, while ESs aim to reduce task latency
through resource allocation and deciding whether to offload
tasks to the DC. These decisions are interdependent, as MDs’
offloading choices affect ESs’ task loads, and ESs’ resource and
offloading strategies influence the overall latency experienced
by MDs. The central challenge of this paper is to balance
these objectives to optimize system performance in the MECC
environment.

B. The MD Model

In the MECC environment, each MD generates multiple
computational tasks, each of which requires a certain number
of CPU cycles to execute.

To simplify the representation, we use a tuple (ri, ci) to
describe the computational tasks generated by MDi. Here, ri
represents the input data sizes of all tasks generated by MDi,
measured in millions of bits (Mb), and ci represents the number
of CPU cycles required to process 1-bit data, measured in cy-
cles/bit. Note that the number of CPU cycles required to process
1-bit data may vary for different tasks generated by different
MDs.

Furthermore, taking into account the different computational
capacities of each MD, we represent the computational capacity
of MDi as fi (a.k.a. the computing resource of MDi), measured
in MHz.

To minimize the average response latency of its own tasks,
MDi may need to offload its computational tasks to multiple ESs
for remote execution when its computational capacity is limited.
We assume that the computational tasks generated by MDs can
be divided into arbitrary segments at the bit level. Hence, tasks
of MDi with an input data size of ri can be partitioned into
k + 1 parts, denoted as λi,0, λi,1, λi,2, . . . , λi,k. Here, λi,0 rep-
resents the proportion of computational tasks processed locally
by MDi, and λi,j represents the proportion of computational
tasks offloaded to ESj , where 1 ≤ j ≤ k.

Based on the given information, we can conclude that λi =
(λi,0, λi,1, λi,2, . . . , λi,k) represents the offloading decision for
MDi, where λi,j ∈ [0, 1]. We have λi,0 +

∑k
j=1 λi,j = 1 and

λi,0ri + ri
∑k

j=1 λi,j = ri.
It should be noted that the division of tasks into k + 1 parts is

dynamically determined by the offloading strategy, which opti-
mizes the distribution of tasks across the available computational
resources. MDs do not always partition their tasks across all
k + 1 units. Moreover, offloading communication takes place
over distinct wireless channels between MDs and ESs, easing the
load on the core network and minimizing the risk of congestion.

C. The ES Model

In the MECC environment, each ES can receive computa-
tional tasks of varying sizes offloaded fromnMDs. To minimize
the average response latency of these offloaded tasks and attract
more MDs, each ES must decide whether to offload all or part of
the received computational tasks to the DC, as well as determine
the allocation scheme of its computing resources to the MDs.

As previously mentioned, the data sizes of computational
tasks offloaded from MDi to ESj are λi,jri. Therefore, ESj will
receive a set of tasks from n MDs, which can be represented
as a vector (λ1,jr1, λ2,jr2, . . . , λn,jrn). Let λ̇i,j represent the
proportion of computational tasks offloaded from MDi to ESj ,
which will be subsequently offloaded to the DC for remote
execution. Then, the vector λ̇j = (λ̇1,j , λ̇2,j , . . . , λ̇n,j) consti-
tutes the offloading decision of ESj , where λ̇i,j ∈ [0, 1]. It is
evident that the data of size λ̇i,jλi,jri in the computational tasks
offloaded from MDi to ESj will be sent to the DC for remote
execution, while the remaining portion of the data (with a size
of (1− λ̇i,j)λi,jri) will stay at ESj for local execution.

We will now discuss the resource allocation scheme for ESj .
Let Fj represent the total computing resources available to ESj

(measured in MHz). Then, the resource allocation scheme of
ESj can be expressed as a vector f j = (f1,j , f2,j , . . . , fn,j),
where fi,j represents the computing resources allocated by ESj

to MDi, and fi,j ∈ [0, Fj ]. The computing resources allocated
by ESj for n MDs cannot exceed its upper limit. Therefore, we
establish the constraint

∑n
i=1 fi,j ≤ Fj . Importantly, ESj can-

not allocate computing resources to MDs that have not offloaded
computational tasks onto it. Thus, when λi,j = 0, fi,j = 0.

D. The DC Model

In theory, the DC has infinite computing resources [44], [45].
Therefore, we assume that the DC can guarantee completion
of execution within tdc for any input data size, implying that
processing latency remains constant regardless of data size.

Furthermore, considering the typical location of the DC at the
core of the network, we account for propagation and transmis-
sion latencies when offloading tasks from ESs to the DC. Here,
we denote Rdc (measured in Mbps) as the average data trans-
mission rate in the Wide Area Network (WAN), and d (measured
in seconds) as the average propagation latency associated with
data transmission from ESs to the DC.
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E. Transmission Latency

In this section, we discuss the calculation of transmission
latency during the task offloading process.

First, we derive the transmission latency experienced by MDs
when offloading computational tasks to ESs. According to Shan-
non’s theorem [46], the data transmission rate between MDi and
ESj can be mathematically defined as

Ri,j = bi,j log2

(
1 +

pi,jhi,j

bi,jNi

)
. (1)

Here, bi,j (measured in MHz) represents the communication
channel bandwidth between MDi and ESj , hi,j (measured in
dBm) denotes the channel gain between MDi and ESj , pi,j
(measured in Watts) is the transmission power for MDi when
transmitting data to ESj , and Ni (measured in dBm/Hz) stands
for the noise power spectrum density. Considering that MDi

offloads λi,jri Mb of tasks to ESj , the transmission latency
during the task offloading process can be precisely calculated
as

ttransi,j =
λi,jri
Ri,j

. (2)

Second, we derive the transmission latency experienced by
ESs when offloading computational tasks to the DC. As pre-
viously mentioned, the DC receives computational tasks with
λ̇i,jλi,jri Mb from ESj . The average data transmission rate for
ESs communicating with the DC is denoted as Rdc, and the
average propagation latency is represented as d. Consequently,
the transmission latency during the task offloading process can
be precisely calculated as

ṫtransi,j =
λ̇i,jλi,jri

Rdc
+ d. (3)

F. Processing Latency

In this section, we analyze the processing latency for tasks
executed locally on MDs, as well as the processing latency for
tasks executed remotely on ESs and the DC.

First, we derive the processing latency of tasks generated on
MDi and executed locally on MDi, denoted by texeci , where 1 ≤
i ≤ n. According to the MD model defined in Section III-B, MDi

processes computational tasks of size λi,0ri Mb. Therefore, the
processing latency of tasks processed on MDi can be calculated
as

texeci =
ciλi,0ri

fi
. (4)

Second, we derive the processing latency of tasks that are
offloaded from MDi and will be processed on ESj , denoted
by texeci,j , where 1 ≤ j ≤ k. Based on the ES model defined
in Section III-C, ESj processes computational tasks of size
(1− λ̇i,j)λi,jri Mb. Therefore, the processing latency of tasks
processed on ESj can be expressed as

texeci,j =
ci(1− λ̇i,j)λi,jri

fi,j
. (5)

Third, according to the DC model defined in Section III-D,
the processing latency of tasks processed on the DC is tdc.

IV. TWO-LAYER NON-COOPERATIVE GAME FRAMEWORK

In this section, we formulate a two-layer non-cooperative
game framework for the considered MECC environment.

A. The First Layer Game

In the first layer game, there are n non-cooperative MDs
competing for edge resources.

In this non-cooperative game, we have n players designated
as MD1,MD2, . . . ,MDn. We use the notation xi to represent
the strategy of player MDi and x−i to represent the strategies
of the other MDs. Additionally, we define ui(xi) as the payoff
function for player MDi. Therefore, the set of strategies and the
payoff function of the game can be described as follows:
� Game(λi): xi = λi, λi = (λi,0, λi,1, . . . , λi,k) ∈ Ki, and
ui(xi,x−i) = ti(λi).

In this context, the strategy set Ki is a convex set, defined as:

Ki = {(λi,0, λi,1, . . . , λi,k)|λi,0 + λi,1 + · · ·+ λi,k = 1} .
The payoff function ti(λi) for MDi represents the average

response latency for all tasks generated on MDi. This latency
can be broken down into three key components:
� (1) Local execution latency: The time required to process

tasks that are executed locally on the MD.
� (2) Offloading latency to ES: The time required to transmit

tasks to one or more ESs and have them executed remotely.
This latency includes both the transmission latency for
sending the tasks from MD to ES and the execution latency
at the ES.

� (3) Offloading latency from ES to DC (if applicable): For
tasks further offloaded by an ES to the DC, the offloading
latency also includes the transmission latency from the ES
to the DC, and the remote execution latency at the DC.

In summary, the average response latency ti(λi) for MDi

is a weighted sum of these components, accounting for the
offloading ratios to each computing unit (MD, ES, and DC).
Mathematically, this is expressed as:

ti =
λi,0ri
ri

texeci +
k∑

j=1

(1− λ̇i,j)λi,jri
ri

(
ttransi,j + texeci,j

)

+

k∑
j=1

λ̇i,jλi,jri
ri

(
ttransi,j + ṫtransi,j + tdc

)

=
λi,0ri
ri
· ciλi,0ri

fi
+

k∑
j=1

(
(1− λ̇i,j)λi,jri

ri

×
(

λi,jri
Ri,j

+
ci(1− λ̇i,j)λi,jri

fi.j

))

+

k∑
j=1

λ̇i,jλi,jri
ri

(
λi,jri
Ri,j

+
λ̇i,jλi,jri

Rdc
+ d+ tdc

)
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=
ciλ

2
i,0ri

fi
+

k∑
j=1

(
(1− λ̇i,j)λ

2
i,jri

Ri,j
+

(1− λ̇i,j)
2λ2

i,jri

fi,j

)

+
k∑

j=1

(
λ̇i,jλ

2
i,jri

Ri,j
+

λ̇2
i,jλ

2
i,jri

Rdc
+ λ̇i,jλi,jd+ λ̇i,jλi,jtdc

)
.

(6)

B. The Second Layer Game

In the second layer game, k non-cooperative ESs compete
with each other to attract more MDs by strategically utilizing
their computing and cloud resources to enhance the quality of
service.

Let ES1,ES2, . . . ,ESk be the k players in this non-
cooperative game. Each ESj manipulates two variables, λ̇i,j and
fi,j , which directly impact the average response latency of tasks
executed on ESj . These variables are treated as Subgame(λ̇j)
and Subgame(f j), respectively.
� Subgame(λ̇j): xj = λ̇j , λ̇j = (λ̇1,j , λ̇2,j , . . . , λ̇n,j) ∈
Kj
′, and uj(xj ,x−j) = Tj(λ̇j).

� Subgame(f j): xj = f j ,f j = (f1,j , f2,j , . . . , fn,j) ∈
Kj , and uj(xj ,x−j) = Tj(f j).

Since λ̇i,j and fi,j jointly impact the average response latency
of tasks executed on ESj , we define Game(λ̇j, f j). Here, xj

represents the strategy of player ESj , and x−j refers to the
strategies of the other ESs. The payoff function uj(xj) denotes
the performance of ESj . The set of strategies and the payoff
function for this game are as follows:
� Game(λ̇j, fj): xj = (λ̇j ,f j), f j × λ̇j ∈ Kj ×Kj

′, and
uj(xj ,x−j) = Tj(λ̇j, fj).

The strategy sets Kj and Kj
′ are two convex sets for all 1 ≤

j ≤ k, defined as follows:

Kj = {(f1,j , f2,j , . . . , fn,j)|f1,j + f2,j + · · ·+ fn,j ≤ Fj} ,
Kj
′ =

{
(λ̇1,j , λ̇2,j , . . . , λ̇n,j)|λ̇i,j ≤ 1, 1 ≤ i ≤ n

}
.

The payoff function Tj(λ̇j, fj) represents the average re-
sponse latency for all tasks executed on ESj . This latency can
be divided into two main components:
� (1) Local execution latency: The time required for the ES

to process tasks locally that are offloaded by MDs.
� (2) Offloading latency to DC (if applicable): For tasks

further offloaded to the DC, the ES also considers the
transmission latency to the DC and the remote execution
latency at the DC.

The objective of ESj is to minimize the weighted sum of
these latencies, considering the effects of resource allocation and
offloading decisions. According to the previous discussion, the
processing latency of all tasks executed on ESj can be calculated
as:

n∑
i=1

(1− λ̇i,j)λi,jri∑n
l=1 (1− λ̇l,j)λl,jrl

(
ttransi,j + texeci,j

)
.

For tasks offloaded from ESj to the DC and executed at the DC,
the processing latency is:

n∑
i=1

λ̇i,jλi,jri∑n
l=1 λ̇l,jλl,jrl

(
ttransi,j + ṫtransi,j + tdc

)
.

Thus, Tj(λ̇j, fj) can be expressed as:

Tj =

∑n
i=1 (1− λ̇i,j)λi,jri∑n

i=1 λi,jri

(
n∑

i=1

(1− λ̇i,j)λi,jri∑n
l=1 (1− λ̇l,j)λl,jrl

×
(

λi,jri
Ri.j

+
ci(1− λ̇i,j)λi,jri

fi,j

))

+

∑n
i=1 λ̇i,jλi,jri∑n

i=1 λi,jri

(
n∑

i=1

λ̇i,jλi,jri∑n
l=1 λ̇l,jλl,jrl

×
(

λi,jri
Ri.j

+
λ̇i,jλi,jri

Rdc
+ d+ tdc

))

=

∑n
i=1

(
λi,j

2ri
2

Ri.j
+

ci(1−λ̇i,j)
2
λi,j

2ri
2

fi,j

)
∑n

i=1 λi,jri

+

∑n
i=1

(
λ̇2
i,jλi,j

2ri
2

Rdc
+ λ̇i,jλi,jrid+ λ̇i,jλi,jritdc

)
∑n

i=1 λi,jri
.

(7)

C. Existence of the Nash Equilibrium

In this section, we establish the existence of Nash equi-
librium in the aforementioned games by demonstrating that
the Hessian matrices of the above four payoff functions
ti(λi), Tj(f j), Tj(λ̇j), and Tj(λ̇j, fj) are positive semidefi-
nite, based on two key theorems in game theory. This ensures
the convexity of the functions and confirms the existence of
a Nash equilibrium in these games. Due to space constraints,
detailed derivations and proofs are provided in Section II of the
supplementary material, available online.

V. SOLUTIONS FOR THE NASH EQUILIBRIUM

To find the Nash equilibrium, we propose an iterative algo-
rithm composed of a series of numerical methods designed to
compute the optimal responses for both MDs and ESs in their
respective games.

A. Optimal Response for MDs

This section presents an algorithm for computing the op-
timal response for MDs. In the game setup for each MDi

(Game(λi)), the goal is to determine the offloading decision
λi = (λi,0, λi,1, . . . , λi,k), such that the average response la-
tency ti is minimized, subject to the constraint λi,0 + λi,1 +
· · ·+ λi,k = 1. This is a convex optimization problem, which
can be solved using the Lagrange multiplier method [47].

First, the constraint λi,0 + λi,1 + · · ·+ λi,k = 1 can be rep-
resented as a function h(λi,0, λi,1, . . . , λi,k) = λi,0 + λi,1 +
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Fig. 2. Image of ∂ti/∂λi,j varying with λi,j .

Fig. 3. Image of λi,j varying with ϕ1.

· · ·+ λi,k − 1. The corresponding Lagrange function is then
constructed as:

L = ti(λi,0, λi,1, . . . , λi,k) + ϕ1h (λi,0, λi,1, . . . , λi,k) , (8)

leading to the necessary condition for optimally:

∂ti
∂λi,j

+ ϕ1
∂h

∂λi,j
= 0, (9)

where ϕ1 is a Lagrange multiplier.
Next, as illustrated in Fig. 2, when the value of ϕ1 is fixed,

∂ti/∂λi,j is an increasing function of λi,j . We utilize this prop-
erty to design Algorithm 1, which applies the classical bisection
method to find λi,j in the search interval [Smin = 0, Smax = 1]
such that ∂ti/∂λi,j = ϕ1 [48, p. 22]. The algorithm terminates
when the interval is shorter than ε (set to 10−12 in this paper).

By following the steps above, we obtain λi,j that satisfies
(9). We now need to check if the constraint λi,0 + λi,1 + λi,2 +
· · ·+ λi,k = 1 holds. As shown in Fig. 3, λi,j is an increasing
function of ϕ1, which implies that λi,0 + λi,1 + · · ·+ λi,k is
also an increasing function of ϕ1. Thus, we employ Algorithm
2, which is also based on the bisection method, to find ϕ1 and
the corresponding values of λi,0, λi,1, . . . , λi,k such that both
conditions ∂ti/∂λi,j = ϕ1 and λi,0 + λi,1 + · · ·+ λi,k = 1 are
satisfied (lines 2-12).

Algorithm 1: Search λi,j .

Input: λ̇i,j , bi,j , Pi,j , hi,j , fi,j , ri, ci, fi, N0, d, tdc, Rdc

and ϕ1.
Output: λi,j .
1: Initialize the range of λi,j to [Smin, Smax];
2: while Smax − Smin ≥ ε do
3: λi,j ← (Smax + Smin)/2;
4: Calculate ∂ti/∂λi,j (readers may refer to the

supplementary material for details, as shown in (2));
5: if ∂ti/∂λi,j < ϕ1 then
6: Smin ← (Smax + Smin)/2;
7: else
8: Smax ← (Smax + Smin)/2;
9: end if

10: end while ;
11: λi,j ← (Smax + Smin)/2;
12: return λi,j .

Note that in Algorithm 2, the values of Smin and Smax are
initialized as 0 andub respectively (line 1), whereub is calculated
based on the following conditions:

1) if j = 0, referring to (9) in the main text and (1) in
the supplementary material, the maximum value of ub is
obtained when λi,0 = 1, giving:

ub =
2ciri
fi

.

2) if j �= 0, referring to (9) in the main text and (2) in
the supplementary material, the maximum value of ub is
reached when λi,j = 1, resulting in:

ub =
2ri
Ri.j

+
2ci
(
1− λ̇i,j

)2
ri

fi,j
+

2λ̇2
i,jri

Rdc

+ λ̇i,jd+ λ̇i,jtdc.

B. Optimal Response for ESs

In this section, we outline the algorithms designed to de-
termine the optimal response for ESs. The goal for each ES,
denoted as ESj , is to determine both the offloading decision
λ̇j = (λ̇1,j , λ̇2,j , . . . , λ̇n,j) and the resource allocation scheme
f j = (f1,j , f2,j , . . . , fn,j) in such a way that the average re-
sponse latency Tj is minimized. This optimization problem is
subject to the constraint

∑n
i=1 fi,j ≤ Fj , where Fj represents

the total available resources at ESj . Each of these subproblems
can be viewed as a convex optimization problem and is solv-
able through the Karush-Kuhn-Tucker (KKT) conditions for all
1 ≤ j ≤ k.

1) Solving for the Resource Allocation Subgame (fj): For
Subgame(f j), we express the constraint

∑n
i=1 fi,j ≤ Fj as

a function g(f1,j , f2,j , . . . , fn,j) =
∑n

i=1 fi,j − Fj . The La-
grange function is then constructed as follows:

L = Tj(f1,j , f2,j , . . . , fn,j) + ϕ2g(f1,j , f2,j , . . . , fn,j), (10)
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Algorithm 2: Search ϕ1 and λi.

Input: λ̇i,j , bi,j , Pi,j , hi,j , fi,j , for all 1 ≤ j ≤ k, ri, ci, fi,
N0, d, tdc, and Rdc.

Output: ϕ1 and λi,0, λi,1, λi,2, . . . , λi,k.
1: Initialize the range of ϕ1 to [Smin, Smax];
2: while Smax − Smin ≥ ε do
3: ϕ1 ← (Smax + Smin)/2;
4: for j ∈ [0, k] do
5: Search λi,j using Algorithm 1;
6: end for
7: if λi,0 +

∑k
j=1 λi,j < 1 then

8: Smin ← (Smax + Smin)/2;
9: else

10: Smax ← (Smax + Smin)/2;
11: end if
12: end while ;
13: ϕ1 ← (Smax + Smin)/2;
14: for j ∈ [0, k] do
15: Search λi,j using Algorithm 1;
16: end for
17: return λi,0, λi,1, λi,2, . . . , λi,k and ϕ1.

where ϕ2 is a Lagrange multiplier. Now, we have

∂L

∂fi,j
=

∂Tj

∂fi,j
+ ϕ2

∂g

∂fi,j
= 0. (11)

By applying the KKT conditions, we derive the following sys-
tem: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂Tj

∂fi,j
+ ϕ2

∂g
∂fi,j

= 0, 1 ≤ j ≤ k, (a)

ϕ2g(f1,j , f2,j , . . . , fn,j) = 0, (b)

g(f1,j , f2,j , . . . , fn,j) ≤ 0, (c)

ϕ2 ≥ 0. (d)

(12)

By observing (12)(b)∼(12)(d), the following relationship be-
tween ϕ2 and g(f1,j , f2,j , . . . , fn,j) can be obtained:{

ϕ2 = 0, g(f1,j , f2,j , . . . , fn,j) < 0,

ϕ2 > 0, g(f1,j , f2,j , . . . , fn,j) = 0.
(13)

However, if ϕ2 = 0, (11) can be rewritten as

∂L

∂fi,j
=

∂Tj

∂fi,j
= 0, (14)

which implies that the equation becomes directly constant and
unsolvable. Therefore, ϕ2 > 0 and g(f1,j , f2,j , . . . , fn,j) = 0
must hold. Then, (12) can be rewritten as⎧⎪⎨

⎪⎩
∂Tj

∂fi,j
+ ϕ2

∂g
∂fi,j

= 0, 1 ≤ j ≤ k,

g(f1,j , f2,j , . . . , fn,j) = 0,

ϕ2 > 0.

(15)

Next, as shown in Fig. 4, we observe that −(∂Tj/∂fi,j) is
a decreasing function of fi,j for a given ϕ2. Leveraging this
observation, we can employ Algorithm 3 to find the value of
fi,j that satisfies −(∂Tj/∂fi,j) = ϕ2 within a search interval
(the Smin and Smax in line 1 are 0 and Fj respectively).

Fig. 4. Image of -(∂Tj/∂fi,j ) varying with fi,j .

Fig. 5. Image of fi,j varying with ϕ2.

Finally, as demonstrated in Fig. 5, we observe that fi,j is
a decreasing function of ϕ2. Consequently, the sum f1,j +
f2,j + · · ·+ fn,j also decreases as ϕ2 increases. To determine
the values of ϕ2 and f1,j , f2,j , . . . , fn,j , we employ the bi-
section method, as outlined in Algorithm 4. This ensures that
−(∂Tj/∂fi,j) = ϕ2 and that

∑n
i=1 fi,j ≤ Fj are satisfied si-

multaneously (lines 2-12). In line 1 of Algorithm 4, the initial
search range for ϕ2 is [Smin = 0, Smax = ub′]. As discussed
previously, when fi,j is sufficiently small, the upper bound ub′

becomes significantly large. The upper bound ub′ is given by the
following expression:

ub′ =
ci
(
1− λ̇i,j

)2
λ2
i,jri

2∑n
i=1 λi,jri

.

2) Solving for the Offloading Decision Subgame (λ̇j): For
Subgame(λ̇j), the goal for each ESj is to determine the value
of λ̇i,j such that ∂Tj/∂λ̇i,j = 0. As demonstrated in Fig. 6,
∂Tj/∂λ̇i,j is an increasing function of λ̇i,j . Therefore, we pro-
pose Algorithm 5, which employs the bisection method to search
for the optimal λ̇i,j within the predefined interval, where the
initial bounds (Smin and Smax) are set to 0 and 1, respectively
(line 1).

3) Iterative Algorithm for Resource Allocation and
Offloading Decision: For Game(λ̇j, fj), the offloading
decisions λ̇j and resource allocation strategies f j collectively

Authorized licensed use limited to: Yunnan University. Downloaded on March 20,2025 at 14:54:38 UTC from IEEE Xplore.  Restrictions apply. 



420 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 13, NO. 1, JANUARY-MARCH 2025

Algorithm 3: Search fi,j .

Input: λi,j , λ̇i,j ri, and ci, for all 1 ≤ i ≤ n, ϕ2.
Output: fi,j .
1: Initialize the range of fi,j to [Smin, Smax];
2: while Smax − Smin ≥ ε do
3: fi,j ← (Smax + Smin)/2;
4: Calculate −(∂Tj/∂fi,j) (readers may refer to the

supplementary material for details, as shown in (9));
5: if −(∂Tj/∂fi,j) < ϕ2 then
6: Smax ← (Smax + Smin)/2;
7: else
8: Smin ← (Smax + Smin)/2;
9: end if
10: end while ;
11: fi,j ← (Smax + Smin)/2;
12: return fi,j .

Algorithm 4: Search ϕ2 and f j .

Input: λi,j , λ̇i,j , ci, and ri, for all 1 ≤ i ≤ n.
Output: ϕ2 and f1,j , f2,j , . . . , fn,j .
1: Initialize the range of ϕ2 to [Smin, Smax];
2: while Smax − Smin ≥ ε do
3: ϕ2 ← (Smax + Smin)/2;
4: for i ∈ [1, n] do
5: Search fi,j by using Algorithm 3;
6: end for ;
7: if (f1,j + f2,j + · · ·+ fn,j < Fj) then
8: Smax ← (Smax + Smin)/2;
9: else
10: Smin ← (Smax + Smin)/2;
11: end if
12: end while ;
13: ϕ2 ← (Smax + Smin)/2;
14: for i ∈ [1, n] do
15: Search fi,j by using Algorithm 3;
16: end for ;
17: return ϕ2 and f1,j , f2,j , . . . , fn,j .

determine the optimal responses for ESj . We introduce an
iterative algorithm (Algorithm 6) to compute these optimal
responses. The algorithm begins by initializing the action
profile z = (z1, z2, . . . ,zk), where each zj consists of
the offloading decisions and resource allocation variables,
zj = (λ̇1,j , λ̇2,j , . . . , λ̇n,j , f1,j , f2,j , . . . , fn,j) (line 1). Each
ES then uses Algorithms 3–5 to determine its optimal response,
given the current state (lines 3–4).

The algorithm concludes when the difference between action
profiles from two consecutive iterations is less than a predefined
threshold (lines 7–12). The termination condition is:

‖z′ − z‖=
√∑k

j=1

∑n

i=1

∣∣f ′i,j − fi,j
∣∣2+∣∣λ̇′i,j − λ̇i,j

∣∣2 < δ,

where δ is the accuracy requirement (set to 10−5). Upon con-
vergence, the action profile z∗ = (z∗1, z

∗
2, . . . ,z

∗
k) is identified

Fig. 6. Image of ∂Tj/∂λ̇i,j varying with λ̇i,j .

Algorithm 5: Search λ̇j .

Input: λi,j , ci, ri, fi,j , for all 1 ≤ i ≤ n, Rdc, d, and tdc.
Output: λ̇1,j , λ̇2,j , . . . , λ̇n,j .
1: for i ∈ [1, n] do
2: Initialize the range of λ̇i,j to [Smin, Smax];
3: while Smax − Smin ≥ ε do
4: λ̇i,j ← (Smax + Smin)/2;
5: Calculate ∂Tj/∂λ̇i,j (readers may refer to the

supplementary material for details, as shown in (6));
6: if ∂Tj/λ̇i,j < 0 then
7: Smin ← (Smax + Smin)/2;
8: else
9: Smax ← (Smax + Smin)/2;
10: end if
11: end while ;
12: λ̇i,j ← (Smax + Smin)/2;
13: end for ;
14: return λ̇1,j , λ̇2,j , . . . , λ̇n,j .

as the Nash equilibrium. At this equilibrium point, no ES can
improve its outcome by unilaterally deviating from its strategy,
provided that all other ESs adhere to their respective strategies.

C. An Iterative Algorithm for Nash Equilibrium

In the previous subsections, we introduced algorithms for
determining the optimal responses of MDs and ESs separately.
This section presents an iterative algorithm that enables both
layers of non-cooperative games within the MECC environment
to converge simultaneously to a Nash equilibrium.

In Algorithm 7, we begin by initializing the action profile
e = (λ1,λ2, . . . ,λn, z1, z2, . . . ,zk). Each MD utilizes Algo-
rithms 1–2 to identify its optimal response in each iteration (lines
3-5). Similarly, each ES applies Algorithm 6 to determine its
optimal strategy (line 6). The algorithm proceeds iterative until
the action profiles from two consecutive rounds converge within
a predefined threshold (lines 7-12). The termination criterion,
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Algorithm 6: Calculate the Nash Equilibrium of the
Game(λ̇j, fj).

Input: λi,j , λ̇i,j , fi,j , ri and ci, for all 1 ≤ i ≤ n, 1 ≤ j ≤
k, Rdc, tdc, and d.

Output: The Nash equilibrium z∗ = (z∗1, z
∗
2, . . . ,z

∗
k).

1: Initialize z = (z1, z2, . . . ,zk);
2: repeat
3: for j ∈ [1, k] do
4: Search zj

′ by using Algorithms 3–5;
5: end for ;
6: z′ ← (z1

′, z2′, . . . ,zk′);
7: if ‖z′ − z‖ < δ then
8: z∗ ← z′;
9: returnz∗;

10: else
11: z ← z′;
12: end if
13: forever.

Algorithm 7: Calculate the Nash Equilibrium.

Input: λi,j , fi,j , λ̇i,j , bi,j , Pi,j , hi,j , ri, fi, ci and Ni,
for all 1 ≤ i ≤ n and 1 ≤ j ≤ k, Rdc, tdc, and d.

Output: The Nash equilibrium e∗=(λ1
∗, λ2

∗, . . . , λn
∗,

z∗1, z∗2, . . . , z∗k).
1: Initialize e = (λ1,λ2, . . . ,λn, z1, z2, . . . ,zk);
2: repeat
3: for i ∈ [1, n] do
4: Search λi

′ by using Algorithms 1–2;
5: end for ;
6: Search z1

′, z2′, . . . ,zk′ by using Algorithm 6;
7: e′ ← (λ1

′,λ2
′, . . . ,λn

′, z1′, z2′, . . . ,zk′);
8: if ‖e′ − e‖ < δ then
9: e∗ ← e′;

10: return e∗;
11: else
12: e← e′;
13: end if
14: forever.

presented in line 8, is:

‖e′ − e‖ =
√∑n

i=1

∑k

j=0
|λi,j

′ − λi,j |2

+

k∑
j=1

n∑
i=1

(
∣∣f ′i,j − fi,j

∣∣2 + ∣∣λ̇′i,j − λ̇i,j

∣∣2) < δ.

The final result is the converged action profile, denoted as
e∗ = (λ1

∗,λ2
∗, . . . ,λn

∗, z∗1, z
∗
2, . . . ,z

∗
k), which corresponds

to the Nash equilibrium. It is important to note that at this
equilibrium, no player can gain any advantage by unilaterally
deviating from e∗i , assuming all other players remain at their
equilibrium strategies.

VI. NUMERICAL EXAMPLES AND DATA

In this section, we conduct extensive experiments, including
comparative experiments, to analyze numerical examples and
present our performance data.

A. Numerical Examples

In this section, to validate the reliability of the aforementioned
series of algorithms, we conduct experiments to demonstrate and
analyze the numerical results of our algorithms.

We consider a MECC environment consisting of n = 5
MDs, k = 3 ESs and a single DC. The parameters are
set as follows: ri = 8.0 + 0.1(i− 1) Mb, ci = 100 + 10(i−
1) cycles/bit, fi = 80 + 20(i− 1) MHz, Ni = 0.1(i− 1)−
174 dBm/Hz, Bj = 10.0 + 2(j − 1) MHz, Rdc = 50 Mbps,
d = 1.0 s, tdc = 0.1 s, λi,j = 0.25 + 0.005(i+ j), λi,0 = 1−∑k

j=1 λi,j , Pi,j = 7.0 + 0.5(i− 1) + (j − 1) Watts, hi,j =
−32 + 0.5(i− 1) + (j − 1) dBm, bi,j = Bj/n MHz, fi,j =
Fj/n MHz, λ̇i,j = 0.05 + 0.05(i+ j), for all 1 ≤ i ≤ n and
1 ≤ j ≤ k.

Next, we present the Nash equilibrium results for comput-
ing resources Fj = 1000 + 500(j − 1) MHz and Fj = 2000 +
500(j − 1) MHz of ESj in Tables I and II, respectively. This
corresponds to a scenario where all ESs have relatively limited or
abundant computing resources for MDs. Specifically, we show
the results of Nash equilibrium, the average response latency ti
of the tasks on MDi, and the average response latency Tj of all
tasks on ESj . According to our numerical data, we can conclude
the main observations as follows:
� For a mobile device, i.e., MD1,MD2, . . . ,MDn, prefer to

offload computational tasks to the ES with more computing
resources. Such as the fifth column λ∗i,3 in Tables I and II,
it is always larger than its first two columns.

� For an edge server with relatively limited computing re-
sources, they are more willing to offload tasks to the DC
for execution. As shown the tenth column λ̇∗i,1 in Tables I
and II, it offloads more data. Due to the location of the
DC is far from MDs, this has resulted in high latency and
low quality of service issues, leading to a higher average
response latency.

B. Performance Data

In this section, we present the performance data for the
four games in detail. We consider a MECC environment with
n = 10 MDs, k = 5 ESs, and a single DC. The initial pa-
rameter settings are as follows: ri = 10.0 + 0.1(i− 1) Mb,
ci = 100 + 10(i− 1) cycles/bit, fi = 100 + 25(i− 1) MHz,
Ni = 0.1(i− 1)− 174 dBm/Hz, Bj = 15.0 + 2(j − 1) MHz,
Fj = 1500 + 500(j − 1) MHz, Rdc = 50 Mbps, d = 1.0 s,
tdc = 0.1 s, λi,j = 0.01 + 0.01(i+ j), λi,0 = 1−∑k

j=1 λi,j ,
Pi,j = 7.0 + 0.5(i+ j) Watts, hi,j = −32 + 0.5(i+ j) dBm,
bi,j = Bj/n MHz, fi,j = Fj/n MHz, λ̇i,j = 1.0− 0.06(i+
j), for all 1 ≤ i ≤ n and 1 ≤ j ≤ k. For readability and compar-
ison, the initial parameters and performance data are presented
in Table III.
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TABLE I
NUMERIC RESULTS FOR THE NASH EQUILIBRIUM OF n = 5 MDS, k = 3 ESS, AND A DC

TABLE II
NUMERIC RESULTS FOR THE NASH EQUILIBRIUM OF n = 5 MDS, k = 3 ESS, AND A DC

1) Game(λi): Through our experiments, we present the per-
formance data for Game(λi) in Table IV. Compared to the
initial parameters in Table III, it becomes evident that all MDs
prefer to offload tasks to ESs, resulting in a marked reduction
in their average response latency. For instance, the average task
response latency for MD1 is initially t1 = 5.91245. After apply-
ing Algorithms 1 and 2, this latency is reduced to 1.86653. This
demonstrates that, compared to the random offloading scheme,
our proposed offloading algorithm achieves a 68.43% reduction
in average response latency.

2) Subgame(fj): Table V presents the performance data for
Subgame(fj). Compared to the initial parameters in Table III,
it is clear that all ESs adjust their resource allocation schemes.
For MDs with lower computation offloading demands, fewer
resources are allocated, whereas MDs with higher demands re-
ceive more resources. This optimal utilization of computational
resources leads to a substantial decrease in average response
latency. For example, the average response latency for ES1

is T1 = 1.44425 under the initial resource allocation scheme.
Following the application of Algorithms 3 and 4, T1 is reduced
to 1.32665. This indicates that, compared to the random resource
allocation scheme, our proposed algorithm achieves an 8.14%
reduction in average response latency.

3) Subgame(λ̇j): Table VI details the performance data for
Subgame(λ̇j). Compared to the initial parameters in Table III,
it is evident that all ESs decrease their computation offloading,
leading to a noticeable reduction in average response latency. For
instance, the average response latency for ES2 is initially T2 =
1.40313. After applying Algorithm 5, T2 decreases to 1.23530.
This finding reveals that, compared to the random offloading
scheme, our proposed offloading algorithm reduces the average
response latency by 11.96%.

4) Game(λ̇j, fj): We provide the performance data for
Game(λ̇j, fj) in Table VII. Compared to the initial parameters
in Table III, it becomes apparent that all ESs optimize their
resource allocation and refrain from computation offloading,

leading to a significant reduction in average response latency.
For example, the average task response latency for ES1 is
T1 = 1.44425 under the initial offloading and resource alloca-
tion strategy. Following the optimization in Game(λ̇j, fj), T1

is reduced to 1.25125. This indicates that, compared to the ran-
dom offloading and resource allocation schemes, our proposed
joint computation offloading and resource allocation algorithm
achieves a 13.36% reduction in average response latency.

5) Numerical Results of the Nash Equilibrium: Table VIII
presents the numerical results of the Nash equilibrium in the
MECC environment discussed in this section. Compared to
the initial parameters in Table III, it is evident that all MDs
optimize their computation offloading strategies, while all ESs
fine-tune both their resource allocation and computation offload-
ing strategies. MDs are inclined to offload computational tasks
to ESs with superior computing resources, thereby minimizing
their average task response latency, while ESs strategically
allocate their resources to enhance service quality and attract
a greater number of MDs. The attainment of Nash equilibrium
indicates that neither the MDs nor the ESs can further improve
their payoffs by unilaterally changing their strategies. At this
equilibrium point, the objectives of all MDs and ESs are fully
optimized, resulting in a significant reduction in average task
response latency. For instance, the average task response latency
for MD1 is initially t1 = 5.91245. After applying the proposed
algorithm, this latency is reduced to 1.49754, representing a
74.67% reduction compared to the random offloading scheme.

C. Comparison Experiments

A comparative analysis with other algorithms, including the
Random Offloading Scheme (ROS), Particle Swarm Optimiza-
tion (PSO), Beetle Antennae Search (BAS), and Multi-agent
Proximal Policy Optimization (MAPPO) algorithms, was con-
ducted to further demonstrate the effectiveness of our proposed
solution.
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TABLE III
PARAMETERS OF A MECC ENVIRONMENT WITH n = 10 MDS, k = 5 ESS, AND A SINGLE DC

Random Offloading Scheme: In this scheme, the computation
offloading decisions for all MDs are made at random, while
ensuring that the specified constraints are satisfied. Similarly,
the resource allocation scheme and computation offloading de-
cisions for all ESs are also randomly selected, subject to the
constraints. To evaluate performance, we conducted 100 random
trials and selected the best outcome for comparison.

Particle Swarm Optimization: PSO is a metaheuristic algo-
rithm that simulates the search and iteration process of particles
in the solution space to solve optimization problems. In our
research, the decision sets of all MDs and ESs in the current
environment are treated as particles. We set the number of
iterations toK = 500 and the number of particles in the swarm to
N = 2000. The social coefficient is set as cg = 0.5, the cognitive
coefficient as cp = 0.5, and the inertia weight as ω = 0.5.

Beetle Antennae Search: BAS is a bio-inspired optimization
method that mimics the foraging process of beetles using their
antennae to locate the global optimum. In this research, the
model state is initialized as the centroid coordinates of the beetle.
The distance between the antennae is set to d0 = 2, the initial
search step to step= 0.005, and the step adjustment ratio to c=
0.99. Additionally, the number of iterations is set to K = 10000.

Multi-Agent Proximal Policy Optimization: MAPPO is a
multi-agent reinforcement learning approach. We formulate
the joint optimization problem as a Markov Decision Process
(MDP) under the constraints of computation offloading ratios
and available resources. This approach comprises three main
components:

1) State Space: The state space includes the offloading
decisions of all MDs, the offloading decisions and resource
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TABLE IV
PERFORMANCE DATA OF GAME(λi)

TABLE V
PERFORMANCE DATA OF SUBGAME(fj )

TABLE VI
PERFORMANCE DATA OF SUBGAME(λ̇j )
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TABLE VII
PERFORMANCE DATA OF GAME(λ̇j ,fj )

TABLE VIII
NUMERIC RESULTS FOR THE NASH EQUILIBRIUM

Fig. 7. MAPPO convergence performance analysis.

allocations of all ESs, the state of the DC as observed by each
agent, and the rewards of other agents excluding the one in
consideration within the current environment.

2) Action Space: We categorize all agents into three types,
totaling 20 agents, each associated with a distinct action space.
The first type of agent has a continuous action space representing
the MD’s computation offloading decision. The second type of
agent has a discrete action space representing the ES’s resource
allocation scheme. The third type of agent has a continuous
action space representing the ES’s computation offloading de-
cision.

3) Reward Function: The reward for each type of agent is
defined as the negative value of the average response delay it
incurs. For the first type of agent, the reward is defined as Ri =
−ti for all 1 ≤ i ≤ n, i.e.,

Ri =

{−ti, if λi,0 +
∑k

j=1 λi,j = 1;

−103, otherwise.
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Fig. 8. Comparative analysis of average response latency across various algorithms.

TABLE IX
HYPERPARAMETERS IN MAPPO

For the second type of agent, the reward is defined as Rj =
−Tj , for all 1 ≤ j ≤ k, i.e.,

Rj =

{−Tj , if
∑n

i=1 fi,j ≤ Fj ;
−103, otherwise.

For the third type of agent, the reward function is similarly
defined as Rj = −Tj , for all 1 ≤ j ≤ k. Additionally, Table IX
lists the hyperparameter settings, and Fig. 7 illustrates the con-
vergence performance.

To maintain consistency in the comparative analysis, we use
the same parameters as those listed in Table III. Fig. 8 presents
the corresponding experimental results, where the x-axis de-
notes the MDs and ESs, and the y-axis represents their respective
average response latency. The results clearly demonstrate that
our proposed method outperforms the other four algorithms.
Notably, the random offloading scheme exhibits the poorest per-
formance, indicating its unsuitability for the MECC environment
discussed in this paper. While the MAPPO and PSO algorithms
offer some advantages, they fail to deliver optimal performance
across all MDs and ESs. The novel BAS algorithm, despite its

advancements, also falls short of surpassing our approach. For
instance, considering MD5, the average response latency is t5
= 3.34898 using the ROS algorithm, t5 = 2.54801 using the
PSO algorithm, t5 = 2.89755 using the MAPPO algorithm, t5
= 1.83789 using the BAS algorithm, and t5 = 1.49992 using
our proposed algorithm. These results highlight that, in com-
parison with the other four algorithms, our method consistently
delivers the most optimal and effective performance, achieving
the best response latency for all MDs and ESs across various
scenarios.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel two-layer game framework
within the MECC environment to address the challenges of
multi-user, multi-server computation offloading and resource
allocation. Our framework thoroughly examines the intricate in-
teractions between MDs competing for computational resources
and ESs strategically allocating their resources to optimize per-
formance.

We developed a set of algorithms that define optimal re-
sponses for MDs and ESs and presented an iterative algorithm
that ensures both layers converge to a Nash equilibrium. Our
experimental results demonstrate the robustness and efficacy of
these algorithms, effectively improving system performance in
complex, real-world, multi-vendor MECC environments. This
framework expands on the current understanding of competi-
tive interactions in MECC environments and provides practical
solutions for enhancing computation offloading and resource
allocation, offering a comprehensive way to manage tasks across
multiple ESs while accounting for the diverse objectives of MDs
and ESs. This framework offers a novel approach by integrating
the competitive dynamics of MDs and ESs.
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Despite these contributions, several areas remain for future
exploration. Specifically, the allocation of channel bandwidth
and the spatial separation between MDs and ESs were not
addressed in this study, though they significantly influence task
offloading decisions and could impact the performance out-
comes. Furthermore, we did not account for the interactions
among multiple cloud service providers, which is an emerging
area of interest in MECC research. Understanding how different
cloud providers compete and collaborate will be essential in
future MECC frameworks. Additionally, future research will
explore the incorporation of service pricing mechanisms into
the resource allocation model. This enhancement will enable
the exploration of how ESs can balance energy efficiency and
profitability in multi-provider MECC environments, offering a
more holistic framework for managing costs and attracting users.
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