Checksum calculation

Checksum of a block of data is the complement of the one's complement of the 16-bit sum of the block. If checksum is included in the block of data, the new block of data will have its checksum zero. This is how checksum is used for error detection in datagram transmissions.

As an example, consider a block of data:

0x23fb 0x34c0 0xa090 0xbcaf 0xfc05

Sum 0x2b1ff. To calculate 16-bit 1's complement sum, the excess digit 2 needs to be added back to the least significant 16 bits:

0xb1ff+

2

0xb201

The complement of this is 0x4dfe. This is the checksum of the block of data. Note that checksum(checksum+data)=0. So, if we transmit the block of data including the checksum field, the receiver should see a checksum of 0 if there are no bit errors.

UDP checksum is optional. It is calculated over the header and data, after attaching a pseudo-header consisting of source and destination IPs and the Protocol field (0x11) plus the total length field.

Example:

UDP datagram plus IP header:

```
4500 004a 6581 4000 4011 6eca c0a8 0065
44a8 60a2 8206 0035 0036 XXX 79d0 0100
0001 0000 0000 0000 0331 3135 0331 3031
0331 3938 0331 3332 0769 6e2d 6164 6472
0461 7270 6100 000c 0001
```

Pseudo Header

```
c0a8 0065
44a8 60a2
0011 0036 0x1669E
```

UDP Datagram

```
8206 0035
0036 0000
79d0 0100
```

```
0001 0000
            0000 0000 0xFD42
            0331 3135
            0331 3031
            0331 3938
            0331 3332
            0769 6e2d 0x1502A
            6164 6472
            0461 7270
            6100 000c
            0001
                      0x19DB4
                      0x551BE
So, the 1's complement sum is
            0x51BE+
                   5
```

0x51C3 ----> 1's complement of this is

0xAE3C, the checksum.