Principles of TCP congestion control

There are a huge number of issues related to TCP congestion control. In this course we
focus only on the most basic aspects of congestion control.

First, notice that Congestion Control and Flow Control are different aspects of TCP data
transfer. Flow control refers to limiting data sent, so as not to overwhelm the capacity of
the receiving host. Congestion control, on the other hand, is related to changes in the
intervening network parameters such as ambient data traffic, router capacities and
physical link properties.

Secondly, congestion control is not part of core TCP specifications. Accordingly, TCP
implementations handle congestion in different ways. TCPs are not even required to have
congestion control algorithms implemented.

What is congestion?

When the transmission rate out of a router is lower than the incoming data rate, bits get
queued up in the router buffers. When the buffer get full, all further incoming packets are
dropped by the router TCP - in this case no error messages are sent to the originator of
the datagram. The sender will have to realize this drop event, and retransmit the dropped
packet. This retransmission should be at a rate that does not further overwhelm the
congested routers.

There are many complicating factors in congestion-control. For example, if a packet is
dropped due to a checksum error, how can it not be confused with a drop due to
congestion? Let us set these aside for the time being.

So the principal issues are
«  How to detect congestion
«  How to respond to congestion

There are network-assisted congestion detection mechanisms and end-to-end congestion
detection mechanisms. TCP uses end-to-end congestion detection. This means that TCP
senses congestion based on how segments and ACKs received at the end points of the
link.



There are no fool-proof way to detect congestion without help from the network. So TCP
resorts to ad-hoc methods which works most of the time.
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The main TCP congestion control mechanism is based on a parameter called Congestion
Window, cwind. This parameter determines the rate at which TCP sends data out. The
amount of unacknowledged data in the network, (LastByteSent-LastByteAcked), is
supposed to be lass than the cwind and the RecvWindow (receive window at the
receiver).

(LastByteSent-LastByteAcked) < min{cwind,RecvWindow}

In practice the receive windows are quite large, so that in effect, we can say that
(LastByteSent-LastByteAcked) < cwind

In the beginning of a send cycle, a sender can send up to 1 cwind bytes of data, which is
cwind

RTT
bytes/sec. Thus reducing or enlarging cwind generally decreases or increases the sending

acknowledged in 1 RTT (Round Trip Time). Thus the average send rate is

rate at the sender. The basic idea behind congestion control is to reduce the sending rate,

by reducing the cwind value, when a loss event occurs.

There are a few well-known algorithms generally used for handling congestion. We will
look at each of these in turn. Many modifications of these mechanisms have been
proposed, but we consider the most-often implemented ones.

AIMD(Additive Increase Multiplicative Decrease). TCP starts by setting its cwind to
conservative values (such as 1 MSS), and if it perceives no congestion, linearly increases

the cwind value, thereby increasing the send rate. When a loss event is perceived, via
timeout or multiple duplicate ACKs), the cwind is cut into half the current value,
repeating the cycle again.
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TCP Slow Start. In the above scheme(AIMD), during the linear increase phase of the
cwind, there may be higher bandwidth available which is not being used. An alternative

mechanism proposes starting with very low sending rate (slow start), then rapid
(exponential) increasing in the sending rate till congestion is detected. Specifically, TCP
starts by setting cwind to 1 and sending 1 segment of size 1 MSS into the network. When
an ACK of this is received, the cwind is increased by 1 MSS (to a value of 2 MSS) and
sends 2 MSS bytes. If these two are ACKed before a loss event, the cwind is increased by
2 MSS (to a value of 4 MSS) and four segments are sent. Thus the sending rate is rapidly
(exponentially) increased till a loss occurs.

When a loss event occurs, TCPs can react in many different ways. One scheme is as
follows:
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Since the congestion is likely more severe, as
nothing seems to get through, drastically reduce
cwind to 1 MSS, and do slow start.

Cut cwind to 2 the current
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Since some segments are getting
through, generating the ACKS, we only
halve the sending rate.

Implementation.
The implementation of this algorithm is done with another parameter, called Slow Start
Threshold, ssthreshold. The idea is that when cwind is below ssthreshold, sender is in

slow-start phase, and the cwind can grow exponentially. When the cwind is above



ssthreshold, sender is in congestion-avoidance, and cwind grows linearly.

Initially ssthreshold is set to a reasonably high value. When a loss event due to three
duplicate ACKSs occurs, ssthreshold is set to V2 the current cwind value, cwind is then set
to ssthreshold and TCP goes into congestion-avoidance (linear increase of send rate)
phase. When a loss event due to timeout occurs ssthreshold is set to ¥2 the current cwind
value, cwind is then set to 1 MSS

Evolution of Congestion Control algorithms for TCP

The earliest Congestion algorithm implemented in 4.3 BSD', called TCP Tahoe,
incorporates most of the mechanisms discussed above. In particular TCP Tahoe cuts the
cwind to 1 MSS when any type of congestion is sensed, followed by slow start, till cwind
reaches ssthreshold, and then does congestion-avoidance till next loss event. The figure
below graphically shows the behavior of TCP Tahoe.
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1 See http://www.oreilly.com/catalog/opensources/book/kirkmck.html for a history of Berkeley UNIX

and BSD. Also see http://www.levenez.com/unix/history.html for a more complete UNIX history.
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4.3 BSD, 1990, called TCP Reno, implements a Fast re-transmit/Fast recovery
algorithm described in RFC2581. If three duplicate ACKs are received (that means 4
consecutive identical ACK #s received), signaling a lost packet but probably less severe

network congestion, TCP retransmits the packet even before retransmission timeout is
reached. This is called fast re-transmit. Then, instead of setting cwind to 1 MSS as in

TCP Tahoe, it is set to ¥2 the cwind value at which loss event occurred, and congestion

avoidance takes over.
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TCP Reno cancels TCP Tahoe's slow-start
phase when a triple duplicate ACK loss event
occurs - this is because the receipt of ACKs
show that some packets are getting through,
so congestion is perhaps not so severe.

This canceling of slow-start phase is called
Fast Recovery

Transmission round - time

A variation on TCP Reno, called NewReno is described in RFC2582.

The next figure summarizes various TCP flavors.
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