
Cyclic Redundancy Check (CRC)
A powerful way to detect errors in transmission is by attaching a fixed number of
digits to the lower (in terms of significance) end of the data. These bits are the Cyclic
Redundancy Check (CRC) bits.

The well-known concept of integer division forms the basis for the use of CRCs. When
a dividend is divided by a divisor, a quotient and a remainder (which may be 0) result.
If the remainder is subtracted from the dividend and this is divided by the divisor, the
remainder is always zero. e.g. when 723 is divided by 5, the remainder is 3. If the
dividend (723) and the remainder (3) are transmitted from a source to a target, the
integrity of the transmission can be verified at the target by recomputing the remainder
and verifying that the remainder matches the transmitted remainder. Alternatively, the
target could divide the difference between the transmitted dividend and remainder and
expect to see a zero remainder if there were no errors.

The concept of integer division can also be applied to division of polynomials. (An
intuitive way to understand this is by considering that the digits which make up an
integer can be considered the coefficients of a polynomial in base 10 e.g. 723 = 7*102

+ 2* 101 + 3*100.). A binary bitstream (which is a pattern of 1s and 0s) can be
considered to represent the coefficients of a (dividend) polynomial. When this
polynomial is divided by a generator (divisor) polynomial (which is another binary
bitstream) a remainder polynomial (CRC) will result. The arithmetic is especially
simplified if 1 and 0 are considered to be elements of a finite field (the Galois field of
order 2 or GF(2)) . The arithmetic is sometimes referred to as modulo 2 arithmetic. For
the purposes of CRC computation, it is sufficient to understand that addition and
subtraction in this field reduce to simple XOR operations.

To clarify the ideas behind the CRC method of error checking a block of data, let us
focus on a specific case.

Consider a block of data, say, D=1010111010101. Suppose that a 5-bit CRC field ,
say R, will be attached to this. Both the transmitter and the receiver should agree that
the lower 5 bits are CRC bits. They further have to agree on a 4th degree polynomial
called the "Generator", G, that is used in computing CRC bits.

Figure 1: CRC Codes

CRC calculations are done in modulo 2 arithmetic, without carries in addition and
borrows in subtraction. This means that addition and subtraction are identical, and
both are equivalent to the bitwise exclusive or, XOR, of the operands.

10101010111001
Data (D)

- - - - -
CRC-bits (R)

 transmitted data

For example,

11001 XOR 01011 = 10010
11001 + 01011 = 10010
11001 - 01011 = 10010

10010 XOR 01011 = 11001

Notice that if A XOR B = C, then A= C XOR B.

Remember that a left shift by 5, of binary data D, makes it D.25. Then the transmitted
data can be represented as D.25 XOR R.

In general, we may suppose that there are d bits of data D to be transmitted and we
use a r-digit CRC filed, R. So d+r bits are transmitted, represented mathematically by
D. 2r XOR R.

How do we choose the r bits of R? If the transmitter and receiver agrees on an r+1 bit
pattern, G, then the r bits could be the remainder when D. 2r is divided by G. The most
significant digit of G is assumed to be 1. To see this, suppose that we must choose the
r bits of R so that the transmitted bits, D. 2r XOR R, is divisible by G. This means that

D. 2r XOR R= n G
where n is a (binary) integer. It follows that

 D. 2r = nG XOR R
This implies that if D. 2r is divided by G, the remainder is R. So, in other words, we can
calculate the r bits of R as:

R=Remainder D.2r

G

The calculations are done with modulo-2 arithmetic using XOR operations. In this
context, to divide 110001 by 111, we simply apply the bit-wise
exclusive-OR operation repeatedly as follows

 1011

 111 |110001
 111

 0010
 000

 0100
 111

 0111
 111

 000

This is exactly like ordinary long division, only simpler, because
at each stage we just need to check whether the leading bit of the

current three bits is 0 or 1. If it's 0, we place a 0 in the quotient and XOR the current
bits with 000. If it's 1, we place a 1 in the quotient and XOR the current bits with the
divisor, which in this case is 111. As can be seen, the result of dividing 110001 by
111 is 1011, leaving a remainder of 000.

Two frequently-used generator polynomials are 16 and 32 bits long. The polynomial
x16+x12+x5+1 or, in binary form, 10001000000100001, is known as the "X25
standard" . The polynomial
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1
is called the CRC-32 or "Ethernet standard" .

If we assume that any corruption of data affects the transmitted string in a completely
random way, i.e., such that the corrupted string is totally uncorrelated with the original
string, then the probability of a corrupted string going undetected is 1/(2^n), with an
n-bit CRC field. Thus, a 16-bit CRC has a probability of 1/(2^16) = 1.5x10-5 of failing
to detect an error in the data, and a 32-bit CRC has a probability of 1/(2^32), which is
about 2.3x10-10 (less than one in a billion).

The next page shows a sample CRC calculation.

	CRC.pdf
	Cyclic Redundancy Check (CRC)

	CRCSampleCalculation.pdf

