
Cyclic Redundancy Check (CRC)
A powerful way to detect errors in transmission  is by attaching a fixed number of 
digits to the lower (in terms of significance) end of the data. These bits are the Cyclic 
Redundancy Check (CRC) bits.

The well-known concept of integer division forms the basis for the use of CRCs. When 
a dividend is divided by a divisor, a quotient and a remainder (which may be 0) result. 
If the remainder is subtracted from the dividend and this is divided by the divisor, the 
remainder is always zero. e.g. when 723 is divided by 5, the remainder is 3. If the 
dividend (723) and the remainder (3) are transmitted from a source to a target, the 
integrity of the transmission can be verified at the target by recomputing the remainder 
and verifying that the remainder matches the transmitted remainder. Alternatively, the 
target could divide the difference between the transmitted dividend and remainder and 
expect to see a zero remainder if there were no errors.

The concept of integer division can also be applied to division of polynomials. (An
intuitive way to understand this is by considering that the digits which make up an 
integer can be considered the coefficients of a polynomial in base 10 e.g. 723 = 7*102 

+ 2* 101 + 3*100.). A binary bitstream (which is a pattern of 1s and 0s) can be 
considered to represent the coefficients of a (dividend) polynomial. When this 
polynomial is divided by a generator (divisor) polynomial (which is another binary 
bitstream) a remainder polynomial (CRC) will result. The arithmetic is especially 
simplified if 1 and 0 are considered to be elements of a finite field (the Galois field of 
order 2 or GF(2)) . The arithmetic is sometimes referred to as modulo 2 arithmetic. For 
the purposes of CRC computation, it is sufficient to understand that addition and 
subtraction in this field reduce to simple XOR operations.

To clarify the  ideas behind the CRC method of error checking a block of data, let us 
focus on a specific case. 

Consider a block of data, say, D=1010111010101.  Suppose that  a 5-bit CRC field , 
say R,  will be attached to this. Both the transmitter and the receiver should agree that 
the lower 5 bits are CRC bits. They further have to agree on a 4th degree polynomial 
called the "Generator", G,  that is used in computing CRC bits. 
 

Figure 1: CRC Codes

CRC calculations are done in modulo 2 arithmetic, without carries in addition and 
borrows in subtraction. This means that addition and subtraction are identical, and 
both are equivalent to the bitwise exclusive or, XOR, of the operands. 

10101010111001
Data ( D )

- - - - -
CRC-bits ( R )

 transmitted data



For example,

11001 XOR 01011 = 10010 
11001   +   01011 = 10010
11001   -    01011 = 10010

10010 XOR 01011 = 11001 

Notice that if A XOR B = C, then  A= C XOR B. 

Remember that a left shift by 5, of binary data D, makes it D.25.  Then the transmitted 
data can be represented as  D.25  XOR R.  

In general, we may suppose that there are d bits of data D  to be transmitted and we 
use a r-digit CRC filed, R. So  d+r bits are transmitted, represented mathematically by 
D. 2r  XOR  R.

How do we choose the r bits of R?  If the transmitter and receiver agrees on an r+1 bit 
pattern, G, then the r bits could be the remainder when D. 2r  is divided by G. The most 
significant digit of G is assumed to be 1. To see this, suppose that we must choose the 
r bits of R so that the transmitted bits,  D. 2r  XOR  R, is divisible by G. This means that 

D. 2r  XOR  R= n G 
where n is a (binary) integer. It follows that 

 D. 2r   = nG XOR R
This implies that if D. 2r  is divided by G, the remainder is R. So, in other words, we can 
calculate the  r bits of R as:

R=Remainder D.2r

G

The calculations are done with modulo-2 arithmetic using XOR operations. In this 
context, to divide 110001 by 111, we simply apply the bit-wise 
exclusive-OR operation repeatedly as follows

            1011
          ______
     111 |110001
          111
          ---
          0010
           000
           ---
           0100
            111
            ----
            0111
             111
             ---
             000

This is exactly like ordinary long division, only simpler, because
at each stage we just need to check whether the leading bit of the 



current three bits is 0 or 1.  If it's 0, we place a 0 in the  quotient and XOR the current 
bits with 000.  If it's 1,  we place a 1 in the quotient and XOR the current bits  with the 
divisor, which in this case is 111.  As can be seen, the  result of dividing 110001 by 
111 is 1011, leaving a remainder of 000.  

Two frequently-used generator polynomials are 16 and 32 bits long. The polynomial 
x16+x12+x5+1 or, in binary form, 10001000000100001, is known as the "X25 
standard" .  The polynomial 
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1
is called the CRC-32 or "Ethernet standard" . 

If we assume that any corruption of  data affects the transmitted  string in a completely 
random way, i.e., such that the corrupted string is totally uncorrelated with the original 
string, then the probability of a corrupted string going undetected is 1/(2^n), with an 
n-bit CRC field. Thus, a 16-bit CRC has a probability of 1/(2^16) = 1.5x10-5 of failing 
to detect an error in the data, and a 32-bit CRC has a probability of 1/(2^32), which is 
about  2.3x10-10 (less than one in a billion).

The next page shows a sample CRC calculation.
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