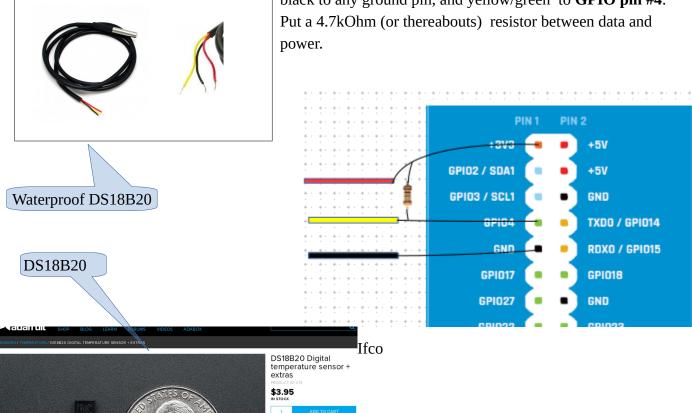
Setting up Temperature Sensor with a Raspberry Pi

Enable **i2c** and **1-wire** options on the Pi (use raspi-conf, under *interfacing options*)).

Optional (this is automatically done now)- verify that your /boot/config.txt has a line dtoverlay=w1gpio

Two kernel modules, **w1-therm** and **w1-gpio** must already be loaded. You can verify by executing **lsmod**, which will list all the loaded kernel modules.

Executing **lsmod** will show three entries:


Module	Size	Used by
w1_therm	3584	0
w1_gpio	3657	0
wire	25219	2 w1_gpio,w1_therm

Kernel modules loaded

Wiring:

Cheaply available temperature sensors (DS18B20) have 3 wires – attach red to any 3.3V power pin,

black to any ground pin, and yellow/green to **GPIO pin #4**. Put a 4.7kOhm (or thereabouts) resistor between data and power.

Once you connect all the wires, reboot, and look in /sys/bus/w1/devices/ directory. You should find a directory, something like **28-00044a3b10ff**/. The file:

/sys/bus/w1/devices/28-00044a3b10ff/w1_slave contains temperature information.

If you do **cat** /**sys/bus/w1/devices/28-00044a3b10ff/ w1_slave** you should get an output like:

5e 01 55 00 7f ff 0c 10 6c : crc=6c YES 5e 01 55 00 7f ff 0c 10 6c t=21875

The CRC checksum should be correct (YES). Then the temperature measured, in Celsius, is 21.875.

python script (readTemperature.py) to read temperature, and show the output in Celsius and Fahrenheit:

```
#!/usr/bin/python
import os
import time
""" Log Current Time, Temperature in Celsius and Fahrenheit
Returns a list [time, tempC, tempF] """

def readTemp():
    tempfile = open("/sys/bus/w1/devices/28-00044a3b10ff/w1_slave")
    tempfile_text = tempfile.read()
    currentTime=time.strftime("%x %X %Z")
    tempfile.close()
    tempC=float(tempfile_text.split("\n")[1].split("t=")[1])/1000
    tempF=tempC*9.0/5.0+32.0
    return [currentTime, tempC, tempF]

print readTemp()
```

```
> python readTemperature.py
```

['08/01/16 17:29:02 UTC', 22.062, 71.7116]

Exercise (Show it to me beginning of Fall Semester, and I will buy you another sensor).

Hook up a temperature sensor and two LEDs, a green and a red one. The green led should be on when the temperature is below 25C, and the red led on when temperature \geq 25C.

Test your set up by holding the sensor head in your hands. The temperature then should go up, well beyond 25C (unless you are cold-blooded).