
7772 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

QDRL: Queue-Aware Online DRL for Computation
Offloading in Industrial Internet of Things

Aikun Xu , Zhigang Hu, Xinyu Zhang, Hui Xiao , Hao Zheng , Graduate Student Member, IEEE,
Bolei Chen , Meiguang Zheng , Ping Zhong , Member, IEEE, Yilin Kang, and Keqin Li , Fellow, IEEE

Abstract—Recently, the Industrial Internet of Things (IIoT)
has shown great application value in environmental monitoring.
However, it suffers from serious bottlenecks in energy and com-
puting capability. To address them, researchers have made lots
of effort. Nevertheless, they neglect either the edge–end collab-
oration or the impact of task queue backlog, resulting in low
system revenue. To this end, we design a queue-aware compu-
tation offloading method based on DRL (QDRL). Specifically,
we represent the long-term system operation as a multistage
stochastic mixed-integer optimization problem (M-SMIP), which
is further converted into a deterministic problem using Lyapunov
optimization. Given that the resource allocation and computa-
tion offloading in this deterministic problem are strongly coupled
and difficult to solve, we decompose this problem into two sub-
problems. Subsequently, a reinforcement learning scheme with
actor–critic architecture is designed to solve these subproblems.
The Actor module is designed based on a deep learning model
and quantization strategy for generating computation offloading
actions. The mathematical reasoning and learning-based methods
are integrated as the Critic module for achieving resource allo-
cation. Extensive simulation results show that the performance
of QDRL surpasses four baselines and approaches the approxi-
mate optimal algorithm in terms of average task queue length,
normalized real computation rate, and computation time.

Index Terms—Computation offloading, deep learning, edge
computing, Industrial Internet of Things (IIoT), reinforcement
learning (RL).

I. INTRODUCTION

THE ACCELERATED advancement in hardware, soft-
ware, and wireless communication technologies has given

birth to the Internet of Things (IoT) [1]. The combination of
IoT technology and industrial device constitutes the Industrial

Manuscript received 3 July 2023; revised 26 August 2023; accepted 12
September 2023. Date of publication 15 September 2023; date of cur-
rent version 21 February 2024. This work was supported in part by the
National Natural Science Foundation of China under Grant 62172442 and
Grant 62272489, and in part by the National Science Foundation of Hunan
Province under Grant 2022JJ30760. (Corresponding author: Zhigang Hu.)

Aikun Xu, Zhigang Hu, Xinyu Zhang, Hui Xiao, Hao Zheng, Bolei Chen,
Meiguang Zheng, and Ping Zhong are with the School of Computer
Science and Engineering, Central South University, Changsha 410073,
China (e-mail: aikunxu@csu.edu.cn; zghu@csu.edu.cn; zhangxinyu11014@
163.com; huixiao@csu.edu.cn; zhenghao@csu.edu.cn; boleichen@csu.edu.cn;
zhengmeiguang@csu.edu.cn; ping.zhong@csu.edu.cn).

Yilin Kang is with the School of Computer Science, South Central
University for Nationalities, Wuhan 430074, China (e-mail: ylkang@
mail.scuec.edu.cn).

Keqin Li is with the Department of Computer Science, State University
of New York at New Paltz, New Paltz, NY 12561 USA (e-mail: lik@
newpaltz.edu).

Digital Object Identifier 10.1109/JIOT.2023.3316139

IoT (IIoT), which is a hot topic [2], [3]. In recent years, the
application scenarios of the IIoT have gradually shifted from
indoor (e.g., product quality inspection) to outdoor (e.g., indus-
trial environmental monitoring) [4]. Unlike the former, the
latter usually applies IIoT devices (i.e., wireless sensors) to
monitor the industrial environment. These devices are battery-
powered and limited by battery life for long-term operation.
Moreover, the computing capability of the device is usually
low and cannot process lots of computing-intensive tasks [5].
To address the above challenges, researchers have done a lot
of effort. On the one hand, the development of wireless trans-
mission power (WTP) technology enables IIoT devices to be
charged wirelessly without frequent battery replacement. The
WTP has reached tens of microwatts at a distance of more
than 10 (unit meter), and it will even be higher in the future,
which is enough for many low-power IIoT devices to provide
sufficient power [6]. On the other hand, the introduction of
emerging technologies (e.g., cloud computing) has provided
IIoT with sufficient resources far exceeding the IIoT device,
making it possible to handle large-scale computing-intensive
tasks.

Deep learning task (DLT) (e.g., industrial environmental
monitoring) is a computing-intensive task that needs to be
processed (i.e., inference or prediction) with a deep learn-
ing model, e.g., fully connected neural network. In IIoT,
the generation and arrival of DLT is usually dynamic and
stochastic [7]. Dealing with DLT usually brings benefits
to society, e.g., improving air quality, improving employee
safety, reducing human and material investment, etc. [1]. To
obtain more benefits, preliminary solutions offload the DLT
to the central cloud with sufficient resources for process-
ing [8], [9], [10]. DLTs in IIoT have stringent requirements
for real-time performance. However, due to the large distance
between the central cloud and users, it becomes challenging
to fulfill the requirements for low latency in data transmission
and communication.

As a transformative computing paradigm, edge computing
transposes the computing capability from the centralized cloud
to the network’s edge [11], [12]. This shift offers the advan-
tage of enabling shorter response time, which can solve the
problem of slow response in the central cloud [13]. The edge
server with rich resources, which can deploy the deep learning
model with more hidden layers. In contrast, IIoT devices can
only deploy the shallow deep learning model due to resource
constraints [14]. In general, the accuracy of deep learning
models with more hidden layers is usually higher than shallow

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3525-0339
https://orcid.org/0000-0002-0122-233X
https://orcid.org/0000-0002-5598-4348
https://orcid.org/0000-0002-2784-011X
https://orcid.org/0000-0001-8084-5203
https://orcid.org/0000-0003-3393-8874
https://orcid.org/0000-0001-5224-4048

XU et al.: QDRL: QUEUE-AWARE ONLINE DRL FOR COMPUTATION OFFLOADING 7773

deep learning models. If all DLTs are offloaded to the edge
server, while it can satisfy high-accuracy requirements, the
system may struggle to process new DLTs generated by IIoT
devices in a timely manner. This could lead to a backlog in
task queues and potential system instability. If all DLTs are
only processed in IIoT devices, it will be difficult to meet
the high-accuracy requirements (i.e., low inference accuracy,
means appear a lot of errors), thus increasing the economic
loss of the system [15]. Therefore, determining which DLTs
to process locally or offload to the edge server is a key issue.
To address the above problem, researchers considered the static
IIoT scenario and proposed a one-shot optimization solution
(i.e., the parameters will not change after deployment) [16].
However, the industrial environment is dynamically changing
(e.g., the wireless channel is dynamically changing). The tra-
ditional algorithms that only consider one-shot optimization
will no longer be applicable [17]. Moreover, randomly gen-
erated and arriving DLTs will enter the task queue of IIoT
devices to be processed. If these DLTs are handled improp-
erly, there will be a queue backlog, causing system instability
and unnecessary losses [18].

To solve the above problems, we use the access point
(AP) to achieve power supply to IIoT devices through the
WTP and design a queue-aware computation offloading algo-
rithm based on DRL (QDRL). Specifically, we first model the
long-term system operation as an multistage stochastic mixed-
integer optimization problem (M-SMIP) problem and convert
it to a deterministic problem. Subsequently, this determinis-
tic problem is broken down into two subproblems, i.e., the
computation offloading subproblem and the resource allocation
subproblem, which are solved by an actor–critic (AC)-based
solution. Finally, the simulation results show the advantage of
QDRL.

The key contributions of our study can be outlined as
follows.

1) We propose QDRL, which can not only realize online
computation offloading but also interact with the envi-
ronment to achieve long-term stable operation of the
system.

2) We introduce the Lyapunov optimization technique to
convert the M-SMIP problem in (15) into a per-frame
deterministic problem and adaptively adjust the task
queue in the system.

3) We design the DNN to predict the preliminary com-
putation offloading action and present COGA to enrich
the set of candidate offloading actions. Subsequently, a
clever fusion of mathematical reasoning and learning-
based approaches ensures efficient resource allocation,
while maintaining a high real computation rate (RCR).

4) We conduct extensive simulations, and the results show
that the performance of QDRL is better than four base-
line algorithms and approaches the approximate optimal
algorithm in terms of average task queue length and
normalized RCR. Last but not least, QDRL can still
maintain good performance in terms of computation
time, which shows that QDRL is promising to be
deployed in real scenarios.

The structure of this article is as follows. Section II pro-
vides a review of relevant literature. The system model and

problem formulation are discussed in Section III. Section IV
details the problem transformation and design of the algo-
rithm. Performance evaluation of the QDRL is conducted in
Section V. Finally, this article is concluded in Section VI.

II. RELATED WORKS

Deep learning technology (e.g., DNN) is widely used in
IIoT, e.g., product quality inspection [19], factory dangerous
behavior detection [20], and industrial dust detection [21].
Unlike traditional tasks, DLTs are computing-intensive tasks
and require processed (i.e., inference or prediction) with deep
learning models [22], [23]. Processing DLTs through deep
learning models considering different hidden layers usually
obtains results with different accuracy, which is difficult to
achieve for the traditional solutions. In recent, researchers have
proposed some effective solutions to process DLTs, e.g., the
model compression techniques and DNN partitioning tech-
niques are applied to speed up the processing of DLTs [24].
The model compression is an efficient solution to enable deep
learning models in resource-constrained devices. The DNN
partitioning technology strategically segments the DNN into
multiple parts in accordance with its multilayered structure,
thereby substantially diminishing the task delay. Nevertheless,
modifying the DNN model structure in the above ways will
reduce the ability of model inference, e.g., the decrease of
accuracy.

Different from the above methods, the computation offload-
ing method based on edge computing provides us with a
new way to process DLTs in IIoT, which is efficient and
fast [25]. The optimization objective in computation offload-
ing is generally to minimize task processing delay, reducing
system energy consumption, or maximize computation rate
(CR) [9], [10], [26]. Tang et al. [10] considered various factors
(i.e., task dependence, data transmission, response time, and
cost) and formulated the computation offloading problem as an
energy optimization problem. The above problem was solved
by the genetic algorithm. Fantacci and Picano [9] aimed to
minimize the average system response time in IIoT with fed-
erated learning. Bi and Zhang [26] proposed an approximation
algorithm, namely, CD, which aims to find a local optimum
of the CR by iteratively flipping the user’s binary offloading
actions. Regrettably, the inference accuracy for DLTs has not
been considered in the above works, and thus these works
cannot handle tasks with specific accuracy requirements.

Inference accuracy is an important metric in IIoT, which
represents the rationality of inference results as well as affects
service quality and user experience [14], [27]. Yang et al. [14]
deployed a shallow DNN model and a DNN model with a
large number of hidden layers on the device and the edge as
well as proposed a DLT scheduling scheme to optimize delay.
For the scenario of multitask and multitype DNN, a scheme
was proposed to realize collaborative reasoning of DLTs and
allocation of computing resources in [27] considering adaptive
sampling rate. However, their need for sufficient energy makes
them difficult to deploy outdoors, where the outdoor IIoT is
more energy-constrained.

The IIoT needs to meet some important requirements
after deployment, e.g., making intelligent decisions in real

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

7774 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 1. Example scenario of the IIoT-based industrial environment monitoring
system, where N = 9. QDRL does not offload all data from the sensor to the
edge server (e.g., s1), but cleverly leaves some data locally for processing
(e.g., s5) to achieve edge–end collaboration, thereby meeting the requirement
for rapid response.

time, completing parameter updates autonomously, adapting to
dynamically changing environments, etc. [2]. Those require-
ments gave rise to reinforcement learning (RL) or deep RL
(DRL), e.g., Q-learning [28], deep-Q-network (DQN) [29],
AC [5], and deep deterministic policy gradient (DDPG) [30].
In recent, RL has been widely used in IIoT, e.g., con-
tent caching, resource allocation, computation offloading, etc.
Specifically, a deep weighted Q-learning algorithm is proposed
to learn dynamic caching strategies to achieve the goal of
minimizing latency [28]. Liu et al. [29] designed a mobile
edge computing network for maximizing long-term computing
resource utilization based on DQN. Huang et al. [5] proposed
DROO based on AC for achieving computation offloading.
DROO used a DNN in the Actor module to produce a set
of 0/1 offloading decisions. The best offloading action was
determined in the Critic module by addressing the problem of
optimal resource allocation. The DDPG algorithm was applied
to solve the joint resource allocation problem in the Internet
of vehicles [30]. However, the above schemes cannot meet the
constraints of long-term stability of the system, which decrease
the system revenue [27].

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Fig. 1 illustrates an IIoT-based industrial environment mon-
itoring system, which consists of one edge server, one AP,
and N wireless sensors (i.e., wireless devices). Here, the set
of wireless sensors is denoted as S = {s1, s2, . . . , sN}, which
can be used to monitor the environment, collect data, and pro-
cess data. Each sensor is equipped with a task queue and the
data (i.e., task) arrival rate of sensor si is DAi. When the data
arrival rate is too high, there may be a queue backlog. The
AP (bound with the edge server) and the sensor communicate

with each other. The AP not only supplies energy for the sen-
sor but also receives and processes the data from the sensor
and returns the result to the sensor. Within each frame dura-
tion of T , the gain of the wireless channel between the AP
and sensor si is denoted by gi, which is assumed to be static
in per-frame [5]. gi may be different in different time frames.

Every sensor deploys a shallow deep learning model
(i.e., DNN1) with an inference accuracy of A1. When the
energy of the sensor is sufficient, the DNN1 will infer the
instruction from the data to control related equipments. The
edge server deploys a full deep learning model (i.e., DNN2)
for inference on sensor data with an inference accuracy of A2,
where A2 > A1 and both DNN1 and DNN2 are trained for
inference only. In this article, each sensor completes commu-
nication and energy harvesting in a time-division multiplexing
(TDM) manner to avoid channel interference. The AP also
adopts a similar TDM manner to achieve energy transmission
and communication with the sensor.

Although the sensor can respond faster than the edge
server, it cannot process all tasks due to its limited energy.
Moreover, limited by inference accuracy, sensors are usu-
ally unable to handle tasks with high accuracy requirements
locally. Therefore, some tasks need to be offloaded to the edge
server for processing. Nevertheless, a large number of tasks
transmitted to the edge server from sensors will increase the
delay, which reduces system revenue, e.g., the CR (i.e., the
amount of data processed per second, the unit is bit per sec-
ond [31]). Therefore, we need to determine which tasks need
to be processed locally (e.g., s5) or offloaded to the edge server
(e.g., s1) to increase system revenue.

B. Computing Mode

The IIoT for monitoring the industrial environment is
usually implemented by wireless sensor networks deployed
outdoors and requires long-term operation. However, these
sensors are limited by battery capacity and cannot achieve
a long-term operation. To address the challenge, we use AP
to replenish energy for all sensors by WTP technology. The
sensor si harvests energy at the tth time frame is modeled as

Et
hari

= μPgt
iα

tT (1)

where μ represents the efficiency of energy harvesting, which
lies between 0 and 1 [32]. P denotes the transmit power of the
AP’s radio frequency energy. αtT denotes the time of broad-
casting energy from AP to all sensors at the tth time frame.
α is the percentage coefficient of the AP broadcasting energy
time with respect to duration T .

1) Local Computing: In this study, we adopt the model
from [31] for the power consumption of a sensor’s processor,
which is given as kif 3

i (the unit is joule per second). Here,
ki signifies the coefficient of computation energy efficiency,
and fi refers to the processor chip’s computing frequency. The
energy consumption of sensor si during the tth time frame is
represented as

Et
coni

= kt
i

(
f 3
i

)t
τ t

L,iT (2)

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: QDRL: QUEUE-AWARE ONLINE DRL FOR COMPUTATION OFFLOADING 7775

where τ t
L,iT is the operation time of the sensor si at the tth

time frame. τL,i is the percentage coefficient of the sensor si

operation time with respect to duration T .
Similar to [5], to ensure the sensor si normal operation, we

also assume that all the harvesting energy of the sensor si at
the tth time frame is used to process the data, then we have

Et
hari

= Et
coni
. (3)

In fact, the sensor si consumes energy all the time in the
duration T , i.e., it meets τL,i = 1. Therefore, the sensor si

consumes energy at the tth time frame is Et
coni

= kt
i(f

3
i)

tT
in (2), which combines (1) and (3), we have

f t
i =

(
μPgt

iα
t

ki

) 1
3

. (4)

The amount of data (in bit) processed in the sensor si is
modeled as

DPt
L,i = f t

i T

φ
. (5)

Substituting (4) into (5), we have

DPt
L,i =

(
μPgt

iα
t/ki
) 1

3 T

φ
. (6)

2) Edge Computing: Based on the Shannon capacity for-
mula, the data (in a bit) that needs to be transmitted from the
sensor si (i.e., the device) to the edge server (i.e., the sensor
si needs offloaded data amount) is modeled as

DPt
O,i = Bτ t

O,iT

vu
log2

(
1 + Pt

ig
t
i

N0

)
(7)

where B is the transmission bandwidth between any one sensor
and the AP. vu is the communication overhead, where vu ≥ 1.
τ t

O,iT and Pt
i represent the transmit time and transmit power

of the sensor si at the tth time frame, respectively. τO,i is
the percentage coefficient of the sensor si transmit time with
respect to duration T . N0 represents the noise power (in watt).
Moreover,

∑N
i τ

t
O,i + αt ≤ 1 holds when the sensor si needs

to offload its data to the edge server.
Same assumption as in [33], we also assume that the sensor

si exhausts its harvested energy when offloading, i.e., P∗t
i =

Et
hari
/(τ t

O,iT), where P∗t
i represents the maximize transmit

power of the sensor si at the tth time frame. Substituting P∗t
i

into (7), we have

DPt
O,i = Bτ t

O,iT

vu
log2

(

1 + μPαt
(
gt

i

)2

τ t
O,iN0

)

. (8)

In this study, we consider 0/1 offloading mode, i.e., at the
tth time frame, the sensor si can either locally process the
collected data (i.e., task) or offload it to the edge server.
Therefore, the data (in a bit) to be processed at the tth time
frame can be expressed as

DPt
i = (1 − xt

i

)
DPt

L,i + xt
iDPt

O,i (9)

where xt
i = 1 represents the data of sensor si is offloaded to

the edge server at the tth time frame. The data of sensor si is
processed in local when xt

i = 0, i.e., the task will be processed
in the sensor si.

The CR represents a direct metric of the system’s computing
capability, whose unit is bit per second [26]. The CR at the
tth time frame can be expressed as

CRt
i = DPt

i

T
. (10)

Substituting (7)–(9) into (10), we have

CRt
i = (1 − xt

i

)
(
μPgt

iα
t/ki
) 1

3

φ

+ xt
i

Bτ t
O,i

vu
log2

(
1 + μPαt

(
gt

i

)2

τ t
O,iN0

)
. (11)

As far as we know, there will be errors in DNN model
inference, which will cause economic losses to the system.
(The CR loss is used to represent the economic loss in this
article.) The errors of DNN1 and DNN2 are denoted as 1−A1
and 1 − A2, respectively. Therefore, the CR losses caused by
processing the data collected by the sensor si at the tth time
frame is denoted as

ERRt
i =

((
1 − xt

i

)(
1 − A1

)+ xt
i

(
1 − A2

))
DAt

iγ (12)

where γ is a penalty factor.
This article aims to improve the CR while ensuring low CR

losses. To this end, we define the RCR (the unit is bit per
second), which is expressed as

RCRt
i = CRt

i − ERRt
i. (13)

In this article, we define the task queue length of the sensor
si as Zi(t) at the tth time frame, which plays a crucial role in
influencing the overall system’s stability [18]. The variations
in the task queue can be represented as

Zi(t + 1) = Zi(t)− DPt
i + DAt

i (14)

where Zi(1) = 0, indicating that there is no backlog in the
current task queue.

C. Problem Formulation

This study aims to maximize the total RCR through reason-
able scheduling while ensuring the system stability and low
CR losses. We model the optimization problem as

maximize
x,α,τ

lim
K→∞

1

K
·

K∑

t=1

N∑

i=1

wiRCRt
i (15)

subject to CRt
i ≤ Zi(t) ∀i ∈ N (15a)

lim
K→∞

1

K
·

K∑

t=1

E[Zi(t)] < ∞ ∀i ∈ N (15b)

N∑

i=1

τ t
O,i + αt ≤ 1 (15c)

αt ≥ 0, τ t
O,i ≥ 0 ∀i ∈ N (15d)

xt
i ∈ {0, 1} ∀i ∈ N (15e)

where wi > 0 is the weight of the sensor si. Equation (15a)
implies that the volume of data processed in the current
time frame must not surpass the length of the task queue.
Equation (15b) sets a constraint on the long-term stability of

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

7776 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 2. QDRL overview. In (a), the obtained environmental information is used as the data set, which is the input of QDRL. In (b), the Actor module is
leveraged to generate a series of potential offloading actions. In (c), the Critic module evaluates the outcomes produced by the Actor module and determines
the optimal offloading action along with its corresponding resource allocation. In (d), according to the results of the Critic module, QDRL updates the task
queue and updates the replay buffer. Besides, the QDRL trains x-DNN and r-DNN at regular intervals.

TABLE I
SUMMARY OF NOTATIONS

the task queue (a system is deemed stable if all its task queues
maintain stability [18]). Moreover, we define xt = {xt

1, . . . , xt
N}

and τ t = {τ t
O,1, . . . , τ

t
O,N} and assume x = {xt}K

t=1 and
τ = {τ t}K

t=1. A summary of the notations is provided in
Table I.

IV. PROBLEM TRANSFORMATION AND

ALGORITHM DESIGN

The optimization problem presented in (15) is an M-SMIP.
This makes it challenging to solve directly using traditional
RL algorithms. To this end, we propose a novel computa-
tion offloading framework based on DRL, namely, QDRL.
This framework is designed to enhance the CR and ensure
the system operates with long-term stability while minimizing
CR losses. First, we employ the Lyapunov optimization tech-
nique to convent the optimization problem into a per-frame

deterministic problem. Then, we design the DNN model
and the COGA to generate offloading actions. Finally, the
mathematical reasoning and learning-based methods are fused
to achieve reasonable resource allocation. The framework of
QDRL is presented in Fig. 2.

A. Lyapunov-Based Problem Transformation

The M-SMIP problem is challenging to solve. To over-
come this, we employ the Lyapunov optimization tech-
nique to convert this problem into a per-frame deterministic
problem [18], [27]. Specifically, we denote Z(t) = {Zi(t)}N

i=1
as the sum task queue of all sensors. Subsequently, the
Lyapunov function L(Z(t)) is introduced, as follows:

L(Z(t)) = 1

2

N∑

i=1

Zi(t)
2. (16)

Given Z(t), the one-shot Lyapunov drift �L(Z(t)) is mod-
eled as

�L(Z(t)) = E
[
L(Z(t + 1))− L(Z(t))|Z(t)]. (17)

Simultaneously squaring both sides of (14), we have

Zi(t + 1)2 = Zi(t)
2 + 2Zi(t)

(
DAt

i − DPt
i

)+ (DAt
i − DPt

i

)2
.

(18)

By subtracting Zi(t)2 from both sides of (18) and dividing
by 2. Next, summing each term, we have

1

2

N∑

i=1

Zi(t + 1)2 − 1

2

N∑

i=1

Zi(t)
2

= 1

2

N∑

i=1

(
DAt

i − DPt
i

)+
N∑

i=1

Zi(t)
(
DAt

i − DPt
i

)
. (19)

Substituting (16) and (19) into (17), we have

�L(Z(t)) = 1

2

N∑

i=1

E

[(
DAt

i − DPt
i

)2]

+
N∑

i=1

E
[
Zi(t)

(
DAt

i − DPt
i

)]
. (20)

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: QDRL: QUEUE-AWARE ONLINE DRL FOR COMPUTATION OFFLOADING 7777

The first term on the right side of (20) satisfies

1

2

N∑

i=1

E

[(
DAt

i − DPt
i

)2] ≤ 1

2

N∑

i=1

E

[(
DAt

i

)2 + (DPt
i

)2]

≤ 1

2

N∑

i=1

⎛

⎜
⎝
(
DAt

i

)2 +
⎡

⎣T max

⎧
⎨

⎩

(
μPgt

i

ki

) 1
3

/φ

E

[
B

vu
log2

(
1 + P∗t

i gt
i

N0

)]
⎫
⎬

⎭

⎤

⎦

2
⎞

⎟
⎠

= C (21)

where DAt
i is the data (i.e., task) arrival rate, which is given.

(μPgt
i/ki)

(1/3)/φ represents the maximum CR of the sensor si,
which is a constant. E[B/vu log2(1 + P∗t

i gt
i/N0)] denotes the

maximum average transmission rate of the sensor si, which is
a constant and P∗t

i = P. Therefore, C is a constant. The upper
bounded of �L(Z(t)) is

�L(Z(t)) ≤ C +
N∑

i=1

E

[
Zi(t)

(
DAt

i − DPt
i

)]
. (22)

We employ the drift-plus-penalty minimization method
aimed at maximizing the RCR, while concurrently stabilizing
the queue Z(t) during the tth time frame, as follows:

�L(Z(t))− V ·
N∑

i=1

E

[
wiRCRt

i|Z(t)
]
. (23)

Substituting (22) into (23), we have

C +
N∑

i=1

E

[
Zi(t)

(
DAt

i − DPt
i

)]− V ·
N∑

i=1

E

[
wiRCRt

i|Z(t)
]

(24)

where V > 0 represents a scaling factor for the
penalty.

∑N
i=1 E[wiRCRt

i|Z(t)] is a nonnegative number.
Therefore, (24) also satisfies the inequality of (22).

In this article, we assume the duration T = 1. Therefore,
we have CRt

i = DPt
i based on (10). By eliminating the con-

stant terms (namely, C and DAt
i) from (24) during the tth time

frame, the QDRL can obtain the optimal offloading action
through maximizing

N∑

i=1

[Zi(t)+ V · wi]CRt
i − V · ERRt

i (25)

where CRt
i and ERRt

i are given in (11) and (13), respectively.
We can easily know that the CR is not only affected by
the sensor node weights but also by the CR losses. So far,
we have obtained the per-frame deterministic problem with
the Lyapunov optimization technique at the tth time frame,
as follows:

maximize
xt,αt,τ t

N∑

i=1

[Zi(t)+ V · wi]CRt
i − V · ERRt

i (26)

subject to CRt
i ≤ Zi(t) ∀i ∈ N (26a)

N∑

i=1

τ t
O,i + αt ≤ 1 (26b)

αt ≥ 0, τ t
O,i ≥ 0 ∀i ∈ N (26c)

xt
i ∈ {0, 1} ∀i ∈ N (26d)

where the constraints of (26a)–(26d) are the same
as (15a)–(15e).

B. Actor: Deep Learning and Genetic Algorithm-Based
Offloading Action Generation

It is well known that deep learning models (e.g., CNN [34]
and LSTM [35]) have achieved great success in prediction.
In this section, we design the x-DNN model in Fig. 2(b)
to predict the computation offloading action of all sensors.
Specifically, the optimal mapping function fδt(·) of an approx-
imation offloading action xt as

xt = fδt

(
gt,Z(t)

)
(27)

where fδt(·) is learned from gt and Z(t)). gt = {gt
i}N

i=1, Z(t) =
{Zi(t)}N

i=1. gt
i and Zi(t) represent the channel gain and task

queue of the sensor si at the tth time frame. δt is the trainable
weight parameter. Similar to [26], we also apply the Adam
algorithm [36] to update the δt, as

LOSSδt = − 1

|εt|
∑

ε∈εt

(((
x∗)ε)� log fδt

(
gε,Z(ε)

)

+ (1 − (x∗)ε)� log
(
1 − fδt

(
gε,Z(ε)

)))
(28)

where |εt| represents the size of εt, and the � is the transpose
operator. (gε,Z(ε)) is a training data sample from the memory,
represented by a set of time index εt, where ε ∈ εt.

This article is implemented based on the binary offload-
ing mechanism, but xt usually be any value between (0,1).
Therefore, we need to quantize xt, i.e., satisfy xt

i = 0 or 1.
Although the traditional scheme can obtain the best offloading
action from 2N offloading actions (N is the number of sensors),
it will face very high computational complexity [26], [37].
In QDRL, we can obtain an approximation of the offload-
ing action by fδt(·) based on the proper activation function,
e.g., ReLu [38], Sigmoid [39], and tanh functions [40].
However, it is difficult for the above schemes to generate a
high-quality offloading action. Inspired by the theory of evo-
lution (natural selection and survival of the fittest), we apply
the development of populations to break this bottleneck. With
this in mind, we introduce a computation offloading quantiza-
tion method based on genetic algorithm (COGA) to generate
Mt (we set Mt = N) offloading actions about xt, which can
balance the performance and complexity. The schematic of
COGA is shown in Fig. 3. The COGA includes three steps.

1) Natural Selection: COGA first selects all offloading
actions generated by the order-preserving quantization
(OP) [5] method as the population (pop), as follows:

pop =
{

x̌t
1, x̌t

2, . . . , x̌t
M

}
. (29)

2) Crossover: The ith individual crosses with the jth indi-
vidual with a probability CP to achieve the gene change

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

7778 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 3. Schematic of COGA. The example shows the computing mode of
six sensors with a population of 3. The “Gene” signifies a sensor’s computing
mode, either local or edge computing. The “Individual” denotes an offloading
action of all sensors. The “Population” represents a set of candidate offload-
ing actions. The crossover between individuals xt

1 and xt
2 in the population

achieves the change of xt
1 at the fourth gene. In addition, individual xt

3 has a
mutation at the last gene.

at the point position, as follows:

pop
[
i, point

] = pop
[
j, point

]
. (30)

3) Mutation: The point gene of the ith individual is mutated
with a probability MP, as follows:

pop
[
i, point

] = 1 if pop
[
i, point

] = 0 else 0.

(31)

After crossover and mutation, we can get a new population.
Next, we merge the old population with the new population
to obtain a population that contains more offloading actions,
as follows:

t = pop||
{

x̌t
1, x̌t

2, . . . , x̌t
M

}
(32)

where
t = {xt
l|xt

l ∈ {0, 1}N, l = 1, 2, . . . , 2Mt} is total
population and || represents concatenate operation.

Finally, we employ the resource allocation algorithm to
evaluate
t and identify the optimal offloading action xt,
as follows:

xt = arg max
xt

l∈
t
RA
(

xt
l, gt,Z(t)

)
. (33)

where RA(xt
l, gt,Z(t)) is a resource allocation function, which

can be solved by giving xt
l, gt, and Z(t). We will detail how

RA(·) is solved in Section IV-C.

C. Critic: Mathematical Reasoning and
Deep-Learning-Based Resource Allocation

In Section IV-B, we obtain the candidate set of offloading
action
t at the tth time frame. For a given offloading action
xt

l ∈
t, substituting (11) and (12) into (26), and the total
RCR is rewritten as follows:

maximize
α,τ

∑

i∈X0

(

C1 · qi

(
gi

ki

) 1
3

α
1
3 − V · (1 − A1)DAiγ

)

+
∑

j∈X1

(

C2 · qjτO,j ln

(

1 + C3 · g2
j α

τO,j

)

− V · (1 − A2)DAjγ

)

(34)

where the index set of sensors with xt
i = 1 is represented as

Xt
1, and the complementary set of sensors is denoted by Xt

0.

qi = [Zi(t) + V · wi], C1 = (uP)(1/3)/φ, C2 = B/(Vuln2),
C3 = μP/N0.

Subsequently, we design an efficient and accurate resource
allocation algorithm based on mathematical reasoning and
deep learning to obtain the resource allocation of the offload-
ing action xt

l and stabilizing task queues for all sensors.
This algorithm consists of two parts: 1) mathematical reason-
ing scheme, indicated by the dashed arrows in Fig. 2(c) and
2) deep learning scheme, indicated by the r-DNN in Fig. 2(c).
The content is as follows.

1) Resource Allocation Scheme Based on Mathematical
Reasoning: When xt

l ∈
t is given, Xt
0 and Xt

0 are known. We
first apply the Lagrangian multiplier to solve the optimization
problem of (34), as follows:

L(α, τ , z) =
∑

i∈X0

(
C1 · qi

(gi

ki

) 1
3
α

1
3 − V · (1 − A1)DAiγ

)
+

∑

j∈X1

(
C2 · qjτO,j ln

(
1 + C3 · g2

j α

τO,j

)
− V · (1 − A2)DAjγ

)

− z

(
α +

∑

j∈X1

τO,j − 1

)
. (35)

Then, we use the idea of Primal–Dual to solve the problems
involved in (35). The Primal problem is

F(z) = maximize
a,τ

{
L(a, τ , z)|α ≥ 0, τO,j ≥ 0, j ∈ X1

}
. (36)

The corresponding Dual problem is

minimize
z

{F(z)|z ≥ 0}. (37)

If both (36) and (37) are satisfied at the same time, then
there is a set of solutions (α∗, τ ∗, z∗) such that the first
derivative of L(α, τ , z) is 0, i.e.,

dL

dτO,j

∣∣
∣∣
α=α∗,τO,j=τ∗

O,j,z=z∗
= C2 · qi ln

(
1 + C3 · g2

j α
∗

τ ∗
O,j

)

− C2 · C3 · qjg2
j α

∗τ ∗−1
O,j

1 + C3 · g2
j ατ

∗−1
O,j

− z∗ = 0 (38)

dL

dα

∣
∣∣
∣
α=α∗,τO,j=τ∗

O,j,z=z∗
= C1 · 1

3

(
α∗)− 2

3
∑

i∈X0

qi

(gi

ki

) 1
3

+
∑

j∈X1

C2 · C3 · qjg2
j

1 + C3 · g2
j α

∗τ ∗−1
O,j

− z∗ = 0. (39)

According to (38), we have

C2 · qi ln
(

1 + C3 · g2
j α

∗τ ∗−1
O,j

)

= C2 · C3 · qjg2
j α

∗τ ∗−1
O,j

1 + C3 · g2
j α

∗τ ∗−1
O,j

+ z∗. (40)

Dividing both sides of (40) by C2 · qi, we have

ln
(

1 + C3 · g2
j α

∗τ ∗−1
O,j

)
=
(

1 + z∗

C2 · qj

)

− 1

1 + C3 · g2
j α

∗τ ∗−1
O,j

. (41)

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: QDRL: QUEUE-AWARE ONLINE DRL FOR COMPUTATION OFFLOADING 7779

Adding (1 + C3 · g2
j α

∗τ ∗−1
O,j)

−1 and taking exponential at
both sides, we have

(
1 + C3 · g2

j α
∗τ ∗−1

O,j

)
exp

(
1

1 + C3 · g2
j α

∗τ ∗−1
O,j

)

= exp

(
1 + z∗

C2 · qj

)
. (42)

When β > 0 and θ > 0 that satisfy (1/β) exp(β) = θ ,
it holds that −β exp(−β) = −(1/θ). So, we have β =
−LW(−[1/θ]), where LW(z∗) denotes the Lambert-W func-
tion [5]. According to (42) and the Lambert-W function
LW(z∗), we derive the following:

1
(

1 + C3 · g2
j α

∗τ ∗−1
O,j

) = −LW

⎛

⎝− 1

exp
(

1 + z∗
C2·qj

)

⎞

⎠. (43)

Simplifying (43), we have

τ ∗
O,j

α∗ = C3 · g2
j Fo,j

(
z∗) (44)

where FO,j(z∗) = [−(LW(−1/exp(1 + [z∗/C2 · qj])))−1 −
1]−1. Multiplying both sides of (44) by α∗, we have

τ ∗
O,j = C3 · g2

j FO,j
(
z∗)α∗. (45)

When
∑

j∈Xt
1
τ ∗

O,j+α∗ = 1, (α∗, τ ∗, z∗) holds at the optimal
solution, substituting

∑
j∈Xt

1
τ ∗

O,j + α∗ = 1 into (45), we have

α∗ = 1

1 + C3 ·
(∑

j∈X1
g2

j FO,j(z∗)
) = FC

(
z∗). (46)

Substituting (46) into (39), we have

C1 · 1

3

(
FC
(
z∗))− 2

3
∑

i∈X0

qi

(
gi

ki

) 1
3

+
∑

j∈X1

C2 · C3 · qjg2
j

1 + 1
FO,j(z∗)

− z∗ = 0 (47)

where (FO,j(z∗))−1 = C3 · g2
j α

∗τ ∗−1
O,j based on (45). We apply

the bisection search method proposed in [41] to solve (47),
then, the solutions of (45) and (46) can be obtained, which
constitute the optimal resource allocation of the computation
offloading action xt

l.
2) Resource Allocation Scheme Based on Deep Learning:

In (34), α and τ satisfy the constraints of (26b), especially,
α +∑j∈X1

τO,j = 1 also exists, where τ = ∑
j∈X1

τO,j. It is
not difficult to see that the solution of α and τ is a combina-
torial optimization problem. This problem is not easy to solve
with traditional methods, but it is easy to obtain approximate
solutions for deep learning [42]. To obtain a solution for (34)
quickly, this article considers using the deep learning model
to obtain α and τ , simultaneously.

Solution for α and τ : We design the deep learning model
r-DNN in Fig. 2(c) to predict α and τ , and the corresponding
mapping function is fψ t , as follows:

rt = fψ t

(
gt,Z(t), xt

l

)
(48)

where rt is the solution formed by α and τ . ψ t is a trainable
parameter. Different from fδt in (27), the input of fψ t includes
the channel gain gt and the task queue of all sensors Z(t)
in addition to the offloading decision action xt

l. Similar to x-
DNN, the Adam algorithm [36] is also used to update ψ t in
r-DNN, as follows:

LOSSψ t = − 1

|εt|
∑

ε∈εt

(((
r∗)ε)� log fψ t

(
gε,Z(ε), xεl

)

+ (1 − (r∗)ε)� log
(
1 − fψ t

(
gε,Z(ε), xεl

)))

(49)

where ε and εt are the same as the parameters of the same
name of (28). In the above way, we can obtain α and τ ,
which constitute the optimal resource allocation solution of
the computation offloading action xt

l.
No Free Lunch Theorem [43]: The method of mathematical

reasoning can accurately obtain reasonable resource alloca-
tion, but it takes a lot of computation time, which is difficult
to meet real-time requirements. Although the method based on
deep learning is very fast, r-DNN is trained with bad input and
label pairs, which results in the results of the inference being
usually random and bad. It is difficult for r-DNN to obtain
a suitable solution. This article aims to effectively combine
mathematical reasoning-based and deep-learning-based solu-
tions to obtain an efficient and accurate solution. Specifically,
the method based on mathematical reasoning participates in
resource allocation with the probability of thr, whose results
are used as a part of the training sample of r-DNN. The
learning-based schemes participate in resource allocation with
(1 − thr) probability, whose results also are used as another
part of the training sample of r-DNN. After introducing thr,
the QDRL does not need to perform mathematical reasoning
every time, and it can also obtain better training samples for
r-DNN. The r-DNN trained in this way can be both fast and
accurate in the inference, thereby improving the performance
of QDRL.

Overall, the Actor and Critic continue to learn based on the
replay buffer, and as the training progresses, the former gen-
erates better offloading decisions and the latter obtains more
and more accurate evaluation scores. QDRL continuously
improves the offloading policy under the AC RL mechanism
until convergence. We provide the pseudocode of the QDRL
algorithm in Algorithm 1. Algorithm 1 accepts the channel
gain gt and data arrival rate DAt as the input, aiming to
output the optimal offloading action x* and the resource allo-
cation solution (α*, τ*). Here, gt is the channel gain between
all wireless sensors and the AP and DAt is the data arrival
rate on all wireless sensors. We initialize x-DNN and r-DNN
with random parameters δt and ψ t, respectively (line 1) and
set the task queue initial value of each sensor to 0 (line
2). In the test, Algorithm 1 continues to iterate K rounds
(line 3).

When new data (i.e., new tasks) are generated, Algorithm 1
first updates the task queue Zi(t) of the sensor based on (14)
(line 4). Next, the Actor starts. Specifically, Algorithm 1
uses x-DNN to produce a preliminary offloading action

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

7780 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

(a) (b)

Fig. 4. Impact of V on QDRL. (a) Impact of V on the average task queue length and computation time. (b) Impact of V on the RCR and accuracy.

Algorithm 1 QDRL Algorithm
Input:
Channel gain gt and data arrival rate DAt

Output:
Offloading action x* and its resource allocation (α*, τ*)
1: Initialize the x-DNN and r-DNN with random parameters δt and ψ t

respectively;
2: Initialize the task queue Zi(1) = 0, where i = 1, 2, . . . ,N;
3: for t in (1,K) do
4: Update the Zi(t) based on the Equation (14);
5: Produce a preliminary offloading action xt using the

x-DNN based on the Equation (27);
6: Generate 2M candidate offloading actions related to

xt with COGA;
7: if random > thr then
8: Solve the function RA

(
xt

l, gt,Z(t)
)

with r-DNN;
9: else

10: Solve the function RA
(

xt
l, gt,Z(t)

)
with mathe-

matical reasoning;
11: end if
12: Determine the optimal offloading action and its

corresponding resource allocation through
x∗ = arg maxxt

l∈
t RA
(

xt
l, gt,Z(t)

)
;

13: Update the replay buffer by adding
((

gt,Z(t)
)
, x∗)

and
((

gt,Z(t), x∗), r∗
)

, where rt is formed by α∗
and τ∗;

14: if t mod 10 = 0 then // “10” represents the training
interval

15: Randomly sample a batch of data set
((

gε,Z(ε)
)

,

(x∗)ε
)

and
((

gε , Z(ε), (x∗)ε
)

, (r∗)ε
)

from the

memory, where ε ∈ εt;
16: Train the x-DNN and r-DNN with

((
gε , Z(ε)

)
,

(x∗)ε
)

and
((

gε , Z(ε), (x∗)ε
)

, (r∗)ε
)

, and

update δt and ψ t with the Adam algorithm,
where ε ∈ εt;

17: end if
18: end for

xt (line 5) and applies COGA to generate 2M candi-
date offloading actions related to xt (line 6). Before start-
ing the Critic, Algorithm 1 needs to judge the relation-
ship between the random and thr, aiming to choose which
method to evaluate the actions generated by the Actor.

If random > thr, Algorithm 1 selects r-DNN to solve
RA(xt

l, gt,Z(t)) (line 8). Otherwise (line 9), Algorithm 1
uses mathematical reasoning to solve RA(xt

l, gt,Z(t)) (line
10). Subsequently, determining the optimal offloading action
and its corresponding resource allocation by maximizing
RA(xt

l, gt,Z(t)) (line 12), which are used as samples to update
the replay buffer. Finally, Algorithm 1 randomly selects a
batch of data set from memory for training x-DNN and r-
DNN every ten rounds and updates δt and ψ t with Adam
(lines 14–17).

V. EXPERIMENTS

In the following section, we provide a detailed description
of the experimental setup and the results derived from it. The
results obtained with QDRL are compared to five baseline
algorithms for computation offloading. QDRL is implemented
with Pytorch and optimized by Adam. All the results are eval-
uated on an Intel Xeon Silver 4114 2.2-GHz CPU and 13 GB
of memory. The Python program implementation of QDRL is
available in [44].

A. Experimental Setup

1) Data Set Description and Parameter Settings: The data
set used in this article includes the data arrival rate DAi and
channel gain gi. The task data arrivals of all the sensors follow
the exponential distribution with an equal average rate, i.e.,

E[DAi] = λi, i = 1, . . . ,N (50)

where λi = 3 Mb/s. Similar to [5], we assume that the channel
gain is gi = giχ , which obeys the rayleigh fading channel
model. Where gi is the average channel gain and χ = 0.3
represents an independent exponential random variable of unit
mean. In particular, gi is expressed as

gi = Ad

(
3 · 108

4π fcdi

)de

, i = 1, . . . ,N (51)

where the antenna gain is represented by Ad = 4.11, fc = 915
MHz signifies the carrier frequency, di represents the distance

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: QDRL: QUEUE-AWARE ONLINE DRL FOR COMPUTATION OFFLOADING 7781

TABLE II
SIMULATION PARAMETERS (PARA) [26]

Fig. 5. Impact of γ on QDRL performance.

between sensor si and AP, and de = 2.8 stands for the path
loss exponent. Both the x-DNN and r-DNN are fully connected
deep neural networks, incorporating one input layer, two hid-
den layers, and one output layer. Specifically, the first and
second hidden layers are equipped with 120 and 80 hidden
neurons, respectively. The activation functions of the output
layers of x-DNN and r-DNN are Sigmoid and Softmax, respec-
tively. The activation function of the other layers in both
DNNs is ReLU. Other crucial parameters can be found listed
in Table II.

2) Baseline Algorithms: This article demonstrates the
advantages of QDRL by comparing QDRL with five base-
line algorithms, i.e., LyCD [41], DROO [5], the classical AC,
Edge-only, and Local-only. LyCD exchanges the computing
mode of each sensor in each round. The iteration stops when
the computing mode exchange cannot provide further CR
performance. LyCD has been proven to achieve near-optimal
performance under different N. However, it takes an intol-
erant time to obtain the solution. DROO is a short-sighted
approach that maximizes the RCR per-frame but ignores the
backlog of task queues that cause system instability. Similar to
DROO, AC also causes queue backlogs and system instabil-
ity. In contrast, AC performs faster because it generates only a
small number of offloading decisions. Nevertheless, this makes
it difficult to quickly obtain the optimal offloading decision.
Edge-only represents all N sensors offloading their tasks to the
edge server, which increases the delay and decreases system
revenue. Local-only represents all N sensors that only perform
local computation, which increases the sensor’s task queue and
causes system instability.

Fig. 6. Impact of thr on QDRL performance.

Fig. 7. Training loss for two deep neural networks from QDRL.

Fig. 8. Comparison of different offloading action quantization methods.

3) Evaluation Metrics: This article uses four commonly
used metrics to evaluate QDRL, i.e., the computation time,
the average task queue length, the RCR, and the normalized
RCR. The smaller the computation time, the faster the algo-
rithm execution speed. The smaller the average task queue
length, the more stable the system. The higher the RCR, the

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

7782 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 9. Performance comparison under long-term continuous constraints. (a) Comparison of the average task queue length. (b) Comparison of the normalized
RCR.

greater the system benefits. Through comprehensive simula-
tions, we have confirmed that the LyCD method approaches
optimal performance [41]. Therefore, we adopt LyCD as the
performance benchmark for our QDRL method. To compare
the performance of different schemes effectively, we define
the normalized RCR = RCRmethod/RCRLyCD, where RCRLyCD
represents the RCR of the LyCD algorithm and RCRmethod
represents the RCR of other methods, e.g., QDRL, DROO,
AC, Edge-only, and Local-only. The closer the value of the
normalized RCR to 1, the better its performance.

B. Results and Analysis

1) Parameter Sensitivity: Since different parameter settings
will impact the performance of QDRL, we need to study the
parameter sensitivity of QDRL. Here, we conduct experiments
in consecutive 5000 time frames and vary a parameter at each
time as well as set others to the default value, where N = 10
and λi = 3 Mb/s in (50). (By default, the following exper-
iments are all done under this setting.) Specifically, we first
vary the value of V from 5 to 25. The results are reported
in Fig. 4. As V increases, the average queue length and RCR
decrease gradually, while accuracy increases gradually. Unlike
them, the computation time first decreases and then increases.
Therefore, setting V to 10 can achieve better performance.
Then, we vary the value of penalty factor γ from 0.5 to 4.5.
The results are reported in Fig. 5. As the penalty factor γ
increases, the accuracy gradually increases while the RCR
decreases gradually. Using γ = 2.5 is good enough to obtain
the performance of QDRL. However, we hope to obtain a
higher RCR, so set γ to 0.5 in this article. Last but not least,
we vary the value of thr from 0 to 1. The results are reported
in Fig. 6. As thr increases, the RCR of QDRL first increases
rapidly and then flattens out, but the computation time contin-
ues to increase rapidly. When thr = 0.5, we know that QDRL
not only improves the benefit of QDRL but also reduces its
time cost.

2) Convergence of QDRL: As shown in Fig. 7, we evaluate
the convergence of two DNN models (i.e., x-DNN and r-DNN)

from QDRL with respect to the training episodes, where the
learning rate is 0.0009. The two curves in the figure represent
the training loss of x-DNN and r-DNN. It is evident that losses
decline with the increment of training episodes and eventually
stabilize, reaching convergence in 200 time frames.

3) Effects of COGA and thr on QDRL: To further explore
the effect of COGA and thr in our proposed scheme, we first
introduce different offloading action quantization strategies
(i.e., OP, noisy OP (NOP), and KNN [41]) in QDRL to com-
pare with QDRL considering COGA, then analyze the effect
of introducing parameter thr in QDRL. As shown in Fig. 8, the
COGA scheme outperforms the other four methods in terms
of RCR performance. COGA applies GA to improve OP, in
which OP can obtain order-preserving offloading actions but is
prone to falling into local optimum, and the introduced GA can
break the bottleneck of OP and obtain a more global optimal
solution.

In Fig. 6, when thr = 0, QDRL only applies the deep neu-
ral network model to achieve resource allocation. thr = 1
means that QDRL completely uses a mathematical reasoning
scheme to achieve resource allocation. The former approach
merely requires leveraging the trained model for inference,
thereby enabling the realization of resource allocation very
quickly. However, the model r-DNN used to implement infer-
ence resource allocation in RL is trained by poor data sets,
which results in the inference results being relatively poor.
The latter can directly obtain reasonable resource allocation
based on mathematical reasoning, but repeatedly calling func-
tions for calculation will consume a lot of time, and it poses
a challenge in meeting the system’s real-time requirements.
This article introduces thr = 0.5 to realize the ingenious com-
bination of the learning-based scheme and the mathematical
reasoning-based scheme, which leads to a shorter time and
higher RCR for QDRL to complete the same task.

4) Performance Comparison: We compare the results of
QDRL with five baseline algorithms under different condi-
tions. The content is as follows:

Performance Comparison Under Long-Term Continuous
Constraints: As shown in Fig. 9, QDRL approaches and even

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: QDRL: QUEUE-AWARE ONLINE DRL FOR COMPUTATION OFFLOADING 7783

Fig. 10. Performance comparison under different data arrival rates.
(a) Comparison of the average task queue length. (b) Comparison of the
normalized RCR. (c) Comparison of the computation time.

exceeds near-optimal solution (i.e., LyCD) on the same data
set using all metrics, demonstrating the advantage of our
model. Specifically, QDRL achieves average task queue length

and normalized RCR improvement in comparison with the
excellent scheme (i.e., DROO). Moreover, we can make the
following observations.

1) The average queue length and RCR of Local-only are
very small, while the average queue length and RCR of
Edge-only are large. From the perspective of the aver-
age queue length, this is because the former can quickly
process data locally, while the latter causes a backlog of
task queue time due to the inability to transmit data in a
short time. The reason for anomalous RCRs is that they
do not take edge–end collaboration into account.

2) The performance of DROO and AC in the average task
queue length is between Edge-only and Local-only, and
the performance in normalized RCR is similar to or
even exceeds that of Edge-only. However, since they
neglect the impact of the task queue, there is still a queue
backlog in the system and the RCR cannot be signifi-
cantly improved. Compared with them, QDRL not only
considers edge–end collaboration but also considers the
optimization of task queues and the maximization of
long-term RCR benefits, so as to obtain near-optimal
performance.

Performance Comparison Under Different Data Arrival
Rates: In real-world scenarios, the generation and arrival of
data (i.e., tasks) is random and dynamic. As depicted in
Fig. 10, we test the performance of different methods by vary-
ing the data arrival rate. It is evident that the task queue of the
sensor in Edge-only, DROO, and AC continues to accumulate
as the data arrival rate increases. This is because they cannot
process the arriving data in time. In contrast, the average task
queue of Local-only is always low, because it only processes
data locally, which is real time. Unlike them, as the data arrival
rate increases, the average task queue of QDRL has no obvi-
ous increase and always keeps a relatively small range like
LyCD. Its RCR can close to or even surpass the near-optimal
algorithm LyCD. Besides, QDRL also has a great advantage
in terms of computation time.

Performance Comparison Under Different Minimum
Tolerance Accuracy: There are more and more tasks have
high accuracy requirements in IIoT. To verify whether QDRL
and its comparison schemes can be applied to these scenarios,
we conduct extensive experiments under different minimum
tolerance accuracy, as shown in Fig. 11. The results show
that the average task queue of QDRL is still low under
different minimum tolerance accuracy, indicating that the
whole system is stable. In addition, QDRL is second only
to the approximate optimal algorithm and outperforms other
comparison schemes in normalized RCR, indicating that the
performance of QDRL is advanced. Last but not least, QDRL
can complete the task in a shorter time than LyCD, regardless
of the minimum tolerated accuracy. This is an interesting
finding, and it proves that QDRL can provide a reference for
scenarios that require high accuracy.

Performance Comparison Under Different Number of
Nodes: There are more and more nodes in IIoT, and whether
the proposed scheme can adapt to this change will become an
important metric of whether the scheme can be accepted. As
depicted in Fig. 12, we evaluate the performance comparison

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

7784 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Fig. 11. Performance comparison under different minimum tolerance accu-
racy. (a) Comparison of the average task queue length. (b) Comparison of the
normalized RCR. (c) Comparison of the computation time.

of different schemes under varying numbers of nodes. Thanks
to the reasonable scheduling of the task queue and the edge–
end collaboration in QDRL, no matter how the node number
changes, the average task queue length and RCR of QDRL will

Fig. 12. Performance comparison under different number of nodes.
(a) Comparison of the average task queue length. (b) Comparison of the
normalized RCR. (c) Comparison of the computation time.

not change too much, which proves the advantage of QDRL.
Although the computation time of QDRL increases with the
number of nodes, it always keeps the computation time low
similar to most of the comparison schemes. This provides an
opportunity for the real deployment of QDRL.

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

XU et al.: QDRL: QUEUE-AWARE ONLINE DRL FOR COMPUTATION OFFLOADING 7785

VI. CONCLUSION

Although the IIoT has great application value in indus-
trial environmental monitoring, sensors in the above scenarios
usually face severe energy and computing capability bottle-
necks and cannot achieve long-term operation. To address the
above problems, previous have made great efforts. However,
they ignore the edge–end collaboration or ignore the impact
of the task queue backlog, resulting in low system revenue.
To this end, we design a queue-aware computation offloading
scheme based on the AC framework, namely, QDRL. First,
the long-term operation of the system is represented as an
M-SMIP problem, which is converted into a per-frame deter-
ministic problem by the Lyapunov optimization technique. The
above problem contains two subproblems: resource allocation
and computation offloading, which are strongly coupled and
difficult to solve directly. Subsequently, we design a queue-
aware computation offloading scheme based on AC to address
these subproblems separately. The Actor module is imple-
mented based on a deep learning model and quantization
strategy COGA for generating computation offloading actions.
Integrating mathematical reasoning and learning-based meth-
ods into a Critic module for resource allocation. Finally,
extensive experimental results show that QDRL has advan-
tages in average task queue length and normalized RCR
compared with four baseline algorithms, approaching or even
surpassing the approximate optimal algorithm. In addition,
QDRL still maintains good performance in terms of com-
putation time, which shows that QDRL is suitable for real
implementation.

In the future, there is potential to expand the proposed model
to support cloud–edge–device collaboration architecture to fur-
ther improve system revenue. Also, the proposed algorithm
may be integrated with the graph neural network to handle
tasks with spatial structure.

REFERENCES

[1] L. Ren, Z. Jia, Y. Laili, and D. Huang, “Deep learning for time-
series prediction in IIoT: Progress, challenges, and prospects,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Jul. 11, 2023,
doi: 10.1109/TNNLS.2023.3291371.

[2] W. Mao, Z. Zhao, Z. Chang, G. Min, and W. Gao, “Energy-efficient
industrial Internet of Things: Overview and open issues,” IEEE Trans.
Ind. Informat., vol. 17, no. 11, pp. 7225–7237, Nov. 2021.

[3] X. Deng, J. Yin, P. Guan, N. N. Xiong, L. Zhang, and S. Mumtaz,
“Intelligent delay-aware partial computing task offloading for multiuser
Industrial Internet of Things through edge computing,” IEEE Internet
Things J., vol. 10, no. 4, pp. 2954–2966, Feb. 2023.

[4] F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward edge-based
deep learning in Industrial Internet of Things,” IEEE Internet Things J.,
vol. 7, no. 5, pp. 4329–4341, May 2020.

[5] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11,
pp. 2581–2593, Nov. 2020.

[6] S. Bi and R. Zhang, “Distributed charging control in broadband wireless
power transfer networks,” IEEE J. Sel. Areas Commun., vol. 34, no. 12,
pp. 3380–3393, Dec. 2016.

[7] P. Wei et al., “Reinforcement learning-empowered mobile edge comput-
ing for 6G edge intelligence,” IEEE Access, vol. 10, pp. 65156–65192,
2022.

[8] H. Zhou, T. Wu, X. Chen, S. He, D. Guo, and J. Wu, “Reverse
auction-based computation offloading and resource allocation in mobile
cloud-edge computing,” IEEE Trans. Mobile Comput., vol. 22, no. 10,
pp. 6144–6159, Oct. 2023.

[9] R. Fantacci and B. Picano, “A matching game with discard policy
for virtual machines placement in hybrid cloud-edge architecture for
industrial IoT systems,” IEEE Trans. Ind. Informat., vol. 16, no. 11,
pp. 7046–7055, Nov. 2020.

[10] C. Tang et al., “A mobile cloud based scheduling strategy for Industrial
Internet of Things,” IEEE Access, vol. 6, pp. 7262–7275, 2018.

[11] Z. Zhou, M. Shojafar, J. Abawajy, H. Yin, and H. Lu, “ECMS: An
edge intelligent energy efficient model in mobile edge computing,” IEEE
Trans. Green Commun. Netw., vol. 6, no. 1, pp. 238–247, Mar. 2022.

[12] K. Li, “Design and analysis of heuristic algorithms for energy-
constrained task scheduling with device-edge-cloud fusion,” IEEE Trans.
Sustain. Comput., vol. 8, no. 2, pp. 208–221, Apr.–Jun. 2023.

[13] X. Deng, J. Zhang, H. Zhang, and P. Jiang, “Deep-reinforcement-
learning-based resource allocation for cloud gaming via edge com-
puting,” IEEE Internet Things J., vol. 10, no. 6, pp. 5364–5377,
Mar. 2023.

[14] B. Yang, X. Cao, X. Li, Q. Zhang, and L. Qian, “Mobile-edge-
computing-based hierarchical machine learning tasks distribution for
IIoT,” IEEE Internet Things J., vol. 7, no. 3, pp. 2169–2180, Mar. 2020.

[15] W. Fan, S. Li, J. Liu, Y. Su, F. Wu, and Y. Liu, “Joint task offloading
and resource allocation for accuracy-aware machine-learning-based IIoT
applications,” IEEE Internet Things J., vol. 10, no. 4, pp. 3305–3321,
Feb. 2023.

[16] H. Materwala, L. Ismail, R. M. Shubair, and R. Buyya, “Energy-
SLA-aware genetic algorithm for edge–cloud integrated computation
offloading in vehicular networks,” Future Gener. Comput. Syst., vol. 135,
pp. 205–222, Oct. 2022.

[17] T. Pamuklu, A. C. Nguyen, A. Syed, W. S. Kennedy, and
M. Erol-Kantarci, “IoT-aerial base station task offloading with risk-
sensitive reinforcement learning for smart agriculture,” IEEE Trans.
Green Commun. Netw., vol. 7, no. 1, pp. 171–182, Mar. 2023.

[18] M. J. Neely, “Stochastic network optimization with application to com-
munication and queueing systems,” Synth. Lectures Commun. Netw.,
vol. 3, no. 1, pp. 1–211, 2010.

[19] I. T. Christou, N. Kefalakis, J. K. Soldatos, and A.-M. Despotopoulou,
“End-to-end industrial IoT platform for quality 4.0
applications,” Comput. Ind., vol. 137, May 2022, Art. no. 103591.

[20] M. Al-Amin et al., “Fusing and refining convolutional neural network
models for assembly action recognition in smart manufacturing,” Proc.
Inst. Mech. Eng. C, J. Mech. Eng. Sci., vol. 236, no. 4, pp. 2046–2059,
2022.

[21] R. Usamentiaga, D. G. Lema, O. D. Pedrayes, and D. F. Garcia,
“Automated surface defect detection in metals: A comparative review of
object detection and semantic segmentation using deep learning,” IEEE
Trans. Ind. Appl., vol. 58, no. 3, pp. 4203–4213, May/Jun. 2022.

[22] T. Shen et al., “SOTER: Guarding black-box inference for general neural
networks at the edge,” in Proc. USENIX Annu. Tech. Conf. (USENIX
ATC), 2022, pp. 723–738.

[23] L. Zeng, P. Huang, K. Luo, X. Zhang, Z. Zhou, and X. Chen, “Fograph:
Enabling real-time deep graph inference with fog computing,” in Proc.
ACM Web Conf., 2022, pp. 1774–1784.

[24] H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, “Edge comput-
ing with artificial intelligence: A machine learning perspective,” ACM
Comput. Surveys, vol. 55, no. 9, pp. 1–35, 2023.

[25] C. Fang et al., “DRL-driven joint task offloading and resource allo-
cation for energy-efficient content delivery in cloud-edge cooperation
networks,” IEEE Trans. Veh. Technol., early access, Jul. 24, 2023,
doi: 10.1109/TVT.2023.3297362.

[26] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless pow-
ered mobile-edge computing with binary computation offloading,” IEEE
Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190, Jun. 2018.

[27] W. Wu, P. Yang, W. Zhang, C. Zhou, and X. Shen, “Accuracy-guaranteed
collaborative DNN inference in industrial IoT via deep reinforcement
learning,” IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4988–4998,
Jul. 2020.

[28] Z. Zhang, H. Chen, M. Hua, C. Li, Y. Huang, and L. Yang, “Double
coded caching in ultra dense networks: Caching and multicast scheduling
via deep reinforcement learning,” IEEE Trans. Commun., vol. 68, no. 2,
pp. 1071–1086, Feb. 2020.

[29] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11158–11168,
Nov. 2019.

[30] W. Zhang et al., “Deep reinforcement learning based resource manage-
ment for DNN inference in industrial IoT,” IEEE Trans. Veh. Technol.,
vol. 70, no. 8, pp. 7605–7618, Aug. 2021.

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2023.3291371
http://dx.doi.org/10.1109/TVT.2023.3297362

7786 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

[31] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge
computing: Partial computation offloading using dynamic voltage scal-
ing,” IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, Oct. 2016.

[32] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wire-
less information and power transfer,” IEEE Trans. Wireless Commun.,
vol. 12, no. 5, pp. 1989–2001, May 2013.

[33] K. Zheng, X. Liu, B. Wang, H. Zheng, K. Chi, and Y. Yao, “Throughput
maximization of wireless-powered communication networks: An energy
threshold approach,” IEEE Trans. Veh. Technol., vol. 70, no. 2,
pp. 1292–1306, Feb. 2021.

[34] Q. Hong, F. Liu, D. Li, J. Liu, L. Tian, and Y. Shan, “Dynamic sparse R-
CNN,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022,
pp. 4723–4732.

[35] Y. Hua, M. Sevegnani, D. Yi, A. Birnie, and S. Mcaslan, “Fine-
grained RNN with transfer learning for energy consumption estimation
on EVS,” IEEE Trans. Ind. Informat., vol. 18, no. 11, pp. 8182–8190,
Nov. 2022.

[36] Y. Jiang, J. Liu, D. Xu, and D. P. Mandic, “UAdam: Unified adam-type
algorithmic framework for non-convex stochastic optimization,” 2023,
arXiv:2305.05675.

[37] J. Xu, B. Yang, Y. Liu, C. Chen, and X. Guan, “Joint task offloading
and resource allocation for multihop Industrial Internet of Things,” IEEE
Internet Things J., vol. 9, no. 21, pp. 22022–22033, Nov. 2022.

[38] P. Wang et al., “Scaled ReLu matters for training vision transformers,” in
Proc. AAAI Conf. Artif. Intell., vol. 36, 2022, pp. 2495–2503.

[39] Z. Pan, Z. Gu, X. Jiang, G. Zhu, and D. Ma, “A modular approxi-
mation methodology for efficient fixed-point hardware implementation
of the sigmoid function,” IEEE Trans. Ind. Electron., vol. 69, no. 10,
pp. 10694–10703, Oct. 2022.

[40] G. Tao et al., “Better trigger inversion optimization in backdoor scan-
ning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022,
pp. 13368–13378.

[41] S. Bi, L. Huang, H. Wang, and Y.-J. A. Zhang, “Lyapunov-guided
deep reinforcement learning for stable online computation offloading
in mobile-edge computing networks,” IEEE Trans. Wireless Commun.,
vol. 20, no. 11, pp. 7519–7537, Nov. 2021.

[42] M. J. Schuetz, J. K. Brubaker, and H. G. Katzgraber, “Combinatorial
optimization with physics-inspired graph neural networks,” Nat. Mach.
Intell., vol. 4, no. 4, pp. 367–377, 2022.

[43] Y. Zhang et al., “Free lunch for domain adversarial training: Environment
label smoothing,” 2023, arXiv:2302.00194.

[44] “QDRL.” 2023. [Online]. Available: https://github.com/xuaikun/QDRL.
git

Aikun Xu received the M.S. degree from Central South University, Changsha,
China, in 2022, where he is currently pursuing the Ph.D. degree with the
School of Computer Science and Engineering.

His research interests include deep learning, graph neural network, deep
reinforcement learning, scheduling, electric vehicles, and edge computing.

Zhigang Hu received the B.S., M.S., and Ph.D. degrees from Central South
University (CSU), Changsha, China, in 1985, 1988, and 2002, respectively.

In 2002, he joined CSU, where he is a Professor with the School of
Computer Science and Engineering. He has published over 200 research
papers. His research interests include radar signal processing and classifi-
cation/recognition, high-performance computing, and cloud computing.

Xinyu Zhang received the master’s degree from Central South University,
Changsha, China, in 2017, where he is currently pursuing the Ph.D. degree
with the School of Computer Science and Engineering.

His main research interests include edge computing, cloud computing, and
federated deep reinforcement learning.

Hui Xiao received the B.E. degree from Shandong University, Jinan, China, in
2017, and the M.E. degree from Central South University, Changsha, China,
in 2020, where she is currently pursuing the Ph.D. degree with the School of
Computer Science and Engineering.

Her main research interests are in the area of mobile-edge computing and
cloud computing.

Hao Zheng (Graduate Student Member, IEEE) received the M.S. degree from
Central South University, Changsha, China, in 2021, where he is currently
pursuing the Ph.D. degree in the research group of Zhigang Hu with the
School of Computer Science and Engineering.

His research interests include synthetic aperture radar image processing,
transfer learning, and computer vision.

Bolei Chen received the B.S. degree from the School of Computer Science
and Engineering, South Central University for Nationalities, Wuhan, China, in
2020. He is currently pursuing the Ph.D. degree with the School of Computer
Science and Engineering, Central South University, Changsha, China.

His research interests include deep reinforcement learning, robotic naviga-
tion, and autonomous exploration.

Meiguang Zheng received the B.S. and Ph.D. degrees in computer sci-
ence from Central South University, Changsha, China, in 2005 and 2011,
respectively.

She is currently an Associate Professor with the School of Computer
Science and Engineering, Central South University. She is currently leading
some research projects supported by the National Natural Science Foundation
of China. Her research interests include federated learning, distributed
machine learning, computer vision, and edge computing.

Ping Zhong (Member, IEEE) received the Ph.D. degree in communication
engineering from Xiamen University, Xiamen, China, in 2011.

She is currently an Associate Professor with the School of Computer
Science and Engineering, Central South University, Changsha, China. Her
research interests include machine learning, data mining, and network protocol
design.

Dr. Zhong is a member of ACM, CCF, and IEICE.

Yilin Kang received the Ph.D. degree in computer science from Nanyang
Technological University, Singapore.

She is currently an Assistant Professor with the School of Computer
Science, South Central University for Nationalities (SCUN), Wuhan, China.
Prior to joining SCUN, she was a Research Fellow with the NTU-UBC
Joint Research Centre of Excellence in Active Living for the Elderly
(LILY), Singapore. Her current research interests include human-centric com-
puting, brain-inspired intelligent agent, cognitive and neural systems, and
human–computer interaction.

Dr. Kang serves as a PC Member of AAAI 2020, AAAI 2019, and
IJCAI 2016 and an OC Member of IEEE WI/IAT 2015. She serves as
a reviewer for several major journals, such as IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS, IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, and Journal of Autonomous
Agents and Multi-Agent Systems.

Keqin Li (Fellow, IEEE) is currently a SUNY Distinguished Professor of
Computer Science with the State University of New York at New Paltz, New
Paltz, NY, USA. He has published over 620 journal articles, book chap-
ters, and refereed conference papers. His current research interests include
cloud computing, fog computing and mobile-edge computing, energy-efficient
computing and communication, embedded systems, cyber–physical systems,
heterogeneous computing systems, big data computing, high-performance
computing, CPU–GPU hybrid and cooperative computing, computer archi-
tectures and systems, computer networking, machine learning, and intelligent
and soft computing.

Prof. Li received several best paper awards. He currently serves or has
served on the editorial boards of IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS,
IEEE TRANSACTIONS ON CLOUD COMPUTING, IEEE TRANSACTIONS

ON SERVICES COMPUTING, and IEEE TRANSACTIONS ON SUSTAINABLE

COMPUTING.

Authorized licensed use limited to: Central South University. Downloaded on November 23,2024 at 00:51:51 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

