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Abstract—Software-Defined Network (SDN) revolutionizes tra-
ditional network structures by isolating the data plane and
the control plane, which offers greater flexibility in managing
network resources. Nevertheless, SDN remains vulnerable to
certain threats inherited from the traditional network, including
Distributed Low-rate Denial-of-Service (DLDoS) attack. This
attack is more subtle and harder to detect than traditional
Distributed Denial-of-Service (DDoS) attacks, because it employs
a lower average attack rate. We design a real-time detection and
mitigation system named DOE-DTL specifical for the DLDoS
attack in SDN. For the DLDoS attack detection, we utilize
Machine-Learning (ML) methods to construct a detection model
and introduce it in DOE-DTL. In the construction, we leverage
Extreme Learning Machine (ELM) and make a dual optimization
using Whale Optimization Algorithm (WOA). For the DLDoS
attack mitigation, we use double thresholds to determine the
attack sources and make corresponding mitigation rules. DOE-
DTL innovatively combines the Programmable Data Plane (PDP)
in detection and mitigation, shifting some control plane tasks
to the data plane. Performance assessments reveal that DOE-
DTL ensures fast, accurate attack identification and low-latency
mitigation while maintaining low resource usage.

Index Terms—Attack detection and mitigation, DLDoS attack,
dual optimization, double thresholds, ELM, PDP, WOA.

I. INTRODUCTION

SOFTWARE-DEFINED Network (SDN) largely improves
the convenience compared to the traditional network,

with the decoupled control and data planes, SDN can update
and deploy network functions more flexibly [1]. However,
since SDN continues to use communication protocols in the
traditional network architecture, the attacks based on the
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mechanical principles of these protocols are still applicable in
it, such as Distributed Low-rate Denial-of-Service (DLDoS)
attack. DLDoS attack exploits the TCP congestion control
mechanism. It is a multi-source Low-rate Denial-of-Service
(LDoS) attack [2], each attack source periodically generates
high-intensity traffic pulses to preempt the TCP bandwidth,
causing the TCP congestion control mechanism continuously
makes adjustment for the network traffic transmission and the
normal TCP traffic transmission is affected. DLDoS attack
can adversely affect the quality of network service with lower
attack cost. DLDoS attack demonstrates higher concealment
than traditional Distributed Denial-of-Service (DDoS) attacks
with the lower average attack rate [3], making it particularly
dangerous for SDN.

At present, researches on the DDoS attack confrontation
in SDN mainly focus on flooding attacks, and there are not
many methods specifically targeting DLDoS attack. Moreover,
almost all the DLDoS attack detection and mitigation schemes
that have been proposed are designed to be deployed entirely
on the controller. Because before the Programmable Data
Plane (PDP) [4] is proposed, the data plane could not be
customized as required, researchers are more accustomed to
exploiting the control plane programmability to deploy policies
and perform centralized control. The methods that need to be
completely deployed on the control plane create substantial
processing burdens, with the data-control plane interactions
producing inevitable time and resource costs. After the PDP
appears, SDN can customize the data packet processing and
forwarding logic on it to realize some detection and mitiga-
tion functions. And the adjustment of the functions is very
convenient due to the flexible programmability of the PDP.

We propose DOE-DTL, a real-time detection and mitiga-
tion system combined with PDP for the DLDoS attack in
SDN. DOE-DTL offloads part of the work from the control
plane to the PDP, which increases the flexibility and reduces
the pressure of the control plane as well as the time and
resource consumption to a certain extent. It has seven mod-
ules: Data Statistics, Feature Extraction, Traffic Monitoring,
Attack Detection, Suspicious IP Location, Suspicious IP List
Maintenance, and Mitigation Rule Deployment module. The
Traffic Monitoring module carries out coarse-grained pre-
detection, and the Attack Detection module uses a DLDoS
attack detection model to detect the DLDoS attack in real-time,
which is constructed based on Extreme Learning Machine
(ELM) [5], Whale Optimization Algorithm (WOA) [6], and the
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idea of dual optimization. The Suspicious IP Location module
determines suspicious IP based on double thresholds for attack
mitigation. The Data Statistics and Suspicious IP Location
module are deployed on the PDP using the Programming
Protocol-Independent Packet Processors (P4) language [7].

In order to evaluate DOE-DTL, we carry out experiments
in the simulation network built on Mininet [8] and Behavioral
Model Version 2 (BMV2) [9] programmable switches. The
results demonstrate that DOE-DTL has a high correct rate in
the DLDoS attack detection, and can quickly discover and
mitigate the attack (2s-6s), with low resource consumption.

In conclusion, the work has the following contributions:
• Put forward a system named DOE-DTL combining the

PDP for the real-time DLDoS attack detection and miti-
gation in SDN.

• Offload part of the detection and mitigation work from
the control plane to the PDP, making the pressure of the
control plane less, the functions more flexible, and the
time and resource cost lower.

• Train a DLDoS attack detection model used in the Attack
Detection module with ELM and WOA based on a dual
optimization strategy, the model judges according to the
features extracted from the data counted on the PDP.

• Propose a method leveraging double thresholds to locate
the suspicious IP on the PDP, which is useful for deter-
mining the attack sources in the DLDoS attack mitigation.

• Evaluate DOE-DTL in the simulation environment built
on Mininet and BMV2 programmable switches and prove
the effectiveness of the system.

The following structure of this paper is: Section II discusses
the background of our study. Section III introduces the related
work. Section IV illustrates DOE-DTL in detail, including
its architecture and its detection and mitigation strategies.
Section V evaluates the performance of DOE-DTL. Section VI
makes a conclusion of the work.

II. BACKGROUND

A. Programmable Data Plane

Traditional network architectures employ rigidly integrated
control plane and data planes, relying on fixed-function hard-
ware devices for traffic management operations, so it is very
inconvenient to redeploy network functions (requiring complex
modifications). In order to deploy network functions more
flexibly, SDN with decoupled control plane and data plane
is proposed. The control plane has an open programming
interface [10] to the data plane and programs the underlying
hardware functions to allocate the network resources in the
SDN.

In the first generation of SDN, the data plane itself is not
programmable and its functions are deployed by the control
plane through the communication based on the OpenFlow
protocol [11]. Because the data plane can not expand the func-
tions by itself, its flexibility is still low. With the development
of technology, a new generation of SDN has been designed,
which uses the PDP. The PDP enables autonomous protocol
parsing and packet processing through its self-defined rulesets,
eliminating control plane intervention. On the PDP, actions

Fig. 1. Comparison of the two generations of SDN.

Fig. 2. Model and principle of the LDoS attack.

and the related parameters are maintained in the Match-
Action Table, and the abstract logic is implemented through
programming flow control programs [12]. This enhanced
programmability has inspired novel approaches for attack
detection and mitigation in SDN, prompting researchers to
explore PDP-based solutions that alleviate control plane work-
load. Of course, in this generation of SDN, the control plane
can still manage the functions of the PDP by deploying rules
through the P4Runtime protocol [4], but the logic is different
from the first generation of SDN. In the former generation, the
devices of the data plane connect to the southbound interface
open on the control plane, in contrast, the devices of the PDP
open the gRPC server and then the control plane connects to
them in the new generation. Fig. 1 shows the structure of the
two generations of SDN.

B. DLDoS Attack

In the LDoS attack, the attacker launches bursts with high
speed and short duration in a periodic and discontinuous
manner to preempt the link bandwidth, restricting the normal
TCP traffic transmission. Specifically, the pulse traffic in LDoS
attack leads to network congestion and packet loss, thereby
triggering TCP congestion control mechanism. So that the
available TCP transmission bandwidth continues to decrease
as the congestion window (cwnd) is reduced. As a result, the
normal TCP traffic cannot be transmitted smoothly. The attack
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Fig. 3. Modes of the DLDoS attack.

traffic exhibits burst characteristics with peak rates during
pulse periods, while maintaining an average volume below
the bottleneck link bandwidth. Fig. 2 shows the model and
principle of the LDoS attack. The LDoS attack is described
using three key parameters [13]: attack cycle, pulse duration,
and attack intensity, which are represented by Ta, ta, and Ra

respectively. And the attack damage is reflected by the change
of the cwnd under the default congestion avoidance algorithm
(CUBIC [14]) in the subsequent evaluation experiment envi-
ronment (Linux system) of this paper.

The DLDoS attack is composed of LDoS attacks launched
in a distributed manner, multiple attack sources launch LDoS
attacks synchronously or asynchronously, the malicious attack
flows aggregate in the bottleneck link to result in network
congestion. Compared with traditional DDoS attacks, the
DLDoS attack is more subtle with the lower average attack
rate because of the short pulse time of each attack source. The
DLDoS attack can be divided into three modes: synchronous,
asynchronous, and hybrid, as shown in Fig. 3 (TA, tA, and
RA represent the attack cycle, pulse duration, and attack
intensity of the aggregated attack traffic respectively). In the
synchronous mode, multiple attack sources break out high-
intensity pulses at the same time and attack the victim with
the same Ta and ta, so the total attack intensity RA is higher.
In the asynchronous mode, the attack sources break out attack
pulses successively at different times, so the distribution of the
attack pulses is denser. In the hybrid mode, the attack sources
break out attack pulses synchronously or asynchronously,
so RA varies in the attack, and the attack pulses are also
distributed relatively densely. Following the above division,

we study the DLDoS attack detection and mitigation strategies.
In the DLDoS attack, the network traffic distribution changes
compared with the normal state, so we perform DLDoS attack
detection and mitigation through traffic distribution change
analysis in this paper.

III. RELATED WORK

At present, some DLDoS attack detection and mitigation
schemes have been proposed. Lei et al. carried out detection
based on wavelet transform, the network traffic is decom-
posed and reconstructed for the DLDoS abnormal traffic
identification [15]. Liu et al. created a detection algorithm
utilizing data compression and behavior divergence, which
measures the divergence degree of the network behavior based
on Daub4 wavelet transform, and calculates the concentrated
divergence energy percentage of each network traffic based on
the weighted exponential moving average method to realize an
accurate detection of DLDoS attack [16]. Sahoo et al. adopted
the metrics based on the measurement method of general-
ized entropy to conduct the early detection of the DLDoS
attack [17].

However, there is not enough study on the detection and mit-
igation of the DLDoS attack at present, and because DLDoS
attack has a lower average rate and stronger concealment,
the detection and mitigation methods applicable to traditional
DDoS attacks are not effective against it. But some detection
strategies such as those in [18], [19], and [20] can also be
used for DLDoS attack detection. In addition, since each attack
source launches an LDoS attack distributedly in the DLDoS
attack, some detection and mitigation approaches of the LDoS
attack are also suitable for detecting and mitigating the DLDoS
attack after adjustment. Wu et al. detected the LDoS attack
based on coherent detection, they calculate cross-correlation
values and compare them with designed double threshold rules
to determine whether the LDoS attack exists [21]. Yue et al.
proposed that modeling the queue distribution to extract the
attack feature and estimate the attack period on the basis of
the queue behaviors for timely attack detection [22]. Xie et
al. constructed a system named SoftGuard based on the ideas
of threshold discrimination, cycle extraction, and sequence
comparison to counter the LDoS attack in SDN [23]. Our team
proposed a series of methods to respond to the LDoS attack,
including some detection and mitigation systems for the LDoS
attack in SDN, such as P&F [24] and HGB-FP [25].

For the proposed response methods in SDN, most of them
are designed to be on the control plane completely. And to
meet the needs of the detection and mitigation work, some
necessary communication between the data plane and the
control plane has to be carried out when using them, which
brings unavoidable time and resource overhead. After the PDP
is proposed, the attack detection and mitigation work can be
directly deployed on it without the centralized management of
the control plane, and the functions can be customized flexibly.
According to that, there are some new studies. For example,
Zhou et al. presented NetBeacon for the ML inference on the
PDP, which can be used in the attack response [26]. da Silveira
Ilha et al. designed a fine-grained and low-delay mechanism
named Euclid based on the PDP to detect and mitigate DDoS
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attacks [27]. Laraba et al. resisted the hosts with improper
behaviors by programming the switch rules to reduce the TCP
protocol abuse and defend against network attacks [28]. Tang
et al. designed a set of functional tools used on the PDP and
proposed an in-network LDOS attack defense system [29].
Musumeci et al. implemented attack detection directly on
the PDP based on the ML method [30]. Li et al. proposed
a customizable system named POSEIDON to defend DDoS
attacks, which modularizes defense strategies with defense
primitives and deploys them on programmable switches to
effectively defend against attacks [31]. Febro et al. deployed
a new virtual network function on the edge programmable
switches to protect network devices from the SIP DDoS attack
[32]. Tavares and Ferreto proposed a SYN-flood attack defense
system based on sketches, avoiding the shortcomings of the
previous defense system, which would prolong client connec-
tion time and be vulnerable to buffer saturation attack [33].
Alcoz et al. proposed a congestion control mechanism named
ACC-Turbo for Pulse-Wave DDoS attack. The mechanism
continuously extracts data packet header characteristics at a
linear rate to aggregate the network traffic, infer the probability
that it is an attack flow cluster for each cluster, and formulate
the packet scheduling policies on the PDP according to that
[34]. However, as far as we know, almost all of the detection
and mitigation methods utilizing the PDP at present are aimed
at other types of network attacks, there is no scheme targets
DLDoS attack. The system we design in this paper is specific
to the DLDoS attack, and it conducts detection and mitigation
in real-time combined with the PDP.

IV. SYSTEM DESIGN

A. Framework of DOE-DTL

Firstly, we want to systematically introduce the seven mod-
ules in DOE-DTL. Some of the modules are deployed on the
control plane and some are on the PDP. Offloading some work
to the PDP relieves the control plane to some extent, improves
flexibility, saves some resources, and avoids partial delay.

1) Modules on the PDP: Data Statistics module. We ana-
lyze the traffic changes to determine the network status by
obtaining the features that can reflect the distribution of net-
work traffic. As described in Section II, the DLDoS attack can
change the traffic distribution, the essence of which is that the
number of packets and bytes of TCP and UDP traffic changes.
Therefore, we obtain network traffic features based on the
number of TCP packets, TCP bytes, UDP packets, and UDP
bytes. The function of the Data Statistics module is to make
real-time statistics of these numbers. Suspicious IP Location
module. When determining that there is a DLDoS attack
in the network, mitigation is conducted. In the mitigation,
suspicious IP information is the indispensable basis, it is
useful for identifying the attack source. This module locates
suspicious IPs continuously from DOE-DTL starts based on
double thresholds by programming the data packet processing
logic, which is simple and fast. And it reports the suspicious
IP information to the controller.

2) Modules on the Control Plane: Feature Extraction mod-
ule. It polls the Data Statistics module to sample the statistical

data and divides detection windows to obtain the network
traffic features based on the sampled data. Traffic Monitoring
module. To reduce the resource consumption of the system
as far as possible, we do not directly input the acquired
traffic features into the Attack Detection module for attack
judgment. Instead, we design this module for pre-detection,
and the calculation in it is simpler than the Attack Detection
module. Introducing a pre-detection module may also shorten
the time used to detect the DLDoS attack (less computation
requires less computation time). Attack Detection module. The
feature data is entered into it only when the Traffic Monitoring
module has found that the DLDoS attack may exist. This
module carries out fine-grained detection with a trained model
based on the ML method according to the traffic features,
determining whether the attack exists or not. Suspicious IP List
Maintenance module. It processes the reported information
from the Suspicious IP Location module on the PDP to obtain
the suspicious IP. The suspicious IP is added to the suspicious
IP list if it is not in, otherwise, it will be marked as the attack
source IP if DOE-DTL is undergoing attack mitigation and
the Mitigation Rule Deployment module will be informed to
deploy appropriate rules according to this IP. Mitigation Rule
Deployment module. It deploys rules based on the Match-
Action Table stored on the PDP to filter the packets sent from
the attack source IP and remove the mitigation rules from the
table when the network state is back to normal.

Fig. 4 shows the framework of DOE-DTL. When DOE-DTL
is running, on the PDP, the Data Statistics module counts the
number of packets and bytes of TCP and UDP. The Suspicious
IP Location module determines the suspicious IPs and reports
the information to the Suspicious IP List Maintenance module.
On the control plane, the Feature Extraction module calculates
the network traffic features and chooses to input the data into
the Traffic Monitoring module or the Attack Detection module
according to a maintained label value fl (its initial value is 0).
The Traffic Monitoring module is to carry out coarse-grained
pre-detection (sending a signal to the Feature Extraction
module when there may be an attack), while the Attack
Detection module is to carry out fine-grained detection. The
Suspicious IP List Maintenance module processes the reported
information and maintains the suspicious IP list. When the
Attack Detection module determines that the DLDoS attack
exists in the network, it communicates with the Suspicious IP
List Maintenance module and makes it start to determine the
attack source IPs. The Mitigation Rule Deployment module
deploys the mitigation rules according to the attack source
IP information from the Suspicious IP List Maintenance
module. When the Attack Detection module determines that
the network has changed from an attack state to a normal
state, it informs the suspicious IP List Maintenance module
to reset and carry out a new round of maintenance work
(avoiding the malicious interference caused by the historical
information when locating the suspicious IP and determining
the attack source IP), informs the Mitigation Rule Deployment
module to remove the deployed mitigation rules from the
Match-Action Table (avoid affecting the normal traffic for-
warding), and informs the Feature Extraction module to reset
fl to 0.
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Fig. 4. The framework of DOE-DTL.

TABLE I
THE NOTATIONS IN THIS PAPER

Next, we will introduce the detection and mitigation
strategies of DOE-DTL in detail, including the specific imple-
mentation methods of the functions of the above seven
modules. The notations used in this paper are summarized
in TABLE I.

B. Strategy in Attack Detection

1) Model Based on ELM: As described above, DOE-DTL
uses a constructed model in the Attack Detection module to

carry out DLDoS attack detection. For this model, we train it
based on ELM and combine the idea of dual optimization.

ELM is a kind of ML model based on Single Hidden
Layer Feedforward Neural Network (SLFN). While SLFN
adjusts and determines the weights through the backpropaga-
tion algorithm in training, ELM employs the Moore-Penrose
pseudoinverse to compute the hidden-to-output layer weight
matrix, without iteration. In addition, its input-to-hidden layer
weights and the hidden layer thresholds, are set in advance and
no adjustment is required in training, which can also reduce
part of the calculation amount, so the training process of ELM
is relatively simple. On the other hand, the main work is a
simple matrix operation when using the model based on ELM
to detect, thus the calculation speed is fast and the attack can
be found timely. Because of the simple training process and
the fast calculation speed, we choose ELM as the basic model
in the construction of the attack detection model.

When using the detection model based on ELM for DLDoS
attack detection, the traffic features in the network are taken
as the input layer, and ELM draws the result (the judgment
of the network status) in the output layer through calculation.
When training the detection model with the training data set,
we take the traffic feature values xi|i = 1, 2, . . . , n as the
input layer and the corresponding labels (the attack exists or
not) ti|i = 1, 2, . . . , n as the output layer, and find the optimal
hidden-to-output layer weight matrix β which minimizes the
training error, denoted by β∗.

The following is the training process. First, multiply each
input xi by the weight wj |j = 1, 2, . . . , L between the
input layer neuron and the hidden layer neuron, plus the
corresponding threshold bj of the hidden layer (L is the neuron
number in the hidden layer), and use the activation function
Sigmoid to get the output hj(xi) of the corresponding hidden
layer neuron. The specific calculation formula is as formula
(1). Then, calculate the hidden layer output matrix H =
[[h1(x1), . . . , h1(xn)], . . . , [hL(x1), . . . , hL(xn)]], which is
used to find β∗. We introduce the L2 regularization term
in the process of obtaining the optimal solution to avoid
overfitting, and find β that makes 1

2 ||β||
2
+ C

2 ||Hβ − T ||
2
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minimum, where C is the regularization coefficient and T
is the output matrix composed of label data ti. According
to the MP generalized inverse matrix theory, β∗ can be
calculated through the formula (2), where the solution result
of

(
HTH + 1

C

)−1
HT is the MP generalized inverse of H.

hj(xi) =
1

1 + e−(wjxi+bi)
(1)

β∗ =
(
HTH + 1

C

)−1
HTT (2)

2) Dual Optimization of the Model: the values of wj and
bj can affect the training effect in the model construction, so
we adopt a dual optimization strategy to optimize the setting
of these parameters. We use WOA, a new intelligent swarm
optimization algorithm to search for the above parameters.
The algorithm imitates the whale-preying behavior with few
parameters and simple operations. At the same time, we adjust
the factor convergence mode in WOA from linear convergence
to nonlinear convergence and introduce adaptive weights in the
position update, thereby improving the global search and local
development ability for better search results.

In hunting, the whale that finds the prey first swims toward
the prey, and its position is the initial optimal position. Other
whales in the population constrictively encircle the prey or
move in a spiral toward it with that whale. In the constrictive
encirclement, each individual would choose to swim toward
the whale in the optimal position, or toward a random whale.
We represent the parameters that need to be preset in the
form of vectors, regard them as the position vectors in WOA
(the spatial dimension d is set to the total number of the
parameters), and find the optimal vector according to the
regulars of the position changes in the hunting of whale
population. The following is the specific process.

a. Initialize the population number M and individual
parameter vectors, the parameter vector of the individual
Xm|m = 1, 2, . . . ,M is (Xm

1 , X
m
2 , . . . , X

m
d ). Calculate

the fitness value fm of each parameter vector (reflecting
detection effect of the model trained by ELM under the
setting of these parameters), and find the initial optimal
parameter vector X∗ (its fitness value f is optimal).

b. In each iteration, each individual parameter vector
changes through the constrictive encirclement or the
spiral position update according to the random number
p. If p < 0.5, the former is chosen, to step c, otherwise
the latter, to step e.

c. In the constrictive encirclement, the parameter vector
determines to tend to whether the optimal vector or a
random vector according to the random number A (the
formula is as (3)), where r1 and r2 are the random values
between 0 and 1, and a converges nonlinearly according
to formula (4) as the number of iterations increases
different from the traditional WOA whose a converges
linearly from 2 to 0. t and Tmax in the formula are
the current iteration number and the maximum iteration
number respectively. If |A| ≤ 1, the parameter vector
tends to the optimal vector, Xm updates to Xm+ as
formula (5), and the formula of D is (6). After the

update, skip to Step f, and if |A| > 1, the parameter
vector tends to a random vector, to step d.

A = 2ar1 − a (3)

a =
(
2− 2t

Tmax

)(
1− t3

T 3
max

)
(4)

Xm+ =
(

t3

T 3
max

)
Xm −AD (5)

D = |2r2X∗ −Xm| (6)

d. Assume that it tends to the random vector Xr, the
calculation formula for Xm+ is as formula (7), and
different from step c, the calculation formula for D is
formula (8). After the position update is completed, skip
to step f.

Xm+ =
(

t3

T 3
max

)
Xr −AD (7)

D = |2r2Xr −Xm| (8)

e. When the parameter vector changes through the spiral
position update, it also tends to the optimal vector, but
the formula is different as (9), where b is a constant,
and l is a random number in the interval [−1, 1]. The
solution formula of D is as (10). After the update, skip
to Step f.

Xm+ = Deblcos(2πl) +
(
1− t3

T 3
max

)
X∗ (9)

D = |X∗ −Xm| (10)

f. Find the current X∗, and judge whether the maximum
iteration number has been reached. If so, stop the search,
and the current X∗ is the result, otherwise, return to step
b to continue the iteration.

The nonlinear decreasing convergence method of a makes
WOA generate larger A in the early iteration stage to effec-
tively improve the global exploration ability, and generate
smaller A in the later stage to effectively improve the local
development ability. In addition, the adaptive weight t3

T 3
max

and

1− t3

T 3
max

respectively in the constrictive encirclement and the
spiral position update make the constrictive encirclement and
the spiral position update can respectively have the smaller
and the larger weights, or the larger and the smaller weights in
the iterative optimization process, improving the global search
ability and the local development ability.

For the calculation of f, we divide the training data set into
two parts called TA and TB of similar size, ensuring that
the proportion of the data under attack and not in the two
parts is approximately the same. Then, we further divide TB
into three parts called TB1, TB2, TB3, and similarly, ensure
that the three parts are similar in size as well as that the
proportion of the data under attack and not is roughly the
same. For each parameter vector in the iteration, we use TA
to train the attack detection model based on ELM with these
parameters, and use TB1, TB2, TB3 to test the model to get
f. We introduce JaccardIndex(JI) [35], which can reflect
the detection effect to calculate f. JI is calculated with the
formula: JI = DR/(DR+FPR+FNR), in which DR, FPR,
and FNR are the detection rate, false positive rate, and false
negative rate respectively (the detailed introduction is given
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Fig. 5. The construction of the DLDoS attack detection model.

in Section V). f is calculated from the test results of TB1,
TB2, and TB3, as the formula: f = (JI1 + JI2 + JI3)/3,
where JI1, JI2, and JI3 are the JI of TB1, TB2, and TB3

respectively. In the process of parameter determination, we
actually search for a parameter vector that makes f as large as
possible, because a larger f means that the FPR and FNR of
the model detection are lower, that is, the detection effect is
better. Generally, we take ELM as the basic model to construct
the DLDoS attack detection model and use WOA to pre-set
its parameters (introduce a nonlinear convergence factor and
adaptive weights). The flow of the DLDoS attack detection
model construction is shown in Fig. 5.

3) Traffic Feature Extraction: the traffic features are
needed for training and detection. For the feature extrac-
tion, in the Data Statistics module, we define two
packets and bytes Counter, named TCPCounter and
UDPCounter. For the destination address (the object may be
attacked), we count the number of packets and bytes of TCP
and UDP sent to it. Specifically, for each packet, we extract
its header information, determine its type (TCP or UDP), and
count the corresponding Counter. In addition, to prevent data
overflow, TCPCounter and UDPCounter are reset every 50s.

The Feature Extraction module polls TCPCounter and
UDPCounter, collects the number of packets and bytes of
TCP and UDP traffic with the sampling window of 0.3s, and
divides the detection windows in the form of the multiple-
sliding window. Using the multi-sliding windows to make
collaborative detection can improve the universality of DOE-
DTL, so that it can well detect the DLDoS attack with different
TA and tA (more timely and more accurate). We divided the
detection windows with the step size 0.3s, and the length 1.5s,
3s, 4.5s, and 6s (called Wa, Wb, Wc and Wd respectively), and
calculate the feature values of each window.

When the feature data is used in the training of DLDoS
attack detection model, we attach a corresponding label to
each group of data. If the sampling windows of attack in a
detection window account for more than 80%, the feature data
of this detection window is assigned label 1, indicating that it is
the feature data of the traffic under DLDoS attack, otherwise,
label 0 is assigned. Multiple groups of labeled feature data
constitute the training data set in the model construction.

4) Attack Detection Process: When fl is 0, the Feature
Extraction module sends the feature data into the Traffic Mon-
itoring module, which makes an initial determination of the
network status by comparing the feature data with a threshold
(set according to the actual network traffic condition). When
the Traffic Monitoring module determines that there may be
an attack, it sends a signal to the Feature Extraction module to

Algorithm 1 Attack Detection

inform it to change fl to 1. When fl is 1, the Feature Extraction
module sends the feature data to the Attack Detection module
for the fine-grained detection using the attack detection model.
For the four window division forms Wa, Wb, Wc, and Wd, if
adjacent three detection windows of any form are determined
to exist attack, the network is considered to be under the
DLDoS attack, otherwise to be normal. The three-detection-
window condition is set to further reduce the possibility of
misjudgment. The attack detection algorithm is defined as
Algorithm 1.

In DLDoS attack detection, the main work of the PDP
is data statistics, which is lightweight. When the network is
judged to be attacked, DOE-DTL conducts attack mitigation.
In contrast to the attack detection, the PDP takes on the main
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work in the mitigation, which can avoid some communication
overhead and accelerate the mitigation speed.

C. Strategy in Attack Mitigation

1) Suspicious Ip Location: The attack mitigation requires
the joint participation of the Suspicious IP Location module,
the Suspicious IP List Maintenance module, and the Mitigation
Rule Deployment module. The Suspicious IP Location module
locates suspicious IPs based on double thresholds according
to the fact that the attack source sends a lot of UDP packets
at the pulse time. The main idea is, for each very short period
s (pulse-time level), it calculates the total UDP packets Smip

sent by each source IP. Continuously, the module counts the
number of times that Smip of each source IP reaches or
exceeds the packet-count threshold Smt, which is represented
by rip, and compares rip with the number threshold R. When
rip is larger than or equal to R, the corresponding IP is
judged as suspicious and reported, and to avoid reporting
too much redundant information, a larger limit Rl is set,
the IP is not reported when rip exceeds Rl. Reporting less
redundant information can reduce the overhead of the reported
information processing on the control plane. R is set to reduce
the misjudgment. The subscript ip in the above notations is
the index value corresponding to each source IP, which is
calculated by hashing. s, Smt, R, and Rl are set and adjusted
according to the actual network condition such as attack
intensity to adapt to the dynamic network environment.

2) Attack Mitigation Process: When determining that a
DLDoS attack exists in the network, the Attack Detection
module sends a signal to the suspicious IP List Maintenance
module. After receiving the signal, for each obtained suspi-
cious IP, if it is already in the suspicious IP list and not labeled
as an attack source IP, the suspicious IP List Maintenance
module determines that it is an attack source IP and marks
in the suspicious IP list, then, informs the Mitigation Rule
Deployment module to deploy corresponding rules to drop
the traffic issued by this IP refer to the Match-Action Table
stored on the PDP. It is worth mentioning that the continuous
operation of the Suspicious IP Location module makes it
possible to find and report suspicious IP as soon as possible, so
that when the DLDoS attack is determined to exist, DOE-DTL
can quickly locate the attack source. And although the module
is continuously running, its work is mainly based on the simple
operations of Register such as read, write, and add, therefore,
the resource consumption on the PDP is still at a low level,
and the normal line-speed forwarding of data packets can be
satisfied. When the Attack Detection module determines that
the network changes from the attacked state to the normal
state, it sends a signal to the suspicious IP List Maintenance
module, Mitigation Rule Deployment module, and the Feature
Extraction module respectively. After receiving the signal, the
suspicious IP List Maintenance module clears the suspicious
IP list and starts a new round of maintenance work, the Feature
Extraction module resets fl to 0.

In order to satisfy the need for read and write opera-
tions in the calculation, we choose to use the Register (the
Counter mentioned before is no longer applicable). We define
5 registers, Registerpackets, Registernum, Registertime,
Registerflaga, and Registerflagb to record the Smip and

Algorithm 2 Suspicious IP Determination

rip in each s, the end time Etip of last s and the flags in
the judgment of each source IP separately. In addition, for s,
we use the timestamp to divide. The specific implementation
of the function of the Suspicious IP Location module is as
follows. For each arrival data packet, we get the current
time Ct from the timestamp metadata it carries and identify
whether it is a UDP packet by extracting its packet header
information. If so, we hash the source IP to get the index value
ip, and then, read the Etip at ip position of Registertime and
determine whether the interval of the value and Ct reaches or
exceeds s. If not reach s, we set the Flagaip at ip position of
Registerflaga to 0, otherwise, we set it to 1 and update the
Et at the corresponding position of Registertime to Ct. Each
time a UDP packet arrives, we read the Smip at ip position
of Registerpackets and add 1 to it. And when Flagaip is 0,
we rewrite the new Smip, when Flagaip is 1, we compare
Smip with Smt to get the Flagbip (0 for less than Smt,
1 for larger than or equal to Smt) and reset ip position of
Registerpackets to 0. F lagbip is stored at ip position of
Registerflagb. If Flagbip is 1, the rip at the corresponding
position of Registernum is read. When rip is larger than Rl,
no operation is carried out, otherwise, we add 1 to rip to
obtain a new value and write it to the original location. In
addition, if the new rip is larger than or equal to R, we judge
the corresponding source IP to be suspicious and use Digest
to report it to the control plane. The algorithm to determine
when a UDP packet arrives is described as Algorithm 2.
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Fig. 6. The detection and mitigation flow of DOE-DTL.

In fact, the PDP and the control plane communicate only
when there is suspicious IP information to report or mitigating
rules to deploy, producing a low time overhead. Without a
doubt, attack detection is a necessary prerequisite for mitiga-
tion, so we make a summary of the overall work process of
DOE-DTL in Fig. 6, including detection and mitigation.

D. Complexity Analysis

We analyze the computational complexity of DOE-DTL,
including time complexity (TC) and space complexity (SC).
The main calculation work is in the Data Statistics module,
the Feature Extraction module, the Attack Detection module,
and the Suspicious IP Location module.

In the Data Statistics module, the number of packets and
bytes of TCP and UDP are counted. Each statistical operation
needs to extract and parse the packet header of the arrived
packet, and then carry out the corresponding counting oper-
ation, the statistical information is stored in TCPCounter
and UDPCounter. The TC and SC are O(1) and O(n)
respectively. In the Feature Extraction module, the data in
detection windows is sampled by polling TCPCounter and
UDPCounter, with subsequent extraction of the feature values
for each window. The time overhead is mainly generated
by the feature calculation, the TC is O(n). And the space
overhead is mainly generated by the storage of the sampled
data, the SC is O(n). In the Attack Detection module, the
feature data is input to the attack detection model, and the
determination results are obtained through the calculation in
the model. The trained attack detection model is essentially
a single-hidden-layer neural network with fixed weights and
thresholds. The TC of the computation is O(n), and the SC
is O(n2). In the Suspicious IP Location module, when a UDP
packet arrives, a count operation is performed, and when the
interval time reaches s, a comparison operation is performed,
the TC is O(1). The Registers are used for counting, so the
SC is O(n).

On the whole, the TC and SC of DOE-DTL are O(n) and
O(n2) respectively. Therefore, the computational complexity
of DOE-DTL is low, confirming that DOE-DTL achieves
an effective balance between accuracy and computational
efficiency.

V. EXPERIMENTS AND ANALYSIS

A. Experimental Setup

We deployed DOE-DTL in a simulation network based on
Mininet and BMV2 programmable switches and conducted a

Fig. 7. Network topology for evaluation experiments in SDN.

series of performance evaluation experiments. The operating
system is Linux Ubuntu 20.14, the virtual machine is VMware
16.0.0, and the memory RAM and the hard disk are 8GB
and 64GB respectively. In the simulation network, the con-
troller implements functions by running Python scripts and
communicates with the programmable switches based on the
P4Runtime protocol, and the network topology is as Fig. 7. We
use the real network Topology Sprint from Internet Topology
Zoo [36] as the evaluation network topology, which consists of
11 cities and 18 city links, each city is treated as a switch, the
bandwidth of the city links is 45Mbps, and the delay of each
city link is marked in Fig. 7, in addition, each city connects
to local users, the bandwidth of the local links is 1Gbps, and
the delay of each local link is 0ms.

It is stated here that in order to avoid unnecessary financial
consumption, we don’t configure a hardware programmable
switch for the experiments. Because the hardware and software
are functionally equivalent [27], we believe that the evaluation
results in the simulation environment are sufficient to truly
reflect the performance of DOE-DTL. In the experiments, we
use Tcpreplay [37] to replay MAWI dataset [38] as background
traffic, and run Python sockets to generate attack traffic. MAWI
dataset is captured from the WIDE Project.

For the features to be acquired by the Feature Extraction
module, we choose that can reflect the network traffic changes
in the experiment. Meanwhile, in order to consume less feature
calculation time, we choose the features as simple as possible.
In the DLDoS attack, each attacker sends UDP streams at
pulse time to attack, and under the action of the congestion
control mechanism, the normal transmission of TCP traffic
is affected. Therefore, the dispersion degree of UDP packetsAuthorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 02,2026 at 14:26:28 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 8. The feature values under DLDoS attack and not.

TABLE II
THE ATTACK PARAMETERS OF THE EXPERIMENTS

and bytes becomes large, and the number of TCP packets and
bytes decreases significantly in the DLDoS attack. We select
TB−MN , TP−Q1, UB−MD, and UP−SD as the features,
which are respectively the mean TCP bytes, the first quartile
of TCP packets, the mean deviation of UDP bytes and the
standard deviation of UDP packets. The feature values under
DLDoS attack and not are shown in Fig. 8. In the Traffic
Monitoring module, we use TB−MN as the pre-detection
feature. When the value of TB−MN is less than 1000000,
it is determined that there may be a DLDoS attack and the
Attack Detection module is started to be used.

The attack parameters in the experiment are summarized in
TABLE II, each attack source selects one group in it as the
attack parameters when attacks. We use these parameters to
launch DLDoS attacks, collect network traffic data in both
normal and attack states and process them to obtain the
training set for the attack detection model. And we set s and
Smt in the suspicious IP location as 0.2s and 10000 according
to these parameters. Meanwhile, in order to evaluate the fastest
mitigation speed that DOE-DTL can reach, we set R to 1, that
is, the source IP will be decided to be a suspicious IP as long
as the number of UDP packets sent by it exceeds Smt in a
certain s, and for Rl, we set it to 10.

Fig. 9. IWOA vs. WOA.

B. Evaluation Metrics

We select a series of evaluation metrics in the performance
evaluation of DOE-DTL. In the evaluation of the detection
effect, in addition to DR, FPR, FNR, and JI mentioned in
Section IV, we also use the correct rate CR and Precision. We
use these metrics to consider both the cases of the false nega-
tive and the false positive for more comprehensive evaluations
of the detection effect. The lower FPR and FNR are, and the
higher the other metrics are, the better the detection effect is.
In terms of response time evaluation, we set attack detection
time DT and attack mitigation time MT as evaluation metrics.
In addition, we also set a metric ST to evaluate the overall
time consumption of attack detection and mitigation. In terms
of resource occupation evaluation, CU and MU are selected
to evaluate the CPU and memory usage of DOE-DTL during
operation. The calculation formulas of CR, FNR, FPR, DR,
and Precision are as follows: CR = (TN +TP )/(TN +TP +
FN+FP ), FNR = FN/(TP+FN), FPR = FP/(TN+FP ),
DR = TP/(TP + FN), and Precision = TP/(TP + FP ).
TP , TN , FP , and FN respectively represent the number of
times that attacks are correctly determined to exist, the number
of times that attacks are correctly determined to not exist, the
number of false positives and the number of false negatives.

C. Performance Evaluation and Comparison

1) Optimization Effect of WOA: As described in Section IV,
we optimize the basic WOA to improve its global search
capability and local exploitation capability. We perform exper-
iments to verify the effect of the optimization. Fig. 9 shows
the change of f when selecting parameters based on traditional
WOA (WOA) and improved WOA (IWOA). It can be seen that
IWOA can achieve a higher f, that is, better parameters can
be searched.

2) Effectiveness of Dual Optimization: In the training of
the attack detection model used by DOE-DTL, we adopt
the idea of dual optimization. In order to judge whether the
dual optimization strategy makes the constructed detection
model more effective, we also construct an attack detection
model based on the basic ELM. Here, we respectively use
OELM and TELM to indicate the attack detection model
constructed with parameter setting and not. By comparing the
detection effect of the DLDoS attack of OELM and TELM,
we verify the significance of dual optimization. Fig. 10 shows
the comparison between the two. On the whole, CR, DR, JI ,
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Fig. 10. OELM vs. TELM.

TABLE III
THE RESULTS OF DETECTION EFFECT EVALUATION

and Precision are higher in OELM, while FNR and FPR are
lower.

3) Detection Effect: The results in TABLE III show that
for all three attack modes, DOE-DTL has a good detection
effect. On average, CR, DR, Precision, JI can reach more
than 0.99, and FNR and FPR are less than 0.01, indicating
that DOE-DTL has a very low probability of the false positive
and false negative. DOE-DTL can not only detect the DLDoS
attack in time but also avoid misjudgment of benign traffic as
much as possible.

4) Response Time: For synchronous, asynchronous, and
hybrid DLDoS attack, we respectively conduct 9 groups of
experiments to evaluate the detection time and mitigation time
spent by DOE-DTL in the work. Fig. 11(a), 11(b), and 11(c)
respectively show the DT and MT of the system against
synchronous, asynchronous, and hybrid attack. And Fig. 11(d)
shows the ST of DOE-DTL under the three attack modes.

Fig. 11. The results of response time evaluation.

Fig. 12. The traffic changes in mitigation.

Generally speaking, DOE-DTL takes about 2s-6s in total to
detect and mitigate the DLDoS attack, which is pretty quick.

We capture the traffic in the bottleneck link and draw
images to observe the traffic changes under the DLDoS attack
when DOE-DTL is deployed. Fig. 12(a), Fig. 12(b), and
Fig. 12(c) show the changes when the attack is synchronous,
asynchronous, and hybrid respectively. After the attack starts,
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TABLE IV

COMPARISON WITH OTHER METHODS

the transmission of normal TCP traffic is affected and its
proportion in the bottleneck link is reduced. Subsequently,
through the detection and mitigation mechanisms of DOE-
DTL, the attack phenomenon is discovered, and the attack
source IPs are pinpointed, then the traffic from the attack
source IPs is filtered. The network traffic transmission finally
returns to the normal level. In the period when the net-
work traffic distribution is abnormal, DOE-DTL detects the
attack, locates attack source IPs, and deploys mitigation rules
to drop attack packets. We can see that the traffic can
recover to normal soon under the detection and mitigation of
DOE-DTL.

5) Resource Occupation and Comparison With Other Sys-
tems: As shown in TABLE IV, in the process of detection
and mitigation, CU of DOE-DTL is between 0.5% and 3.8%,
and MU is around 30MB. Both CU and MU are lower, which
indicates that DOE-DTL is a relatively lightweight system for
detecting and mitigating the DLDoS attack in SDN.

As far as we are aware, no prior research has investigated
DLDoS attack detection and mitigation strategies in SDN
combined with PDP. So we compare DOE-DTL with some
similar detection and mitigation systems in SDN, they are
SoftGuard [23], P&F [24], and HGB-FP [25]. These systems
are for the LDoS attack and little work of them is deployed
on the data plane. Except for CU and MU , TABLE IV shows
that the ST of DOE-DTL is short, although its lower-bound is
a little longer than HGB-FP, its upper-bound is far shorter than
all the comparison objects, that is, it remains at a low level,
which is more valuable. Besides, we compare DOE-DTL with
the relevant methods on the PDP, NetBeacon [26] and PLUTO
[29], and DOE-DTL is on par with them in terms of ST . The
advantages in time cost of the combination with the PDP in
the system design is reflected.

VI. CONCLUSION AND FUTURE WORK

In this paper, we design a system named DOE-DTL for the
detection and mitigation of the DLDoS attack in SDN, com-
bined with the PDP. In DOE-DTL, an attack detection model
based on ELM and a dual optimization strategy utilizing WOA
is used to detect the DLDoS attack in real-time. And DOE-
DTL locates the suspicious IP based on double thresholds to
further identify attack sources and deploy mitigation rules.
In the simulation environment built on Mininet and BMV2
programmable switches, we evaluated DOE-DTL from three
aspects: detection effect, response time, and resource occupa-
tion. The results show that DOE-DTL is an effective system
for the real-time DLDoS attack detection and mitigation, and
because it offloads part of the work to the PDP, the functions

in it are flexible and the time and resource consumption in the
work is low.

In the future work, we will strive to move more work to the
PDP to further leverage the benefits of deploying work on the
data plane, and adapt DOE-DTL to be suitable for detecting
and mitigating more types of attacks. Additionally, the modu-
lar design idea of DOE-DTL facilitates the adjustment of each
module, we will choose more basic ML models to build the
attack detection model in the Attack Detection module and
analyze the corresponding impact on the system performance.
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