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Abstract—Existing malicious traffic detection methods face
challenges in achieving real-time detection in high-bandwidth
networks, suffer from information loss due to conventional
discrete statistical feature extraction, and remain vulnerable to
evasion by short-flow-based malicious traffic resembling benign
behavior. To this end, we present REAPER, a high-performance
system for real-time detection of malicious traffic at the network
flow level, built on Intel DPDK. REAPER leverages an IP-trie to
dynamically aggregate short flows in real time, exposing hidden
sending patterns of malicious traffic. It leverages a deep time-
series embedding analysis (DTEA) method, which uses the RNN
algorithm to directly convert network flow data into embed-
dings, followed by outlier analysis on the embeddings using an
unsupervised variational autoencoder (VAE) algorithm, capable
of detecting zero-day attacks. Experiments show REAPER out-
performs the baseline, especially for encrypted malware traffic,
achieves an average AUC of 0.9429 and EER of 0.0348 under
evolving cyber attack patterns, and supports up to 5 Gbps traffic
throughput, with scalability to higher rates.

Index Terms—Deep learning, deep time-series embedding anal-
ysis, malicious traffic detection, variational autoencoder.

I. INTRODUCTION

TRADITIONAL malicious traffic detection solutions (e.g.,
signature identification [1], [2], [3], etc.), leverage con-

figured prior rules to perform feature analysis on the network
traffic. However, prior rules-based solutions are not extensible
and robust. They rely on manual feature engineering to update
prior rules (signature libraries, etc.) and cannot detect zero-day
attacks.

Since Machine Learning (ML) methods, especially Deep
learning (DL), possess powerful capabilities in modeling and
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analyzing data. They can effectively identify complex patterns
existing in network flows, enabling the accurate identification
of malicious patterns [4], [5], [6]. However, the majority of
ML-based detection systems in current research, e.g., [7] and
[8], utilize existing labeled datasets for supervised learning,
limiting their ability to detect only known attacks. In contrast,
only a few detection approaches, e.g., [9], [10], and [11], use
ML-based outlier analysis in unsupervised manners. While
these approaches have the potential to detect zero-day attacks,
they still employ traditional statistical feature extraction that
exhibits significant information loss, thereby reducing their
effectiveness in distinguishing among numerous network flows
[12].

Furthermore, traditional detection systems [13], [14] uti-
lizing end-to-end solutions cannot detect ongoing line-speed
traffic in real time, especially within high-bandwidth networks,
e.g., within backbone networks. Aiming for real-time detection
requirements [15], programmable data plane (PDP) as a novel
networking paradigm, provides in-network solutions for real-
time malicious traffic detection. Concretely, these solutions
are mainly developed by Programming Protocol-Independent
Packet Processors (P4) [16] or Intel data plane development
kit (Intel DPDK).

P4-based in-network solutions [17], [18] are deployed on the
network devices integrating the P4 target hardware, e.g., Tofino
ASIC and SmartNIC, etc. However, due to the limitations
of both P4 primitives and hardware resources [19], [20],
P4 cannot highly support developing sophisticated ML-based
general detection systems against malicious traffic, even if
there are studies about the P4-based in-network ML infer-
ence [21], [22]. In practice, P4 is mainly oriented toward
developing lightweight systems that address specific tasks, like
DDoS attack detection [23], [24], and DNS security defense
[25]. Besides, P4 target hardware can be the accelerator for
sampling fine-grained traffic statistics [26].

Subsequently, Intel DPDK-based in-network solutions [27]
are deployed on x86-based platforms powered by CPUs,
e.g., software-defined middleboxes. Intel DPDK utilizes the
userspace I/O (UIO) kernel module to bind NIC ports to
the poll mode driver (PMD) running in userspace, thereby
masking kernel interrupts triggered by arrival packets. Addi-
tionally, Intel DPDK employs hugepages as memory pools to
cache large volumes of arrival packets, reducing the overhead
associated with memory page switching during packet access.
Developers can leverage the Intel DPDK API, wrapped as a
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C library, to mirror arrival packets from the memory pool
and process them efficiently. Therefore, Intel DPDK exhibits
the capacity to provide in-network solutions for achieving
real-time malicious traffic detection driven by ML. However,
existing Intel DPDK-based in-network solutions [12] only
detect individual network flows by extracting statistical fea-
tures, which can be evade by the disguised malicious traffic.

To this end, we propose REAPER, a real-time, robust mali-
cious traffic detection system prototyped with Intel DPDK. It
uses network flows as detection units and adopts DL-based
methods to robustly identify malicious traffic.

Real-time Collection for Network Flow Data. We enable
the UIO for NIC ports so that REAPER can online extract
per-packet features from the packets mirrored from NIC ports.
We use a flow table to assemble the per-packet features into
network flow data. Specifically, each table entry is indexed
by a network flow and stores a record containing both bidi-
rectional and unidirectional data for the network flow. When
a network flow is completed, we evict it from the flow table
while collecting the corresponding network flow record.

Dynamic Aggregation for Short Flows. We analyzes
the composition of backbone network traffic and observes
that short flows contain significantly limited information.
When performing detection on individual network flows, short
flows lack sufficient distinguishability, which can lead to the
confusion of malicious short flows with benign ones. This
enables malicious traffic, such as encrypted malware traffic, to
evade detection by manipulating large botnets to send volumes
of short flows. To address this challenge, we dynamically
aggregate short flows, amplifying the analytical granularity to
robustly identify the sending patterns associated with mali-
cious traffic. Specifically, we have developed an IP prefix
tree (IP-Trie) for REAPER to dynamically aggregate short
flows into aggregated flows based on their IP prefixes, and we
propose efficient algorithms for runtime IP-Trie maintenance.

Deep Time-series Embedding Analysis. We propose the
Deep Time-series Embedding Analysis (DTEA) method for
REAPER. Unlike traditional discrete statistical feature extrac-
tion, the DTEA method directly converts time-series-shaped
network flow data into the continuous embeddings using the
RNN algorithm, thereby preserving comprehensive informa-
tion from the original data. Additionally, the DTEA method
uses an unsupervised variational autoencoder (VAE) algorithm
to perform outlier analysis on the embeddings to identify
malicious network flows. The VAE overcomes two key limita-
tions exhibited by traditional autoencoders (AE) [28], [29]: (I)
Deterministic modeling of the latent space lacks generalization
ability. (II) The deterministic latent representation must be
decoded during outlier analysis, which introduces additional
computational overhead in real-time detection. In contrast, the
VAE algorithm encodes data into an uncertain latent repre-
sentation, and its uncertainty can directly indicate whether the
data is an outlier, without the need for decoding.

Evaluation. We conduct comprehensive experiments to
thoroughly evaluate REAPER.

We gather a total of 20 distinct malicious traffic datasets to
assess the detection performance of REAPER. To further eval-
uate the robustness of REAPER’s detection capabilities, we go

beyond traditional cyber attack traffic datasets and collect 14
sets of encrypted malware traffic, including ransomware and
adware traffic. Additionally, we mix various cyber attack traffic
datasets to examine REAPER’s ability to adapt to evolving
cyber attack patterns. The experimental results indicate that
REAPER outperforms the baselines, particularly in detecting
encrypted malware traffic. Moreover, REAPER maintains an
average AUC of 0.9429 and an average EER of 0.0348, even
when faced with evolving cyber attack patterns.

Furthermore, we measure REAPER’s throughput on our
testbed using 3 different traffic loads. The throughput for
parsing packets and updating the flow table reaches up to
9.5 Gbps. The throughput for dynamically aggregating short
flows reaches 4.5 Gbps, while the throughput for performing
network flow detection reaches 5 Gbps. Besides, the system’s
runtime memory footprint is 4.1 GB.

Overall, our paper has five main contributions:
• We propose REAPER, a real-time, robust malicious

traffic detection system that leverages deep learning (DL)-
based methods to identify malicious traffic in units of
network flows.

• We develop the IP-Trie to perform dynamic aggregation
on short flows and propose efficient algorithms for main-
taining the IP-Trie in real-time.

• We propose the deep time-series embedding analysis
(DTEA) method for robustly analyze network flow data.

• We utilize Intel DPDK to prototype REAPER, capable of
handling high-bandwidth traffic.

• We evaluate the detection performance of REAPER on
20 groups of different malicious traffic datasets, and also
measure its throughput and runtime overhead.

The remaining content is organized as follows: Sec-
tion II recommends the threat model and design goals of
REAPER. Section III demonstrates the top-level design of
REAPER. Section IV expands the design details of REAPER.
Section V presents the implementation of REAPER and all
conducted experiments. Additionally, Section VI reviews the
related work, Section VII presents the limitation and discus-
sion of REAPER, as well as Section VIII summarizes this
paper.

II. THREAT MODELING AND DESIGN GOALS

A. Threat Modeling

First, we implement REAPER as a plug-and-play virtu-
alization function module on a software-defined middlebox.
REAPER is isolated from basic functions such as routing.
Therefore, it does not interfere with ongoing traffic.

Second, we highlight that REAPER has no prior knowledge
about any attacks, its knowledge is derived only from the real-
world traffic, which is recognized as benign. As a result, it can
detect zero-day attacks with unknown patterns.

Third, for resource exhaustion attacks, its traffic consists
of extensive short flows, which can easily be confused with
benign traffic. These short flows are exploited to request the
resources of victim servers until they are exhausted. However,
REAPER can dynamically aggregate short flows, effectively
countering resource exhaustion attacks.
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Fig. 1. The Overview of REAPER.

TABLE I
LIST OF ACRONYMS

Furthermore, REAPER is oriented toward detecting mali-
cious traffic but does not take specific mitigation strategies.
To further enhance its capabilities, we can integrate existing
solutions for mitigating malicious traffic [30], to further dis-
card identified malicious traffic or limit its rate.

B. Design Goals

Robust Detection. The malicious traffic detection system
we developed should have high accuracy to identify malicious
traffic and strong generalization ability to adapt evolving cyber
attack patterns, and the system should possess capacity to
counter covert malicious traffic.

Real-time & High Throughput. The system needs to be
deployed in high-bandwidth network scenarios in real-time and
requires high processing throughput.

III. OVERVIEW OF REAPER

Table I lists the main acronyms in this paper. In this
section, we present the design overview of REAPER, a sys-
tem designed to detect malicious traffic at the granularity
of network flows. Based on insights into network traffic
composition, REAPER adopts distinct strategies for handling
long and short flows. In particular, REAPER dynamically
aggregates short flows based on IP prefixes, thereby amplifying
the analytical granularity to aggregated flows at the network
segment level. This approach improves its capability to detect
malicious network flows that use camouflage techniques to

evade detection, e.g., low-rate port flooding [31] and botnet
manipulation. Additionally, to analyze the network flow data,
REAPER departs from the traditional approach of extracting
discrete statistical features. Instead, it employs the DTEA
method to directly transform the network flow data into
continuous embeddings, preserving the original information of
the network flows. Besides, the DTEA method leverages the
VAE algorithm to perform outlier analysis on the embeddings,
enabling malicious traffic detection in an unsupervised manner.
Fig. 1 illustrates the top-level design of REAPER, which
comprises four key modules: 1) Parser, 2) Assembler, 3)
Aggregator, and 4) Detector.

Parser. This module monitors the RX queues of NIC
ports, mirroring the arrival packets and extracting their per-
packet features, including the header information (e.g., IP, port,
protocol, length, flags, etc.), and the NIC port metadata (e.g.,
arrival timestamp, etc.). The extracted per-packet features are
orderly stored in a ring queue. The ring queue design will be
discussed in Section IV-A.

Assembler. This module retrieves the per-packet features
from the ring queue. It maintains a flow table that assembles
the per-packet features into network flow records based on
the flow ID, i.e., the five-tuple hash key: <{[SrcIP, SrcPort],
[DstIP, DstPort]}symmetric, protocol>, where [SrcIP, SrcPort]
and [DstIP, DstPort] are symmetric hash key elements. Each
table entry maps to a network flow record that caches both
bidirectional and unidirectional flow data for corresponding
network flow. Once the data of a network flow is fully
collected, its record will be enqueued into the short/long-flow
queue. The details of the flow table design and network flow
classification will be presented in Section IV-B.

Aggregator. This module dequeues short flow records from
the short-flow queue and inserts the unidirectional flow data
from the records into the leaf nodes of an IP prefix tree (IP-
Trie), based on the SrcIP of unidirectional flows. The inserted
flow data is incorporated into the aggregated flow record at
the leaf nodes. When the aggregation process is enabled, the
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TABLE II
LIST OF SYMBOLS USED IN DESIGN DETAIL

module iteratively merges sibling leaf nodes whose aggregated
flow record length is below a specified threshold. The cached
aggregated flow record of these nodes is then combined and
stored in their parent node. The aggregation process terminates
once the height of the current IP-Trie reaches the minimum
value. Finally, the aggregated flow records of the leaf nodes
are saved into the aggregated-flow queue. Details of the
aggregation process will be discussed in Section IV-C.

Detector. This module fetch long flow records from
the long-flow queue and aggregated flow records from the
aggregated-flow queue. It preprocesses the network flow data
from these records through the following steps: 1) converting
arrival timestamps into arrival intervals, 2) normalizing the
data, and 3) applying a sliding window technique. Subse-
quently, this module employs the DTEA method, which first
transforms the preprocessed network flow data into embed-
dings and then inputs these embeddings into a VAE network
for inference, determining whether the related network flows
are benign or malicious. The details of the DTEA method will
be elaborated in Section IV-D.

IV. DESIGN DETAIL

In this section, we expand on the details of the four key
modules included in REAPER. The symbols used in this
section are summarized in Table II.

A. Parser Design

In this module, we sequentially extract per-packet features
from packets mirrored from NIC ports. Each per-packet feature

abstracts a packet into the following key information: 1)
Src/DstIP, Src/DstPort, and protocol, which associate a packet
with a network flow; 2) flags from the protocol header, such as
the SYN and ACK flags in the TCP header, whose sequence
can represent the communication pattern of a network flow; 3)
packet length, whose sequence can reflect traffic volume of a
network flow; and 4) packet arrival timestamp, which is used
to compute arrival intervals. The sequence of arrival interval
can be used to analyze the periodicity within a network flow.

Ring Queue. We utilize a ring queue to store extracted per-
packet features. Concretely, we allocate an array memory of
size RQ SIZE for the ring queue, referred to as ArrMem. We
use sloti to indicate ith slot of ArrMem. Each slot holds a
single per-packet feature. Besides, we adopt pointer variables,
namely ptrbegin and ptrend, to index the slots for enqueuing
and dequeuing operations, respectively. Since ArrMem is
structured as a ring, both ptrbegin and ptrend are taken modulo
RQ SIZE after each enqueuing or dequeuing operation.

Concretely, we perform enqueuing operation immediately
after each per-packet feature is extracted. Therefore, this
operation only need to enqueue the newest per-packet feature
in the slotptrend and update ptrend with:

ptrend = (ptrend + 1) mod RQ SIZE (1)

Besides, we dequeues FETCH NUM number of per-packet
features each time in the following Assembler. We consider the
situation when the dequeuing operation is across the boundary
of the first and last slots, that is:

ptrend < ptrbegin, ptrbegin + FETCH NUM > RQ SIZE
(2)

Under this situation, we take dequeuing operation on a set of
slots, i.e., {sloti | i ∈ I0}, where I0 is:

I0 = {i | [ptrbegin, RQ SIZE)

∪ [0, FETCH NUM− ptrbegin)} (3)

Without this situation, we directly dequeue another set of slots,
i.e., {sloti | i ∈ I1}, where I1 is:

I1 = {i | [ptrbegin, ptrbegin + FETCH NUM)} (4)

Additionally, we update the ptrbegin with:

ptrbegin = (ptrbegin + FETCH NUM) mod RQ SIZE (5)

B. Assembler Design

In this module, we assemble the per-packet features
dequeued from the ring queue into network flow data using
a flow table. Each entry in the table is a key-value pair
corresponding to a specific network flow, where the key is the
flow ID defined as the five-tuple hash key: <[SrcIP, SrcPort],
[DstIP, DstPort]symmetric, protocol>, and the value is the
associated network flow record.

Each network flow record maintains both bidirectional
and unidirectional flow data. Here, unidirectional flow data
involves the forward flow data (packets from [SrcIP, SrcPort]
to [DstIP, DstPort]) and backward flow data (packets in the
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Fig. 2. TIME OUT configuration exploration.

Fig. 3. Flow length distributions of WIDE backbone network traffic datasets.

opposite direction). Each per-packet feature first hits a table
entry and then triggers an update of both the bidirectional and
unidirectional flow data in the corresponding flow record.

Notably, before being cached in an entry, each per-packet
feature is preserved as a 3D vector containing only the packet
length, packet arrival timestamp, and a composite flag field.
This flag field includes the protocol, flags from the protocol
header (e.g., ACK), and a 1-bit indicator denoting whether the
packet belongs to the forward or backward flow. To facilitate
high-concurrency access, we adopt a hash table where each
entry is protected by an independent lock, enabling efficient
flow table access.

Flow Completion. The flow table utilizes a timeout mech-
anism to determine when a network flow has completed. If
no packets arrive for a network flow within the TIME OUT
period, it is considered complete. To select an appropriate
TIME OUT value, we analyze the real-world benign traffic
datasets. Specifically, we use six WIDE backbone network
traffic datasets collected on October 1, 5, 9, 13, 17, and 21,
2024. They are all daily traces captured at the transit link and
the BBIX link of WIDE backbone network. We use the first
109 packets in each dataset for analysis.As shown in fig. 2,
a larger TIME OUT value results in a smaller re-established
flow proportion and a decreased average frequency of flow
re-establishment. However, it also leads to an increase in the
average number of active flows in the flow table, requiring
more runtime memory allocation. As a trade-off, we observe
that re-established flow proportion across the six datasets drops
below 1% for the first time when TIME OUT is set to 16s.
Therefore, we select 16s as the final value for TIME OUT.

Network Flow Classification. Based on the definition of
long flows [32], which are network flows that occupy more

than 1% of the total network bandwidth, we further investigate
the distribution of long and short flows across the six datasets
discussed earlier, as shown in Fig. 3.We find that the PDF
curve of short flows closely aligns with the PDF curve of all
flows, indicating that short flows constitute the vast majority
of network traffic. Meanwhile, the CDF curve of packet
count reveals that long flows, despite their negligible number,
account for at least half of the total packets. These findings
highlight the extreme imbalance in the information carried by
short and long flows, which leads us to adopt distinct analysis
strategies for each.

For long flows, which contain sufficient information, we
only preserve the bidirectional flow data in their records, which
subsequently output to the Detector for analysis. In contrast,
short flows are numerous, and each of them carry limited
information, making it easier to confuse malicious short flows
with benign ones. For example, attackers can control a host to
launch low-rate port flooding or even conduct botnet manipu-
lation to send lots of malicious short flows but seemly benign
ones at a five-tuple network flow level. To address this, we use
traffic sending patterns as the basis for detection, aggregating
the data from short flows to amplify the analytical granularity.
This increases the amount of information contained in each
analysis unit, thereby improving the effectiveness of malicious
network traffic identification, as detailed in Section IV-C.

Additionally, we observe that there is a clear boundary
between the distributions of long and short flows, which
allows us to use the LONG TH threshold for efficient flow
classification. As shown in Fig. 3, different datasets have
different LONG TH values.

Flow Table Snapshot. Each flow table snapshot contains
all the flow IDs of network flows, which survived in the
flow table at a certain moment. The flow table takes a snap-
shot each INSPECT INTERVAL period, while the Assembler
module scans the snapshot to assist in evicting completed
network flows from the flow table and enqueueing their data
in the short/long-flow queue. Traditional snapshot methods
involve locking the entire flow table at the end of each
INSPECT INTERVAL period and copying its entire content,
which interrupts the runtime Assembler module and incurs
significant copying overhead each time. To achieve more
efficient snapshot operation, we adapt the concept of move
semantics from C++11 to eliminate copying and dynamically
generate snapshots during each INSPECT INTERVAL period.

As shown in Fig. 4, we maintain four sets: Sethist, Sethist
next,

Setlast, and Setnext, all sets are empty initially. During an
INSPECT INTERVAL period, the flow table adds the flow
IDs of newly arrival network flows to Setnext. When the
INSPECT INTERVAL period ends, we move the contents of
Setnext to Setlast, and Setnext naturally becomes an empty set.
At this moment, the snapshot of the flow table is described by
Setlast. The Assembler scans this snapshot, evicting complete
network flows and adding the flow IDs of incomplete network
flows to Sethist

next. Once the scanning is complete, we move
the contents of Sethist

next to Sethist, and Sethist
next naturally

becomes an empty set. Finally, the flow table snapshot can
be represented as a combination of Sethist and Setlast.
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Fig. 4. Flow table snapshot.

Fig. 5. The IP-Trie insertion and dynamic aggregation process with
MIN IP PREFIX LEN Set to 30 as an example.

C. Aggregator Design

In this module, to detect malicious traffic that exploits
short flows for concealment, we approach the detection from
the perspective of traffic sending patterns. Specifically, we
dynamically aggregate the unidirectional flows, including both
forward and backward flows, within all short flows using the
SrcIP prefix to form aggregated flows. Based on this, we per-
form detection on the aggregated flows, which contains more
comprehensive information, at a coarser analytical granularity.

We create a IP prefix tree (IP-Trie) to perform the dynamic
aggregation on the unidirectional flows within all short flows.
For each short flow record, we extract its unidirectional flow
data. The binary string of the SrcIP from the unidirectional
flow is used as the matching string for the IP-Trie inser-
tion. Subsequently, the unidirectional flow data is merged
into the aggregated flow record at the matched leaf node.
When the number of inserted unidirectional flows reaches
AGGR CYCLE, we enable dynamic aggregation on the leaf
nodes to obtain aggregated flow records with different IP prefix
lengths. The following content details the processes of the IP-
Trie insertion and dynamic aggregation. An example of these
processes is presented in Fig. 5.

IP-Trie Insertion. When inserting a unidirectional flow into
the IP-Trie, we perform a path match based on the binary string
of its SrcIP. Starting from the root node, if the current matched
bit is 0, the path extends to the left child node; if the bit is
1, the path extends to the right child node. After matching all

bits of the binary string, the unidirectional flow data is merged
into the aggregated flow record of a leaf node.

During the IP-Trie insertion, we dynamically maintain two
sets of leaf nodes, i.e., Setleft

leaf and Setright
leaf . We store isolated

left and right leaf nodes in Setleft
leaf and Setright

leaf , respectively.
For sibling leaf nodes that appear in pairs, only the left
leaf node is retained in Setleft

leaf , as the right leaf node can
be accessed through their common parent node. This design
allows us to access all leaf nodes in both sets simultaneously,
enabling parallel execution of the following dynamic aggrega-
tion. Specifically, when a unidirectional flow is inserted into a
left leaf node, we add this leaf node to Setleft

leaf while removing
its sibling right leaf node from Setright

leaf . If the flow is inserted
into a right leaf node that has no sibling left leaf node, we
insert this leaf node into Setright

leaf .
Additionally, we define MIN IP PREFIX LEN as the min-

imum IP prefix length for dynamic aggregation. That is,
when the height of current IP-Trie is MIN IP PREFIX LEN,
dynamic aggregation will stop. After this, we employ a hash
table to map all paths from the root node to those at a depth
of MIN IP PREFIX LEN, which avoids the unnecessary cre-
ation and maintenance of the nodes on these paths.

Dynamic Aggregation. We initially create 3 auxiliary sets,
namely Setnext,all

leaf , Setnext,left
leaf , and Setnext,right

leaf . Once the
dynamic aggregation begins, we iteratively execute the fol-
lowing process until both Setleft

leaf and Setright
leaf are empty:

• Step 1: We concurrently access all leaf nodes in Setleft
leaf

and Setright
leaf , where the ith leaf node is denoted as ni

leaf

and the length of aggregated flow record cached in ni
leaf

is denoted as ni
leaf → len. If ni

leaf belongs to Setleft
leaf , it

proceeds to Step 1.1; if it belongs to Setright
leaf , it proceeds

to Step 1.2.
• Step 1.1: Determine whether ni

leaf has a sibling right leaf
node, denoted as ni,sibl

leaf . If it does not, proceed to Step
1.2. Otherwise, check the condition:

ni
leaf → len < AGGR MAX || ni,sibl

leaf → len

< AGGR MAX (6)

If the condition holds, the aggregated flow records of ni
leaf

and ni,sibl
leaf will be merged into their common parent node,

which will then be added as a new leaf node to Setnext,all
leaf .

Otherwise, both ni
leaf and ni,sibl

leaf are fully aggregated, their
aggregated flow records will be added to the aggregated-
flow queue. Proceed to Step 2.

• Step 1.2: If the depth of ni
leaf is MIN IP PREFIX LEN,

the aggregation for ni
leaf terminates, and its aggregated

flow record is added to the aggregated-flow queue. Oth-
erwise, proceed to Step 1.3.

• Step 1.3: Check the condition:

ni
leaf → len < AGGR MAX (7)

If the condition is met, the aggregated flow record of
ni

leaf is moved to its parent node, and the parent node is
added as a new leaf node to Setnext,all

leaf . Otherwise, the
aggregation for ni

leaf is finished, and its aggregated flow
record is added to the aggregated-flow queue. Proceed to
Step 2.
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• Step 2: After synchronizing the aggregation execution of
all leaf nodes up to this step, concurrently access all nodes
in Setnext,all

leaf , where the ith leaf node is denoted as ni
leaf′′ .

If ni
leaf′′ is a left leaf node, it is added to Setnext,left

leaf . If
ni

leaf′′ is a right leaf node that has no sibling node, it is
added to Setnext,right

leaf . Proceed to Step 3.
• Step 3: Move the contents of Setnext,left

leaf and Setnext,right
leaf

to Setleft
leaf and Setright

leaf , respectively. Then clear the aux-
iliary sets.

D. Detector Design

In this module, we fetch network flow records from the
aggr/long-flow queue and apply the DTEA method for mali-
cious traffic detection. We use MTS ∈ RL×3 to represent the
network flow data from a record with the length of L, and
we employ mi ∈ R1×3 to represent the ith per-packet feature
that contains 3 columns of packet information, including the
packet arrival timestamp (mi

ts), packet legnth (mi
len), and flags

(mi
flags). Consequently, MTS is denoted as a multivariate time

series and mi is denoted as the ith vector along the time
dimension of MTS:

MTS =
[
m0, . . . ,mi, . . . ,mL−1

]
, mi =

(
mi

ts,m
i
len,m

i
flags

)
(8)

PreProcessing. We indicate the number of collected MTS
is M and use MTSi to represent the ithMTS. For MTSi, we
perform 3 steps of preprocessing on it:
• Step 1: We sort all per-packet features in MTSi in

ascending order based on their packet arrival timestamp
using the merge sort algorithm. Then, we convert their
packet arrival timestamps into arrival intervals:

m1:L
ts = m1:L−1

ts −m0:L−2
ts , m0

ts = 0 (9)

• Step 2: We perform the min-max normalization on MTSi.
• Step 3: Using the sliding window technique, we segment

MTSi into multiple overlapping blocks, the jth block
is denoted as MTSij. These blocks collectively form
an input batch for the RNN-VAE network, denoted as
Batchi:

Batchi =

{
MTSij = MTS

j·SL:(j+1)·SL
i | j ∈

[
0, d Li

SL
e
]}

(10)

Here, Li is the length of MTSi, the sliding window size
is SL, and the step size by which the window moves
forward along the time dimension of MTSi is Stride.

DTEA Method. This method integrates RNN and VAE
algorithms to construct an RNN-VAE network for inferring
whether a network flow is benign or malicious. Specifically,
the RNN is built using the GRU cell, which is for the
transformation between MTS (i.e., the network flow data) and
the embedding. The RNN-VAE network consists of two sub-
networks: the variational network and the generative network,
as shown in Fig. 6.

Variational Network. The variational network consists of
the GRU cell and the fully connected layers (FCL). For each
MTS, this sub-network transforms the MTS as the uncertain

Fig. 6. The structure of GRU RNN-based VAE network.

latent representation, i.e., the probability distribution repre-
sentation. Specially, its uncertainty can be directly used for
robust outlier analysis under inference mode. When this sub-
network performs forward propagation, MTS is first serially
fed into the GRU cell including NUM LAYER stacked K-
dimensional hidden layers. mi and the historical hidden state
hi−1 are utilized to calculate the GRU cell variables at the
ith time step, including the update gate ui, reset gate ri and
candidate hidden state ĥi:

ui = σ
(
Wu ·

[
hi−1,m

i
])
, ri = σ

(
Wr ·

[
hi−1,m

i
])

(11)

ĥi = tanh
(
Wh ·

[
ri � hi−1,m

i
])

(12)

Then, hi (the hidden state of the ith time step) is updated by:

hi = (1− ui)� hi−1 + ui � ĥi (13)

The final hidden state hL−1 is used as an embedding, contain-
ing the overall information of MTS.

To ensure the smoothness and continuity of the RNN-VAE
latent space, we model the uncertain latent representation
as a diagonal log-normal distribution with a dimension of
LATENT DIM. We indicate this distribution as q (s |MTS),
and it has two parameters consisting of the mean µ and the
variance σ2, where µi and σ2

i are the values of µ and σ2 in
the ith dimension respectively:

µ = g0 (hL−1) = (µ0, . . . , µi, . . . , µLATENT DIM−1) (14)

σ2 = g1 (hL−1) =
(
σ2

0, . . . , σ
2
i, . . . , σ

2
LATENT DIM−1

)
(15)

To determine the parameters of q (s |MTS), the two
FCLs (g0 and g1) separately transform hL−1 into µ
and σ2. To this end, the variational network samples
a vector s with a dimension of LATENT DIM, i.e.,
s = (s0, . . . , si, . . . , sLATENT DIM−1), from q (s |MTS) and
delivers it to the generative network.

Generative Network. The generative network only con-
tains a GRU cell for seq2seq task. This sub-network aims
to generate the ˆMTS from s and ensure that ˆMTS closely
resembles MTS. In the forward propagation, s is repeated
for L times and serially fed into the GRU cell which is
stacked with NUM LAYER K-dimensional hidden layers.
For the ith time step, the current hidden state hi is out-
put and linearly transformed to m̂i ∈ R1×N by the dense
matrix Q ∈ RK2×N, where m̂i is the ith element in ˆMTS
and ˆMTS =

[
m̂0, . . . , m̂i, . . . , m̂L−1

]
. We use q (MTS | s) to

represent the probability of reproducing the original MTS by
s, i.e., the similarity between MTS and ˆMTS.
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Training Mode. We only use the MTS derived from the
network flows considered benign for training. The RNN-VAE
network is trained by optimizing the evidence lower bound
(ELBO), where p(s) is the prior distribution of s:

ELBO = Eq (s |MTS)[ log [p (MTS | s)]
+ log [p (s)]− log [q (s |MTS)] ] (16)

Note that p (s) is set to the standard log-normal distribution.
The first term of ELBO is measured by the mean square error
between MTS and ˆMTS. And next two terms of ELBO are
calculated by the Monte Carlo integration leveraging samples
from q (s |MTS). Beside, since the back propagation of the
network cannot flow through the uncertainty nodes, we apply
the reparameterization trick for sampling s from q (s |MTS),
where ε is the random noise sampled from standard normal
distribution and used to maintain the randomness of s:

s = µ+ ε� exp
(
σ2/2

)
= (s0, . . . , si, . . . , sLATENT DIM−1)

(17)

Inference Mode & Outlier Analysis. The RNN-VAE
network performs the outlier analysis in the inference mode.
Since the optimization goal of ELBO is to make q (s |MTS)
approach the prior distribution p (s), the similarity between
q (s |MTS) and p (s) can reflect whether a network flow
related to the input MTS is an outlier distinguished from
the training benign network flows. We compute KL loss to
measure the similarity between q (s |MTS) and p (s), where
µ and σ2 are the parameters of q (s |MTS):

KL loss (MTS) =

LATENT DIM−1∑
i=0

(
1 + σ2

i − µ2
i − exp

(
σ2

i

))
(18)

In the inference mode, a network flow is classified as mali-
cious if its KL loss exceeds a threshold, i.e., KL LOSS TH.
We recommend defining this threshold using the xth percentile
of the computed KL loss values, denoted as Px. The initial
value of KL LOSS TH is set to the Px of all KL loss values
observed during training.

To enable adaptive threshold tuning throughout REAPER’s
runtime, we adopt the exponentially weighted moving per-
centile (EWMP) to dynamically adjust KL LOSS TH. Specif-
ically, we maintain a sliding window that stores the most recent
100 computed KL loss values. Each time a new KL loss value
is obtained, the window is updated accordingly, and a local
Px, denoted as Pt

x, is computed to update the KL LOSS TH:

KL LOSS TH = α · Pt
x +KL LOSS TH · (1− α) (19)

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the detection performance of
REAPER by 20 groups malicious traffic and we measure its
throughput and runtime overhead. The experimental results
will answer the following questions:

1) Does REAPER have stronger detection performance
compared to the baselines? (Section V-D)

2) Does REAPER exhibit the robustness to detect
encrypted malware traffic that is easily confused with
benign traffic? (Section V-E)

TABLE III
HYPER-PARAMETER SETTINGS FOR REAPER

3) Can REAPER run in high-bandwidth network scenarios?
(Section V-F)

A. Implementation

We utilize C/C++ with GCC 9.4.0 to prototype REAPER
with Intel DPDK [33]. We adopt the PcapPlusPlus library
22.11 to call the APIs of Intel DPDK 19.11.14 LTS as C++
wrappers. Overall, we consume more than 4000 lines of codes.

We assign each module a group of logical cores on the CPU
to execute their respective worker threads in parallel. Each
worker thread is an instance of the pcpp::DpdkWorkerThread
class and exclusively occupies a logical core, meaning that
the number of worker threads of each module is equal to the
number of logical cores allocated to it.

We have summarized all the hyper-parameters in REAPER
and provided recommended values in Table III.

Parser Impl. We mount the NIC ports to the UIO driver,
thereby bypassing kernel interrupts and directly managing NIC
ports with userspace mode. Based on this, each parser worker
thread handles respective RX queues of NIC ports and calls
the APIs of Intel DPDK 19.11.14 LTS to continuously extract
the packets arriving at the RX queue.

Additionally, we implement the ring queue in the Parser
module as an array to store per-packet features. We use the
std::memcpy ( ) API in the C standard library to implement
the dequeuing operation in batch.

Assembler Impl. We implement the flow table in the
Assembler module using the tbb::concurrent hash map con-
tainer provided by oneTBB 2022.0.0. Each table entry has its
own independent lock, allowing the assembler worker threads
to update the flow table with high concurrency after fetching
the per-packet features from the ring queue in the Parser mod-
ule. Additionally, We also utilize the tbb::parallel for each ( )
and tbb::parallel invoke ( ) APIs to orchestrate the assembler
worker threads for parallel scanning of the flow table snapshot.
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The flow IDs of the incomplete network flows are then
placed into Sethist

next, which is implemented by the concurrency-
supported tbb::concurrent unordered set container.

Aggregator Impl. We achieve the mapping between the
path and the node at depth MIN IP PREFIX LEN in the IP-
Trie through the tbb::concurrent hash map container. These
nodes are evenly distributed to multiple aggregator worker
threads for management. As a result, the worker threads are
independently responsible for maintaining distinct sets of non-
overlapping subtrees, where the root of each subtree is a
node at depth MIN IP PREFIX LEN in the IP-Trie. This
design enables the parallel execution of IP-Trie insertion.
Beside, we employ the tbb::concurrent hash map container
to implement the Setleft

leaf and Setright
leaf . During the leaf node

dynamic aggregation, we call the tbb::parallel for each ( )
and tbb::parallel invoke ( ) APIs to arrange the aggregator
worker threads for parallel access to the leaf nodes in each
aggregation iteration.

Detector Impl. In training mode, once the training data
has been fully collected, the Detector module invokes a script
written in PyTorch 2.0.1 and Python 3.8.0 to train the RNN-
VAE network model using a GPU. In inference mode, the
Detector module loads the trained RNN-VAE network model
via LibTorch C++ 2.0.1, performing real-time parallel infer-
ence for network flows by multiple detector worker threads.

Others. We use the std:::move ( ) API, introduced in
C++11, to adopt move semantics for transferring set contents,
thereby eliminating deep copies. Network flow queues, i.e.,
short-flow, long-flow, and aggregated-flow queues, are imple-
mented using tbb::concurrent queue from oneTBB 2022.0.0,
ensuring efficient and thread-safe inter-module communica-
tion.

B. Experiment Setup

Baselines. We establish three baselines, which all adopt
unsupervised methods, for evaluating the improvement
brought by REAPER:
• Whisper. Whisper [12] is a lightweight cluster-based

detection method prototyped by Intel DPDK. It divides
the traffic into network flows based on SrcIP and uses dis-
crete Fourier transform to extract network flow features.
Finally, outlier analysis is performed using the K-means
clustering method. We build on its original open source
code [34] and only tune its hyper-parameters to obtain
acceptable performance.

• Kitsune. Kitsune [29] is an autoencoder-based detection
method. It accumulates stateful statistical features at four
different scales: <SrcMac, SrcIP>, < SrcIP >, <SrcIP,
DstIP>, and <SrcPort, DstPort>. When a packet arrives,
all statistical features related to the packet will be used for
per-packet inference using integrated autoencoders. Since
it cannot handle high-bandwidth traffic, we use its open
source offline implementation [35] with built-in hyper-
parameteters.

• FlowLens. FlowLens [26] is a compact traffic feature
extraction method deployed by P4 switches. It collects the
distributions of both packet lengths and arrival intervals

towards each network flow identified by <SrcIP, DstIP,
SrcPort, DstPort, protocol>. Then, the counts of the
distribution buckets are treated as extracted features to
describe a network flow compactly. We build FlowLens
by its open source code [36] and incorporate with the
K-means algorithm to analyze its extracted features,
resulting in unsupervised malicious traffic detection.

Testbed. The REAPER and Whisper prototypes are imple-
mented using Intel DPDK, and deployed on a testbed server
compromising Ubuntu 20.04 operating system (Linux 5.4.0),
one Intel Xeon E5-2680 v4 CPU (32GB RAM, 14 physical
cores, and 28 logical cores), as well as one Intel I210 NIC
(1000 Mbps, one port with 4 RX queues, and Intel DPDK
supported). We allocate 1024 huge pages, each 2MB in size,
and use the IGB UIO kernel module to enable userspace I/O
for the Intel DPDK runtime environment. In particular, receive
side scaling (RSS) is enabled to achieve load balancing across
the 4 RX queues. Additionally, we connect another the same
server to the testbed server via a 1000 Mbps network cable
and utilize it to generate traffic for testbed server. Concretely,
we leverage Tcpreplay tool with the ‘-K’ flag to replay traffic
datasets at their original rates.

The FlowLens prototype is deployed on a software P4
switch, i.e., Behavioral Model v2, running on the testbed
server. Traffic datasets are also replayed using Tcpreplay and
injected into the switch port. As for Kitsune, which is unable
to handle high-bandwidth traffic in real time, we prototype it
by a Python script and evaluate it on the testbed server offline.

The configuration of the REAPER prototype is as follows.
The main thread occupies a single logical core. The Parser
module is allocated 4 logical cores, while the Assembler
module is assigned 8 logical cores, with 4 dedicated to
updating the flow table and the remaining 4 responsible for
scanning flow table snapshots and performing flow table evic-
tion. The Aggregator module is allocated 8 logical cores, with
4 dedicated to the IP-Trie insertion and the other 4 handling
the dynamic aggregation of IP-Trie leaf nodes. Finally, the
Detector module is assigned 6 logical cores to execute MTS
preprocessing and inference. In total, REAPER occupies 27
logical cores out of 28 available logical cores. In particular,
REAPER exhibits the scalability, as it can flexibly increase the
number of assigned logical cores in each module to achieve
higher performance, with support from more powerful CPUs.

Traffic Dataset. It is important to first declare that the
payload of all traffic datasets has been truncated to ensure
that, when using a 1000 Mbps network cable, the traffic can
be replayed at the original rate of the dataset using Tcpreplay.

We used six different WIDE backbone network traffic
datasets as background benign traffic, which are collected on
2024.10.01, 2024.10.05, 2024.10.09, 2024.10.13, 2024.10.17,
and 2024.10.21, respectively.

In the detection performance evaluation, we use the first
30% of packets from the benign background traffic dataset
to train the detection models, including the RNN-VAE net-
work in REAPER, the K-means model in Whisper, and the
autoencoders in Kitsune. Additionally, these first 30% of
packets were also utilized to determine the LONG TH hyper-
parameter for REAPER. Subsequently, the remaining 70%
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Fig. 7. AUC and EER measurement of REAPER on Cyber attacks with different configurations for RNN-VAE network Hyper-parameters.

of packets, along with the malicious traffic dataset will be
replayed together using Tcpreplay to evaluate the detection
performance of both REAPER and baselines.

Overall, the traffic dataset configurations for evaluating
detection performance across different types of malicious
traffic are listed in Table IV. We select 20 groups of malicious
traffic datasets, covering cyber attacks and malware traffic,
where cyber attacks include flooding attacks and stealthy
attacks:

• Flooding Attacks. These attacks utilize flooding tech-
niques to send high-volume traffic or large magnitude
requests to overwhelm the victim network. We collect
four types of flooding attack traffic from the Kitsune
dataset [29] and the CIC-DDoS2019 dataset [37]. These
attacks include SrcPort flooding (Fuzz Scan), link flood-
ing (UDP DoS attacks), request flooding (SSDP DoS
attacks and SSL Renegotiation DoS attacks).

• Steathy Attacks. These attacks intermittently send mali-
cious traffic to stealthily exploit vulnerabilities in network
protocols, causing the target network to experience denial
of service. We implement a specific type of stealthy
attack, namely Low-rate DoS (LDoS) attacks [38], [39],
which send periodic burst video traffic that triggers
momentary network congestion. This causes the actual
bandwidth usage of the victim network to be forced down
due to the response of congestion control algorithms
(e.g., CUBIC [40]). We launch LDoS attacks with pulse
periods of 0.2s and 0.5s in a real-world WAN topology
simulated using Mininet [41], and collect the resulting
attack traffic as two datasets, referred to as LDoS 0.2
and LDoS 0.5, respectively. The detailed properties of
the topology (number of switching nodes, link delays,
etc.) are from the Topology Zoo dataset [42].

• Malware Traffic. Malware traffic is crafted by attackers
and carries malicious software that compromises the host.
Owing to its low rate, it can be confused with benign
traffic to evade detection. To demonstrate the robustness
of REAPER, we further use Malware traffic for additional
evaluation. We collect 14 types of Malware traffic from
the CIC-AndMal2017 dataset [43], covering Ransomware
traffic and Adware traffic.

Metrics. We adopt four metrics: 1) the area under ROC
curve (AUC); 2) the true positive rate (TPR); 3) the false
positive rate (FPR); 4) the equal error rate (EER). All metrics
are computed based on the per-flow scores (i.e., KL loss
values) produced by the RNN-VAE network inference.

C. Hyper-Parameter Selection for RNN-VAE Nertwork

We investigate the impact of different RNN-VAE net-
work hyper-parameters, specifically LATENT DIM and
LAYER NUM, on the detection performance of REAPER for
cyber attacks. The candidate values for LATENT DIM are 2,
4, and 8, while those for LAYER NUM are 1, 2, and 3. The
number of training iterations is limited to 50. As illustrated in
Fig. 7, we present REAPER’s detection performance for each
cyber attack across 9 hyper-parameter combinations.

When NUM LAYER is set to 1, increasing LATENT DIM
enhances REAPER’s detection performance for Fuzz Scan and
SSL DoS, whereas the performance for other cyber attacks
fluctuates only slightly, with minimal change.

When LATENT DIM is set to 2, increasing the value of
NUM LAYER improves REAPER’s detection performance
for most cyber attacks, except for Fuzz Scan and SSDP
DoS. The detection performance for these two attacks even
obliviously declines, which contrasts with the effects observed
when increasing LATENT DIM while keeping NUM LAYER
fixed. This is because increasing NUM LAYER results in a
greater increase in the model’s parameter count compared to
increasing LATENT DIM. With a limited number of training
iterations, the RNN-VAE network is more difficult to converge.

In short, both increasing NUM LAYER and LATENT DIM
improve REAPER’s detection performance. However, when
the required number of training iterations is insufficient, the
RNN-VAE network model struggles to converge, and fur-
ther increasing NUM LAYER or LATENT DIM can have
the opposite effect. The selection of RNN-VAE network
hyper-parameters is therefore a trade-off between REAPER’s
detection performance and the model’s training time.

Additionally, as shown in Fig. 8, we measure the infer-
ence latency of the RNN-VAE network model across the
9 hyper-parameter combinations. As expected, increasing
NUM LAYER significantly increases the model’s parameter
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TABLE IV

THE CONFIGURATIONS OF TRAFFIC DATASETS FOR DETECTION PERFORMANCE EVALUATION

TABLE V

DETECTION PERFORMANCE MEASUREMENT OF REAPER AND BASELINES ON CYBER ATTACKS

Fig. 8. Measurement of RNN-VAE network inference latency.

count, which in turn raises this latency, while increasing
LATENT DIM has a negligible effect on this latency.

D. Detection Performance

As shown in Table V, we present the best detection metrics
of REAPER and the baselines for cyber attacks. REAPER
outperforms the baselines in most metrics for detecting 6
types of cyber attacks. For the SSDP DoS, although Whisper
achieves a comparable TPR to REAPER, all other metrics
of Whisper are lower than those of REAPER. For the Fuzz
Scan, Kitsune achieves the best AUC (0.9957), slightly higher
than REAPER, but REAPER achieves the best TPR (0.9999).
In the case of LDoS 0.2/0.5 that consists mainly of long
flows, FlowLens shows the best AUC (0.9999). However, for
attacks primarily composed of short flows (e.g., SSDP DoS,
UDP DoS, SSL DoS, and Fuzz Scan), REAPER significantly
outperforms FlowLens across all metrics.

As shown in Fig. 9, we present the ROC curves for
REAPER and the baselines in detecting cyber attacks. Both
REAPER and Whisper achieve a balance of low FPR and
high TPR across all 6 cyber attack detection tasks. However,
at the same TPR, REAPER maintains a lower FPR. In contrast,
Kitsune and FlowLens are only able to achieve a balance of

Fig. 9. ROC curves when detecting cyber attacks.

low FPR and high TPR when detecting the Fuzz Scan traffic
and LDoS traffic, respectively.

These posterior detection metrics indicate that the scores
(i.e., KL, loss values) produced during REAPER’s runtime
effectively distinguish between benign and malicious traffic,
demonstrating REAPER’s strong overall detection perfor-
mance. In real-world deployments, configuring the threshold
(i.e., KL LOSS TH) during REAPER’s runtime is essential.
We further enable it with EWMP-based adaptive tuning to
assess REAPER’s detection performance in terms of TPR and
FPR. We independently configure Px as P95, P96, P97, P98,
and P99, each combined with a set of α values: 0.001, 0.005,
0.01, 0.02, 0.05, 0.1, 0.2, 0.3, and 0.5. As shown in Fig. 10, we
report the FPR of REAPER under various combinations of Px

and α, considering only those combinations where REAPER
achieves a TPR exceeding 0.9999. Smaller α can reduce false
positives (FPs) in scenarios with frequent traffic fluctuations.
For example, the LDoS 0.5/0.2, which exhibits periodic burst
behavior, achieved the lowest FPR at α = 0.001, while UDP
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Fig. 10. Impact of different percentile and α settings on REAPER’s FPR
when enabling EWMP-based adaptive threshold tuning.

DoS, which causes traffic surges, attained the lowest FPR at
α = 0.005. In contrast, moderately larger α can better identify
malicious traffic and mitigate FPs in stable traffic scenarios.
For instance, both SSL DoS and SSDP DoS rely on request
flooding, which causes slight traffic fluctuations and achieves
the lowest FPR at α = 0.01 ∼ 0.02.

E. Robustness of Detection

To further evaluate the robustness of REAPER in detecting
malicious traffic, we conduct evaluation from: 1) malware
traffic detection, and 2) hybrid cyber attack traffic detection.

Malware Traffic Detection. We first use encrypted malware
traffic to evaluate the robustness of REAPER’s malicious traf-
fic detection. As shown in Fig. 11, the results demonstrate that
REAPER has acceptable detection performance on encrypted
malware traffic, with an average AUC of 0.9538, an average
EER of 0.1156, an average TPR of 0.8989, and an average FPR
of 0.0908. The malware traffic is generated by infected bots
sending extensive short flows, which can easily be confused
with benign traffic. However, REAPER can effectively detect
encrypted malware traffic by dynamically aggregating short
flows and identifying the traffic sending patterns of infected
bots. On the other hand, the average AUC of both Whisper
and Kitsune is close to 0.5, indicating that they struggle to
identify encrypted malware traffic.

Hybrid Cyber Attack Traffic Detection. To explore the
impact of evolving cyber attack patterns on REAPER’s detec-
tion performance, we mix the 6 cyber attack traffic datasets and
replay them alongside the benign background traffic dataset
to measure REAPER’s detection performance. Similarly, we
use the first 30% of the packets from each benign background
traffic dataset to train the RNN-VAE network model, while the
remaining 70% are replayed alongside the hybrid cyber attack
traffic dataset. After mixing the cyber attack traffic datasets, as
shown in Fig. 12, the results indicates that REAPER’s AUC
and EER in detecting 6 types of cyber attacks exhibit slight

reductions compared to the optimal values listed in Table V.
Nonetheless, REAPER maintains an average AUC of 0.9429
and an average EER of 0.0348, demonstrating its robustness
in handling evolving cyber attack patterns.

F. Throughput and Memory Footprint

Throughput. We utilize 3 traffic loads to measure the
throughput of REAPER, namely the WIDE backbone network
traffic datasets from 2024.10.01, 2024.10.13, and 2024.10.17.
Tcpreplay is utilized to replay the traffic loads, with the
‘-t’ flag employed to maximize the replay rate, enabling us to
measure the peak throughput of REAPER. For each module
of REAPER, we perform 30 throughput measurements.

As shown in Fig. 13, for the Parser module, the packet
parse throughput under the 3 traffic loads is significantly con-
centrated around 8 Gbps, 7 Gbps, and 9.5 Gbps, respectively.
While the flow table update throughput of the Assembler
module under the 3 traffic loads is distributed around 8 Gbps,
5.5 Gbps, and 9.5 Gbps, respectively.

Compared to packet parse throughput, the distribution of
flow table update throughput exhibits a greater variance.
Despite setting independent locks for each flow table entry,
concurrent access to the same entry still causes the flow table
update throughput to decrease at certain measurement points,
leading to wider range fluctuations in the measurement results.
Nevertheless, the Parser and Assembler modules still exhibit
similar peak throughput, both reaching up to approximately
10 Gbps, although the throughput of the Assembler module
shows fluctuations with wider range.

For the Aggregator and Detector modules, which are
computation-intensive, the number of logical cores allocated to
them directly determines their maximum achievable through-
put. To explore the impact of increasing the number of
allocated logical cores on the throughput of both modules, we
strategically reallocate the total of 14 logical cores originally
assigned to them (8 for the Aggregator and 6 for the Detector).
Specifically, we investigate the throughput of the Detector
module when allocated 12, 10, 8, 6, 4, and 2 logical cores,
meanwhile, we explore the throughput of Aggregator module
when allocated 2, 4, 6, 8, 10, and 12 logical cores. We measure
the throughput of each sub-step in both the Aggregator and
Detector modules. The sub-steps in the Aggregator module
include IP-Trie insertion and IP-Trie leaf node aggregation,
while those of the Detector module include MTS preprocess-
ing and RNN-VAE network inference.

As shown in Fig. 15, Fig. 14, Fig. 16, and Fig. 17, under
the 3 traffic loads, the throughput of each sub-step in the
Aggregator and Detector modules is positively correlated with
the number of allocated logical cores. Specifically, as for the
Aggregator module, with 12 assigned logical cores, the IP-
Trie insertion throughput reaches a maximum of 10 Gbps, as
shown in Fig. 14(c), while the IP-Trie leaf node aggregation
throughput peaks at 4.5 Gbps, as shown in Fig. 15(c). As for
the Detector module, with 12 assigned logical cores, the MTS
preprocessing throughput reaches a maximum of 225 Gbps,
as shown in Fig. 16(b), and the RNN-VAE network inference
throughput peaks at 5 Gbps, as shown in Fig. 17(c).
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Fig. 11. Detection performance measurement of REAPER and baselines on Malware traffic (The Dotted Lines represent the metric mean values).

Fig. 12. Detection performance measurement of REAPER on hybrid cyber
attacks under different background benign traffic (The Dotted Lines Represent
the Metric Mean Values).

Fig. 13. Throughput of REAPER for packet parse and flow table update.

Fig. 14. IP-Trie insertion throughput in the Aggregator module with varying
numbers of assigned logical cores.

Therefore, REAPER possesses the potential to handle high-
bandwidth throughput traffic, with the scalability to allocate
more logical cores to each module on more powerful CPUs.

Runtime Memory Footprint. We use Tcpreplay to
replay the WIDE 2024.10.01, WIDE 2024.10.13, and WIDE
2024.10.17 traffic loads at their original rates to measure

Fig. 15. IP-Trie leaf aggregation throughput in the aggregator module with
varying numbers of assigned logical cores.

Fig. 16. MTS preprocessing throughput in the detector module with varying
numbers of assigned logical cores.

Fig. 17. RNN-VAE network inference throughput in the detector module with
varying numbers of assigned logical cores.

Fig. 18. Memory footprint measurement of REAPER.

REAPER’s runtime memory footprint. As shown in Fig.
18, under all 3 traffic loads, the runtime memory footprint
ultimately converges to around 4.1 GB.

VI. RELATED WORK

We categorize existing network anomaly detection work
into three major types based on detection units: 1) log-based,
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TABLE VI

RELATED WORK REVIEW

2) network flow-based, and 3) interaction graph-based. The
comparison of existing work is shown in Table VI.

Log-based. CoToRu [44] converts normal log-derived
behaviors into a state transition table for real-time anomaly
detection via Zeek, anomalous behavior is identified when the
state transition fails to reach a termination state. Paradise [45]
detects APT attacks through online causal provenance analysis
using NFV. RETSINA [11] applies meta-learning to identify
zero-day vulnerabilities from limited HTTP logs. The work
in [10] proposes the federated PCA to unsupervisedly analyze
anomalous network behaviors in logs across multiple parties.
Mlog [46] represents logs as semantic vectors via transformers,
and detects anomalies using LSTM and CNN. However,
log-based methods require protecting the logs from tamper-
ing, and the log cache needs to occupy significant storage
space.

Network Flow-based. SketchLib [47] designs efficient
sketch structures in P4 switches for detecting DDoS attacks.
PLUTO [48] and Horuseye [17] deploy XGBoost and iForest-
based models on P4 switches for per-flow anomaly detection.
The work in [9] applies autoencoder-based models for anomaly
detection on SDN switches. Whisper [12], built on Intel
DPDK, uses DFT for flow feature extraction and K-means
for clustering. Kitsune [29] introduces KitNet, an ensem-
ble of autoencoders, for flow-based anomaly detection, later
enhanced in [49]. H2ID [50] and the works in [51], [52] further
explore ML-based anomaly detection at the flow level. How-
ever, these network flow-based methods analyze individual
network flows, making it difficult to detect covert malicious
traffic.

Interaction Graph-based. Nadege [53] models network
flows as hierarchical graphs and introduces a novel graph

kernel for feature extraction. HyperVision [27] and the work
in [54] represent flows as bidirectional graphs with sockets
as vertices. The former uses subgraph structures and edge
features for clustering, while the latter employs the Dynamic
Line Graph Neural Network (DLGNN). Graph2vec+RF [55]
also treats flows as bidirectional graphs, encoding packet
lengths as vertices. However, constructing interaction graphs
for network flows generates significant overhead, and the
interaction graphs of numerous network flows are highly
dense. Subgraph decomposition is an NP-complete problem,
and its solution exhibits high time complexity.

VII. LIMITATION AND DISCUSSION

A. Inherent Challenges of Unsupervised Methods

Unsupervised methods are inherently challenged by evolv-
ing cyber attack patterns and potential FPs. However,
REAPER, which employs unsupervised RNN-VAE model
trained on benign real-world traffic datasets, still achieves a
strong average AUC of 0.9538 against evolving cyber attack
patterns (Section V-E). To address potential FPs, inspired by
pVoxel [56], which finds that benign network flows misclas-
sified as FPs often lie sparsely in feature space, we propose
analyzing sparsity in the VAE’s latent space representations to
mitigate majority of FPs.

B. Threshold-Based Classification of Long and Short Flows

REAPER classifies network flows based on a threshold
LONG TH. If attackers learn this value, they can evade
detection by manipulating short flows to slightly exceed
LONG TH, avoiding aggregation. To address this, we pro-
pose: 1) Periodically updating LONG TH with new training
traffic datasets. 2) Using ML algorithms to learn a nonlinear
classifier for distinguishing long and short flows.

C. Investigation of Adaptive Smoothing Parameter in EWMP

The smoothing parameter α in EWMP controls the evo-
lution of KL LOSS TH, thereby influencing REAPER’s
runtime detection performance. We recommend two strate-
gies for adaptively tuning α in response to varying traffic
conditions. 1) Variance-based. EWMP uses a sliding window
to track recent KL loss values. A higher variance within the
window indicates greater volatility, prompting the use of a
smaller α to ensure smoother updates. Conversely, a lower
variance allows for a larger α to improve responsiveness. 2)
Reinforcement Learning-based. The adjustment of α could be
formulated as a reinforcement learning optimization problem,
where the agent observes the distribution of KL loss within
the sliding window and the runtime trend of FPR, and selects
the optimal α to maximize detection performance.

VIII. CONCLUSION

In this paper, we propose REAPER, a high-performance
system for real-time detection of malicious traffic at the
network flow level. Noting the limited information in short
flows and their low distinguishability, which causes benign and
malicious short flows to be easily confused, we develop the
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IP-Trie to dynamically aggregate short flows based on their IP
prefixes into more informative aggregated flows. Additionally,
instead of traditional statistical feature extraction, we propose
the DTEA method for detecting network flow data, which uses
RNN to directly convert network flow data into embeddings,
followed by outlier analysis on the embeddings using VAE.

We prototype REAPER using Intel DPDK, evaluation
Results show REAPER outperforms baselines and can handle
high-bandwidth traffic.

In future work, we will focus on optimizing concurrent
access to critical sections in REAPER, such as the flow table
in the Assembler module, to enhance system stability. We also
plan to investigate the impact of deploying REAPER on more
powerful CPUs, with the goal of evaluating how an increased
number of logical cores affects its overall throughput. In
addition, we intend to integrate REAPER with advanced
lifelong learning techniques [57] to strengthen its long-term
robustness against evolving malicious traffic.
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