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Abstract—Federated learning (FL) is a promising paradigm that
can enable collaborative model training between vehicles while
protecting data privacy, thereby significantly improving the per-
formance of intelligent transportation systems (ITSs). In vehicular
networks, due to mobility, resource constraints, and the concur-
rent execution of multiple training tasks, how to allocate limited
resources effectively to achieve optimal model training of multiple
tasks is an extremely challenging issue. In this paper, we pro-
pose a mobility-aware multi-task decentralized federated learning
(MMFL) framework for vehicular networks. By this framework,
we address task scheduling, subcarrier allocation, and leader se-
lection, as a joint optimization problem, termed TSLP. For the case
with a single FL task, we derive the convergence bound of model
training. For general cases, we first model TSLP as a resource
allocation game, and prove the existence of a Nash equilibrium
(NE). Then, based on this proof, we reformulate the game as a
decentralized partially observable Markov decision process (DEC-
POMDP), and develop an algorithm based on heterogeneous-agent
proximal policy optimization (HAPPO) to solve DEC-POMDP.
Finally, numerical results are used to demonstrate the effectiveness
of the proposed algorithm.
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I. INTRODUCTION

W ITH the rapid advancement of intelligent vehicles
(IVs), the intelligent transportation system (ITS)

significantly enhances travel experience and safety [1]. Deep
learning technologies have enabled various neural network
models to offer driving assistance features such as traffic flow
prediction (TFP), free-space detection (FSD), and driving be-
havior monitoring (DBM), thus enhancing the overall driving
experience [2]. Traditional deep learning methods, which rely
on centralized data aggregation and training, face challenges
related to communication pressure and data privacy issues. To
address these issues, federated learning (FL) has been introduced
for ITS [3]. FL involves multiple vehicles and infrastructures,
where each participating vehicle has its own local dataset for
training. The aggregator, vehicle or infrastructure, collects local
model updates from the vehicles. This approach shows great
potential in improving both the efficiency and privacy of deep
learning in vehicular networks.

In vehicular networks, the proliferation of intelligent trans-
portation services has given rise to an unprecedented demand for
model training, and these models exhibit diversity. The diversity
requirements for FL model training primarily stem from two
dimensions, i.e., inter-task and intra-task diversities. For the
inter-task diversity, vehicles execute multiple tasks concurrently
(e.g., TFP, FSD and DBM), each necessitating task-specific
architectural configurations and training objectives [4]. For the
intra-task diversity, even within a single task category (e.g., path
planning), spatial-temporal context variations result in diverse
model requirements [5]. For instance, urban canyon environ-
ments with dynamic occlusions encounter distinct signal prop-
agation patterns compared to highways, necessitating separate
model instantiations to handle location-specific environmental
dynamics and mobility constraints. Implementing multi-task FL
presents a substantial challenge in vehicular networks. First,
vehicle mobility causes temporal instability as nodes frequently
join or depart, disrupting consistent model aggregation. Sec-
ond, real-time latency constraints in safety-critical applications
demand communication-efficient FL protocols. Finally, lim-
ited edge resources demand minimized training iterations and
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resource overhead. Therefore, addressing the multi-task FL chal-
lenge in vehicular networks is of urgent technical importance.

We explore vehicle mobility in vehicular networks to de-
velop optimization strategies for multi-task FL while efficiently
utilizing scarce resources. Our goal is to minimize the model
training loss of each task. The main contributions of this paper
are as follows.

1) We design a mobility-aware multi-task decentralized fed-
erated learning (MMFL) framework for vehicular net-
works. The MMFL framework adopts a multi-leader-
multi-follower approach for multi-task scenarios. Vehi-
cles that are close to each other communicate directly
using vehicle-to-vehicle (V2V) communication, while ve-
hicles that are farther apart communicate indirectly using
vehicle-to-infrastructure (V2I) communication.

2) To enhance the training efficiency of MMFL, we formulate
task scheduling, subcarrier allocation, and leader selection
as a joint optimization problem (TSLP), which takes into
account vehicle mobility, resource limitations, and latency
constraints.

3) For problem solving, we analyze the convergence bound
of model training for the single-task scenario under the
MMFL framework. For general scenarios, we first model
TSLP as a resource allocation game among multiple tasks.
We prove the existence of a Nash equilibrium (NE) for
the game. Subsequently, we reformulate the game as a de-
centralized partially observable Markov decision process
(DEC-POMDP). Finally, we design an algorithm based
on Heterogeneous-Agent Proximal Policy Optimization
(HAPPO) to solve DEC-POMDP.

4) We design a series of experiments to validate the ef-
fectiveness of the proposed algorithm. Specifically, we
use both the urban mobility simulation tool SUMO and
the real-world vehicle trajectory dataset next generation
simulation (NGSIM) to generate traffic flows and simu-
late multi-task FL on four benchmark datasets: MNIST,
FashionMNIST, SVHN, and CIFAR-10. We evaluate the
proposed algorithm against several baseline methods un-
der diverse conditions, including varying initial vehicle
energy levels, the number of vehicles, the number of tasks,
and indirect transmission costs.

II. RELATED WORK

In vehicular networks, FL can be categorized into two types:
centralized FL (CFL) and decentralized FL (DFL). CFL relies
on a central server for aggregating client models, requiring extra
physical nodes, e.g., road side units (RSUs), as aggregation
centers [6], [7], [8], [9], [10], [11], [12]. The works in [6], [7], [8]
focus on resource allocation optimization during the vehicles’
sojourn period by optimizing round duration, client selection,
and compression ratio, thereby accelerating the convergence
speed. DFL dynamically assigns model aggregation tasks to
clients, eliminating the need for a fixed central server and
enabling broader training through vehicular ad-hoc networks
(VANETs) without reliance on fixed-location RSUs. This dy-
namic selection of aggregation nodes also mitigates the risk
of single point of failure. DFL is divided into fully DFL and

leader-follower DFL. In fully DFL, all clients act as leaders
to perform aggregation tasks, and there is no clear hierarchical
structure among the clients [13], [14], [15], [16]. In contrast,
leader-follower DFL maintains a hierarchical model where the
aggregation nodes centrally handle the aggregation tasks [17],
[18]. As vehicular networks operate in highly dynamic and
adversarial environments, the security and privacy challenges
in FL are of great concern. Potential security vulnerabilities
such as model poisoning, inference attacks, and adversarial
robustness need to be addressed to ensure the reliability and
trustworthiness of the FL process. The works in [19], [20], [21],
[22] investigate these aspects. For instance, the work in [20]
proposes a distributed edge-based architecture for secure and
privacy-preserving collaboration among multiple edge nodes,
along with a decentralized and secure blockchain-based reputa-
tion system to ensure the reliability and trustworthiness of the
FL process in vehicular networks.

The works in [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22] mainly focus on FL
for a single task. However, in vehicular networks, it is common
to encounter scenarios where multiple tasks need to be solved.
Recently, the works in [23], [24], [25], [26], [27], [28], [29],
[30] conduct research on multi-task learning. The works in [23],
[24], [25] investigate using a single model to handle multiple
tasks. The work in [23] uses soft parameter sharing to achieve
optimal recognition accuracy while considering resource effi-
ciency. The work in [24] employs neural architecture search
for projecting task gradients onto orthogonal planes relative to
conflicting gradients, thereby mitigating gradient conflicts. The
work in [25] first performs joint training, and then splits the
model for separate training to alleviate the negative transfer issue
between tasks. These works merge multiple models into a single
model, enabling existing FL frameworks in vehicular networks
to address the challenges of multi-task training. However, this
also leads to a sharp increase in the number of model parameters.
The works in [26], [27], [28], [29], [30] investigate the training
of multiple models, where each model is responsible for a single
task. The work in [26] designs a client-sharing mechanism across
multiple tasks, achieving a performance improvement of up to
2.03×. The work in [27] addresses the scenario where multiple
FL servers simultaneously attempt to select clients from the same
pool. Based on Bayesian optimization, it jointly considers train-
ing time and the importance of preventing long waiting times.
The work in [28] delivers superior performance of multi-task FL
for edge computing by leveraging the block coordinate descent
algorithm. The work in [29] jointly optimizes task scheduling
and resource allocation by considering the triple heterogeneity of
data, devices, and tasks in a wireless network framework. The
work in [30] shows that FL models with adaptive topologies
have lower learning costs, and subsequently employs a heuristic
algorithm to minimize the total cost. This approach can improve
training efficiency through device scheduling while reducing
resource consumption.

In summary, existing models are limited in two respects. On
one hand, they primarily focus on FL for single-task scenarios
in vehicular networks [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], making it
hard to be used for multi-task scenarios. They need to address
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Fig. 1. Workflow of one communication round with task scheduling followed by multi-task DFL.

issues such as single point of failure and overwriting model
update [31]. On the other hand, while some models are trained to
handle multi-task scenarios [23], [24], [25], [26], [27], [28], [29],
[30], these models overlook the impact of client mobility and
the resource constraints, and both exist in vehicular networks.
Due to vehicle mobility, the unpredictable mobility patterns
and fluctuating network conditions caused by vehicle movement
often result in unstable model transmission, thereby decreasing
training efficiency. Therefore, the existing models are difficult to
be directly applied to the multi-task federated learning scenarios
in vehicular networks. Compared to the existing models, we
investigate multi-task decentralized federated learning for ve-
hicular networks. Our proposed leader-follower DFL framework
dynamically selects leaders through vehicular ad hoc networks,
effectively mitigating single point of failure while maintaining
communication overhead comparable to that of centralized FL.

III. SYSTEM MODEL

A. MMFL Framework

Fig. 1 shows the MMFL framework that includes H vehi-
cles and these vehicles collaboratively complete M training
tasks, such as TFP, FSD, and DBM [1]. Denote by H and M
the sets of vehicles and tasks, respectively. Denote by Wh =
{w1

h,w
2
h, . . .,w

M
h } the set of model parameters for vehicle h,

where wm
h (for m = 1, . . . ,M ) are in one-to-one correspon-

dence with the elements in the training task set M. Denote
by K the set of communication rounds, K = {1, 2, . . .,K}. All
communication rounds are of the same maximum time duration
tround. In the k-th communication round, the two-dimensional
coordinates of vehicle h are denoted by (xkh, ykh), and its
speed is denoted by skh, ∀h ∈ H, ∀k ∈ K. We assume that each
vehicle can participate in at most one task training during a com-
munication round. Specifically, denote byαm

kh a binary variable,
αm
kh ∈ {0, 1}, with

∑
m∈M αm

kh ≤ 1, ∀h ∈ H, ∀k ∈ K, which is
one if and only if vehicleh selects to train taskm in the k-th com-
munication round. Denote byα the corresponding tensor, where
αk is a matrix containing the task scheduling status for each
task of all vehicles in the k-th communication round. The model
training process employs a leader-follower DFL strategy [18].

We divide the vehicles into two categories, i.e., cluster head
vehicles (CHVs) and source vehicles (SOVs). Each CHV corre-
sponds to a task. The set of SOVs is divided intoM subsets, each
responding to a CHV. Since we consider a dynamic cluster head
strategy, the elements in these two sets will change dynamically
in each communication round. Denote by umkh a binary variable,
umkh ∈ {0, 1}, with

∑
h∈H α

m
khu

m
kh = 1, ∀m ∈M, ∀k ∈ K, and

umkh ≤ αm
kh, ∀m ∈M, ∀k ∈ K, ∀h ∈ H, which is one if and

only if vehicle h is selected as the leader for task m in the
k-th communication round, and also serves as the CHV for task
m. Denote by u the corresponding tensor, where uk is a matrix
containing the leader selection status for each task of all vehicles
in the k-th communication round, and um

k is a vector containing
the leader selection status for task m of all vehicles in the k-th
communication round.

B. MMFL Training Model

In the MMFL framework, each vehicle h ∈ H holds M local
datasets corresponding to the M tasks. For task m, the training
process consists of the following five parts.

1) Model distribution: At the beginning of the k-th commu-
nication round, denote by r the CHV. This CHV sends
its local model, denoted by wm

k−1,r, to the SOVs. Further-
more, this model wm

k−1,r also serves as the global model
for taskm, so we simplify the notation to wm

k−1. The local
model of each SOV s, defined as wm

k−1,s is initialized
to match the current global model wm

k−1 through model
distribution.

2) Local training: After receiving the global model wm
k−1,

each vehicle h ∈ H with αm
kh = 1 uses the stochastic gra-

dient descent (SGD) algorithm to update the local model.
Denote by Dm

h the dataset used for training by vehicle h
for task m. Denote by Dm′

h the dataset used for testing by
vehicle h for task m. For each task m, vehicle h draws
training samples from the associated distribution Xm

h to
construct SGD mini-batches, and tests samples from Ym

h

for evaluation. The local training process is expressed as

wm
kh = wm

k−1 −
ηk
Bm

k

∑
x∈Bmkh

∇fm(wm
k−1,h;x), (1)

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on February 02,2026 at 15:02:07 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: MOBILITY-AWARE MULTI-TASK DECENTRALIZED FEDERATED LEARNING FOR VEHICULAR NETWORKS: 2597

where ηk represents the learning rate of the k-th commu-
nication round, ∇fm(wm

k−1,h;x) represents the gradient
of the local model loss function, and Bmkh represents the
subset of Dm

h generated by vehicle h based on task m
during the k-th communication round. Assuming all vehi-
cles have equal batch sizes, we have |Bmkh| = Bm

k . Denote
by I the number of local iterations, which each vehicle
performs in every communication round. In each train-
ing iteration of the k-th communication round, vehicle
h randomly samples a mini-batch Bmkh ⊆ Dm

h from the
local training dataset for model updating, where each data
samplex ∈ Bm

kh. Periodically, a sampley ∈ Dm′
h from the

local test dataset is used for performance evaluation. The
loss function of taskm in vehicle h, denoted by fmh (wm),
is expressed as

fmh (wm) = E
x∼Xm

h

[fm(wm;x)], (2)

where the loss function fm(wm;x) is used to measure the
fitting performance of the model parameter wm. In (2),
fmh (wm) describes the average loss over the distribution
Xm

h .
3) Model update: Each SOV s sends its local model wm

ks to
the CHV.

4) Model aggregation: The CHV aggregates all the received
models by using a weighted average method,

wm
k =

∑
h∈H α

m
kh|Dm

h |wm
kh∑

h∈H α
m
kh|Dm

h |
, (3)

where |Dm
h | represents the size of the training dataset for

vehicle h in task m. We assume that the vehicles partic-
ipating in task m are drawn from the given distribution
P [10]. The global loss function of task m, denoted by
Fm(wm), is expressed as

Fm(wm) = E
h∼P

[fmh (wm)]. (4)

5) Model broadcast: The CHV sends the aggregated model
wm

k to the SOVs.
The above five training steps end until the loss function of

each task converges or the number of communication rounds
reaches its upper bound.

C. Mobility Model

Due to mobility, the communication state of vehicles changes
rapidly with their positions. For the convenience of analysis,
we make a quasi-static assumption where a vehicle’s position
does not change during the communication and computation
process. This assumption allows us to accurately estimate ve-
hicular communication conditions and resource consumption
within each time slot. This modeling approach is consistent
with existing advanced studies [32], [33]. Denote by dkhihj

the distance between vehicle hi and vehicle hj for the k-th
communication round, which is expressed as

dkhihj
=
√

(xkhi
− xkhj

)2 + (ykhi
− ykhj

)2. (5)

Fig. 2. Network architecture.

As shown in Fig. 2, we adopt a hybrid communication mode
for model distribution, update, and broadcast. We assume that
the energy and time consumption incurred by the sender and
receiver during data transmission are identical for each in-
dividual communication link [14], [15]. This assumption ap-
plies exclusively to paired nodes with a specific link, and it
does not imply homogeneity across all vehicles in the system
model. Specifically, denote by dU the direct communication
radius. When dkhihj

≤ dU , vehicle hi and vehicle hj use V2V
communication. Conversely, when dkhihj

> dU , the commu-
nication between vehicle hi and vehicle hj involves indirect
communication.

D. Communication Model

We consider orthogonal frequency division multiple access
(OFDMA) as the transmission scheme [8]. This technology
divides the bandwidth into multiple subcarriers, which are then
allocated to different users. The subcarrier resources are also
orthogonally allocated by each CHV. Denote by lksr the band-
width allocation ratio assigned to SOV s by CHV r in the k-th
communication round, which is expressed as

lksr =
1

NS

NS∑
n=1

∑
m∈M

umkrc
m
ksn, (6)

where NS represents the number of subcarriers with the
condition that NS ≥ H , and cmksn represents a binary vari-
able, cmksn ∈ {0, 1}, with

∑
s∈H c

m
ksn ≤ 1, ∀n ≤ NS , ∀m ∈

M, ∀k ∈ K, which is one if and only if the n-th subcarrier is
allocated to SOV s in the k-th communication round for them-th
task. Denote by c a tensor, where ck is a tensor containing the
bandwidth allocation status in the k-th communication round,
and cmk is a matrix containing the bandwidth allocation status
of task m in the k-th communication round. Denote by Rksr

the transmission rate from SOV s to CHV r during the k-th
communication round. Based on the definition in [8], Rksr is
expressed as

Rksr = lksrW log2

(
1 +

pkshksrd
−ν
ksr

σ2

)
, (7)

where W represents the total uplink bandwidth, pks represents
the uplink transmission power of SOV s in the k-th communi-
cation round, hksr represents the power gain of the channel at

Authorized licensed use limited to: Uppsala Universitetsbibliotek. Downloaded on February 02,2026 at 15:02:07 UTC from IEEE Xplore.  Restrictions apply. 



2598 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 25, NO. 2, FEBRUARY 2026

a reference distance of 1m in the k-th communication round, ν
represents the path loss exponent, and σ2 represents the variance
of the complex white Gaussian channel noise. For indirect
communication, d takes a large fixed value ξ · dU , where ξ is
the distance scaling factor, as a suboptimal alternative for cases
where direct communication is not possible.

Denote by TU
ks the time duration taken for communication of

SOV s in the k-th communication round, which is expressed as

TU
ks =

∑
m∈M

∑
r∈H\s

αm
ksu

m
kr

Zm

Rksr
, (8)

where Zm represents the size of the model parameter wm.
Please note the definitions ofαm

ks andumkr, withαm
ksu

m
kr ∈ {0, 1}.

The product αm
ksu

m
kr represents the communication between the

CHV and the corresponding SOVs. Denote by EU
ks the energy

consumption due to data transmission of SOV s in the k-th
communication round, which is expressed as

EU
ks =

∑
m∈M

∑
r∈H\s

αm
ksu

m
krpks

Zm

Rksr
. (9)

The CHV and the corresponding SOVs communicate in par-
allel on different subcarriers. Denote by TU

kr the communication
time duration required by CHV r in the k-th communication
round, which is expressed as

TU
kr =

∑
m∈M

umkr max
s∈H
{(αm

ks − umks)TU
ks}. (10)

Denote byEU
kr the communication energy consumption of CHV

r in the k-th communication round, which is expressed as

EU
kr =

∑
m∈M

umkr

(∑
s∈H

(αm
ks − umks)EU

ks

)
. (11)

E. Computation Model

Denote by pCkh the local computing power of vehicle h in the
k-th communication round. Based on the definition in [7], pCkh
is expressed as

pCkh = λ(fCPU
kh )3, (12)

where λ represents the effective switching capacitance of the
CPU, and fCPU

kh represents the CPU frequency of vehicle h in the
k-th communication round. In the k-th communication round,
vehicle h ∈ H needs to train the model for the assigned task
m. Denote by TC

kh the computation time required by vehicle h,
which is expressed as

TC
kh =

∑
m∈M

αm
kh

I|Dm
h |q

fCPU
kh

, (13)

where q represents the CPU frequency required to process 1 b.
The computation energy consumption of vehicle h in the k-th
communication round is expressed as

EC
kh = pCkhT

C
kh =

∑
m∈M

αm
khIλ|Dm

h |q(fCPU
kh )2. (14)

Fig. 3. Timeline.

F. TSLP Model

The timeline of MMFL is shown in Fig. 3. The k-th communi-
cation round corresponds to the interval between the (k − 1)-th
and k-th discrete time indices. In each communication round,
there is a synchronization point after the model aggregation
process. Before the synchronization point, vehicle h undergoes
model distribution, model update, and local training. The com-
munication time duration for both model distribution and model
update is TU

kh. The computing time duration of model update is
TC
kh. In addition, the aggregation process is not incorporated into

our timeline illustration due to its comparatively short duration.
Thus, denote by Tm

k the synchronization point of task m in the
k-th communication round, which is expressed as

Tm
k = max

h
{αm

kh(T
C
kh + 2TU

kh)}. (15)

After the synchronization point, vehicle h undergoes model
broadcast. The communication time duration of model broadcast
is TC

kh. Thus, denote by Tk the total time consumption in the k-th
communication round, which is expressed as

Tk = max
h

{∑
m∈M

αm
khT

m
k + TU

kh

}
. (16)

In a single communication round, vehicle h needs to go
through three communication processes, namely model distribu-
tion, model update, and model broadcast. The communication
energy consumption of each process is EU

kh. In addition, the
vehicle also needs to undergo a local training process, where the
computing energy consumption isEC

kh. Thus, denote byEkh the
total energy consumption of vehicleh in thek-th communication
round, which is expressed as

Ekh = EC
kh + 3EU

kh. (17)
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Denote by Eres
kh the residual energy of vehicle h in the k-th

communication round, which is expressed as

Eres
kh = Eh −

k−1∑
j=1

Ejh, (18)

where Eh represents the initial energy of vehicle h.
Denote by F loss the average loss of each task over the K-th

(i.e., the final) communication round, which is expressed as

F loss =
1

M

∑
m∈M

(
1∑

h∈Hα
m
Kh

∑
h∈H

αm
Khf

m
h (wm

Kh)

)
, (19)

where αm
Kh represents the task selection status of vehicle h in

the final communication round, and wm
Kh represents the local

model of vehicle h in the final communication round. In this
paper, we aim to minimize the loss function for each training
task subject to latency and energy consumption. Denote by ρmkh
the communication round index that corresponds to the most
recent participation of vehicle h for task m prior to the k-th
communication round. Therefore, TSLP is given in (20).

P0 : min
α,u,c

F loss (20a)

s.t. max
k

(αm
khTk) ≤ tround, h ∈ H,m ∈M, k ∈ K, (20b)

αm
khEkh ≤ Eres

kh , h ∈ H,m ∈M, k ∈ K, (20c)∑
m∈M

αm
kh ≤ 1, h ∈ H, k ∈ K, (20d)

umkh ≤ αm
kh,m ∈M, k ∈ K, h ∈ H, (20e)∑

h∈H
αm
khu

m
kh = 1,m ∈M, k ∈ K, (20f)

∑
h∈H

cmkhn ≤ 1, n ≤ NS ,m ∈M, k ∈ K, (20g)

umkr = argmax
um

k

ρmkh,m ∈M, k ∈ K, (20h)

αm
kh ∈ {0, 1}, umkh ∈ {0, 1}, cmkhn ∈ {0, 1}. (20i)

In (20), constraint (20b) ensures that the time spent by each
vehicle in any communication round is strictly bounded by a time
duration of tround. The constraint is influenced by α, u, and c,
as seen in (6), (7), (8), (10), (15), and (16). This implies that the
variables are coupled. Constraint (20c) ensures that the energy
consumption of each participating vehicle in any communication
round does not exceed its current energy capacity. Constraints
(20d) and (20e) state that a vehicle participates in at most one
task. Constraint (20f) represents that each task is allocated a
cluster head. Constraint (20g) indicates orthogonal allocation of
subcarriers. Constraint (20h) is used to mitigate the issue that
a model update becomes overwritten. Constraint (20i) sets the
range of values that the optimization variables can take.

MMFL achieves fairness in three aspects. Firstly, it consid-
ers the trade-off between vehicle model training and resource
consumption. Given that each vehicle has limited energy, those
that frequently participate in training need to consume more
energy, which naturally limits their participation frequency.

This mechanism ensures that all vehicles can participate fairly
within their resource constraints, preventing over-participation
that could lead to unfairness. Secondly, MMFL shares model
updates only among vehicles involved in the task. Vehicles that
do not participate in training cannot obtain the aggregated model.
This approach prevents free-riding and ensures that only partici-
pating vehicles benefit from model updates, thereby maintaining
fairness among the participants. Finally, MMFL dynamically
designates leaders and allocates communication resources based
on a combination of task participation and communication con-
ditions. This strategy helps reduce the communication burden on
leaders while ensuring that all participating vehicles can com-
municate and share data under fair conditions. By implementing
these mechanisms, MMFL not only enhances the overall system
efficiency but also ensures equitable resource allocation and
participation.

IV. PROBLEM ANALYSIS

In this section, we first discuss the convergence bounds for
a single task under the MMFL framework. For multi-task sce-
narios, we model TSLP as a resource allocation game, and then
prove the existence of NE for the game.

A. Convergence Analysis

For each task m, we make the following assumptions
[10], [34]:

Assumption 1: The local loss function fmh (wm) is L-smooth
for each vehicle h ∈ H in each communication round k ∈ K,
i.e,

fmh (wm
k )− fmh (wm

k−1)

≤ 〈∇fmh (wm
k−1),w

m
k −wm

k−1
〉
+
L

2

∥∥wm
k −wm

k−1
∥∥2 .

Assumption 2: The local loss function fmh (wm) isμ-strongly
convex for each vehicle h ∈ H in each communication round
k ∈ K, i.e,

fmh (wm
k )− fmh (wm

k−1)

≥ 〈∇fmh (wm
k−1),w

m
k −wm

k−1
〉
+
μ

2

∥∥wm
k −wm

k−1
∥∥2 .

Assumption 3: The stochastic gradient is unbiased, i.e.,

E
x∼Xm

h

[∇fm(wm;x)] = E
h∼Ph

[∇fmh (wm)] = ∇Fm(wm).

Assumption 4: The stochastic gradient is variance-bounded,
i.e.,

E
x∼Xm

h

[
‖∇fm(wm;x)−∇Fm(wm)‖2

]
≤ G2.

Assumption 5: In the k-th communication round beyond the
initial one, the CHV of task m is selected from the cluster of
task m in the (k − 1)-th communication round.

Assumption 5 prevents outdated models from overwriting
new updates. Based on the above assumptions, we obtain the
following lemma:

Lemma 1: With Assumptions 1-5 and the aggregation rule
(3), the expected decrease of loss after one round is upper
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bounded by

E [Fm(wm
k )]− E

[
Fm(wm

k−1)
]

≤ ηk
(
Lηk
2
−1
)∥∥∇Fm(wm

k−1)
∥∥2+Lη2k

2

G2

Bm
k

∑
h∈H α

m
kh

,

(21)

where the expectation is taken over the randomness of SGD.
Proof: See Appendix A. �
Based on Lemma 1, we obtain the convergence performance

after K communication rounds, presented in Theorem 1.
Theorem 1: After K communication rounds of training, the

difference between Fm(wm
K) and the optimal global loss func-

tion denoted by Fm(wm∗) is upper bounded by

E [Fm(wm
K)]− Fm(wm∗)

≤ (E[Fm(wm
0 )]− Fm(wm∗))

K∏
k=1

(1− μηk)

+

K−1∑
k=1

ηk
2

G2

Bm
k

∑
h∈H α

m
kh

K∏
j=k+1

(1− μηj)

+
ηK
2

G2

Bm
K

∑
h∈H α

m
Kh

. (22)

Proof: See Appendix B. �
The convergence analysis highlights the impact of three

optimization variables on FL, i.e., the number of participants
α, the update status u, and the bandwidth allocation c. First,
the convergence bound of the global loss function for task m
decreases with the increase of the number of participants. This
implies that the decision of α directly affects the convergence
of an individual FL task. More participants lead to a tighter
convergence bound, enhancing the overall training performance.
Second, variable u affects the update status of an individual FL
task, i.e., the extent to which model updates are overwritten.
It also influences the resource consumption of each vehicle
due to mobility. Optimizing u ensures that the updates are
effectively utilized, balancing the trade-off between convergence
and resource allocation. Furthermore, optimizing the bandwidth
allocation variable c helps reduce the operational latency of the
framework. Given thatμ > 0 and ηk > 0, we have 1− μηk < 1,
which indicates that as the number of communication rounds
increases, the convergence bound of the global loss function for
task m becomes stronger. Therefore, the decisions of α, u, and
c collectively affect the training performance of each task.

B. Resource Allocation Game Formulation

For multiple task scenarios, the convergence rate of the loss
within the framework’s operation is influenced by α, u, and
c, for which the relations are not analytically available. By
Theorem 1, we find that the convergence bound of a single FL
task is directly related to the number of participants. To address
the interdependencies between tasks in multi-task scenarios, we
model the inter-task relationship as a game. Specifically, we

prove the existence of a Nash equilibrium, which ensures that
each task can achieve optimal performance given the resource
allocation decisions of other tasks. This game-theoretic formu-
lation allows us to analyze the overall system dynamics beyond
the single-task assumption and provides a comprehensive un-
derstanding of the multi-task FL framework. Note that the loss
function represents the distance between the predicted labels and
the true labels, which is used to assess the model’s fitness during
training. This value decreases as the training progresses. Accu-
racy represents the agreement between the predicted labels and
the true labels, and is used to measure the model’s performance
on the test set. The closer this value is to one, the better the
model’s performance. The work in [35] models the relationship
between accuracy and training efficiency in multi-task FL. The
transition between minimizing the loss function and maximiz-
ing training efficiency does not affect the objective of TSLP.
Consequently, we adopt the aggregate training efficiency as a
measure. A higher training efficiency implies that the number of
communication rounds K required for convergence is smaller,
thereby enhancing energy efficiency. The training efficiency is
defined in accordance with the work in [35].

Definition 1: The training efficiency of task m in the k-th
communication round increases with the number of assigned
vehicles, but the increase in training efficiency is diminishing,
roughly following a logarithmic relationship, which is expressed
as

ψm
k = βm log

(∑
h∈H

αm
kh

)
+ θm, (23)

where βm and θm represent the scaling coefficient and bias term
of task m, respectively, which govern how training efficiency
scales with participant count in task m.

We model the problem as a non-cooperative game among the
tasks, where each task is regarded as a player and it indepen-
dently decides on its vehicle allocation strategy, with the goal
of faithfully improving its own training efficiency. The TSLP in
(20) is transformed into

P1 : max
α,u,c

∑
k∈K

∑
m∈M

ψm
k

s.t. (120b)− (20i). (24a)

Based on the conclusions of Theorem 1, we observe that
the tasks in the framework are interrelated. Therefore, it is
necessary to model these inter-task relationships. Drawing on
the conclusions in [35], model loss, accuracy, and training
efficiency all measure the effectiveness of the model’s train-
ing. In addition, as derived from Theorem 1, the conclusion
that more participants lead to a smaller loss aligns with the
setting that more participants result in higher training effi-
ciency. The insight motivates the game-theoretic formulation of
problem (24a).

To describe the competitive relationship between tasks in the
k-th communication round, we define resource allocation game
Gk = {M,Sk, {Um

k }m∈M}, where Sk represents the strategy
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space of the game, defined as the Cartesian product of all individ-
ual strategy sets of the tasks: Sk = S1

k × · · · × Sm
k × · · · × SM

k ,
where Sm

k represents the set of all strategies for task m in
the k-th communication round. Each Sk ∈ Sk is a strategy
profile. For task m, the profile Sk = (S 1

k , . . .,S
m
k , . . .,S M

k )
can be rewritten as Sk = (S m

k ,S −m
k ), where S m

k denotes the
strategy of taskm in the k-th communication round, represented
as S m

k = {h ∈ H | αm
kh = 1}, and S −m

k represents the joint
strategy adopted by the tasks other than task m. Denote by
Um
k (Sk) the utility function of task m in the k-th communi-

cation round, which is defined as follows.
Definition 2: The utility function Um

k (Sk) : Sk �→ R is de-
fined as the training efficiency of task m under the strategy
configuration Sk, where R represents the set of real numbers.
Specifically, Um

k (Sk) is expressed as

Um
k (Sk) =

{
ψm
k , if (120b)− (20i) are satisfied,

0, otherwise.
(25)

Next, we demonstrate that the game model Gk is a potential
game (PG) with at least one NE by providing the potential
function. We first present the definition of a potential game.

Definition 3: If there exists a potential function Ωm
k (Sk) that

satisfies (26), then the game is a potential game.

Um
k (S m′

k ,S −m
k ) > Um

k (S m
k ,S −m

k )

�→ Ωm
k (S m′

k ,S −m
k ) > Ωm

k (S m
k ,S −m

k ). (26)

Theorem 2: For the potential function defined below for task
m, game Gk is a potential game.

Ωm
k (Sk) =

∑
i∈M

[
U i
k(S

m
k ,S −m

k )− U i
k(−S m

k ,S −m
k )

]
,

(27)
where U i

k(−S m
k ,S −m

k ) represents the utility that can be
achieved when S m

k is ineffective, meaning that no valid set
of α, u and c can satisfy this strategy.

Proof: See Appendix C. �
In the game model Gk, all tasks attempt to achieve a NE by

maximizing their utility in the presence of conflicting interests.
Since Theorem 2 proves that the resource allocation game is a
potential game, it has the finite improvement property (FIP), thus
a NE allocation strategy can be obtained through a finite number
of iterations [36]. Solving the NE in the resource allocation game
can enhance the training efficiency of all tasks in the framework,
improving the convergence rate.

V. ALGORITHM DESIGN

Based on the proof of the NE existence, we first reformulate
the problem in (24) as a DEC-POMDP, and then propose an
HAPPO-based algorithm to solve DEC-POMDP.

A. DEC-POMDP Reformulation

As shown in Fig. 4, we design a centralized training and decen-
tralized execution (CTDE) multi-agent reinforcement learning
(MARL) algorithm to solve the resource allocation game. The

Fig. 4. Diagram of centralized training and distributed execution framework.

training layer, deployed on a cloud server, is responsible for op-
timizing policy and value networks using offline data collected
from vehicles. Once trained, the optimal policy networks are
distributed to individual agents in the execution layer, where
each agent corresponds to a single vehicle. During execution,
agents rely solely on local observations, feeding them into
their policy networks to generate actions and interact with the
MMFL environment in a fully decentralized manner. Within
each task group, vehicles dynamically elect leaders and allocate
subcarriers through a consensus-based mechanism, ensuring
efficient coordination without centralized control. After exe-
cuting for a predefined number of steps, vehicles upload their
historical experience data to the cloud server, where the training
layer performs further policy updates and refinements until the
changes in the agents’ policies or value functions fall below a
specified threshold. This closed-loop process enables continuous
improvement while maintaining scalability and adaptability in
real-world deployment. Compared to fully distributed systems,
CTDE leverages centralized training to make full use of global
information, leading to more stable and optimal policies. Com-
pared to fully centralized systems, CTDE reduces communi-
cation and computational demands during execution, making
it more suitable for resource-constrained application scenar-
ios. Specifically, utilizing global information during training,
HAPPO learns policies that are more robust and optimal. In
addition, during execution, agents operate independently in
HAPPO, minimizing the need for real-time communication
and reducing latency. Finally, decentralized execution allows
the system to scale more effectively, accommodating a larger
number of agents without significant increases in computational
or communication costs.
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Denote by ζ =
{
{ζh}Hh=1

}
the agent set of task

distributors, where each agent corresponds to a vehicle.
The resource allocation game (24) is reformulated to a
DEC-POMDP 〈S,A,O, R, P 〉, where S ,A,O, R, P represent
the global state, action set, local observation set, reward
function, and state transition function, respectively [37]. The
local observation space, denoted by okh, consists of the most
recent communication round index of the vehicle’s participation
in any task, remaining energy, transmission rate, position, and
speed of vehicle h in the k-th communication round, which is
expressed as

okh =

{
{ρmkh}m∈M, Eres

kh ,
∑
r∈H

αm
khu

m
krRkhr, xkh, ykh, skh

}
.

(28)
The global state S contains the local observations of all

agents across all K communication rounds, which is expressed
as

S =
{
okh|h ∈ H, k ∈ K

}
. (29)

For the decision of αk, denote by av the action space of the
agent corresponding to vehicleh. In each communication round,
vehicle h can choose any task, corresponding to the task indexes
in the action space; it can also choose not to participate in any
task, corresponding to value zero. The action space is expressed
as

av = {0, 1, 2, . . .,M}. (30)

For the decision of uk and ck, we need to ensure a balance
between the efficient execution of FL and resource consumption.
Specifically, we propose a joint optimization for leader selection
and subcarrier allocation, as shown in Algorithm 1. We score
all vehicles within the task group m. In Line (19), the first
term considers communication efficiency and the second term
considers training efficiency, where ε represents the weighting
coefficient. Denote by hm∗k the vehicle with the highest score
in the group, which is then selected as the leader for task m
in the k-th communication round. Note that αk is fixed at
this point. The complexity of Algorithm 1 is O(M ·N logH).
By applying this algorithm, the dimensionality of the ac-
tion space is effectively reduced, leading to improved search
efficiency.

In Section IV-A, the convergence analysis demonstrates the
achievable convergence bound when Assumption 5 holds. How-
ever, with presence of vehicle mobility, the conditions for
Assumption 5 are relatively stringent. To address this chal-
lenge, the proposed algorithm incorporates a reward mecha-
nism that incentivizes decisions satisfying Assumption 5 with
a positive reward. This mechanism ensures that the algorithm
prioritizes decisions that lead to better training outcomes, even
in the presence of vehicle mobility. Denote by rkh the lo-
cal reward of the agent corresponding to vehicle h in the
k-th communication round; the reward includes the utility of
the corresponding task in game (24). Additionally, we intro-
duce ρmkh with the aim of encouraging the agent to satisfy
Assumption 5 as much as possible. The local reward is expressed

Algorithm 1: Joint Optimization of Leader Selection and
Subcarrier Allocation.

Input: αk, {ρmkh|m ∈M, h ∈ H}, and
{(xkh, ykh)|h ∈ H};

Output: uk and ck;
1: // At the beginning of the k-th communication round;
2: Initialize: uk ← 0, ck ← 0;
3: for all m ∈M do
4: for all r ∈ Hwithαm

kr = 1 do
5: Initialize: Max-Heap Q = ∅;
6: for all h ∈ H \ r with αm

kh = 1 do
7: Assign a subcarrier to vehicle h;
8: Calculate TU

kh based on (8) and (10);
9: Insert vehicle h with key TU

kh into Q;
10: end for
11: while Remaining subcarriers > 0 do
12: h← Pop the top element from Q;
13: Assign a subcarrier to vehicle h;
14: Calculate TU

kh based on (8) and (10);
15: Insert vehicle h with key TU

kh into Q;
16: end while
17: ĥ← Pop the top element from Q;
18: Calculate TU

kĥ
based on (8) and (10);

19: Calculate the score for vehicle r:

scorer =
ρmkr
k
− ε TU

kĥ

tround
; (31)

20: end for
21: hm∗k = argmaxh∈H scorev;
22: umk,hm∗

k
= 1;

23: Generate cmk for hm∗k according to the above process;
24: end for

as

rkh =
∑
m∈M

αm
khψ

m
k ρ

m
kh. (32)

Furthermore, for action outputs that do not satisfy the constraints
of game (24), we apply a penalty to all agents.

The global reward is defined as the sum of the local rewards
(32) over all K communication rounds and all agents in the
framework. The global reward is expressed as

R =
∑
k∈K

∑
h∈H

rkh. (33)

For the transition of local observations P from okh to ok+1,h,
the remaining energy is updated by (18), the position and speed
of the vehicle are acquired in real time, and the transmission rate
is estimated based on the current conditions and (7).

B. HAPPO-Based Optimization Algorithm

Denote by πk the joint decision made by ζ in the k-th com-
munication round, and (πk)

∞
k=0 the sequence of joint decisions.

Sequence (πk)∞k=0 obtained through the HAPPO algorithm pos-
sesses four properties. First, the expected return of the joint
policy is monotonically increasing. Second, as the number of
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iterations increases, the generated value functions converge to
the value function corresponding to a NE. Third, the expected
return of the joint policy converges to the expected return of a
NE. Finally, the ω-limit set of the policy sequence contains NE
strategies [38]. Furthermore, using HAPPO allows for a clearer
description of the interactions between agents, and it converges
faster compared to traditional reinforcement learning (RL).

To solve DEC-POMDP in Section V-A and obtain a NE
solution, we propose an HAPPO-based optimization algorithm.
The goal of the proposed algorithm is to train H local policy
networks and one global value network.

Denote byπθh the policy of agent ζh, which is formulated by a
multilayer perceptron (MLP) neural network with parameter θh.
Denote by Vφ the global V-value function, which is formulated
by an MLP neural network with parameter φ. Here, πθh is a
multinomial distribution used for action selection, i.e.,

ah ∼ Categorical(πθh(ah | oh)), (34)

where ah represents the action taken by agent ζh in the local
observation oh. We use Vφ to represent the expected reward for
the entire system when all agents act according to their respective
policies πθh , given the global state s, i.e.,

Vφ(s) = Eπθ1 ,πθ2 ,...,πθH

[ ∞∑
t=0

γtRt | s
]
,

whereRt represents the joint reward of all agents at time step t,
and γ represents the discount factor. Denote by Ts the time steps
for trajectory collection. At time step t, the expectation reward
R̂t is expressed as

R̂t =

Ts−t−1∑
m=0

γmRm. (35)

Note that one time step in the algorithm refers to executing one
FL communication round in the MMFL environment. When we
reset the MMFL environment, the FL communication round is
set to zero, but the time step remains unchanged.

The advantage function in reinforcement learning is used
to estimate the advantage of a particular action relative to the
average policy. Denote by Ât(s,a) the advantage function at
time step t. It is calculated by generalized advantage estimation
(GAE), which is expressed as

Ât(s,a) =

Ts−t−1∑
m=0

(γβ)mδt+m, (36)

where a represents the joint action, β represents the smoothing
factor, and δt represents the temporal difference error, which is
expressed as

δt = Rt + γVφ(st+1)− Vφ(st).
Denoting by ε the discount ratio, the training of the

proposed HAPPO-based optimization algorithm is shown in
Algorithm 2. In HAPPO, the policy networks of individual
agents are updated sequentially, with no shared policy param-
eters between agents [39]. This approach mitigates conflicts in

Algorithm 2: Training of HAPPO-Based Optimization
Algorithm

Input: Batch size Θ, number of agents H , training episodes Ks,
steps per training episode Ts;

Output: Actor networks {θhKs
|ζh ∈ ζ}, global V-value network

φKs ;
1: Initialize: Actor networks {θh0 |ζh ∈ ζ}, global V-value

network φ0, replay buffer U ;
2: for ks = 0, 1, . . . ,Ks − 1 do
3: Collect a set of trajectories by running the joint policy

πθks
= (π1

θ1
ks

, . . . , πH
θH
ks

);

4: for t = 0, 1, . . . , Ts − 1 do
5: Obtain αt based on sampling (34);
6: Obtain ut, ct based on Algorithm 1;
7: Execute a communication round t of the MMFL

environment using αt,ut, ct;
8: if Constraints (20b)-(20i) are not all satisfied then
9: Reset the MMFL environment;

10: end if
11: Obtain {(oth, rth) | ∀ζh ∈ ζ};
12: end for
13: Push transitions {(oth, ath, ot+1,h, rth) | ∀ζh ∈ ζ, t ≤ Ts}

into U ;
14: Sample a random minibatch of U transitions from U ;
15: Compute advantage function Â(s,a) based on (36);
16: Draw a random permutation of agents ζ1:H ;
17: Set Mζ1(s,a) = Â(s,a);
18: for all ζh ∈ ζ do
19: Update actor network θ

ζh
k+1, the argmax of the PPO-Clip

objective [40]:

1

ΘT

Θ∑
i=1

T∑
t=0

min

⎛
⎜⎝

πζh
θζh

(
aζh
t |oζht

)

π
ζh

θ
ζh
k

(
a
ζh
t |oζht

)Mζ1:h(st,at),

clip

⎛
⎜⎝

π
ζh
θζh

(
a
ζh
t |oζht

)

π
ζh

θ
ζh
k

(
a
ζh
t |oζht

) , 1± ε

⎞
⎟⎠Mζ1:h(st,at)

⎞
⎟⎠ ;

(37)
20: Compute unless ζh = ζV :

Mζ1:h+1(s,a) =
π
ζh
θζh

(a
ζh
t | oζht )

πζh

θ
ζh
k

(aζh
t | oζht )

Mζ1:h(s,a); (38)

21: end for
22: Update the V-value network by the following formula:

πk+1 = argmin
π

1

ΘT

U∑
u=1

Ts∑
t=0

(
Vπk

(st)− R̂t

)2

; (39)

23: end for

policy updates among agents, thereby improving the training
efficiency.

C. Complexity Analysis

The computational complexity of the HAPPO algorithm pri-
marily arises from forward propagation for action prediction and
backward propagation during network training. We employ a
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multi-layer perceptron (MLP) withΓ layers to construct both the
actor network θ and the V-value networkφ, which share the same
network depth. For the i-th layer (i ∈ {1, 2, . . . ,Γ}) in both θ
and φ, the computational complexity is given byO(NE

i−1N
E
i +

NE
i N

E
i+1), where NE

i represents the number of neurons in the
i-th layer [41]. All agents perform parallel computation within
a single time step. For Ks episodes, each episode consists of Ts
steps and the update time per training step isTp. Thus, the overall
computational complexity of the proposed algorithm can be
expressed asO(Ks((Ts + Tp)

∑Γ−1
i=2 (N

E
i−1N

E
i +NE

i N
E
i+1))).

D. Communication Cost Analysis

In the MMFL framework, the communication cost of SOV s is
the same as the client in centralized FL. In the model distribution
and broadcast phases, SOV s receives

∑
m∈M αm

ksZ
m model

parameters. It sends the same amount during the model update
phase. The communication consumption of CHV r is the same
as the server in centralized FL. During the model distribution
and broadcast phases, CHV r sends

∑
s∈H\r

∑
m∈M αm

ksu
m
krZ

m

model parameters. It receives the same amount during the model
update phase. Denote by Eedge the cost (e.g., energy consump-
tion) for directly transmitting a single model parameter via V2V
communication, Ecloud the cost for indirectly transmitting a
single model parameter via V2I communication, and pedge the
probability of adopting V2V communication. Denote byCostMk
and CostCk the total cost of all vehicles in the k-th communi-
cation round under the MMFL framework and the centralized
FL framework, respectively. These can be expressed in (40),
where the numeral 3 reflects the three communication phases,
i.e., model distribution, model update, and model broadcast.
Compared to centralized FL, the communication bottleneck in
MMFL arises from the data exchange between the CHV and
all SOVs within each task group. In addition, the proportion of
different communication modes also affects the communication
overhead of MMFL.⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CostMk = 3
[∑

r∈H
∑

s∈H\r
∑

m∈M αm
ksu

m
krZ

m

+
∑

s∈H
∑

m∈M αm
ks(1− umks)Zm

]
× [pedgeEedge + (1− pedge)Ecloud

]
,

CostCk = 3
∑

s∈H
∑

m∈M αm
ksZ

mEcloud.

(40)

VI. EXPERIMENTS

A. Experiment Setting

Numerical experiments are used to validate the effectiveness
of the proposed algorithm. Specifically, we use the SUMO
software to generate traffic flow and simulate multi-task FL, as
shown in Fig. 5. We assume that H vehicles are always driving
within the road network and collaboratively complete a total of
M tasks. Each CHV divides the bandwidth intoNS subcarriers
using OFDMA technology. We consider four classification tasks
over datasets MNIST with LeNet [42], Fashion-MNIST [43]
(referred to as FMNIST) with LeNet, SVHN [44] with LeNet,
and CIFAR-10 [45] with ResNet-18 [46]. Based on the analysis
in Section IV-B, we use the test accuracy to evaluate the model’s

Fig. 5. The SUMO road network.

TABLE I
SIMULATION PARAMETERS [8], [37]

performance. Note that under the same experimental setup, dif-
ferent algorithms yield different strategies. Therefore, the value
of K is not fixed across different scenarios or algorithms. All
experiments are conducted using TensorFlow and PyTorch [47]
with Ubuntu 22.04. The parameter settings are shown in Table I.

We compare the proposed algorithm with the following
algorithms.
� Equal resource allocation (ERA): ERA distributes vehi-

cles evenly across the tasks, randomly designates a leader
within the vehicle group of each task, and then evenly
allocates subcarriers to the vehicles within the group.

� Bayesian optimization-based device scheduling
(BODS) [27]: BODS applies Bayesian optimization
for assigning vehicles to the tasks, while the leader
selection and bandwidth allocation strategies are the same
as in ERA.

� Distributed proximal policy optimization (DPPO): DPPO
uses deep reinforcement learning to jointly optimize task
scheduling, leader selection, and bandwidth allocation; this
is a modified version of [18].

� Joint client selection and bandwidth allocation optimiza-
tion (CSBWA) [48]: CSBWA employs a reinforce-based
DRL algorithm for vehicle assignment and allocates
bandwidth according to the policy network’s probability
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Fig. 6. Accuracy curves for HAPPO, ERA, BODS, and DPPO.

distribution. Furthermore, we align its leader selection
strategy with ERA.

� Clustering algorithm (CA) [16]: The CA algorithm em-
ploys neighborhood density and cosine similarity for clus-
ter partitioning and leader selection. Furthermore, the
bandwidth allocation strategy is aligned with ERA.

B. Comparison With Respect to Various Settings

Fig. 6 shows the accuracy curves for each task when the
algorithms are training on all four tasks simultaneously. We
gain the following insights. First, the accuracy curve of HAPPO
is relatively smooth, indicating that HAPPO can effectively
alleviate the issue of model updates being overwritten. Secondly,
the final test accuracy of HAPPO is higher, surpassing the
other algorithms by at least 51%. This suggests that overwriting
model updates indeed can lead to inefficient resource utilization,
resulting in a decrease in the final accuracy. Lastly, the final
test accuracy of the four tasks in HAPPO is the highest. This
indicates that HAPPO can utilize resources more efficiently for
training.

Fig. 7 and the first section of Table II show the impact of
the initial energy level Eh on the algorithms. We set up three
tasks: MNIST with LeNet, FMNIST with LeNet, and SVHN
with LeNet. We gain the following insights. First, HAPPO
consistently achieves higher final test accuracy across all initial
vehicle energy levels, outperforming other algorithms by at least
13%. In particular, HAPPO outperforms CSBWA by 76% when
Eh = 2000 J, and exceeds CA by 40% when Eh = 4000 J.
This is because the issue of overwriting continues to affect
the entire training process, while HAPPO effectively alleviates
this problem, resulting in better performance. Fig. 8 provides a
case illustration of the model update overwriting issue. For task
1, the SOV that participated in training during the (k − 1)-th
communication round is selected as the CHV for the k-th round,

Fig. 7. Comparison of final test accuracy with respect to initial vehicle energy
level.

TABLE II
COMPARISON OF MAXIMUM TIME DURATION OVER ALL COMMUNICATION

ROUNDS WITH RESPECT TO VARIOUS SCENARIOS (FAILURES IN ITALICS)

Fig. 8. Case illustration of the overwriting issue.
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Fig. 9. Comparison of final test accuracy with respect to the number of
vehicles.

and the most recently updated model is correctly distributed
within the task group. In contrast, the CHV for task 2 in the
k-th communication round did not participate in training during
the (k − 1)-th communication round. The CHV distributed an
outdated model, causing the most recent update to be overwritten
and resulting in a decrease in the overall training performance.
Secondly, as the initial energy of the vehicles increases, the
final test accuracy of ERA and BODS also improves. This is
because, as the training process progresses, more vehicles in the
framework receive the updated models, which helps to alleviate
the issue of overwriting to some extent. Lastly, DPPO encounters
timeout issues frequently. This is because the large solution
space of DPPO leads to incorrect resource allocation strategies,
resulting in excessively long transmission times.

Fig. 9 and the second section of Table II show the impact of
the number of vehicles H on the algorithms. We set up three
tasks: MNIST with LeNet, FMNIST with LeNet, and SVHN
with LeNet. We gain the following insights. First, the final test
accuracy of HAPPO is consistently higher across all numbers
of vehicles, outperforming other algorithms by at least 14%. In
particular, when H = 20, HAPPO surpasses CSBWA by 70%,
and when H = 25, it exceeds CA by 24%. The increase in the
number of vehicles implies an expansion of the solution space,
and HAPPO’s multi-agent sequential updates can effectively
utilize this situation. Second, the final test accuracy of ERA,
BODS, and DPPO exhibits significant fluctuations when varying
the number of vehicles. This is due to the expansion of the
solution space, which exacerbates the interference of model
updates. Notably, when H ≥ 30, DPPO experiences timeout.
Lastly, HAPPO demonstrates superior performance in managing
the time limit, even as the number of vehicles increases, with
at least a 16% reduction compared to ERA and BODS when
H = 40. This is because, as the number of vehicles grows, the
strategy of uniformly allocating subcarriers becomes less ef-
fective. Efficient subcarrier allocation based on communication
status is needed. The proposed algorithm efficiently allocates
subcarriers, enabling the vehicles to participate in training while
avoiding timeout.

TABLE III
COMPARISON OF FINAL TEST ACCURACY WITH RESPECT TO DIFFERENT TASK

GROUPS

Table III and the third section of Table II show the impact
of the task group on the algorithms. Please note that in Task
group 5, there are two tasks involving CIFAR-10 with ResNet-
18, and these two tasks are trained independently. We gain
the following insights. Firstly, HAPPO outperforms the other
algorithms in terms of accuracy across all task combinations. By
dynamically adjusting the action space, HAPPO is particularly
well-suited for multi-task FL, effectively handling different task
combinations. Secondly, ERA, BODS, and DPPO fail when
M = 1, while HAPPO exhibits strong performance. This is
because when M = 1, the task scheduling problem reduces
to a client selection problem. ERA and BODS are unable to
effectively determine which clients should participate, resulting
in excessive bandwidth pressure. DPPO continues to experi-
ence timeout issues due to the large solution space. Lastly,
when M ≤ 3, HAPPO requires less time within a round. As
the number of tasks increases, this time required by ERA and
BODS also decreases, but their final test accuracy does not
improve steadily. When the number of tasks is small, each task
experiences higher bandwidth pressure. The proposed algorithm
effectively allocates subcarriers to mitigate this pressure. As
the number of tasks increases, bandwidth pressure decreases,
making leader selection management important for mitigating
the issue of overwriting.

Fig. 10 and the fourth section of Table II show the impact
of the distance scaling factor ξ. We set up three tasks: MNIST
with LeNet, FMNIST with LeNet, and SVHN with LeNet. We
gain the following insights. The final test accuracy of HAPPO
is highest among all four algorithms, with a margin of at least
53%, though a downward trend is observed. This is because the
indirect communication cost increases, leading to a reduction in
the number of vehicles participating in the training. In addition,
the increase in communication cost is also reflected in Tk. The
Tk of HAPPO, ERA, and BODS increase as the communication
cost rises. ERA experiences a timeout when ξ ≥ 2.5.

Fig. 11 shows the results of accuracy on the NGSIM
dataset [49]. Here, we select trajectories of 40 vehicles mov-
ing along Peachtree Street, marking those without complete
trajectory data during the specified time period as unavailable.
Each vehicle was randomly assigned a CPU frequency ratio
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Fig. 10. Comparison of final test accuracy with respect to the distance scaling
factor.

Fig. 11. Comparison of final test accuracy with respect to the number of
vehicles on the NGSIM Dataset.

uniformly distributed within [0.8, 1.2] to simulate heterogeneous
computing capabilities. If the communication round is fewer
than 3, the task set includes MNIST and FMNIST. Starting from
round 3, SVHN is added to form a combination of MNIST,
FMNIST, and SVHN. It can be observed that HAPPO outper-
forms the other algorithms, achieving at least 23% higher final
test accuracy, demonstrating its efficacy on real-world vehicle
trajectory datasets. In addition, the decision-making of HAPPO
at H ≥ 30 leads to improved performance. This suggests that
as the number of vehicles increases, the solution space of the
optimization problem becomes more complex, while also pro-
viding more options for vehicle assignment. Vehicular networks
involve heterogeneous devices, unpredictable mobility patterns,
and varying network conditions, all of which can significantly
affect model performance in real-world scenarios. Our pro-
posed HAPPO algorithm addresses these challenges through
the following strategies. Firstly, HAPPO performs effective task

TABLE IV
COMPARISON OF OVERALL COMMUNICATION ENERGY CONSUMPTION WITH

RESPECT TO VARIOUS SCENARIOS (FAILURES IN ITALICS)

allocation and efficiently utilizes heterogeneous computing re-
sources, thereby improving the overall performance. In addition,
the decentralized nature of HAPPO enables each vehicle to
operate independently based on its local observations, reducing
the impact of mobility on system performance and ensuring the
algorithm remains effective even when vehicles move in and
out of communication range. Finally, HAPPO achieves efficient
allocation of leaders and bandwidth resources, ensuring robust
performance under dynamic network conditions.

Table IV presents the communication overhead of the four al-
gorithms with respect to initial vehicle energy levelEh, number
of vehiclesH , task group, and distance scaling factor ξ. We gain
the following insights. Firstly, the communication overhead of
HAPPO is comparable to the baseline algorithms across various
scenarios. This indicates that HAPPO achieves efficient FL with
minimal communication cost by appropriately adjusting the
optimization variables. Secondly, as Eh increases, the overall
communication energy consumption of HAPPO decreases. This
indicates that HAPPO is capable of making decisions in respect
of vehicle resource limitations. Finally, when the baseline algo-
rithms fail, training is prematurely halted, resulting in lower
overall communication consumption. This suggests that the
solution space of the optimization problem is sparse, and only
through reasonable decision-making can vehicle resources be
fully utilized for training.

C. Generalization Performance of HAPPO

To validate the generalization performance of the proposed
algorithm in the presence of gradient update bias, we conduct ex-
periments under the non-independent and identically distributed
(Non-IID) settings. Following the setup in [50], the data of each
class is distributed across 30 clients according to a Dirichlet
distribution, with the concentration parameter set to 0.3. Fig. 12
shows the experimental results. We gain the following insights.
First, HAPPO demonstrates superior performance, indicating
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Fig. 12. Accuracy curves under Non-IID for HAPPO, ERA, BODS, and
DPPO.

Fig. 13. Cumulative reward per environment episode across full training
episodes. The experiments are conducted on three tasks: MNIST with LeNet,
FMNIST with LeNet, and SVHN with LeNet.

that the proposed algorithm does possess generalization ability
in scenarios with data heterogeneity. In addition, under data het-
erogeneity scenarios, the final test accuracy of HAPPO decreases
by 9% and there are fluctuations in accuracy during the training
process. This indicates that the MMFL framework is affected by
inconsistent data distribution like other FL frameworks.

D. Convergence Performance of HAPPO

Fig. 13 shows the reward over environment episodes during
the training process of HAPPO. We define the environment
episode reward as the cumulative undiscounted reward obtained
from environment reset to termination. As can be observed,
the reward gradually increases during the initial 2× 104 en-
vironment episodes, which clearly indicates that our model is
effectively optimizing the FL strategy. Following this period of

improvement, the reward stabilizes, suggesting that the algo-
rithm is nearing convergence.

VII. CONCLUSION

In this paper, we have proposed a mobility-aware multi-task
decentralized federated learning framework for vehicular net-
works. Considering the impact of mobility and resource con-
straints, we have presented a joint optimization problem for task
scheduling, subcarrier allocation, and leader selection. For prob-
lem solving, we analyze the convergence bound of a single FL
task, and then model multiple FL tasks as a resource allocation
game. The game is further reformulated as a DEC-POMDP,
and we propose an HAPPO-based algorithm to solve it. We
compare the proposed algorithm with baselines under varying
initial vehicle energy, number of vehicles, number of tasks,
and indirect communication cost. We obtain the following three
main insights. First, the experimental results show that the pro-
posed algorithm improves the final average accuracy by at least
13%. Second, for all the experiments, the proposed algorithm
efficiently completes the training, while ERA and BODS both
encounter time-out in some cases. These experimental results
demonstrate that the proposed algorithm can stably solve the
TSLP problem. Finally, the proposed algorithm exhibits more
stable convergence compared to DPPO. These experimental
results indicate that the proposed algorithm can search for the
NE solution more efficiently.
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