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As network complexity and scale continue to grow, ensuring efficient data transmission among nodes and main-
taining system stability have become critical challenges for network enterprises. However, traditional distributed
data transmission mechanisms often fail to meet performance requirements under complex and dynamic network
conditions, resulting in inefficient data transmission, increased latency, and potential node failures. To address
the above issues, we propose an intelligent transmission mechanism driven by dynamic chunking, designed to en-
sure efficient and stable data transmission in distributed systems. Network conditions are monitored in real time,
and the data chunking problem is formulated as a Markov Decision Process (MDP). To derive optimal chunking
decisions, a deep reinforcement learning framework is designed to autonomously solve the MDP and adaptively
learn chunking policies in response to network performance dynamics. Furthermore, to ensure system stability,
we employ a peer-to-peer (P2P) mechanism for node discovery, integrate Distributed Hash Tables for efficient
chunk location, and leverage P2P protocols to coordinate the exchange and transmission of data chunks among
nodes. Extensive simulation results validate that the proposed mechanism achieves substantial improvements
over traditional methods in terms of transmission duration and throughput, while exhibiting robust adaptability
to dynamic and complex network conditions.

1. Introduction To address these issues, distributed architecture has become a re-

search hotspot, as it distributes control permissions across multiple

Driven by powerful economies of scale and technical innovations
like cloud computing, web systems have become increasingly central-
ized, with more consumers relying on cloud service providers for data
storage, sharing, and computing services [1-3]. Consequently, central-
ized network architectures have emerged as a promising solution to of-
fer greater controllability and higher convenience, such as Amazon S3
[4], Google Drive [5], and Dropbox [6]. However, this centralized ar-
chitecture introduces several risks, such as single points of failure, data
silos, and load imbalance, all of which can significantly degrade system
performance and ultimately diminish the user experience. For instance,
a report from Amazon’s e-commerce platform has revealed that the fi-
nancial losses caused by service disruptions exceed $66,000 per minute
[7,8].
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nodes, thereby reducing reliance on a central server. As a result, it
has become the foundational infrastructure for various technological
domains, including cloud computing [9], the Internet of Things (IoT)
[10], and Blockchain [11]. Although distributed systems have continu-
ously evolved and improved over time, data transmission performance
remains a major bottleneck to their future development. This bottleneck
not only affects the performance and stability of distributed systems but
also hinders their further advancement.

Consequently, to optimize data transmission efficiency, data chunk-
ing has been extensively employed in leading distributed transmission
systems such as InterPlanetary File System (IPFS) [12], BitTorrent [13],
HDFS [14], Ceph [15], and modern cloud storage platforms [16]. Data
chunking partitions large objects into smaller chunks distributed across
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different nodes, enabling independent storage and transmission to im-
prove throughput, reduce latency, and enhance system fault tolerance.
However, this gives rise to a new challenge, as most of these systems uti-
lizes a pre-defined and fixed chunk size, limiting their ability to adapt
to dynamic network conditions and heterogeneous data characteristics.
Moreover, variations in chunk size can significantly impact the transmis-
sion efficiency for the same file. Particularly, excessively small chunks
may introduce high overhead due to increased metadata and connection
management, while overly large chunks may result in poor adaptabil-
ity to network fluctuations. These issues can severely compromise the
stability and efficiency of the system. Although implementing dynamic
adjustment strategies offers a potential solution, relying on pre-defined
heuristic rules is often insufficient. These rigid methods fail to capture
the complex, non-linear correlations between high-dimensional network
dynamics and optimal chunking strategies. Furthermore, traditional su-
pervised learning methods are ill-suited for this context. Models trained
on static historical datasets are fundamentally incapable of capturing the
stochastic volatility and real-time variability inherent in complex dis-
tributed networks, leading to strategy mismatches when environmental
conditions shift. In contrast, Deep Reinforcement Learning (DRL) [17]
overcomes these limitations by formulating chunking as a sequential
decision-making process. Instead of relying on static knowledge, DRL
enables the system to autonomously learn and update its policy through
continuous interaction and exploration within the environment. This ca-
pability allows the mechanism to adaptively optimize transmission effi-
ciency in response to dynamic and unseen network conditions, offering
a level of robustness that static or supervised approaches cannot match.

Therefore, to overcome the adaptability limitations of fixed-size
chunking in complex and dynamic network environments, we pro-
pose a dynamic chunking mechanism and design a novel intelligent
and efficient distributed transmission method based on dynamic chunk-
ing. Crucially, this mechanism enables the system to adaptively adjust
chunk sizes based on real-time network conditions, thereby optimizing
transmission performance. This capability is a key characteristic that
distinguishes it from traditional distributed transmission systems. The
chunking mechanism utilizes a consensus algorithm to elect a master
node responsible for continuously monitoring network conditions and
data characteristics throughout the distributed system. Given the un-
predictable nature of network dynamics and data heterogeneity in dis-
tributed systems, where traditional heuristic methods often fall short, we
leverage DRL to learn optimal chunk size decisions. Through the train-
ing of the DRL model, the mechanism is capable of predicting the opti-
mal chunk size in real time, enabling dynamic adjustments tailored to
both network conditions and data characteristics, thereby enhancing the
efficiency and stability of the transmission process. Additionally, a dis-
tributed hash table (DHT), a decentralized storage system that maps keys
to specific nodes for scalable retrieval [18] is employed to enable effi-
cient lookup of data chunks. Furthermore, a peer-to-peer (P2P) protocol
[19] is employed to support node discovery, connection establishment,
and data transmission. The Bitswap [20] protocol is also integrated to
manage chunk requests and exchanges between nodes, enabling paral-
lel data transmission across the system. To evaluate the effectiveness
of the designed mechanism, we conduct extensive experiments on data
transmission. The experimental results demonstrate that the proposed
mechanism effectively adapts to dynamic network conditions and het-
erogeneous data characteristics, offering a robust, efficient, and scalable
solution for data transmission in distributed systems.

The contributions are summarized as follows:

¢ We present a dynamic chunking-driven transmission mechanism for
distributed systems. The mechanism jointly considers real-time net-
work states and data characteristics when adjusting chunk sizes.
These indicators are detected and aggregated by a master node,
which is elected through a consensus-based mechanism to enable
global coordination of chunking decisions across all nodes in the sys-
tem.
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e Compared to traditional heuristic methods that are often static and
lack adaptability, we formulate the chunking decision problem as
a MDP and propose a DRL-based dynamic chunking mechanism to
learn the optimal chunking policy. To enhance the flexibility of the
mechanism, supplementary components such as a delayed experi-
ence feedback scheme and a model migration mechanism are de-
signed to ensure continuous operation even in the presence of node
failures.
e We propose an efficient distributed data transmission mechanism.
The mechanism leverages a P2P network for decentralized node dis-
covery and data transmission, while employing a DHT to locate and
identify data chunks. By enabling the parallel transfer of data chunks
from multiple nodes, this approach significantly enhances the overall
performance of distributed data transmission.
To assess the performance of the proposed mechanism, we developed
a distributed data transmission testbed and conducted comprehen-
sive experiments under realistic distributed transmission scenarios.
The experimental results show that our mechanism outperforms the
others in multiple aspects, achieving a 22% improvement in trans-
mission performance and a 28% increase in throughput, with a 31%
optimization rate compared to traditional fixed-size chunking ap-
proaches.

The remainder of this paper is organized as follows. Section 2 pro-
vides an overview of related work. Section 3 details our proposed system
architecture. Section 4 presents the dynamic chunking and intelligent
decision-making mechanisms. Section 5 describes the efficient transmis-
sion method based on dynamic chunking. Section 6 evaluates the per-
formance of our proposed method through experimental results. Finally,
Section 7 concludes the paper.

2. Related works

In this section, we provide an overview of two main areas closely
related to our work: distributed data transmission techniques and data
chunking, and further briefly discuss our design methodology in the con-
text of existing approaches.

2.1. Distributed data transmission technology

Gnutella [12] was among the earliest distributed networks designed
to support decentralized file sharing across all file types. Building on
this foundation, a range of distributed networks subsequently emerged,
many of which targeted specific application domains. Systems such as
CAN [21], Chord [22], and Pastry [19] introduced structured overlay
network protocols to support efficient routing and topology mainte-
nance. Freenet [23] focused on enabling anonymous storage and re-
trieval in distributed environments. A notable advancement came with
BitTorrent [13], which introduced an incentive-based mechanism that
significantly improved transmission efficiency and resource utilization.
BitTorrent remains widely used today. Parallel efforts have also explored
distributed file systems, including Google FS and Hadoop, which have
been foundational in big data infrastructures [24]. In recent years, IPFS
[25] has gained increasing traction, particularly as a decentralized stor-
age layer for blockchain-based applications [26,27]. Some researchers
even envision IPFS as a potential successor to the Hypertext Transfer
Protocol (HTTP). Other emerging distributed file storage systems in-
clude Arweave [28], Hypercore [29], Swarm [12], etc., which are also
actively developing decentralized storage and transmission solutions
that aim to address the limitations of traditional centralized approaches.
Moreover, recent studies on adaptive networks [30] and multi-objective
optimization [31] have validated the importance of adaptive strategies
in handling dynamic topologies, offering valuable references for opti-
mizing transmission efficiency in complex distributed systems.

The implementation and performance optimization of these dis-
tributed systems heavily rely on key technologies such as DHT, P2P net-
working, data chunking, and content addressing. DHT [18] serves as the
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Fig. 1. The overall architecture of dynamic chunking transmission mechanism.

foundation for decentralized storage, enabling efficient data retrieval
and storage by distributing data and indexes across various nodes in the
network. This technology has been widely adopted in systems like IPFS,
BitTorrent, Freenet, and Arweave. P2P networks [32] reduce reliance
on centralized servers through direct node interaction and are exten-
sively applied in IPFS, BitTorrent, Storj, and SAFE. Content addressing
technology [23] locates data via unique data identifiers, ensuring data
integrity and consistency, and is broadly applied in systems such as IPFS
and Swarm. The Bitswap protocol [20], as one of IPFS’s core protocols,
optimizes bandwidth utilization and transmission efficiency by manag-
ing data chunk exchanges between nodes.

2.2. Data chunking

Data chunking [33] is a crucial processing technique widely used
in many distributed transmission systems. At its core, it involves divid-
ing large data objects into several smaller data chunks and distributing
them across different nodes [21]. During the data chunking process,
each data chunk is typically assigned a unique content hash value, en-
abling content-based addressing and retrieval without relying on phys-
ical locations. Compared to traditional centralized transmission meth-
ods, data chunking supports parallel downloading from multiple nodes
[34], allowing better utilization of network bandwidth and faster overall
transmission. Furthermore, the method increases fault tolerance, as data
transfer can continue from other available nodes even if some fail, and
only the missing chunks need to be retransmitted, reducing overhead.

Data chunking has been adopted to improve transmission efficiency
and fault tolerance by several systems such as IPFS, BitTorrent, and
Storj. In IPFS, data chunking is employed to split uploaded files into
fixed-size chunks, each uniquely identified by hash value and stored
within DHT [12]. This method not only enables efficient data retrieval

and storage, but also ensures data integrity and consistency through con-
tent addressing. Within the BitTorrent protocol, data chunking enables
users to download different pieces of a file in parallel from multiple
peers, thereby speeding up the transmission process [13]. Furthermore,
data chunking has been used to optimize data management in cloud
storage systems. By splitting data into smaller chunks, the data chunk-
ing technique enables cloud services [35] to manage storage resources
more flexibly, increase utilization rates, and accelerate access through
parallel operations.

However, most existing distributed systems still rely on fixed-size
chunking strategies, which present notable limitations in dynamic net-
work environments. Fixed chunking lacks the flexibility to adapt to
fluctuating network conditions and diverse data characteristics, often
resulting in decreased transmission efficiency and underutilized band-
width. Especially in environments with frequent changes of node status
or highly heterogeneous data resources, fixed-size strategies fail to pro-
vide the required adaptability, becoming a major bottleneck for improv-
ing transmission performance in distributed systems. These limitations
drive further research into more intelligent chunking strategies to better
adapt to complex and volatile distributed environments.

3. System design

In this section, we present the overall architecture design of our pro-
posed distributed data transmission system. To enhance the adaptability
and efficiency of distributed data transmission, the system is designed
with a modular architecture comprising three key components: the in-
telligent decision module, the dynamic chunking module, and the effi-
cient chunking transmission method. The overall system architecture is
illustrated in Fig. 1. Their functionalities are described below:
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¢ Dynamic Chunking Module: This module coordinates and executes
dynamic chunking strategies. The master node, elected via a elec-
tion algorithm, continuously monitors the network environment,
data characteristics, and node status. Based on this information, it
analyzes and dynamically adjusts data chunk sizes. This module is
also responsible for scheduling DRL model training and the dynamic
chunking process. In the event of the current master node failure, it
ensures continuous system operation through re-election.
Intelligent Decision Module: This module is responsible for intel-
ligent chunking decisions. It uses a DRL model to interact with the
network environment in real time, continuously learning the opti-
mal chunking policy. It dynamically adjusts data chunk sizes based
on current data characteristics, node states, and network conditions.
Additionally, this module includes a model migration mechanism,
ensuring that the DRL model automatically migrates to a new mas-
ter node if the current one fails, thereby guaranteeing the continuity
of model training.

Efficient Chunking Transmission Method: This method handles
the indexing, addressing, exchange, and transmission of data chunks
within the distributed network. It employs content addressing to
uniquely identify each data chunk, utilizing DHT for data chunk re-
trieve and localization. The transmission method also utilizes P2P
network and the BitSwap protocol to facilitate data chunk exchange
and transmission between nodes.

Algorithm 1 The overall process of the dynamic chunking transmission
mechanism.
Input: Real-time environment monitoring information
Output: Execution of dynamic chunking and data transmission
1: Initialize the system and elect a master node.
2: The Intelligent Decision Module runs the optimal chunking DRL
model.
3: The Dynamic Chunking Module monitors bandwidth, latency, data
size, type, and number of data providers for all nodes.
4: for each data item do

5: Construct environment state.
6: The Intelligent Decision Module predicts the optimal chunk size
using the DRL model.
7: if re-chunking is needed then
8: The Dynamic Chunking Module notifies provider nodes to
re-chunk the data.
o: The Efficient Chunking Transmission Method generates CID
for each chunk.
10: Store chunks locally and update DHT.
11: end if
12: end for

13: for each data transmission request do
14: The Efficient Chunking Transmission Method queries DHT to
locate data chunks.

15: Download chunks in parallel via P2P network.
16: Cache chunks locally and update DHT.
17: end for

18: The Intelligent Decision Module collects transmission feedback and
stores in experience buffer.

19: Optimize the DRL model and the optimal chunking policy.

20: if master node fails then

21: Re-elect a new master node.

22: The Intelligent Decision Module migrates the DRL model to the

new master.

23: end if

24: return Completion information of dynamic chunking and data
transmission.

The overall workflow of the system is as follows: As illustrated in
Algorithm 1, the master node is elected through a consensus algorithm.
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The master node interacts with slave nodes in the distributed network
via the dynamic chunking module. It continuously monitors key metrics,
including network bandwidth, transmission latency, data size, data type,
and the number of providers. Based on these observations, the intelli-
gent decision module analyzes the network conditions. It then leverages
the DRL model to predict the optimal chunk size for different data and
determines whether re-chunking is necessary. If chunking adjustments
are required, the master node issues instructions to the relevant slave
nodes to re-split the data. The newly sliced data chunks are then pro-
cessed by the efficient chunking transmission method, which generates
unique content identifier (CID), a cryptographic hash serving as the im-
mutable fingerprint for addressing the content, and stores them in the
DHT. When a node requests specific data, the chunking transmission
method queries the DHT to locate the corresponding data chunks and
initiates parallel transmission from multiple data provider nodes using
P2P protocols. Upon completion, the received data chunks are cached
in the requester’s local storage, and the DHT index is updated accord-
ingly. After data transmission concludes, the intelligent decision module
collects feedback information such as transmission duration, data char-
acteristics, network conditions and node status. The information is fed
back to the DRL model, and stored in experience replay buffer to sup-
port the model’s continuous learning and optimization. In the event of
the current master node failure, the consensus algorithm detects the is-
sue and promptly initiates a re-election process to select a new master.
Simultaneously, the model migration mechanism automatically trans-
fers the DRL model to the new master. This ensures that the agent can
continue incremental learning based on previous experience without
restarting from scratch.

Complexity Analysis. The computational complexity of the pro-
posed mechanism comprises the DRL decision cost (T,,.) and the data
execution cost (7,,,.). In the decision phase, the DRL agent employs
a fully connected Deep Neural Network (DNN) with K =2 hidden
layers, an input state dimension I =8, a hidden dimension H = 128,
and an output action dimension O = 8. The computational complex-
ity is dominated by layer-wise matrix multiplications, formulated as
Ol-H+(K-1)-H 2+ H- 0). Since these parameters are constants in-
dependent of the data scale, the decision complexity T,,. is asymptoti-
cally O(1). Conversely, the execution complexity scales linearly with the
file size, yielding T,,,. = O(L). Consequently, the overall complexity is
bounded by O(L), demonstrating that the intelligent chunking mecha-
nism incurs negligible computational overhead relative to the data trans-
mission task itself.

4. Design of dynamic chunking and intelligent decision
mechanism

In this section, we will introduce the design of the dynamic chunking
and intelligent decision-making mechanisms, including the master elec-
tion algorithm, DRL-based chunking decision-making, and the process
of dynamic data chunking. In addition, we will present the delayed ex-
perience feedback mechanism and the model migration mechanism as
effective supplements to the core mechanisms, enhancing the system’s
adaptability and continuity of training.

4.1. Master node election algorithm

The election algorithm is responsible for selecting a master node to
manage and coordinate all nodes in the distributed transmission net-
work. It ensures system continuity and stable chunking decision train-
ing by handling node failures and dynamic network changes. The overall
election process is illustrated in Fig. 2.

In terms of role assignment, the election algorithm classifies nodes
in the transmission system into three roles: leader, candidate, and fol-
lower. Beyond maintaining log consistency as in traditional protocols
[36,371, the leader undertakes several key responsibilities. These in-
clude monitoring network status, scheduling chunking decisions, and
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training the DRL model. When campaigning, candidates must submit a
comprehensive evaluation report including the node’s computing capac-
ity, network bandwidth, and storage performance. Followers use an im-
proved bidirectional heartbeat mechanism to both receive instructions
from the leader, and report local network status and data possession. In
addition, the leader periodically shares the DRL model parameters and
state information across the distributed transmission network.

During the leadership phase, the leader manages all followers and
regularly sends heartbeat log to maintain its leadership. Each follower
has an election timeout mechanism, which sets a timer that resets upon
receiving a heartbeat log. If a follower does not receive a heartbeat log
within the timeout period, it switches to a candidate, increases its term
number, and initiates a new election process. Candidates send vote re-
quests to other nodes, which determine whether to vote based on log
consistency and comprehensive evaluation information. If a candidate
receives votes from the majority of nodes, it becomes the new leader
and enters the leadership phase. If it does not receive enough votes, it
restarts the election process.

The election algorithm also introduces various mechanisms to han-
dle node failures and abnormal behavior during the election process. To
avoid the vote-splitting problem caused by multiple candidates request-
ing votes at the same time, the algorithm sets a randomized election
timeout to reduce the probability of multiple nodes becoming candidates
simultaneously. In addition, the algorithm ensures that only candidates
with the latest logs can receive votes through log matching rules. During
the election process, if a node fails to respond in time due to network
problems, other nodes will wait for a certain period before voting to
avoid invalid elections caused by temporary failures.

Correctness and Convergence Analysis. To theoretically validate
the reliability of the election algorithm, we formally analyze its cor-
rectness and convergence time. Regarding Correctness, assume that a
distributed system with N nodes elects two leaders in term ¢ with vote
sets V; and V,, which implies |V|| + |V5| > N. It follows that V', n V, # 6,
meaning at least one node voted more than once in the same term,
which contradicts the algorithmic constraint of "at most one vote per
term"; thus, the assumption is invalid. Furthermore, the randomized
timeout mechanism resolves split-vote deadlocks. Let P,,,, < 1 be the
probability of a conflict in a single round. As the election rounds
k — oo, the cumulative success probability P,,. =1 - PC"M approaches
1, ensuring that a valid leader is eventually elected, thereby prov-
ing the correctness. Regarding Convergence, the system recovery time
T,.. depends on the failure detection latency 7,,, and the election du-
ration. Assuming the election timeout follows a uniform distribution
Timeout ~ UlTmins TmaxJ> the network Round-Trip Time (RTT), defined as
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the bidirectional delay is z, and the number of election rounds R fol-
lows a geometric distribution, the expected failure detection time is
E[Tye] = Tiin + Tinax)/2- Consequently, the total convergence time is
formulated as E[T7,,.] = E[T,,,] + E[R] - (T, + 7). Since the randomized
timeout minimizes the conflict probability (implying E[R] ~ 1), the con-
vergence time is bounded by O(T,,,), demonstrating that the system
completes failure recovery with constant time complexity.

4.2. Dynamic chunking mechanism based on DRL

To improve adaptability to dynamic network environments and opti-
mize performance of data transmission, we introduce dynamic chunking
into distributed data transmission. The core of this approach lies in mak-
ing real-time and intelligent decisions on the optimal data chunk size.
However, the highly dynamic nature of network conditions and data
characteristics in distributed systems make the dynamic chunking deci-
sion problem challenging to model. Traditional heuristic or rule-based
methods typically rely on preset rules or empirical thresholds. Due to the
lack of clear patterns in complex environmental changes, these methods
frequently lead to outdated or mismatched strategies, thereby prevent-
ing optimal transmission performance.

To address this issue, we integrate DRL into the optimal chunking
decision process. The mechanism consists of two core components: dy-
namic chunking and DRL model. The dynamic chunking module con-
tinuously monitors environment conditions and executes chunk adjust-
ments, with the DRL module making optimal chunk size decisions. These
two modules cooperate closely to enable adaptive chunking.

4.2.1. Dynamic chunking

In the mechanism, the dynamic chunking module plays a key role in
bridging environment perception and chunking execution. As demon-
strated in Fig. 3, it operates in close coordination with the DRL model
by receiving chunking decisions based on real-time network and data
conditions, and then performing the corresponding chunk size adjust-
ments. The system, through the master node, continuously monitors key
metrics across all nodes in the distributed network, including network
bandwidth, latency, data size, data type, and the number of providers
for different data. The collected information serves as the environment
state input. Based on this input, the DRL model outputs the optimal
chunking decision using a policy function trained on historical trans-
mission experience. After data transmission is completed, the system
collects transmission performance indicators as experience feedback to
continuously optimize the chunking policy, enabling the DRL model to
self-learn and adapt over time.

Leveraging the optimal chunking decision provided by the DRL
model, the dynamic chunking module initiates and coordinates the cor-
responding chunk adjustment operations across participating nodes. The
module first evaluates whether the existing chunk size of different data
need to be adjusted based on the decision, and if necessary, the master
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Fig. 4. DRL design.

node notifies the relevant nodes to perform re-chunking. During the re-
chunking process, the master node instructs all nodes owning the data
to split it into multiple smaller data chunks according to the optimal
chunk size. Each chunk is assigned a unique CID through hash compu-
tation and stored in the node’s local repository. The sliced data chunks
are organized into a Directed Acyclic Graph (DAG), a topological struc-
ture that eliminates circular dependencies to ensure data integrity, using
the Merkle DAG [38] structure, with the root node’s CID serving as the
unique identifier of the entire data. At the same time, the system records
the mapping between the CIDs and the owner nodes in the DHT. This
allows a requesting node to quickly locate multiple owner nodes via the
DHT, download different data chunks in parallel, and finally reassemble
them into the complete file locally.

4.2.2. DRL design

To implement the decision process, the dynamic chunking problem
is formulated as a Markov Decision Process [39]. The MDP can be rep-
resented as a tuple < S, A, P, R >, where:

State, S: As shown in Fig. 4, the state space represents the set of
environmental features perceived by the model, including network con-
ditions, node status, and data characteristics. In distributed environ-
ments, numerous factors affect data transmission efficiency, so the state
space design must sufficiently reflect the environmental state informa-
tion. Among these, the network bandwidth of each node directly im-
pacts data transmission speed. When the bandwidth is high, a larger data
chunk size can be used to reduce the time cost of data retrieval and re-
assembly, thereby improving overall transmission efficiency. However,
in distributed environments, nodes may frequently join or leave the net-
work, and their total number is typically large and variable. Directly
including the bandwidth of all nodes in the state space may result in an
excessively large state dimension, thereby increasing model complexity
and computational cost. Therefore, we use the average bandwidth of all
nodes to represent the overall network bandwidth. Suppose there are N
nodes in the network and the bandwidth of the node i is b;, then the

average bandwidth B,,, is represented as follows:

N
1
Bug =7 2b M
i=1

The latency between nodes refers to the time it takes for a data packet
to travel from a source node to a destination node, also known as one-
way delay, which reflects the network responsiveness between nodes. In
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this paper, we use RTT to calculate the one-way delay between nodes.
Thus, the average delay (d;) is defined as the average one-way delay
between that node and all other nodes, as follows:
— 1 N
di=—7 2 % 2
=h
J#i
where N is the number of nodes in the distributed network; d;; =
RTT;; /2 is the one-way delay between node i and node .
Furthermore, the overall average network delay D,,, can be calcu-
lated as follows:

N
1 -
Daug = ﬁ 2 di (3)
i=1

In addition to network bandwidth and latency, the inherent char-
acteristics of the data-such as its size and type-also have a significant
impact on the performance of dynamic chunking-based transmission in
distributed environments. The data size is denoted as size, and the data
type (e.g., video, compressed files, audio, and text) is encoded using a
4-dimensional one-hot vector denoted as type,. Moreover, the current
chunk size of the data (denoted as chunksize,,,) and the number of
providers in the network (denoted as num,) also influence the dynamic
chunking decision. When there are more providers, the chunk size can
be appropriately reduced to enable more effective parallel transmission.
Thus, the state s is a vector represented as follows:

S = (Byyg> Doyg» size s, type ;, num,, chunksize,,,,, ) @

Action, A: In the optimal chunking decision, the action refers to the
adjustment of data chunk size made by the agent based on the current
distributed environment and data state. To reduce the computational
complexity of the model and ensure the effectiveness of the action space,
we employ a discrete design, defining the action space as a discrete set.
The range of data chunk sizes is set to [128, 1024] KB, with a fixed step
size of 128 KB to construct the discrete action sequence. Specifically, the
action is an 8-dimensional one-hot vector, represented as:

s ag] 5)

where g; has a value of 128 = i, representing the chunk size that should
be adopted for the data under the current state.

Reward, R: The reward function is the core element guiding the
optimization direction of the DRL model, used to evaluate the reward
obtained after the agent takes an action. In the actual data transmission
process within the distributed environment, different states s and chunk-
ing actions a will result in different data transmission durations, denoted
as T'(s, a). In the optimal chunking decision, the objective of the policy
is to select the most appropriate chunk size to minimize the transmis-
sion time. Therefore, the reward function can initially be defined as the
negative value of the transmission time, where a shorter transmission
time yields a higher reward. However, the transmission time is signifi-
cantly influenced by the data size, which may lead to large variations
in reward values and affect the stability of model training. To keep the
reward values within a reasonable range, we use the maximum transmis-
sion time 7, ,, and the minimum transmission time 7,;;, collected from
the initialized experience buffer as reference values for normalization.
To ensure the normalization remains robust to distribution shifts, the
values of T,,,, and T,;, are periodically updated by retrieving the max-
imum and minimum transmission times currently stored in the experi-
ence replay buffer. This ensures that the normalization range adaptively
evolves based on the actual transmission dynamics observed throughout
the training process. The reward function r is defined as:

action = [al,az,

T(s,a)—T,;
r(s,a) = L0~ T (6)
Tmax - Tmin

The overall objective is to maximize the cumulative reward, which
can be defined as follows:

T
R=E, ., [Y v'r], %)
=0
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where 7 represents a sequence of states, actions, and rewards from the
dynamic chunking decision process, and z, is the chunking policy pa-
rameterized by 6. T' denotes the total number of steps in the trajectory,
where each step corresponds to a data chunking operation. y is the dis-
count factor, used to balance immediate and long-term cumulative re-
wards in the model.

Transition, P: The state transition function P(s,,|s,, a,) defines the
probability of transitioning to a new state s, after taking action g, in
the current state s,. In the distributed environment, each data is moni-
tored in real time with respect to its size, type, current chunk size, the
overall average network bandwidth and latency, as well as the number
of data providers. When it is necessary to adjust the chunk size, the most
suitable chunk size under the current state is selected for re-chunking.
After re-chunking, the data-related parameter chunksize,,, is updated
accordingly. Mathematically, we formulate this transition dynamics as
a coupled probability density function:

P(sipilspa) = 8(cipy — a) - Ty Isy ap), ®

where §(-) is the Dirac delta function representing the deterministic con-
trol update, ensuring that the chunk size dimension ¢, | (chunksize,,,)
in the next state is strictly set to the action g,. The term 7 denotes
the stochastic transition kernel of the environment, governing how the
network dimensions Q,,, (e.g., bandwidth B,,, and delay D,,,) evolve
based on the aggregated monitoring data collected during the subse-
quent transmission phase. Thus, the transition implicitly captures the
interaction between the chunking decision and the dynamic network
environment.

4.3. Supplementary mechanisms for agent deployment and training

To further support the effective deployment and continuous training
of the DRL agent in distributed environments, we design two supple-
mentary mechanisms. The supplementary mechanisms are illustrated in
Fig. 5. These mechanisms enhance the reliability and adaptability of the
system by addressing practical challenges related to delayed feedback
and master node failures.

4.3.1. Online delayed experience feedback

In the chunking decision mechanism, the agent is deployed on the
master node of the distributed transmission system, and is responsible
for online execution and training. However, after the agent makes a
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chunking decision during actual operation, it cannot immediately ob-
tain feedback on the transmission result. If data transmission need to be
performed directly to obtain instant feedback, it will result in frequent
occupation of network bandwidth, thereby affecting normal data trans-
mission among nodes. To address this, we design a staged online delayed
experience feedback mechanism. After completing data transmission,
each node records transmission process information and periodically
sends it to the master node. The master node aggregates, analyzes, and
preprocesses the collected information to extract valid experience sam-
ples. Once a predefined threshold is reached, these samples are added
to the experience replay buffer of the chunking decision model. The
approach not only reduces bandwidth consumption caused by frequent
communication but also effectively leverages inter-node transmission
information to continuously optimize the chunking decision policy.

4.3.2. Model migration

In the distributed environment, the master node is responsible for
core tasks such as chunking decision and model training. Once the mas-
ter node fails, the training process of the DRL model may be interrupted,
affecting the continuity of dynamic chunking decision and the stability
of performance. To address this, we design a model migration mecha-
nism that allows the DRL model to transfer from the old master node
to the new one, continuing its incremental learning based on the previ-
ous state. During normal system operation, the master node periodically
saves and uploads the DRL model parameters and states to the system’s
shared network storage to ensure that the latest model data is not lost in
case of master node failure. When a failure of master node is detected,
the election algorithm promptly initiates a new election process to se-
lect a new master node to take over the system. After the new master
node is selected, it first retrieves the latest DRL model parameters and
states from the most recent shared network backup. Meanwhile, the DRL
model on the new master node also synchronizes the existing experi-
ence replay buffer to continue incremental learning based on the latest
data. The model migration mechanism ensures the model can keep op-
timizing its optimal chunking policy in complex and changing network
environments without interrupting the learning process due to master
node changes, thus guaranteeing system stability.

5. Efficient transmission method based on dynamic chunking

In this section, we present the efficient transmission method based
on dynamic chunking, specifically covering data chunking, distributed
storage, transmission, and reassembly verification.

5.1. Data distributed storage

The overall architecture of the efficient transmission method based
on dynamic chunking is illustrated in Fig. 6. Distributed storage is the
foundation of the efficient transmission method in distributed systems,
responsible for tasks such as chunking, identifying, and storing shared
data uploaded by nodes. When a node needs to store data in the shared
network, the uploaded data is first split into multiple data chunks. The
size of each data chunk is determined by the DRL-based decision mech-
anism, which predicts the optimal size based on the real-time network
environment. Each resulting data chunk is individually hashed using the
SHA-256 [40] algorithm to generate a unique content identifier. The
approach not only enables content-based addressing of data throughout
the distributed environment but also ensures data integrity and consis-
tency verification. Any tampering or loss of data chunks will change
their hash values, meaning that acquiring data through its hash index
directly points to the correct data entity. The sliced data chunks are or-
ganized using the Merkle DAG data structure, with the root node’s hash
serving as the unique identifier for the entire data. All hash indexes and
storage addresses are recorded in the DHT. The DHT establishes a map-
ping between data hash indexes and their provider nodes, enabling fast
data retrieval and location.
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When a node needs to obtain data, the requester can directly query
the DHT for data providers and transfer data in parallel from multi-
ple nodes via the P2P network. It achieves decentralized data trans-
mission, ensuring security and reliability during transfer. After obtain-
ing data chunks, nodes cache them locally and subsequently serve as
new providers, facilitating data exchange and transmission to other re-
questers. Distributed storage ensures high data integrity and availabil-
ity through redundant storage across various node caches. Even if some
nodes fail, as long as at least one provider is operational, the data can
still be provided.

5.2. Data retrieval

When a node needs to acquire specific data, it uses the data’s hash
value along with the DHT and content-addressing technology to locate
the providers of the data. After obtaining the locations of providers,
the node can download different data chunks in parallel from multiple
providers via the P2P network. During the data retrieval process, each
node maintains a routing table that splits the entire distributed network
into multiple k-buckets. Each k-bucket stores information about nodes
within a specific distance range from the current node, with fixed capac-
ity and ordered by their most recent contact time. Additionally, nodes
utilize the Kademlia routing algorithm for node location and data re-
trieval. The algorithm calculates the logical distance between the IDs of
two nodes using XOR operations, where a smaller XOR distance implies
closer proximity between nodes, enabling faster discovery of the target
node and optimizing the data retrieval process.

Ultimately, the system obtains a list of nodes storing the target data
via the distributed algorithm and selects a subset of them to request
the data. The specific workflow of the data retrieval algorithm is as fol-
lows. First, the current node computes the XOR distance to the target
hash value and selects the closest nodes from its routing table as initial
candidate nodes. Then, it sends query requests to these candidates. Each
candidate node checks whether it stores the data entity corresponding to
the target hash value. If not found, the candidate returns a list of nodes
from its routing table that are closer to the target hash value. This iter-
ative process continues until the node corresponding to the target hash
value is found, or when the nodes returned by the iteration are no longer
closer to the target hash value. If a data chunk has multiple providers,
the requesting node can also select the top-priority nodes for retrieval
based on current network conditions and transmission performance.

5.3. Data transmission

During data transmission, nodes communicate directly with data
owner nodes via a P2P network. Each data chunk is transmitted indepen-
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dently, and different chunks can be retrieved in parallel from multiple
providers. Nodes can also dynamically adjust the transmission prior-
ity of data chunks and nodes based on data needs, network conditions,
and transmission history. Additionally, the BitSwap protocol manages
the data exchange process by recording transmission history between
nodes, allowing the system to prioritize certain nodes for data retrieval
and thereby optimize parallel transmission.

During the data transfer process, when a node needs to obtain spe-
cific data, it first queries its local cache and neighboring nodes. If the
data is not found, the DHT-based iterative retrieval process is initiated.
Based on the list of provider nodes returned by the DHT, the requesting
node selects several target nodes and sends a data request, which in-
cludes the hash of the target data and the number of chunks needed. The
request also specifies the list of desired data chunks. Upon receiving the
request, the provider nodes check their local repositories and respond
with the availability of the requested chunks, which are then transmitted
via the P2P network. Throughout the process, the node continuously ad-
justs the priority of chunks to ensure higher-priority data chunk is trans-
mitted first. The BitSwap protocol enables concurrent transfers of data
chunks from multiple nodes, improving overall transmission efficiency.
A sliding window mechanism manages out-of-order chunk arrivals, and
the system organizes received chunks using hash-based structures to en-
sure data integrity and consistency. If any chunks are missing or cor-
rupted, the node will re-request them from available providers and in-
crease their transmission priority, thereby enhancing the reliability of
the transmission process.

5.4. Data reconstruction and verification

After receiving all the data chunks, the requesting node reconstructs
the original data based on the hash index and chunking information.
During the reassembly process, all chunks are organized in their origi-
nal order using a Merkle DAG structure, where the hash identifiers of
child nodes are recursively used to generate those of parent nodes, ul-
timately forming the root hash identifier. The root identifier serves as
the CID of the complete data, which encapsulates information such as
the identifier encoding format, data encoding type, and content hash
value. During the integrity verification phase, the system traverses the
Merkle DAG starting from the root hash, recursively verifying the hash
identifiers of child nodes. If a mismatch is found between the computed
and expected hash values of any chunk, the system determines that the
chunk has been tampered with or lost. In such cases, the requesting
node will initiate a retransmission request to the provider node for that
chunk. For large files, the mechanism also supports on-demand verifica-
tion. If only a portion of the file is needed, the verification mechanism
can check just the path from the root node to the target data chunk,
without traversing the entire data structure. Through collaboration be-
tween data reconstruction and verification, the system ensures that data
chunks remain untampered and intact throughout the transmission pro-
cess.

6. Evaluation

In this section, we evaluate the transmission performance of the pro-
posed mechanism on the constructed distributed platform. We also com-
pare it with other baselines in terms of transmission duration, through-
put, and optimization rate to better validate the effectiveness and adapt-
ability of the mechanism.

6.1. Experimental settings

For the evaluation, we constructed a distributed emulation plat-
form utilizing five independent virtual machine nodes hosted on a high-
performance cloud server. The server is equipped with an Intel Xeon
Gold 6238R CPU (@ 2.20 GHz), 64 GB of RAM, and a 512 GB SSD, run-
ning the Ubuntu 18.04 LTS operating system. To emulate the dynamic
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Table 1
Hyperparameter settings.

Description Symbol  Value
Hidden Layer Dimensions  npjqgen 128,128
State Dimension d 8
Action Dimension d, 8
Learning Rate a 1074
Discount Factor v 0.9
Exploration Rate € 0.9
Target Update Frequency Niarget 200
Replay Buffer Capacity C 1000
Batch Size B 32
Min Sampling Threshold Nopin 200
Gradient Clipping Gip 1.0

and heterogeneous network conditions of real-world distributed envi-
ronments, we employed network emulation tools such as TC to precisely
configure the network bandwidth, latency, and packet loss rate for each
node. The architecture of this experimental platform is illustrated in
Fig. 7. In the implementation of the proposed mechanism, the hyperpa-
rameter settings for the DRL model are detailed in Table 1. To ensure a
fair and rigorous comparison, all baseline methods were tuned and eval-
uated under the exact same environmental conditions and datasets as
the proposed mechanism. Additionally, we selected the following three
baselines to demonstrate the effectiveness of the proposed mechanism,
as follows:

(1) Fixed: In previous works [13,33], the fixed chunking approach typ-
ically splits data using a chunk size of 256 KB.

(2) Random: The random chunking approach selects a chunk size ran-
domly for splitting the data.

(3) Fitted formula: The fitted-formula-based chunking approach [41]
builds a transmission time prediction model through mathe-
matical modeling and polynomial fitting, then calculates the
chunk size that minimizes the transmission time for splitting the
data.

6.2. Performance comparison

In this part, we simulate various network conditions, file proper-
ties, and node states to comprehensively evaluate the performance of
our proposed mechainism. In the experiments, the network bandwidth
is set to ten different values ranging from 16 Mbps to 160 Mbps with a

Knowledge-Based Systems 337 (2026) 115399

step of 16 Mbps. The number of data provider nodes varies from 1 to
4, and the inter-node delay is configured to 0 ms, 50 ms, and 100 ms
to simulate no delay, normal delay, and high-delay scenarios, respec-
tively. In terms of data characteristics, various file types (e.g., txt, zip,
mp4, and mp3) are involved, with file sizes ranging from 100 MB to
1000 MB.

6.2.1. Transmission duration

Fig. 8 illustrates the transmission duration under different conditions
for the four chunking-based transmission strategies when the number
of data provider nodes is fixed. Firstly, the Fig. 8(a) shows the varia-
tion in transmission duration with respect to data size when the node
bandwidth is 80 Mbps and the network delay is 50 ms. It can be ob-
served that the proposed method achieves lower transmission duration
than the other three strategies across most data sizes. Its advantage is
particularly noticeable for larger files, where the transmission duration
is significantly lower than the other baselines. Although the random
chunking and fitted formula chunking may yield lower transmission du-
ration in certain cases, their performance is highly unstable. This may
be due to the selection of excessively small chunk sizes, resulting in a
larger number of chunks and thus increased retrieval time. Then, the
Fig. 8(b) shows that under a fixed delay of 50 ms, the proposed mecha-
nism achieves lower transmission time than the baselines across differ-
ent bandwidth for data of the same data size. Notably, the traditional
fixed chunking strategy performs significantly worse in many cases, es-
pecially at higher bandwidths. This indicates that fixed chunking designs
tend to waste a large portion of time on chunk retrieval and other opera-
tions, leading to poor bandwidth utilization and increased transmission
duration. Finally, the Fig. 8(c) demonstrates that for 500 MB of data
size under different delay settings, the transmission duration of the dy-
namic chunking remains significantly lower than that of the baselines.
Moreover, compared to random chunking and formula-based chunking,
the dynamic strategy maintains more stable performance under higher
delay, indicating better adaptability.

6.2.2. Overall throughput

Fig. 9 presents a comparison of overall throughput for the four
chunking strategies under different conditions with the number of
data provider nodes fixed. Firstly, the Fig. 9(a) shows how through-
put varies with data size when each node has a bandwidth of 80 Mbps
and a network delay of 50 ms. It can be observed that the proposed
mechanism consistently achieves higher overall throughput than the
baselines in most cases. The advantage is particularly pronounced for
larger data sizes, indicating that the dynamic chunking mechanism ef-
fectively optimizes the chunking strategy to reduce transmission wait
time and retrieval delays, thereby improving overall throughput. Then,
the Fig. 9(b) shows the throughput of each method when transferring
1000 MB file under a fixed delay of 50 ms and varying bandwidth lev-
els. The results indicate that the dynamic chunking mechanism demon-
strates clear advantages in throughput across most bandwidth settings,
especially in higher-bandwidth scenarios. While the throughput perfor-
mance of all methods is relatively close under lower bandwidths, the
dynamic chunking method still maintains a noticeable edge. In con-
trast, under high bandwidth conditions, the throughput of the other
baselines does not significantly improve, suggesting that their chunk-
ing strategies fail to fully utilize the available bandwidth. Finally, the
Fig. 9(c) compares the throughput of the four strategies for trans-
mitting a 1000 MB file under varying delay conditions while keeping
bandwidth fixed. The results show that the dynamic chunking strat-
egy maintains more stable throughput performance as network delay
increases, outperforming the other baselines in terms of stability and
adaptability.

6.2.3. Transmission optimization rate
Fig. 10(a) to (c) illustrate the transmission optimization rate of
the proposed mechanism compared to the traditional fixed chunking
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Table 2

Comparison of transmission duration and throughput.

Transmission Duration (s) Overall Throughput (Mbps)

Method

Mean + SD Variance Mean + SD Variance
Fixed Chunking 87.40 + 12.50 156.25 45.77 + 6.80 46.24
Random Chunking 101.50 £28.50  812.25 39411650  272.25
Formula Chunking 72.50 +9.20 84.64 55.17 + 8.40 70.56
Dynamic Chunking  59.20 + 6.50 4225 67.57 +7.50 56.25

approach. Overall, the proposed mechanism demonstrates superior opti-
mization rates under various conditions, including different bandwidths,
delays, and file characteristics. In particular, under high-latency envi-
ronments, our proposed mechanism effectively adapts to network fluc-
tuations and significantly improves transmission performance and ef-
ficiency. Firstly, the Fig. 10(a) shows the optimization effect under a
no-delay (0 ms) environment, where the optimization rate generally
ranges between 3% and 11%, with a more noticeable improvement
for small file transfers. Then, the Fig. 10(b) presents the results under

10

a typical delay (50 ms), where the optimization rate can reach up to
45%, with the most significant improvements observed for files smaller
than 500 MB. Under low-bandwidth conditions (40 Mbps), the proposed
mechanism achieves higher optimization rates for large file transfers.
This indicates that our dynamic chunking mechanism adapts better to
low-bandwidth and higher-latency conditions compared to traditional
fixed chunking. Finally, the Fig. 10(c) demonstrates that the proposed
mechanism achieves the highest optimization under high-delay envi-
ronments (100 ms), with peak optimization rates reaching 72% and an
average of around 40%. For larger file transfers, the optimization rate
slightly decreases, hovering around 20%. The results confirm the mech-
anism’s strong adaptability to high-latency conditions. By dynamically
adjusting chunk sizes according to current network conditions, the dy-
namic chunking strategy effectively optimizes distributed transmission
performance.

6.2.4. Scalability
To evaluate the scalability of the system, we analyze the effective-
ness of the four chunking methods as the number of provider nodes
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Fig. 13. Performance comparison of different action granularities.

increases. Fig. 11(a) presents the transmission duration of a 500 MB
file under different numbers of providers, with a bandwidth of 80 Mbps
and a latency of 50 ms. The results indicate that the proposed mecha-
nism consistently achieves lower transmission duration as the number of
providers increases, demonstrating excellent scalability. In contrast, the
fixed and formula-based chunking methods show only marginal or un-
stable improvements, with transmission duration fluctuating and over-
all performance less stable. Fig. 11(b) compares the throughput of the
four chunking transmission methods for a 1000 MB file at a bandwidth
of 160 Mbps and a latency of 50 ms. The results reveal that our pro-
posed mechanism maintains superior throughput in most cases, espe-
cially when there are three provider nodes, significantly outperform-
ing the other baselines. Meanwhile, the fixed chunking method ex-
hibits large fluctuations in throughput, indicating poor stability. Over-
all, the proposed mechanism proves more effective in adapting to en-
vironments with multiple provider nodes. It can more efficiently utilize
available node resources, validating its superiority when node resources
vary.

6.2.5. Stability analysis

Beyond efficiency, transmission stability is a critical performance
metric in distributed systems. To quantitatively assess the stabil-
ity of our proposed mechanism, we conducted a series of indepen-
dent trials under representative network conditions (80 Mbps band-
width, 50 ms latency, and 500 MB data size), followed by a com-
prehensive statistical analysis. Fig. 12 presents box plots illustrat-
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ing the distributions of transmission duration and throughput. As ob-
served, the dynamic chunking method exhibits a significantly more
compact interquartile range (IQR) compared to the baselines, indi-
cating superior performance stability. Furthermore, Table 2 provides
a detailed breakdown of the mean, standard deviation, and vari-
ance for both transmission duration and throughput. The data demon-
strates that the proposed mechanism consistently outperforms the base-
lines across all metrics, confirming that the dynamic chunking ap-
proach maintains high transmission efficiency while achieving robust
stability.

6.2.6. Impact of action space granularity

In the design of the DRL model, the step size within the action space
dictates the granularity of chunk adjustments. To systematically validate
the rationality of selecting 128 KB as the fixed step size, we conducted
a series of parameter sensitivity analysis experiments. Under identical
network conditions (100 Mbps bandwidth and 1000 MB data size), we
selected three representative granularities within the chunk size range
of [64, 1024] KB for comparative evaluation: fine-grained (64 KB), base-
line (128KB), and coarse-grained (256 KB). The fine-grained setting
constructs a larger action space, offering higher control precision but
incurring increased training costs. Conversely, the coarse-grained set-
ting results in an action space with only four discrete actions, reducing
computational overhead but yielding a relatively coarse control policy.
Fig. 13 illustrates the performance in terms of transmission duration
and throughput across various granularities under different latency con-
ditions. It can be observed that transmission performance significantly
degrades under the coarse-grained setting. In contrast, the experimen-
tal results for the fine-grained setting exhibit a distinct saturation effect,
showing only marginal improvements compared to the baseline. How-
ever, the action space size doubles, which significantly increases the
agent’s computational complexity and convergence time. Therefore, the
128 KB step size strikes an optimal trade-off between transmission per-
formance and training overhead, validating the rationality of our design
choice.

6.3. Comparison with mainstream distributed protocols

While algorithmic comparisons have validated the theoretical advan-
tages of the dynamic chunking strategy, it is equally critical to evaluate
its performance gains relative to other transmission protocols within a
distributed network environment. To this end, we selected two main-
stream chunk-based distributed transmission protocols (IPFS [25] and
BitTorrent [13]) as baselines. We conducted comparative evaluations
against the proposed mechanism on our constructed distributed plat-
form to verify the mechanism’s effectiveness in practical applications.
IPFS employs a rigid fixed-size chunking design, where data is pre-
segmented into independent blocks of a predetermined size before en-
tering the transmission layer. Similarly, BitTorrent, a dominant protocol
for large-scale P2P data sharing, enforces a fixed chunk size determined
during torrent generation, which remains immutable throughout the
network. Fig. 14 illustrates the transmission performance of the three
methods under varying conditions of bandwidth, file size, and latency.
Fig. 14(a) reveals that as network bandwidth increases, the throughput
growth of both IPFS and BitTorrent plateaus, exhibiting distinct satu-
ration effects and failing to fully utilize available bandwidth resources.
In contrast, the dynamic chunking transmission mechanism effectively
enhances bandwidth utilization through real-time adjustments, yield-
ing throughput performance significantly superior to both baselines.
Fig. 14(b) shows that the proposed mechanism effectively adapts to
varying data scales. By optimizing chunk sizes to boost efficiency, it
achieves lower transmission durations than other methods across di-
verse file sizes. Fig. 14(c) further elucidates the impact of network la-
tency. While traditional distributed protocols suffer severe performance
degradation in high-latency scenarios, our proposed mechanism effec-
tively mitigates the adverse effects of high latency through intelligent
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decision-making. Overall, traditional distributed transmission protocols
exhibit distinct limitations when confronting network fluctuations. Con-
versely, the proposed mechanism demonstrates superior adaptability to
complex and dynamic distributed network environments through dy-
namic decision-making. It outperforms the baselines across all evaluated
metrics, verifying both the effectiveness and robustness of the mecha-
nism.

7. Conclusion

In this paper, we propose an intelligent and efficient transmission
mechanism based on dynamic chunking for distributed environments.
The proposed mechanism adopts a master-slave architecture to perceive
real-time environmental states, dynamically adjusts data chunk sizes to
improve transmission efficiency. Concurrently, it leverages DHT and
P2P technologies to enable parallel transmission. In addition, to opti-
mize chunking decisions, we innovatively introduce a DRL approach,
modeling the chunking process as Markov Decision Process, where an
agent interacts with the environment to learn optimal dynamic chunking
policy. The dynamic chunking module aggregates network-wide node
information to environment states in real time and applies DRL decisions
by coordinating chunk size adjustments across nodes. Furthermore, we
design a master node election algorithm, delayed experience feedback
mechanism, and model migration mechanism to ensure system robust-
ness and continuous optimization of chunking decisions. Extensive sim-
ulation experiments demonstrate that the proposed method offers signif-
icant advantages over conventional ones in key metrics such as trans-
mission duration and throughput, and maintains high adaptability in
dynamic and complex environments. Currently, the proposed mecha-
nism primarily operates based on global environmental observations.
However, given the complexity of real-world distributed systems, the
heterogeneity of individual nodes and the stochastic nature of feedback
signals are non-negligible factors. Therefore, future work will consider
exploring fine-grained decision frameworks to better adapt to diverse
node characteristics. Additionally, we will consider investigating robust
learning techniques, such as PSSCL [42], to mitigate the potential im-
pact of measurement noise and further enhance system stability.

CRediT authorship contribution statement

Enliang Lv: Writing — review & editing, Writing — original draft,
Software, Project administration, Formal analysis, Data curation, Con-
ceptualization; Xingwei Wang: Writing — review & editing, Resources;
Bo Yi: Writing — review & editing; Hao Lu: Writing — review & editing;
Min Huang: Writing — review & editing; Yue Kou: Writing — review &
editing; Keqin Li: Writing — review & editing.

Data availability

Data will be made available on request.

500

File size(MB)
(b) 160Mbps bandwidth and 50ms latency.

12

300
= Dynamic chunking
= IPFS

= BitTorrent

200

100
) J! L
0
0 100

De[a)sl(()ms)
(c) 1000MB size and 160Mbps bandwidth.

Transmission time(s)
I
K

600 700 800 900 1000

Performance comparison of different transmission protocols.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work is supported in part by the National Natural Science Foun-
dation of China under Grant Nos. 62432003, U25A20431.

References

[1] T.V. Doan, R. van Rijswijk-Deij, O. Hohlfeld, V. Bajpai, An empirical view on con-
solidation of the web, ACM Trans. Internet Technol. (TOIT) 22 (3) (2022) 1-30.
C.B. de Leusse, C. Gahnberg, The global internet report: consolidation in the internet
economy, Internet Soc. (2019).

J. Shi, R. Rao, Y. Song, X. Wang, B. Yi, Q. He, C. Zeng, M. Huang, S.K. Das, Service
recommendation in JointCloud environments: an efficient regret theory-based QoS-
aware approach, Comput. Netw. 254 (2024) 110716.

M.R. Palankar, A. lamnitchi, M. Ripeanu, S. Garfinkel, Amazon S3 for science grids: a
viable solution?, in: Proceedings of the 2008 International Workshop on Data-aware
Distributed Computing, 2008, pp. 55-64.

S.J. Chen, Z. Qin, Z. Wilson, B. Calaci, M. Rose, R. Evans, S. Abraham, D. Met-
zler, S. Tata, M. Colagrosso, Improving recommendation quality in google drive,
in: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2020, pp. 2900-2908.

L. Caviglione, M. Podolski, W. Mazurczyk, M. Ianigro, Covert channels in personal
cloud storage services: the case of dropbox, IEEE Trans. Ind. Inf. 13 (4) (2016)
1921-1931.

D. Coldewey, Cloudflare DNS goes down, taking a large piece of the internet with
it, Retrieved May 26 (2020) 2023.

M. Rosemain, R. Satter, Millions of websites offline after fire at French cloud services
firm, Reuters (2021).

J. Shi, B. Yi, X. Wang, M. Huang, Y. Song, Q. He, C. Zeng, K. Li, JointCloud re-
source market competition: a game-theoretic approach, IEEE/ACM Trans. Netw. 32
(6) (2024) 5112-5127.

P. Sun, S. Shen, Y. Wan, Z. Wu, Z. Fang, X.-z. Gao, A survey of iot privacy security:
architecture, technology, challenges, and trends, IEEE Internet Things J. 11 (21)
(2024) 34567-34591.

Y. Liu, J. He, X. Li, J. Chen, X. Liu, S. Peng, H. Cao, Y. Wang, An overview of
blockchain smart contract execution mechanism, J. Ind. Inform. Integr. 41 (2024)
100674.

E. Daniel, F. Tschorsch, IPFS and friends: a qualitative comparison of next generation
peer-to-peer data networks, IEEE Commun. Surv. Tutorials 24 (1) (2022) 31-52.
A. Mazri, M. Mehdi, Unraveling decentralized data storage: a comparative analysis
of IPFS and BitTorrent networks, in: 2024 2nd International Conference on Electrical
Engineering and Automatic Control (ICEEAC), IEEE, 2024, pp. 1-6.

N. Jagadish Kumar, D. Dhinakaran, A. Naresh Kumar, A.V. Kalpana, Swarm intelli-
gence with a chaotic leader and a salp algorithm: HDFS optimization for reduced la-
tency and enhanced availability, Concurrency Comput. Pract. Exper. 36 (17) (2024)
e8127.

F.K. Parast, S.A. Damghani, B. Kelly, Y. Wang, K.B. Kent, Efficient security interface
for high-performance Ceph storage systems, Future Gener. Comput. Syst. 164 (2025)
107571.

C. Manthiramoorthy, K.M.S. Khan, et al., Comparing several encrypted cloud storage
platforms, Int. J. Math. Stat. Comput. Sci. 2 (2024) 44-62.

P. Qin, T. Zhao, Knowledge guided deep deterministic policy gradient, Knowl. Based
Syst. 311 (2025) 113087.

J.C. Priya, G. Nanthakumar, T. Choudhury, K. Karthika, 6G-DeFLI: enhanced quality-
of-services using distributed hash table and blockchain-enabled federated learning
approach in 6G IoT networks, Wireless Netw. 31 (1) (2025) 361-375.

[2]
[3]

[4]

(5]

[61

[71
[81
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]


http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0001
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0001
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0002
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0002
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0003
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0003
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0003
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0004
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0004
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0004
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0005
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0005
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0005
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0005
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0006
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0006
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0006
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0007
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0007
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0008
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0008
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0009
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0009
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0009
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0010
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0010
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0010
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0011
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0011
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0011
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0012
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0012
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0013
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0013
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0013
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0014
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0014
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0014
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0014
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0015
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0015
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0015
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0016
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0016
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0017
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0017
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0018
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0018
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0018

E. Lvetal

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

V.C. Manduva, Review of P2P computing system cooperative scheduling mecha-
nisms, Int. J. Modern Comput. 7 (1) (2024) 154-168.

C. Karapapas, G. Xylomenos, G.C. Polyzos, Enhancing IPFS bitswap, in: International
Conference on Information and Communication Technology for Intelligent Systems,
Springer, 2024, pp. 189-199.

J. Shen, Y. Li, Y. Zhou, X. Wang, Understanding I/O performance of IPFS storage:
a client’s perspective, in: Proceedings of the International Symposium on Quality of
Service, 2019, pp. 1-10.

1. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: a scalable
peer-to-peer lookup service for internet applications, ACM SIGCOMM Comput. Com-
mun. Rev. 31 (4) (2001) 149-160.

Y. Wei, D. Trautwein, Y. Psaras, I. Castro, W. Scott, A. Raman, G. Tyson, The eternal
tussle: exploring the role of centralization in IPFS, in: 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI 24), 2024, pp. 441-454.
S.M. Almufti, S.R.M. Zeebaree, Leveraging distributed systems for fault-tolerant
cloud computing: a review of strategies and frameworks, Acad. J. Nawroz Univ.
13 (2) (2024) 9-29.

D. Trautwein, Y. Wei, Y. Psaras, M. Schubotz, I. Castro, B. Gipp, G. Tyson, IPFS in
the fast lane: accelerating record storage with optimistic provide, in: [IEEE INFOCOM
2024-IEEE Conference on Computer Communications, IEEE, 2024, pp. 1920-1929.
R.S. Patil, G.S. Biradar, S. Terdal, Blockchain-integrated optimized cryptographic
framework for securing cloud data, Knowl. Based Syst. (2025) 113830.

S. Khatal, J. Rane, D. Patel, P. Patel, Y. Busnel, Fileshare: a blockchain and IPFS
framework for secure file sharing and data provenance, in: Advances in Machine
Learning and Computational Intelligence: Proceedings of ICMLCI 2019, Springer,
2021, pp. 825-833.

S. Williams, V. Diordiiev, L. Berman, 1. Uemlianin, Arweave: a protocol for econom-
ically sustainable information permanence, Arweave Yellow Paper (2019).

P. Cao, Y. Chen, K. Liu, J. Zhao, S. Liu, W. Chong, HyperCore: hyperbolic and co-
graph representation for automatic ICD coding, in: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020, pp. 3105-3114.

F. Wang, S. Zhang, E.-K. Hong, T.Q.S. Quek, Constellation as a service: tai-
lored connectivity management in direct-satellite-to-device networks, (2025),
arXiv:2507.00902

J. Li, G. Sun, L. Duan, Q. Wu, Multi-objective optimization for UAV swarm-
assisted IoT with virtual antenna arrays, IEEE Trans. Mob. Comput. 23 (5) (2023)
4890-4907.

A.R. Naik, B.N. Keshavamurthy, Next level peer-to-peer overlay networks under high
churns: a survey, Peer-to-Peer Netw. Appl. 13 (3) (2020) 905-931.

D. Trautwein, A. Raman, G. Tyson, L. Castro, W. Scott, M. Schubotz, B. Gipp, Y.
Psaras, Design and evaluation of IPFS: a storage layer for the decentralized web, in:
Proceedings of the ACM SIGCOMM 2022 Conference, 2022, pp. 739-752.

M.I Khalid, I. Ehsan, A.K. Al-Ani, J. Igbal, S. Hussain, S.S. Ullah, et al., A compre-
hensive survey on blockchain-based decentralized storage networks, IEEE Access 11
(2023) 10995-11015.

C. Yang, J. Chen, A scalable data chunk similarity based compression approach for
efficient big sensing data processing on cloud, IEEE Trans. Knowl. Data Eng. 29 (6)
(2016) 1144-1157.

D. Ongaro, J. Ousterhout, In search of an understandable consensus algo-
rithm, in: 2014 USENIX Annual Technical Conference (USENIX ATC 14), 2014,
pp. 305-319.

H. Howard, R. Mortier, Paxos vs Raft: have we reached consensus on distributed
consensus?, in: Proceedings of the 7th Workshop on Principles and Practice of Con-
sistency for Distributed Data, 2020, pp. 1-9.

C. Roy, A. Mukherjee, N. Chaki, Merkle DAG-based distributed data model for
content-addressed trust-less verifiable data, in: 2022 7th International Conference
on Computer Science and Engineering (UBMK), IEEE, 2022, pp. 462-467.

H. Kurniawati, Partially observable markov decision processes and robotics, Annu.
Rev. Control, Rob. Auton. Syst. 5 (1) (2022) 253-277.

R. Fotohi, F.S. Aliee, Securing communication between things using blockchain tech-
nology based on authentication and SHA-256 to improving scalability in large-scale
IoT, Comput. Netw. 197 (2021) 108331.

E. Lv, X. Wang, B. Yi, L. Qiu, J. Shi, J. Guo, K. Zhang, P. Li, Towards efficient collab-
orative data transmission in JointCloud: a dynamic chunking mechanism, in: EAI In-
ternational Conference on Collaborative Computing: Networking, Applications and
Worksharing, Springer, 2024, pp. 298-308.

Q. Zhang, Y. Zhu, F.R. Cordeiro, Q. Chen, PSSCL: a progressive sample selection
framework with contrastive loss designed for noisy labels, Pattern Recognit. 161
(2025) 111284.

Enliang Lv received the BS and MS degrees in Computer Sci-
ence and Technology from Northeastern University, China, in
2023 and 2025 respectively. He is currently working toward
the PhD degree in Computer Science and Technology with the
College of Computer Science and Engineering, Northeastern
University, China. His main research interests include joint-
cloud computing and distributed transmission.

13

Knowledge-Based Systems 337 (2026) 115399

Xingwei Wang received the BS, MS, and PhD degrees in
computer science from Northeastern University, Shenyang,
China, in 1989, 1992, and 1998, respectively. He is currently
a Professor with the College of Computer Science and Engi-
neering, Northeastern University. His research interests in-
clude cloud computing and future Internet. He has published
more than 100 journal articles, books, and refereed confer-
ence papers, and has received several best paper awards.

Bo Yi (Member, IEEE) is currently an Associate Professor of
Computer Science and Engineering with Northeastern Uni-
versity, China. He has authored and co-authored more than
20 journal and conference articles on IEEE Transactions on
Cloud Computing, IEEE Communications Letters, etc. He is
also a reviewer for IEEE Communications Surveys & Tutori-
als, Computer Networks, Journal of Network and Computer
Applications, etc. His research interests include service com-
puting, virtualization, and cloud computing in SDN, NFV, and
DetNet.

Hao Lu received the BS degree in Computer Science and
Technology from Henan Polytechnic University, China, in
2022. He is currently working toward the MS degree in
Computer Science and Engineering at Northeastern Univer-
sity, China. His current research interests include cloud com-
puting, mechanism design, multi-objective optimization, and
jointcloud.

Min Huang received the BS degree in automatic instru-
mentation, the MS degree in systems engineering, and the
PhD degree in control theory from Northeastern University,
Shenyang, China, in 1990, 1993, and 1999, respectively. She
is currently a Professor with the College of Information Sci-
ence and Engineering, Northeastern University. Her research
interests include modeling and optimization for logistics and
supply chain systems. She has published more than 100 jour-
nal articles, books, and refereed conference papers.

Yue Kou received the PhD degree in computer software and
theory from Northeastern University, Shenyang, China, in
2009. She is currently an Associate Professor with the School
of Computer Science and Engineering, Northeastern Univer-
sity. Her research interests include social network analysis
and mining, recommender systems, and web data manage-
ment.

Kegqin Li (Fellow, IEEE) is a SUNY Distinguished Professor of
Computer Science at the State University of New York. He is
also a National Distinguished Professor with Hunan Univer-
sity, China. He has chaired many international conferences
and is currently an Associate Editor of ACM Computing Sur-
veys and CCF Transactions on High Performance Computing.
He is an AAAS Fellow, an IEEE Fellow, and an AAIA Fellow,
and a Member of Academia Europaea.


http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0019
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0019
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0020
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0020
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0020
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0021
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0021
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0021
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0022
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0022
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0022
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0023
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0023
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0023
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0024
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0024
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0024
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0025
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0025
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0025
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0026
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0026
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0027
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0027
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0027
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0027
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0028
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0028
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0029
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0029
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0029
http://arxiv.org/abs/arXiv:2507.00902
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0031
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0031
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0031
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0032
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0032
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0033
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0033
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0033
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0034
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0034
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0034
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0035
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0035
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0035
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0036
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0036
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0036
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0037
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0037
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0037
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0038
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0038
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0038
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0039
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0039
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0040
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0040
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0040
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0041
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0041
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0041
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0041
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0042
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0042
http://refhub.elsevier.com/S0950-7051(26)00142-5/sbref0042

	Dynamic chunking-driven intelligent transmission mechanism for distributed systems
	1 Introduction
	2 Related works
	2.1 Distributed data transmission technology
	2.2 Data chunking

	3 System design
	4 Design of dynamic chunking and intelligent decision mechanism
	4.1 Master node election algorithm
	4.2 Dynamic chunking mechanism based on DRL
	4.2.1 Dynamic chunking
	4.2.2 DRL design

	4.3 Supplementary mechanisms for agent deployment and training
	4.3.1 Online delayed experience feedback
	4.3.2 Model migration


	5 Efficient transmission method based on dynamic chunking
	5.1 Data distributed storage
	5.2 Data retrieval
	5.3 Data transmission
	5.4 Data reconstruction and verification

	6 Evaluation
	6.1 Experimental settings
	6.2 Performance comparison
	6.2.1 Transmission duration
	6.2.2 Overall throughput
	6.2.3 Transmission optimization rate
	6.2.4 Scalability
	6.2.5 Stability analysis
	6.2.6 Impact of action space granularity

	6.3 Comparison with mainstream distributed protocols

	7 Conclusion


