
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Dynamic chunking-driven intelligent transmission mechanism for 
distributed systems

Enliang Lv a, Xingwei Wang a,∗, Bo Yi a,1, Hao Lu a, Min Huang b, Yue Kou a, 
Keqin Li c,2

a School of Computer Science and Technology, Northeastern University, Shenyang, 110819, China
b School of Information Science and Engineering, Northeastern University, Shenyang, 110819, China
cDepartment of Computer Science, State University of New York, New York, 12561, USA

a r t i c l e  i n f o

Keywords:
Distributed systems
Data transmission optimization
Data chunking
Deep reinforcement learning

 a b s t r a c t

As network complexity and scale continue to grow, ensuring efficient data transmission among nodes and main-
taining system stability have become critical challenges for network enterprises. However, traditional distributed 
data transmission mechanisms often fail to meet performance requirements under complex and dynamic network 
conditions, resulting in inefficient data transmission, increased latency, and potential node failures. To address 
the above issues, we propose an intelligent transmission mechanism driven by dynamic chunking, designed to en-
sure efficient and stable data transmission in distributed systems. Network conditions are monitored in real time, 
and the data chunking problem is formulated as a Markov Decision Process (MDP). To derive optimal chunking 
decisions, a deep reinforcement learning framework is designed to autonomously solve the MDP and adaptively 
learn chunking policies in response to network performance dynamics. Furthermore, to ensure system stability, 
we employ a peer-to-peer (P2P) mechanism for node discovery, integrate Distributed Hash Tables for efficient 
chunk location, and leverage P2P protocols to coordinate the exchange and transmission of data chunks among 
nodes. Extensive simulation results validate that the proposed mechanism achieves substantial improvements 
over traditional methods in terms of transmission duration and throughput, while exhibiting robust adaptability 
to dynamic and complex network conditions.

1.  Introduction

Driven by powerful economies of scale and technical innovations 
like cloud computing, web systems have become increasingly central-
ized, with more consumers relying on cloud service providers for data 
storage, sharing, and computing services [1–3]. Consequently, central-
ized network architectures have emerged as a promising solution to of-
fer greater controllability and higher convenience, such as Amazon S3 
[4], Google Drive [5], and Dropbox [6]. However, this centralized ar-
chitecture introduces several risks, such as single points of failure, data 
silos, and load imbalance, all of which can significantly degrade system 
performance and ultimately diminish the user experience. For instance, 
a report from Amazon’s e-commerce platform has revealed that the fi-
nancial losses caused by service disruptions exceed $66,000 per minute 
[7,8].
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To address these issues, distributed architecture has become a re-
search hotspot, as it distributes control permissions across multiple 
nodes, thereby reducing reliance on a central server. As a result, it 
has become the foundational infrastructure for various technological 
domains, including cloud computing [9], the Internet of Things (IoT) 
[10], and Blockchain [11]. Although distributed systems have continu-
ously evolved and improved over time, data transmission performance 
remains a major bottleneck to their future development. This bottleneck 
not only affects the performance and stability of distributed systems but 
also hinders their further advancement.

Consequently, to optimize data transmission efficiency, data chunk-
ing has been extensively employed in leading distributed transmission 
systems such as InterPlanetary File System (IPFS) [12], BitTorrent [13], 
HDFS [14], Ceph [15], and modern cloud storage platforms [16]. Data 
chunking partitions large objects into smaller chunks distributed across 
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different nodes, enabling independent storage and transmission to im-
prove throughput, reduce latency, and enhance system fault tolerance. 
However, this gives rise to a new challenge, as most of these systems uti-
lizes a pre-defined and fixed chunk size, limiting their ability to adapt 
to dynamic network conditions and heterogeneous data characteristics. 
Moreover, variations in chunk size can significantly impact the transmis-
sion efficiency for the same file. Particularly, excessively small chunks 
may introduce high overhead due to increased metadata and connection 
management, while overly large chunks may result in poor adaptabil-
ity to network fluctuations. These issues can severely compromise the 
stability and efficiency of the system. Although implementing dynamic 
adjustment strategies offers a potential solution, relying on pre-defined 
heuristic rules is often insufficient. These rigid methods fail to capture 
the complex, non-linear correlations between high-dimensional network 
dynamics and optimal chunking strategies. Furthermore, traditional su-
pervised learning methods are ill-suited for this context. Models trained 
on static historical datasets are fundamentally incapable of capturing the 
stochastic volatility and real-time variability inherent in complex dis-
tributed networks, leading to strategy mismatches when environmental 
conditions shift. In contrast, Deep Reinforcement Learning (DRL) [17] 
overcomes these limitations by formulating chunking as a sequential 
decision-making process. Instead of relying on static knowledge, DRL 
enables the system to autonomously learn and update its policy through 
continuous interaction and exploration within the environment. This ca-
pability allows the mechanism to adaptively optimize transmission effi-
ciency in response to dynamic and unseen network conditions, offering 
a level of robustness that static or supervised approaches cannot match.

Therefore, to overcome the adaptability limitations of fixed-size 
chunking in complex and dynamic network environments, we pro-
pose a dynamic chunking mechanism and design a novel intelligent 
and efficient distributed transmission method based on dynamic chunk-
ing. Crucially, this mechanism enables the system to adaptively adjust 
chunk sizes based on real-time network conditions, thereby optimizing 
transmission performance. This capability is a key characteristic that 
distinguishes it from traditional distributed transmission systems. The 
chunking mechanism utilizes a consensus algorithm to elect a master 
node responsible for continuously monitoring network conditions and 
data characteristics throughout the distributed system. Given the un-
predictable nature of network dynamics and data heterogeneity in dis-
tributed systems, where traditional heuristic methods often fall short, we 
leverage DRL to learn optimal chunk size decisions. Through the train-
ing of the DRL model, the mechanism is capable of predicting the opti-
mal chunk size in real time, enabling dynamic adjustments tailored to 
both network conditions and data characteristics, thereby enhancing the 
efficiency and stability of the transmission process. Additionally, a dis-
tributed hash table (DHT), a decentralized storage system that maps keys 
to specific nodes for scalable retrieval [18] is employed to enable effi-
cient lookup of data chunks. Furthermore, a peer-to-peer (P2P) protocol 
[19] is employed to support node discovery, connection establishment, 
and data transmission. The Bitswap [20] protocol is also integrated to 
manage chunk requests and exchanges between nodes, enabling paral-
lel data transmission across the system. To evaluate the effectiveness 
of the designed mechanism, we conduct extensive experiments on data 
transmission. The experimental results demonstrate that the proposed 
mechanism effectively adapts to dynamic network conditions and het-
erogeneous data characteristics, offering a robust, efficient, and scalable 
solution for data transmission in distributed systems.

The contributions are summarized as follows:

• We present a dynamic chunking-driven transmission mechanism for 
distributed systems. The mechanism jointly considers real-time net-
work states and data characteristics when adjusting chunk sizes. 
These indicators are detected and aggregated by a master node, 
which is elected through a consensus-based mechanism to enable 
global coordination of chunking decisions across all nodes in the sys-
tem.

• Compared to traditional heuristic methods that are often static and 
lack adaptability, we formulate the chunking decision problem as 
a MDP and propose a DRL-based dynamic chunking mechanism to 
learn the optimal chunking policy. To enhance the flexibility of the 
mechanism, supplementary components such as a delayed experi-
ence feedback scheme and a model migration mechanism are de-
signed to ensure continuous operation even in the presence of node 
failures.

• We propose an efficient distributed data transmission mechanism. 
The mechanism leverages a P2P network for decentralized node dis-
covery and data transmission, while employing a DHT to locate and 
identify data chunks. By enabling the parallel transfer of data chunks 
from multiple nodes, this approach significantly enhances the overall 
performance of distributed data transmission.

• To assess the performance of the proposed mechanism, we developed 
a distributed data transmission testbed and conducted comprehen-
sive experiments under realistic distributed transmission scenarios. 
The experimental results show that our mechanism outperforms the 
others in multiple aspects, achieving a 22% improvement in trans-
mission performance and a 28% increase in throughput, with a 31% 
optimization rate compared to traditional fixed-size chunking ap-
proaches.

The remainder of this paper is organized as follows. Section 2 pro-
vides an overview of related work. Section 3 details our proposed system 
architecture. Section 4 presents the dynamic chunking and intelligent 
decision-making mechanisms. Section 5 describes the efficient transmis-
sion method based on dynamic chunking. Section 6 evaluates the per-
formance of our proposed method through experimental results. Finally, 
Section 7 concludes the paper.

2.  Related works

In this section, we provide an overview of two main areas closely 
related to our work: distributed data transmission techniques and data 
chunking, and further briefly discuss our design methodology in the con-
text of existing approaches.

2.1.  Distributed data transmission technology

Gnutella [12] was among the earliest distributed networks designed 
to support decentralized file sharing across all file types. Building on 
this foundation, a range of distributed networks subsequently emerged, 
many of which targeted specific application domains. Systems such as 
CAN [21], Chord [22], and Pastry [19] introduced structured overlay 
network protocols to support efficient routing and topology mainte-
nance. Freenet [23] focused on enabling anonymous storage and re-
trieval in distributed environments. A notable advancement came with 
BitTorrent [13], which introduced an incentive-based mechanism that 
significantly improved transmission efficiency and resource utilization. 
BitTorrent remains widely used today. Parallel efforts have also explored 
distributed file systems, including Google FS and Hadoop, which have 
been foundational in big data infrastructures [24]. In recent years, IPFS 
[25] has gained increasing traction, particularly as a decentralized stor-
age layer for blockchain-based applications [26,27]. Some researchers 
even envision IPFS as a potential successor to the Hypertext Transfer 
Protocol (HTTP). Other emerging distributed file storage systems in-
clude Arweave [28], Hypercore [29], Swarm [12], etc., which are also 
actively developing decentralized storage and transmission solutions 
that aim to address the limitations of traditional centralized approaches. 
Moreover, recent studies on adaptive networks [30] and multi-objective 
optimization [31] have validated the importance of adaptive strategies 
in handling dynamic topologies, offering valuable references for opti-
mizing transmission efficiency in complex distributed systems.

The implementation and performance optimization of these dis-
tributed systems heavily rely on key technologies such as DHT, P2P net-
working, data chunking, and content addressing. DHT [18] serves as the 
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Fig. 1. The overall architecture of dynamic chunking transmission mechanism.

foundation for decentralized storage, enabling efficient data retrieval 
and storage by distributing data and indexes across various nodes in the 
network. This technology has been widely adopted in systems like IPFS, 
BitTorrent, Freenet, and Arweave. P2P networks [32] reduce reliance 
on centralized servers through direct node interaction and are exten-
sively applied in IPFS, BitTorrent, Storj, and SAFE. Content addressing 
technology [23] locates data via unique data identifiers, ensuring data 
integrity and consistency, and is broadly applied in systems such as IPFS 
and Swarm. The Bitswap protocol [20], as one of IPFS’s core protocols, 
optimizes bandwidth utilization and transmission efficiency by manag-
ing data chunk exchanges between nodes.

2.2.  Data chunking

Data chunking [33] is a crucial processing technique widely used 
in many distributed transmission systems. At its core, it involves divid-
ing large data objects into several smaller data chunks and distributing 
them across different nodes [21]. During the data chunking process, 
each data chunk is typically assigned a unique content hash value, en-
abling content-based addressing and retrieval without relying on phys-
ical locations. Compared to traditional centralized transmission meth-
ods, data chunking supports parallel downloading from multiple nodes 
[34], allowing better utilization of network bandwidth and faster overall 
transmission. Furthermore, the method increases fault tolerance, as data 
transfer can continue from other available nodes even if some fail, and 
only the missing chunks need to be retransmitted, reducing overhead.

Data chunking has been adopted to improve transmission efficiency 
and fault tolerance by several systems such as IPFS, BitTorrent, and 
Storj. In IPFS, data chunking is employed to split uploaded files into 
fixed-size chunks, each uniquely identified by hash value and stored 
within DHT [12]. This method not only enables efficient data retrieval 

and storage, but also ensures data integrity and consistency through con-
tent addressing. Within the BitTorrent protocol, data chunking enables 
users to download different pieces of a file in parallel from multiple 
peers, thereby speeding up the transmission process [13]. Furthermore, 
data chunking has been used to optimize data management in cloud 
storage systems. By splitting data into smaller chunks, the data chunk-
ing technique enables cloud services [35] to manage storage resources 
more flexibly, increase utilization rates, and accelerate access through 
parallel operations.

However, most existing distributed systems still rely on fixed-size 
chunking strategies, which present notable limitations in dynamic net-
work environments. Fixed chunking lacks the flexibility to adapt to 
fluctuating network conditions and diverse data characteristics, often 
resulting in decreased transmission efficiency and underutilized band-
width. Especially in environments with frequent changes of node status 
or highly heterogeneous data resources, fixed-size strategies fail to pro-
vide the required adaptability, becoming a major bottleneck for improv-
ing transmission performance in distributed systems. These limitations 
drive further research into more intelligent chunking strategies to better 
adapt to complex and volatile distributed environments.

3.  System design

In this section, we present the overall architecture design of our pro-
posed distributed data transmission system. To enhance the adaptability 
and efficiency of distributed data transmission, the system is designed 
with a modular architecture comprising three key components: the in-
telligent decision module, the dynamic chunking module, and the effi-
cient chunking transmission method. The overall system architecture is 
illustrated in Fig. 1. Their functionalities are described below:
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• Dynamic Chunking Module: This module coordinates and executes 
dynamic chunking strategies. The master node, elected via a elec-
tion algorithm, continuously monitors the network environment, 
data characteristics, and node status. Based on this information, it 
analyzes and dynamically adjusts data chunk sizes. This module is 
also responsible for scheduling DRL model training and the dynamic 
chunking process. In the event of the current master node failure, it 
ensures continuous system operation through re-election.

• Intelligent Decision Module: This module is responsible for intel-
ligent chunking decisions. It uses a DRL model to interact with the 
network environment in real time, continuously learning the opti-
mal chunking policy. It dynamically adjusts data chunk sizes based 
on current data characteristics, node states, and network conditions. 
Additionally, this module includes a model migration mechanism, 
ensuring that the DRL model automatically migrates to a new mas-
ter node if the current one fails, thereby guaranteeing the continuity 
of model training.

• Efficient Chunking Transmission Method: This method handles 
the indexing, addressing, exchange, and transmission of data chunks 
within the distributed network. It employs content addressing to 
uniquely identify each data chunk, utilizing DHT for data chunk re-
trieve and localization. The transmission method also utilizes P2P 
network and the BitSwap protocol to facilitate data chunk exchange 
and transmission between nodes.

Algorithm 1 The overall process of the dynamic chunking transmission 
mechanism.
Input: Real-time environment monitoring information
Output: Execution of dynamic chunking and data transmission
1: Initialize the system and elect a master node.
2: The Intelligent Decision Module runs the optimal chunking DRL 
model.

3: The Dynamic Chunking Module monitors bandwidth, latency, data 
size, type, and number of data providers for all nodes.

4: for each data item do
5:  Construct environment state.
6:  The Intelligent Decision Module predicts the optimal chunk size

  using the DRL model.
7:  if re-chunking is needed then
8:  The Dynamic Chunking Module notifies provider nodes to

  re-chunk the data.
9:  The Efficient Chunking Transmission Method generates CID

  for each chunk.
10:  Store chunks locally and update DHT.
11:  end if
12: end for
13: for each data transmission request do
14:  The Efficient Chunking Transmission Method queries DHT to

  locate data chunks.
15:  Download chunks in parallel via P2P network.
16:  Cache chunks locally and update DHT.
17: end for
18: The Intelligent Decision Module collects transmission feedback and 

stores in experience buffer.
19: Optimize the DRL model and the optimal chunking policy.
20: if master node fails then
21:  Re-elect a new master node.
22:  The Intelligent Decision Module migrates the DRL model to the

  new master.
23: end if
24: return Completion information of dynamic chunking and data 

transmission.

The overall workflow of the system is as follows: As illustrated in 
Algorithm 1, the master node is elected through a consensus algorithm. 

The master node interacts with slave nodes in the distributed network 
via the dynamic chunking module. It continuously monitors key metrics, 
including network bandwidth, transmission latency, data size, data type, 
and the number of providers. Based on these observations, the intelli-
gent decision module analyzes the network conditions. It then leverages 
the DRL model to predict the optimal chunk size for different data and 
determines whether re-chunking is necessary. If chunking adjustments 
are required, the master node issues instructions to the relevant slave 
nodes to re-split the data. The newly sliced data chunks are then pro-
cessed by the efficient chunking transmission method, which generates 
unique content identifier (CID), a cryptographic hash serving as the im-
mutable fingerprint for addressing the content, and stores them in the 
DHT. When a node requests specific data, the chunking transmission 
method queries the DHT to locate the corresponding data chunks and 
initiates parallel transmission from multiple data provider nodes using 
P2P protocols. Upon completion, the received data chunks are cached 
in the requester’s local storage, and the DHT index is updated accord-
ingly. After data transmission concludes, the intelligent decision module 
collects feedback information such as transmission duration, data char-
acteristics, network conditions and node status. The information is fed 
back to the DRL model, and stored in experience replay buffer to sup-
port the model’s continuous learning and optimization. In the event of 
the current master node failure, the consensus algorithm detects the is-
sue and promptly initiates a re-election process to select a new master. 
Simultaneously, the model migration mechanism automatically trans-
fers the DRL model to the new master. This ensures that the agent can 
continue incremental learning based on previous experience without 
restarting from scratch.

Complexity Analysis. The computational complexity of the pro-
posed mechanism comprises the DRL decision cost (𝑇𝑑𝑒𝑐) and the data 
execution cost (𝑇𝑒𝑥𝑒𝑐). In the decision phase, the DRL agent employs 
a fully connected Deep Neural Network (DNN) with 𝐾 = 2 hidden 
layers, an input state dimension 𝐼 = 8, a hidden dimension 𝐻 = 128, 
and an output action dimension 𝑂 = 8. The computational complex-
ity is dominated by layer-wise matrix multiplications, formulated as 
𝑂(𝐼 ⋅𝐻 + (𝐾 − 1) ⋅𝐻2 +𝐻 ⋅ 𝑂). Since these parameters are constants in-
dependent of the data scale, the decision complexity 𝑇𝑑𝑒𝑐 is asymptoti-
cally 𝑂(1). Conversely, the execution complexity scales linearly with the 
file size, yielding 𝑇𝑒𝑥𝑒𝑐 = 𝑂(𝐿). Consequently, the overall complexity is 
bounded by 𝑂(𝐿), demonstrating that the intelligent chunking mecha-
nism incurs negligible computational overhead relative to the data trans-
mission task itself.

4.  Design of dynamic chunking and intelligent decision 
mechanism

In this section, we will introduce the design of the dynamic chunking 
and intelligent decision-making mechanisms, including the master elec-
tion algorithm, DRL-based chunking decision-making, and the process 
of dynamic data chunking. In addition, we will present the delayed ex-
perience feedback mechanism and the model migration mechanism as 
effective supplements to the core mechanisms, enhancing the system’s 
adaptability and continuity of training.

4.1.  Master node election algorithm

The election algorithm is responsible for selecting a master node to 
manage and coordinate all nodes in the distributed transmission net-
work. It ensures system continuity and stable chunking decision train-
ing by handling node failures and dynamic network changes. The overall 
election process is illustrated in Fig. 2.

In terms of role assignment, the election algorithm classifies nodes 
in the transmission system into three roles: leader, candidate, and fol-
lower. Beyond maintaining log consistency as in traditional protocols 
[36,37], the leader undertakes several key responsibilities. These in-
clude monitoring network status, scheduling chunking decisions, and 
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Fig. 2. The process of master node election.

training the DRL model. When campaigning, candidates must submit a 
comprehensive evaluation report including the node’s computing capac-
ity, network bandwidth, and storage performance. Followers use an im-
proved bidirectional heartbeat mechanism to both receive instructions 
from the leader, and report local network status and data possession. In 
addition, the leader periodically shares the DRL model parameters and 
state information across the distributed transmission network.

During the leadership phase, the leader manages all followers and 
regularly sends heartbeat log to maintain its leadership. Each follower 
has an election timeout mechanism, which sets a timer that resets upon 
receiving a heartbeat log. If a follower does not receive a heartbeat log 
within the timeout period, it switches to a candidate, increases its term 
number, and initiates a new election process. Candidates send vote re-
quests to other nodes, which determine whether to vote based on log 
consistency and comprehensive evaluation information. If a candidate 
receives votes from the majority of nodes, it becomes the new leader 
and enters the leadership phase. If it does not receive enough votes, it 
restarts the election process.

The election algorithm also introduces various mechanisms to han-
dle node failures and abnormal behavior during the election process. To 
avoid the vote-splitting problem caused by multiple candidates request-
ing votes at the same time, the algorithm sets a randomized election 
timeout to reduce the probability of multiple nodes becoming candidates 
simultaneously. In addition, the algorithm ensures that only candidates 
with the latest logs can receive votes through log matching rules. During 
the election process, if a node fails to respond in time due to network 
problems, other nodes will wait for a certain period before voting to 
avoid invalid elections caused by temporary failures.

Correctness and Convergence Analysis. To theoretically validate 
the reliability of the election algorithm, we formally analyze its cor-
rectness and convergence time. Regarding Correctness, assume that a 
distributed system with 𝑁 nodes elects two leaders in term 𝑡 with vote 
sets 𝑉1 and 𝑉2, which implies |𝑉1| + |𝑉2| > 𝑁 . It follows that 𝑉1 ∩ 𝑉2 ≠ ∅, 
meaning at least one node voted more than once in the same term, 
which contradicts the algorithmic constraint of "at most one vote per 
term"; thus, the assumption is invalid. Furthermore, the randomized 
timeout mechanism resolves split-vote deadlocks. Let 𝑃𝑐𝑜𝑛𝑓 < 1 be the 
probability of a conflict in a single round. As the election rounds 
𝑘 → ∞, the cumulative success probability 𝑃𝑠𝑢𝑐 = 1 − 𝑃 𝑘

𝑐𝑜𝑛𝑓  approaches 
1, ensuring that a valid leader is eventually elected, thereby prov-
ing the correctness. Regarding Convergence, the system recovery time 
𝑇𝑟𝑒𝑐 depends on the failure detection latency 𝑇𝑑𝑒𝑡 and the election du-
ration. Assuming the election timeout follows a uniform distribution 
𝑇𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ∼ 𝑈 [𝑇min, 𝑇max], the network Round-Trip Time (RTT), defined as 

Fig. 3. The process of dynamic chunking.

the bidirectional delay is 𝜏, and the number of election rounds 𝑅 fol-
lows a geometric distribution, the expected failure detection time is 
𝔼[𝑇𝑑𝑒𝑡] = (𝑇min + 𝑇max)∕2. Consequently, the total convergence time is 
formulated as 𝔼[𝑇𝑟𝑒𝑐 ] = 𝔼[𝑇𝑑𝑒𝑡] + 𝔼[𝑅] ⋅ (𝑇min + 𝜏). Since the randomized 
timeout minimizes the conflict probability (implying 𝔼[𝑅] ≈ 1), the con-
vergence time is bounded by 𝑂(𝑇max), demonstrating that the system 
completes failure recovery with constant time complexity.

4.2.  Dynamic chunking mechanism based on DRL

To improve adaptability to dynamic network environments and opti-
mize performance of data transmission, we introduce dynamic chunking 
into distributed data transmission. The core of this approach lies in mak-
ing real-time and intelligent decisions on the optimal data chunk size. 
However, the highly dynamic nature of network conditions and data 
characteristics in distributed systems make the dynamic chunking deci-
sion problem challenging to model. Traditional heuristic or rule-based 
methods typically rely on preset rules or empirical thresholds. Due to the 
lack of clear patterns in complex environmental changes, these methods 
frequently lead to outdated or mismatched strategies, thereby prevent-
ing optimal transmission performance.

To address this issue, we integrate DRL into the optimal chunking 
decision process. The mechanism consists of two core components: dy-
namic chunking and DRL model. The dynamic chunking module con-
tinuously monitors environment conditions and executes chunk adjust-
ments, with the DRL module making optimal chunk size decisions. These 
two modules cooperate closely to enable adaptive chunking.

4.2.1.  Dynamic chunking
In the mechanism, the dynamic chunking module plays a key role in 

bridging environment perception and chunking execution. As demon-
strated in Fig. 3, it operates in close coordination with the DRL model 
by receiving chunking decisions based on real-time network and data 
conditions, and then performing the corresponding chunk size adjust-
ments. The system, through the master node, continuously monitors key 
metrics across all nodes in the distributed network, including network 
bandwidth, latency, data size, data type, and the number of providers 
for different data. The collected information serves as the environment 
state input. Based on this input, the DRL model outputs the optimal 
chunking decision using a policy function trained on historical trans-
mission experience. After data transmission is completed, the system 
collects transmission performance indicators as experience feedback to 
continuously optimize the chunking policy, enabling the DRL model to 
self-learn and adapt over time.

Leveraging the optimal chunking decision provided by the DRL 
model, the dynamic chunking module initiates and coordinates the cor-
responding chunk adjustment operations across participating nodes. The 
module first evaluates whether the existing chunk size of different data 
need to be adjusted based on the decision, and if necessary, the master 
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Fig. 4. DRL design.

node notifies the relevant nodes to perform re-chunking. During the re-
chunking process, the master node instructs all nodes owning the data 
to split it into multiple smaller data chunks according to the optimal 
chunk size. Each chunk is assigned a unique CID through hash compu-
tation and stored in the node’s local repository. The sliced data chunks 
are organized into a Directed Acyclic Graph (DAG), a topological struc-
ture that eliminates circular dependencies to ensure data integrity, using 
the Merkle DAG [38] structure, with the root node’s CID serving as the 
unique identifier of the entire data. At the same time, the system records 
the mapping between the CIDs and the owner nodes in the DHT. This 
allows a requesting node to quickly locate multiple owner nodes via the 
DHT, download different data chunks in parallel, and finally reassemble 
them into the complete file locally.

4.2.2.  DRL design
To implement the decision process, the dynamic chunking problem 

is formulated as a Markov Decision Process [39]. The MDP can be rep-
resented as a tuple < 𝑆,𝐴, 𝑃 ,𝑅 >, where:

State, 𝑆: As shown in Fig. 4, the state space represents the set of 
environmental features perceived by the model, including network con-
ditions, node status, and data characteristics. In distributed environ-
ments, numerous factors affect data transmission efficiency, so the state 
space design must sufficiently reflect the environmental state informa-
tion. Among these, the network bandwidth of each node directly im-
pacts data transmission speed. When the bandwidth is high, a larger data 
chunk size can be used to reduce the time cost of data retrieval and re-
assembly, thereby improving overall transmission efficiency. However, 
in distributed environments, nodes may frequently join or leave the net-
work, and their total number is typically large and variable. Directly 
including the bandwidth of all nodes in the state space may result in an 
excessively large state dimension, thereby increasing model complexity 
and computational cost. Therefore, we use the average bandwidth of all 
nodes to represent the overall network bandwidth. Suppose there are 𝑁
nodes in the network and the bandwidth of the node 𝑖 is 𝑏𝑖, then the 
average bandwidth 𝐵𝑎𝑣𝑔 is represented as follows:

𝐵𝑎𝑣𝑔 = 1
𝑁

𝑁
∑

𝑖=1
𝑏𝑖 (1)

The latency between nodes refers to the time it takes for a data packet 
to travel from a source node to a destination node, also known as one-
way delay, which reflects the network responsiveness between nodes. In 

this paper, we use RTT to calculate the one-way delay between nodes. 
Thus, the average delay (𝑑𝑖) is defined as the average one-way delay 
between that node and all other nodes, as follows:

𝑑𝑖 =
1

𝑁 − 1

𝑁
∑

(𝑗=1𝑗≠𝑖)
𝑑𝑖𝑗 (2)

where 𝑁 is the number of nodes in the distributed network; 𝑑𝑖𝑗 =
𝑅𝑇𝑇𝑖𝑗∕2 is the one-way delay between node 𝑖 and node 𝑗.

Furthermore, the overall average network delay 𝐷𝑎𝑣𝑔 can be calcu-
lated as follows:

𝐷𝑎𝑣𝑔 = 1
𝑁

𝑁
∑

𝑖=1
𝑑𝑖 (3)

In addition to network bandwidth and latency, the inherent char-
acteristics of the data-such as its size and type-also have a significant 
impact on the performance of dynamic chunking-based transmission in 
distributed environments. The data size is denoted as 𝑠𝑖𝑧𝑒𝑓  and the data 
type (e.g., video, compressed files, audio, and text) is encoded using a 
4-dimensional one-hot vector denoted as 𝑡𝑦𝑝𝑒𝑓 . Moreover, the current 
chunk size of the data (denoted as 𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒𝑛𝑜𝑤) and the number of 
providers in the network (denoted as 𝑛𝑢𝑚𝑝) also influence the dynamic 
chunking decision. When there are more providers, the chunk size can 
be appropriately reduced to enable more effective parallel transmission. 
Thus, the state 𝑠 is a vector represented as follows:
𝑆 =

(

𝐵𝑎𝑣𝑔 , 𝐷𝑎𝑣𝑔 , 𝑠𝑖𝑧𝑒𝑓 , 𝑡𝑦𝑝𝑒𝑓 , 𝑛𝑢𝑚𝑝, chunksize𝑛𝑜𝑤
)

(4)

Action, 𝐴: In the optimal chunking decision, the action refers to the 
adjustment of data chunk size made by the agent based on the current 
distributed environment and data state. To reduce the computational 
complexity of the model and ensure the effectiveness of the action space, 
we employ a discrete design, defining the action space as a discrete set. 
The range of data chunk sizes is set to [128, 1024] KB, with a fixed step 
size of 128KB to construct the discrete action sequence. Specifically, the 
action is an 8-dimensional one-hot vector, represented as:
𝑎𝑐𝑡𝑖𝑜𝑛 =

[

𝑎1, 𝑎2,… , 𝑎8
]

(5)

where 𝑎𝑖 has a value of 128 ∗ 𝑖, representing the chunk size that should 
be adopted for the data under the current state.

Reward, 𝑅: The reward function is the core element guiding the 
optimization direction of the DRL model, used to evaluate the reward 
obtained after the agent takes an action. In the actual data transmission 
process within the distributed environment, different states 𝑠 and chunk-
ing actions 𝑎 will result in different data transmission durations, denoted 
as 𝑇 (𝑠, 𝑎). In the optimal chunking decision, the objective of the policy 
is to select the most appropriate chunk size to minimize the transmis-
sion time. Therefore, the reward function can initially be defined as the 
negative value of the transmission time, where a shorter transmission 
time yields a higher reward. However, the transmission time is signifi-
cantly influenced by the data size, which may lead to large variations 
in reward values and affect the stability of model training. To keep the 
reward values within a reasonable range, we use the maximum transmis-
sion time 𝑇max and the minimum transmission time 𝑇min collected from 
the initialized experience buffer as reference values for normalization. 
To ensure the normalization remains robust to distribution shifts, the 
values of 𝑇max and 𝑇min are periodically updated by retrieving the max-
imum and minimum transmission times currently stored in the experi-
ence replay buffer. This ensures that the normalization range adaptively 
evolves based on the actual transmission dynamics observed throughout 
the training process. The reward function 𝑟 is defined as:

𝑟(𝑠, 𝑎) = −
𝑇 (𝑠, 𝑎) − 𝑇min
𝑇max − 𝑇min

(6)

The overall objective is to maximize the cumulative reward, which 
can be defined as follows:

𝑅 = 𝔼𝜏∼𝜋𝜃 [
𝑇
∑

𝑡=0
𝛾 𝑡𝑟𝑡], (7)
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Fig. 5. Supplementary mechanisms.

where 𝜏 represents a sequence of states, actions, and rewards from the 
dynamic chunking decision process, and 𝜋𝜃 is the chunking policy pa-
rameterized by 𝜃. 𝑇  denotes the total number of steps in the trajectory, 
where each step corresponds to a data chunking operation. 𝛾 is the dis-
count factor, used to balance immediate and long-term cumulative re-
wards in the model.

Transition, 𝑃 : The state transition function 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) defines the 
probability of transitioning to a new state 𝑠𝑡+1 after taking action 𝑎𝑡 in 
the current state 𝑠𝑡. In the distributed environment, each data is moni-
tored in real time with respect to its size, type, current chunk size, the 
overall average network bandwidth and latency, as well as the number 
of data providers. When it is necessary to adjust the chunk size, the most 
suitable chunk size under the current state is selected for re-chunking. 
After re-chunking, the data-related parameter 𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒𝑛𝑜𝑤 is updated 
accordingly. Mathematically, we formulate this transition dynamics as 
a coupled probability density function:
𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) = 𝛿(𝑐𝑡+1 − 𝑎𝑡) ⋅  (Ω𝑡+1|𝑠𝑡, 𝑎𝑡), (8)

where 𝛿(⋅) is the Dirac delta function representing the deterministic con-
trol update, ensuring that the chunk size dimension 𝑐𝑡+1 (𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒𝑛𝑜𝑤) 
in the next state is strictly set to the action 𝑎𝑡. The term   denotes 
the stochastic transition kernel of the environment, governing how the 
network dimensions Ω𝑡+1 (e.g., bandwidth 𝐵𝑎𝑣𝑔 and delay 𝐷𝑎𝑣𝑔) evolve 
based on the aggregated monitoring data collected during the subse-
quent transmission phase. Thus, the transition implicitly captures the 
interaction between the chunking decision and the dynamic network 
environment.

4.3.  Supplementary mechanisms for agent deployment and training

To further support the effective deployment and continuous training 
of the DRL agent in distributed environments, we design two supple-
mentary mechanisms. The supplementary mechanisms are illustrated in 
Fig. 5. These mechanisms enhance the reliability and adaptability of the 
system by addressing practical challenges related to delayed feedback 
and master node failures.

4.3.1.  Online delayed experience feedback
In the chunking decision mechanism, the agent is deployed on the 

master node of the distributed transmission system, and is responsible 
for online execution and training. However, after the agent makes a 

chunking decision during actual operation, it cannot immediately ob-
tain feedback on the transmission result. If data transmission need to be 
performed directly to obtain instant feedback, it will result in frequent 
occupation of network bandwidth, thereby affecting normal data trans-
mission among nodes. To address this, we design a staged online delayed 
experience feedback mechanism. After completing data transmission, 
each node records transmission process information and periodically 
sends it to the master node. The master node aggregates, analyzes, and 
preprocesses the collected information to extract valid experience sam-
ples. Once a predefined threshold is reached, these samples are added 
to the experience replay buffer of the chunking decision model. The 
approach not only reduces bandwidth consumption caused by frequent 
communication but also effectively leverages inter-node transmission 
information to continuously optimize the chunking decision policy.

4.3.2.  Model migration
In the distributed environment, the master node is responsible for 

core tasks such as chunking decision and model training. Once the mas-
ter node fails, the training process of the DRL model may be interrupted, 
affecting the continuity of dynamic chunking decision and the stability 
of performance. To address this, we design a model migration mecha-
nism that allows the DRL model to transfer from the old master node 
to the new one, continuing its incremental learning based on the previ-
ous state. During normal system operation, the master node periodically 
saves and uploads the DRL model parameters and states to the system’s 
shared network storage to ensure that the latest model data is not lost in 
case of master node failure. When a failure of master node is detected, 
the election algorithm promptly initiates a new election process to se-
lect a new master node to take over the system. After the new master 
node is selected, it first retrieves the latest DRL model parameters and 
states from the most recent shared network backup. Meanwhile, the DRL 
model on the new master node also synchronizes the existing experi-
ence replay buffer to continue incremental learning based on the latest 
data. The model migration mechanism ensures the model can keep op-
timizing its optimal chunking policy in complex and changing network 
environments without interrupting the learning process due to master 
node changes, thus guaranteeing system stability.

5.  Efficient transmission method based on dynamic chunking

In this section, we present the efficient transmission method based 
on dynamic chunking, specifically covering data chunking, distributed 
storage, transmission, and reassembly verification.

5.1.  Data distributed storage

The overall architecture of the efficient transmission method based 
on dynamic chunking is illustrated in Fig. 6. Distributed storage is the 
foundation of the efficient transmission method in distributed systems, 
responsible for tasks such as chunking, identifying, and storing shared 
data uploaded by nodes. When a node needs to store data in the shared 
network, the uploaded data is first split into multiple data chunks. The 
size of each data chunk is determined by the DRL-based decision mech-
anism, which predicts the optimal size based on the real-time network 
environment. Each resulting data chunk is individually hashed using the 
SHA-256 [40] algorithm to generate a unique content identifier. The 
approach not only enables content-based addressing of data throughout 
the distributed environment but also ensures data integrity and consis-
tency verification. Any tampering or loss of data chunks will change 
their hash values, meaning that acquiring data through its hash index 
directly points to the correct data entity. The sliced data chunks are or-
ganized using the Merkle DAG data structure, with the root node’s hash 
serving as the unique identifier for the entire data. All hash indexes and 
storage addresses are recorded in the DHT. The DHT establishes a map-
ping between data hash indexes and their provider nodes, enabling fast 
data retrieval and location.
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Fig. 6. Efficient transmission method.

When a node needs to obtain data, the requester can directly query 
the DHT for data providers and transfer data in parallel from multi-
ple nodes via the P2P network. It achieves decentralized data trans-
mission, ensuring security and reliability during transfer. After obtain-
ing data chunks, nodes cache them locally and subsequently serve as 
new providers, facilitating data exchange and transmission to other re-
questers. Distributed storage ensures high data integrity and availabil-
ity through redundant storage across various node caches. Even if some 
nodes fail, as long as at least one provider is operational, the data can 
still be provided.

5.2.  Data retrieval

When a node needs to acquire specific data, it uses the data’s hash 
value along with the DHT and content-addressing technology to locate 
the providers of the data. After obtaining the locations of providers, 
the node can download different data chunks in parallel from multiple 
providers via the P2P network. During the data retrieval process, each 
node maintains a routing table that splits the entire distributed network 
into multiple k-buckets. Each k-bucket stores information about nodes 
within a specific distance range from the current node, with fixed capac-
ity and ordered by their most recent contact time. Additionally, nodes 
utilize the Kademlia routing algorithm for node location and data re-
trieval. The algorithm calculates the logical distance between the IDs of 
two nodes using XOR operations, where a smaller XOR distance implies 
closer proximity between nodes, enabling faster discovery of the target 
node and optimizing the data retrieval process.

Ultimately, the system obtains a list of nodes storing the target data 
via the distributed algorithm and selects a subset of them to request 
the data. The specific workflow of the data retrieval algorithm is as fol-
lows. First, the current node computes the XOR distance to the target 
hash value and selects the closest nodes from its routing table as initial 
candidate nodes. Then, it sends query requests to these candidates. Each 
candidate node checks whether it stores the data entity corresponding to 
the target hash value. If not found, the candidate returns a list of nodes 
from its routing table that are closer to the target hash value. This iter-
ative process continues until the node corresponding to the target hash 
value is found, or when the nodes returned by the iteration are no longer 
closer to the target hash value. If a data chunk has multiple providers, 
the requesting node can also select the top-priority nodes for retrieval 
based on current network conditions and transmission performance.

5.3.  Data transmission

During data transmission, nodes communicate directly with data 
owner nodes via a P2P network. Each data chunk is transmitted indepen-

dently, and different chunks can be retrieved in parallel from multiple 
providers. Nodes can also dynamically adjust the transmission prior-
ity of data chunks and nodes based on data needs, network conditions, 
and transmission history. Additionally, the BitSwap protocol manages 
the data exchange process by recording transmission history between 
nodes, allowing the system to prioritize certain nodes for data retrieval 
and thereby optimize parallel transmission.

During the data transfer process, when a node needs to obtain spe-
cific data, it first queries its local cache and neighboring nodes. If the 
data is not found, the DHT-based iterative retrieval process is initiated. 
Based on the list of provider nodes returned by the DHT, the requesting 
node selects several target nodes and sends a data request, which in-
cludes the hash of the target data and the number of chunks needed. The 
request also specifies the list of desired data chunks. Upon receiving the 
request, the provider nodes check their local repositories and respond 
with the availability of the requested chunks, which are then transmitted 
via the P2P network. Throughout the process, the node continuously ad-
justs the priority of chunks to ensure higher-priority data chunk is trans-
mitted first. The BitSwap protocol enables concurrent transfers of data 
chunks from multiple nodes, improving overall transmission efficiency. 
A sliding window mechanism manages out-of-order chunk arrivals, and 
the system organizes received chunks using hash-based structures to en-
sure data integrity and consistency. If any chunks are missing or cor-
rupted, the node will re-request them from available providers and in-
crease their transmission priority, thereby enhancing the reliability of 
the transmission process.

5.4.  Data reconstruction and verification

After receiving all the data chunks, the requesting node reconstructs 
the original data based on the hash index and chunking information. 
During the reassembly process, all chunks are organized in their origi-
nal order using a Merkle DAG structure, where the hash identifiers of 
child nodes are recursively used to generate those of parent nodes, ul-
timately forming the root hash identifier. The root identifier serves as 
the CID of the complete data, which encapsulates information such as 
the identifier encoding format, data encoding type, and content hash 
value. During the integrity verification phase, the system traverses the 
Merkle DAG starting from the root hash, recursively verifying the hash 
identifiers of child nodes. If a mismatch is found between the computed 
and expected hash values of any chunk, the system determines that the 
chunk has been tampered with or lost. In such cases, the requesting 
node will initiate a retransmission request to the provider node for that 
chunk. For large files, the mechanism also supports on-demand verifica-
tion. If only a portion of the file is needed, the verification mechanism 
can check just the path from the root node to the target data chunk, 
without traversing the entire data structure. Through collaboration be-
tween data reconstruction and verification, the system ensures that data 
chunks remain untampered and intact throughout the transmission pro-
cess.

6.  Evaluation

In this section, we evaluate the transmission performance of the pro-
posed mechanism on the constructed distributed platform. We also com-
pare it with other baselines in terms of transmission duration, through-
put, and optimization rate to better validate the effectiveness and adapt-
ability of the mechanism.

6.1.  Experimental settings

For the evaluation, we constructed a distributed emulation plat-
form utilizing five independent virtual machine nodes hosted on a high-
performance cloud server. The server is equipped with an Intel Xeon 
Gold 6238R CPU (@ 2.20GHz), 64 GB of RAM, and a 512 GB SSD, run-
ning the Ubuntu 18.04 LTS operating system. To emulate the dynamic 
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Fig. 7. Experimental emulation platform.

Table 1 
Hyperparameter settings.
 Description  Symbol  Value
 Hidden Layer Dimensions 𝑛hidden 128, 128
 State Dimension 𝑑𝑠 8
 Action Dimension 𝑑𝑎 8
 Learning Rate 𝛼 10−4

 Discount Factor 𝛾 0.9
 Exploration Rate 𝜖 0.9
 Target Update Frequency 𝑁target 200
 Replay Buffer Capacity 𝐶 1000
 Batch Size 𝐵 32
 Min Sampling Threshold 𝑁min 200
 Gradient Clipping 𝐺clip 1.0

and heterogeneous network conditions of real-world distributed envi-
ronments, we employed network emulation tools such as TC to precisely 
configure the network bandwidth, latency, and packet loss rate for each 
node. The architecture of this experimental platform is illustrated in 
Fig. 7. In the implementation of the proposed mechanism, the hyperpa-
rameter settings for the DRL model are detailed in Table 1. To ensure a 
fair and rigorous comparison, all baseline methods were tuned and eval-
uated under the exact same environmental conditions and datasets as 
the proposed mechanism. Additionally, we selected the following three 
baselines to demonstrate the effectiveness of the proposed mechanism, 
as follows:

(1) Fixed: In previous works [13,33], the fixed chunking approach typ-
ically splits data using a chunk size of 256KB.

(2) Random: The random chunking approach selects a chunk size ran-
domly for splitting the data.

(3) Fitted formula: The fitted-formula-based chunking approach [41] 
builds a transmission time prediction model through mathe-
matical modeling and polynomial fitting, then calculates the 
chunk size that minimizes the transmission time for splitting the
data.

6.2.  Performance comparison

In this part, we simulate various network conditions, file proper-
ties, and node states to comprehensively evaluate the performance of 
our proposed mechainism. In the experiments, the network bandwidth 
is set to ten different values ranging from 16Mbps to 160Mbps with a 

step of 16Mbps. The number of data provider nodes varies from 1 to 
4, and the inter-node delay is configured to 0 ms, 50 ms, and 100 ms 
to simulate no delay, normal delay, and high-delay scenarios, respec-
tively. In terms of data characteristics, various file types (e.g., txt, zip, 
mp4, and mp3) are involved, with file sizes ranging from 100MB to
1000MB.

6.2.1.  Transmission duration
Fig. 8 illustrates the transmission duration under different conditions 

for the four chunking-based transmission strategies when the number 
of data provider nodes is fixed. Firstly, the Fig. 8(a) shows the varia-
tion in transmission duration with respect to data size when the node 
bandwidth is 80Mbps and the network delay is 50 ms. It can be ob-
served that the proposed method achieves lower transmission duration 
than the other three strategies across most data sizes. Its advantage is 
particularly noticeable for larger files, where the transmission duration 
is significantly lower than the other baselines. Although the random 
chunking and fitted formula chunking may yield lower transmission du-
ration in certain cases, their performance is highly unstable. This may 
be due to the selection of excessively small chunk sizes, resulting in a 
larger number of chunks and thus increased retrieval time. Then, the 
Fig. 8(b) shows that under a fixed delay of 50 ms, the proposed mecha-
nism achieves lower transmission time than the baselines across differ-
ent bandwidth for data of the same data size. Notably, the traditional 
fixed chunking strategy performs significantly worse in many cases, es-
pecially at higher bandwidths. This indicates that fixed chunking designs 
tend to waste a large portion of time on chunk retrieval and other opera-
tions, leading to poor bandwidth utilization and increased transmission 
duration. Finally, the Fig. 8(c) demonstrates that for 500MB of data 
size under different delay settings, the transmission duration of the dy-
namic chunking remains significantly lower than that of the baselines. 
Moreover, compared to random chunking and formula-based chunking, 
the dynamic strategy maintains more stable performance under higher 
delay, indicating better adaptability.

6.2.2.  Overall throughput
Fig. 9 presents a comparison of overall throughput for the four 

chunking strategies under different conditions with the number of 
data provider nodes fixed. Firstly, the Fig. 9(a) shows how through-
put varies with data size when each node has a bandwidth of 80Mbps 
and a network delay of 50 ms. It can be observed that the proposed 
mechanism consistently achieves higher overall throughput than the 
baselines in most cases. The advantage is particularly pronounced for 
larger data sizes, indicating that the dynamic chunking mechanism ef-
fectively optimizes the chunking strategy to reduce transmission wait 
time and retrieval delays, thereby improving overall throughput. Then, 
the Fig. 9(b) shows the throughput of each method when transferring 
1000MB file under a fixed delay of 50 ms and varying bandwidth lev-
els. The results indicate that the dynamic chunking mechanism demon-
strates clear advantages in throughput across most bandwidth settings, 
especially in higher-bandwidth scenarios. While the throughput perfor-
mance of all methods is relatively close under lower bandwidths, the 
dynamic chunking method still maintains a noticeable edge. In con-
trast, under high bandwidth conditions, the throughput of the other 
baselines does not significantly improve, suggesting that their chunk-
ing strategies fail to fully utilize the available bandwidth. Finally, the 
Fig. 9(c) compares the throughput of the four strategies for trans-
mitting a 1000MB file under varying delay conditions while keeping 
bandwidth fixed. The results show that the dynamic chunking strat-
egy maintains more stable throughput performance as network delay 
increases, outperforming the other baselines in terms of stability and
adaptability.

6.2.3.  Transmission optimization rate
Fig. 10(a) to (c) illustrate the transmission optimization rate of 

the proposed mechanism compared to the traditional fixed chunking
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Fig. 8. Transmission duration under different network conditions.

Fig. 9. Overall throughput under different network conditions.

Fig. 10. Transmission optimization rate under different network conditions.

Table 2 
Comparison of transmission duration and throughput.

Method
 Transmission Duration (s)  Overall Throughput (Mbps)
 Mean ± SD  Variance  Mean ± SD  Variance

 Fixed Chunking 87.40 ± 12.50  156.25 45.77 ± 6.80  46.24
 Random Chunking 101.50 ± 28.50  812.25 39.41 ± 16.50  272.25
 Formula Chunking 72.50 ± 9.20  84.64 55.17 ± 8.40  70.56
 Dynamic Chunking 𝟓𝟗.𝟐𝟎 ± 𝟔.𝟓𝟎 𝟒𝟐.𝟐𝟓 𝟔𝟕.𝟓𝟕 ± 𝟕.𝟓𝟎 𝟓𝟔.𝟐𝟓

approach. Overall, the proposed mechanism demonstrates superior opti-
mization rates under various conditions, including different bandwidths, 
delays, and file characteristics. In particular, under high-latency envi-
ronments, our proposed mechanism effectively adapts to network fluc-
tuations and significantly improves transmission performance and ef-
ficiency. Firstly, the Fig. 10(a) shows the optimization effect under a 
no-delay (0 ms) environment, where the optimization rate generally 
ranges between 3% and 11%, with a more noticeable improvement 
for small file transfers. Then, the Fig. 10(b) presents the results under 

a typical delay (50 ms), where the optimization rate can reach up to 
45%, with the most significant improvements observed for files smaller 
than 500MB. Under low-bandwidth conditions (40Mbps), the proposed 
mechanism achieves higher optimization rates for large file transfers. 
This indicates that our dynamic chunking mechanism adapts better to 
low-bandwidth and higher-latency conditions compared to traditional 
fixed chunking. Finally, the Fig. 10(c) demonstrates that the proposed 
mechanism achieves the highest optimization under high-delay envi-
ronments (100 ms), with peak optimization rates reaching 72% and an 
average of around 40%. For larger file transfers, the optimization rate 
slightly decreases, hovering around 20%. The results confirm the mech-
anism’s strong adaptability to high-latency conditions. By dynamically 
adjusting chunk sizes according to current network conditions, the dy-
namic chunking strategy effectively optimizes distributed transmission 
performance.

6.2.4.  Scalability
To evaluate the scalability of the system, we analyze the effective-

ness of the four chunking methods as the number of provider nodes 
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Fig. 11. Performance when the number of provider nodes changes.

Fig. 12. Box plots of transmission duration and throughput.

Fig. 13. Performance comparison of different action granularities.

increases. Fig. 11(a) presents the transmission duration of a 500MB 
file under different numbers of providers, with a bandwidth of 80Mbps 
and a latency of 50 ms. The results indicate that the proposed mecha-
nism consistently achieves lower transmission duration as the number of 
providers increases, demonstrating excellent scalability. In contrast, the 
fixed and formula-based chunking methods show only marginal or un-
stable improvements, with transmission duration fluctuating and over-
all performance less stable. Fig. 11(b) compares the throughput of the 
four chunking transmission methods for a 1000MB file at a bandwidth 
of 160Mbps and a latency of 50 ms. The results reveal that our pro-
posed mechanism maintains superior throughput in most cases, espe-
cially when there are three provider nodes, significantly outperform-
ing the other baselines. Meanwhile, the fixed chunking method ex-
hibits large fluctuations in throughput, indicating poor stability. Over-
all, the proposed mechanism proves more effective in adapting to en-
vironments with multiple provider nodes. It can more efficiently utilize 
available node resources, validating its superiority when node resources
vary.

6.2.5.  Stability analysis
Beyond efficiency, transmission stability is a critical performance 

metric in distributed systems. To quantitatively assess the stabil-
ity of our proposed mechanism, we conducted a series of indepen-
dent trials under representative network conditions (80Mbps band-
width, 50 ms latency, and 500MB data size), followed by a com-
prehensive statistical analysis. Fig. 12 presents box plots illustrat-

ing the distributions of transmission duration and throughput. As ob-
served, the dynamic chunking method exhibits a significantly more 
compact interquartile range (IQR) compared to the baselines, indi-
cating superior performance stability. Furthermore, Table 2 provides 
a detailed breakdown of the mean, standard deviation, and vari-
ance for both transmission duration and throughput. The data demon-
strates that the proposed mechanism consistently outperforms the base-
lines across all metrics, confirming that the dynamic chunking ap-
proach maintains high transmission efficiency while achieving robust
stability.

6.2.6.  Impact of action space granularity
In the design of the DRL model, the step size within the action space 

dictates the granularity of chunk adjustments. To systematically validate 
the rationality of selecting 128KB as the fixed step size, we conducted 
a series of parameter sensitivity analysis experiments. Under identical 
network conditions (100Mbps bandwidth and 1000MB data size), we 
selected three representative granularities within the chunk size range 
of [64, 1024] KB for comparative evaluation: fine-grained (64KB), base-
line (128KB), and coarse-grained (256KB). The fine-grained setting 
constructs a larger action space, offering higher control precision but 
incurring increased training costs. Conversely, the coarse-grained set-
ting results in an action space with only four discrete actions, reducing 
computational overhead but yielding a relatively coarse control policy. 
Fig. 13 illustrates the performance in terms of transmission duration 
and throughput across various granularities under different latency con-
ditions. It can be observed that transmission performance significantly 
degrades under the coarse-grained setting. In contrast, the experimen-
tal results for the fine-grained setting exhibit a distinct saturation effect, 
showing only marginal improvements compared to the baseline. How-
ever, the action space size doubles, which significantly increases the 
agent’s computational complexity and convergence time. Therefore, the 
128KB step size strikes an optimal trade-off between transmission per-
formance and training overhead, validating the rationality of our design 
choice.

6.3.  Comparison with mainstream distributed protocols

While algorithmic comparisons have validated the theoretical advan-
tages of the dynamic chunking strategy, it is equally critical to evaluate 
its performance gains relative to other transmission protocols within a 
distributed network environment. To this end, we selected two main-
stream chunk-based distributed transmission protocols (IPFS [25] and 
BitTorrent [13]) as baselines. We conducted comparative evaluations 
against the proposed mechanism on our constructed distributed plat-
form to verify the mechanism’s effectiveness in practical applications. 
IPFS employs a rigid fixed-size chunking design, where data is pre-
segmented into independent blocks of a predetermined size before en-
tering the transmission layer. Similarly, BitTorrent, a dominant protocol 
for large-scale P2P data sharing, enforces a fixed chunk size determined 
during torrent generation, which remains immutable throughout the 
network. Fig. 14 illustrates the transmission performance of the three 
methods under varying conditions of bandwidth, file size, and latency. 
Fig. 14(a) reveals that as network bandwidth increases, the throughput 
growth of both IPFS and BitTorrent plateaus, exhibiting distinct satu-
ration effects and failing to fully utilize available bandwidth resources. 
In contrast, the dynamic chunking transmission mechanism effectively 
enhances bandwidth utilization through real-time adjustments, yield-
ing throughput performance significantly superior to both baselines. 
Fig. 14(b) shows that the proposed mechanism effectively adapts to 
varying data scales. By optimizing chunk sizes to boost efficiency, it 
achieves lower transmission durations than other methods across di-
verse file sizes. Fig. 14(c) further elucidates the impact of network la-
tency. While traditional distributed protocols suffer severe performance 
degradation in high-latency scenarios, our proposed mechanism effec-
tively mitigates the adverse effects of high latency through intelligent 
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Fig. 14. Performance comparison of different transmission protocols.

decision-making. Overall, traditional distributed transmission protocols 
exhibit distinct limitations when confronting network fluctuations. Con-
versely, the proposed mechanism demonstrates superior adaptability to 
complex and dynamic distributed network environments through dy-
namic decision-making. It outperforms the baselines across all evaluated 
metrics, verifying both the effectiveness and robustness of the mecha-
nism.

7.  Conclusion

In this paper, we propose an intelligent and efficient transmission 
mechanism based on dynamic chunking for distributed environments. 
The proposed mechanism adopts a master-slave architecture to perceive 
real-time environmental states, dynamically adjusts data chunk sizes to 
improve transmission efficiency. Concurrently, it leverages DHT and 
P2P technologies to enable parallel transmission. In addition, to opti-
mize chunking decisions, we innovatively introduce a DRL approach, 
modeling the chunking process as Markov Decision Process, where an 
agent interacts with the environment to learn optimal dynamic chunking 
policy. The dynamic chunking module aggregates network-wide node 
information to environment states in real time and applies DRL decisions 
by coordinating chunk size adjustments across nodes. Furthermore, we 
design a master node election algorithm, delayed experience feedback 
mechanism, and model migration mechanism to ensure system robust-
ness and continuous optimization of chunking decisions. Extensive sim-
ulation experiments demonstrate that the proposed method offers signif-
icant advantages over conventional ones in key metrics such as trans-
mission duration and throughput, and maintains high adaptability in 
dynamic and complex environments. Currently, the proposed mecha-
nism primarily operates based on global environmental observations. 
However, given the complexity of real-world distributed systems, the 
heterogeneity of individual nodes and the stochastic nature of feedback 
signals are non-negligible factors. Therefore, future work will consider 
exploring fine-grained decision frameworks to better adapt to diverse 
node characteristics. Additionally, we will consider investigating robust 
learning techniques, such as PSSCL [42], to mitigate the potential im-
pact of measurement noise and further enhance system stability.
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