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ABSTRACT
Integrating healthcare systems with intelligent transportation networks represents a critical frontier in modern urban infra
structure, where efficient resource allocation and timely service delivery can significantly impact patient outcomes. However, 
current approaches often fail to capture the complex interplay between healthcare facility accessibility and transportation 
dynamics, particularly during emergencies. Additionally, the temporal dependencies in healthcare service delivery follow strict 
sequential patterns that significantly influence both routine operations and emergency response effectiveness. To address these 
challenges, we propose a multi‐scale spatio‐temporal transformer network for healthcare and transportation (MST‐HT) that 
leverages generative AI capabilities. Our model employs multiple specialised transformer networks to model different spatial 
scales, capturing hidden dependencies while using graph convolutional networks to learn static infrastructure features. The 
architecture incorporates healthcare district patterns, emergency response corridors and facility distributions through a novel 
gating mechanism that adaptively combines features based on their predictive importance. The model maintains awareness of 
critical service delivery patterns by embedding healthcare‐specific temporal position information while optimising resource 
allocation. Experiments on real‐world datasets demonstrate MST‐HT's superior performance, achieving a 15.7% reduction in 
emergency response times and a 23.4% improvement in resource allocation efficiency compared to state‐of‐the‐art baselines.

1 | Introduction

The convergence of intelligent transportation systems and 
healthcare infrastructure has become increasingly critical in 
modern smart cities, where efficient resource allocation and 
predictive analytics can significantly impact traffic management 
and emergency medical services [1, 2]. Traditional spatio‐ 
temporal data mining approaches in these domains have pri
marily focused on historical pattern analysis, yet the dynamic 
nature of urban environments demands more sophisticated pre
dictive capabilities. With the emergence of generative artificial 
intelligence (AI), particularly transformer‐based architectures, 

an unprecedented opportunity exists to enhance the prediction 
accuracy and reliability of both transportation and healthcare 
resource management systems [3–5]. Early research efforts 
employed conventional time series models for basic regression 
predictions [6]. However, these approaches proved inadequate for 
capturing the complex interdependencies inherent in modern 
urban systems where traffic patterns directly influence emer
gency response times and healthcare accessibility.

The intricate relationship between transportation and health
care systems forms a cornerstone of effective public health 
services. Transportation networks directly impact healthcare 
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accessibility, emergency response times, and patient outcomes 
through multiple pathways: emergency medical services rely on 
efficient traffic management for rapid response, patient transfers 
between facilities depend on predictable travel times and 
routine medical appointments require reliable transportation 
access [7, 8]. When transportation systems experience delays or 
disruptions, the consequences cascade through the healthcare 
network—ambulances face longer response times, patient 
transfers are delayed and access to routine care becomes 
compromised. This interdependence becomes particularly crit
ical in urban environments where complex traffic patterns 
intersect with high‐density healthcare service demands [9].

Integrating machine learning and deep learning methodologies 
has markedly improved our ability to model complex spatio‐ 
temporal relationships in urban systems [10–12]. However, 
these approaches face several critical challenges when applied 
to the interconnected domains of transportation and healthcare. 
Firstly, the spatial dependencies in these systems extend beyond 
simple physical connections, encompassing hidden relation
ships formed by various factors such as road attributes, regional 
functions, healthcare facility distributions and emergency 
response zones. These multiple scales of spatial interaction 
create intricate patterns that significantly influence traffic flow 
and healthcare resource utilisation. Traditional models focusing 
solely on physical connectivity or geographic proximity fail to 
capture these multifaceted relationships, leading to suboptimal 
predictions and resource allocations across transportation and 
healthcare networks.

A fundamental limitation of existing approaches lies in their 
treatment of temporal dependencies within spatio‐temporal 
data streams. The relationship between consecutive time 
points in transportation and healthcare contexts follows strict 
relative positioning rules, where future states cannot influence 
past observations. However, current models often overlook this 
crucial aspect, treating temporal relationships as bidirectional or 
ignoring the inherent causality in temporal sequences. This 
oversight becomes particularly problematic in scenarios 
requiring precise emergency response routing or hospital 
resource allocation predictions, where accurate temporal 
modelling can mean the difference between life and death. 
Furthermore, integrating generative AI capabilities introduces 
new possibilities for more accurate modelling of these temporal 
dependencies, but existing frameworks still need to leverage 
these advanced architectural benefits fully [13–16].

The complexity of modern urban systems necessitates a more 
comprehensive approach to spatial dependency modelling. 

Traditional methods typically focus on a single spatial scale, 
such as road‐level connectivity or regional clustering, leading to 
incomplete representations of the underlying system dynamics 
[17]. This limitation becomes particularly evident when 
considering the interplay between transportation infrastructure 
and healthcare facility access, where multiple spatial scales 
simultaneously influence system behaviour. For instance, the 
effectiveness of emergency medical services depends not only on 
immediate road connectivity but also on broader regional 
healthcare facility distribution and specialised care unit loca
tions [18, 19]. Additionally, generative AI technologies have 
introduced new possibilities for modelling these multi‐scale 
relationships, yet existing frameworks still need to fully incor
porate these capabilities into their architectural designs.

Recent advances in multi‐graph neural networks have demon
strated improved prediction accuracy through dynamic graph 
construction [20, 21]. ASTMGCNet [22] combines GRU with 
graph convolutions to capture temporal dependencies, whereas 
resource‐aware approaches optimise edge computing de
ployments. Task planning methods [23–25] address vehicle 
routing under constraints, providing foundations for emergency 
response optimisation. However, these methods do not explic
itly model healthcare facility distributions or emergency 
response corridors, limiting their applicability to medical 
transportation scenarios.

This study introduces three key innovations in transportation 
systems: First, a multi‐scale architecture that processes traffic 
patterns at different granularities—from individual road seg
ments to district‐wide flows—enabling more accurate pre
dictions for emergency vehicle routing. Second, integration of 
healthcare facility distribution patterns with traffic prediction to 
optimise emergency response paths. Third, adaptive feature 
fusion that combines information from multiple traffic moni
toring sources to improve routing decisions, as shown in 
Table 1.

The main contributions of this paper are summarised as follows:

• We propose a multi‐scale spatio‐temporal transformer ar
chitecture (MST‐HT) that uniquely integrates healthcare 
facility distribution patterns with transportation network 
dynamics through specialised attention mechanisms.

• We develop a comprehensive multi‐scale feature extraction 
approach that captures spatial dependencies at various 
levels, from individual facility connections to regional 
healthcare coverage patterns.

TABLE 1 | Comparison of recent spatio‐temporal traffic prediction methods.

Method Architecture
Healthcare 
integration

Multi‐ 
scale

Attention 
mechanism

Emergency 
optimisation

DMFGNet [20] Multi‐graph GNN No Yes Spatio‐temporal No

ASTMGCNet [22] GCN + GRU No Yes Dual attention No

Dynamic multi‐ 
graph [21]

STGNN + FL No Yes Adaptive No

MST‐HT (ours) Transformer + GCN Yes Yes Multi‐head + district Yes
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• We introduce a healthcare‐aware temporal position 
embedding mechanism that maintains strict causality in 
service delivery patterns while optimising resource 
allocation.

• We design an adaptive gating mechanism that dynamically 
combines features from different spatial scales based on 
their relevance to current healthcare delivery requirements.

The rest of the paper is organised as follows: Section 2 in
troduces the fundamental concepts and definitions underlying 
the MST‐HT model, details the core architecture of our model, 
describes the multi‐scale spatial feature extraction module, and 
elaborates on the temporal feature extraction mechanisms. 
Section 3 presents experimental results. Finally, Section 4 con
cludes the paper.

2 | MST‐HT Model

2.1 | Model Foundations and Definitions

Effective monitoring and prediction in modern intelligent trans
portation and healthcare systems require sophisticated modelling 
of complex spatio‐temporal relationships. Our framework estab
lishes several foundational definitions that capture the intricate 
interplay between healthcare facilities, emergency response 
units, and transportation infrastructure. The hybrid network we 
consider incorporates both physical infrastructure and digital 
sensing capabilities, represented through a comprehensive graph 
structure H = (P,C,M), where P represents the set of monitoring 
points including traffic sensors, ambulance tracking devices and 
hospital admission sensors, C denotes the set of connectivity re
lationships including both physical roads and emergency 
response corridors, and M ∈ RL×L represents the multi‐ 
dimensional adjacency matrix constructed using adaptive ker
nels that account for both geographic distance and functional 
relationships between nodes, with L = |P| indicating the total 
number of monitoring points in the system.

For each monitoring point pi (where 1 ≤ i ≤ L), we track multiple 
time‐varying metrics represented by qi

t ∈ Rd, where d indicates 
the dimension of features including traffic flow, emergency 
vehicle presence, patient transport frequency, and hospital 
admission rates at time step t. The complete state of our hybrid 
healthcare transportation system at time t is captured by 
qt = (q1

t , ..., qi
t, ..., qL

t ) ∈ RL× d. To enable predictive modelling, we 
maintain a historical sequence Zin = (qt − τ + 1, ..., qt) ∈ Rτ ×L× d 

comprising τ time steps of multi‐dimensional data across all 
monitoring points.

The fundamental prediction task in our framework involves 
learning a transformation function ϕ that maps the input 
sequence Zin to future system states Û ∈ Rγ ×L× d, expressed as 

Zin →
ϕ

Û . This mapping must account for the spatial relation
ships between different healthcare transportation network 
components and system states' temporal evolution. Our model 
focuses on predicting critical metrics such as emergency 
response times, hospital resource utilisation and traffic 
congestion patterns that directly impact healthcare service 

delivery. The prediction horizon γ is typically set to match 
operational planning requirements in healthcare facilities and 
emergency response units. However, incorporating multiple 
feature dimensions d allows our model to capture the complex 
interactions between transportation infrastructure and health
care service delivery.

This foundational framework enables us to develop sophisticated 
prediction mechanisms that account for the unique characteris
tics of integrated healthcare and transportation systems, 
including the need for rapid emergency response, optimal 
resource allocation, and efficient patient transport under varying 
traffic conditions. The multi‐dimensional nature of our moni
toring points and their associated features allows for compre
hensive modelling of both routine operations and emergency 
scenarios, whereas the graph structure captures both physical and 
functional relationships critical for effective system management.

2.2 | Architecture Overview

In developing our healthcare‐integrated transportation predic
tion model MST‐HT, we introduce a comprehensive architec
ture that leverages generative AI capabilities to address the 
complex dynamics of urban healthcare and mobility systems. As 
illustrated in Figure 1, the model architecture comprises three 
primary components: the healthcare‐aware multi‐scale feature 
extraction (HM‐SFE) module, the emergency‐transportation 
temporal extraction module, and the predictive analytics mod
ule. The input sequence first undergoes feature dimensionality 
enhancement through a specialised convolutional layer, trans
forming the data according to:

Q = Convgen(Zin) , (1)

where Q ∈ Rm× τ ×L represents the enhanced feature space with 
m channels capturing various aspects of healthcare and trans
portation dynamics.

The HM‐SFE module processes spatial features at multiple 
scales crucial for healthcare service delivery and transportation 
efficiency:

QH = HSA(Fpoint,Fzone,Froute,Fbase) , (2)

where Fpoint represents individual monitoring point features 
(including hospitals, clinics and traffic sensors), Fzone captures 
healthcare district characteristics, Froute models emergency 
response corridors and Fbase encodes static infrastructure infor
mation. The function HSA( · ) represents our healthcare‐aware 
selection aggregation mechanism that adaptively combines 
features based on their relevance to current system states.

This architecture enables comprehensive modelling of health
care transportation interactions through Nblock iterations of 
feature processing, where each iteration refines the under
standing of spatio‐temporal patterns critical for emergency 
response and patient care optimisation. The model's innovative 
use of transformer‐based components and healthcare‐specific 
feature extraction mechanisms allow it to capture complex 
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relationships between traffic conditions, emergency vehicle 
routing and hospital resource utilisation patterns.

2.3 | Multi‐Scale Spatial Feature Extraction 
Module

The spatial dependencies in integrated healthcare and trans
portation systems extend beyond simple node‐to‐node connec
tions, encompassing complex relationships shaped by healthcare 
facility distributions, emergency response patterns and regional 
medical service demands. In modern intelligent transportation 
systems supporting healthcare delivery, these spatial relation
ships manifest through multiple scales, from individual facility 
connections to regional healthcare coverage patterns. The effec
tiveness of emergency medical services, for instance, depends on 
the immediate road connectivity and the broader distribution of 
healthcare facilities and specialised medical units [26, 27]. 
Traditional modelling approaches focussing solely on physical 
infrastructure connections often fail to capture these multi‐ 
faceted spatial relationships, leading to suboptimal predictions 
and resource allocations in healthcare transportation networks.

The multi‐scale spatial features in our framework are defined 
across four hierarchical levels. At the facility level (finest scale), 
individual monitoring points represent hospitals, clinics, ambu
lance stations, and traffic sensors, with features capturing point‐ 
specific metrics such as bed capacity, emergency department 
status, and real‐time vehicle presence. At the district level (in
termediate scale), healthcare service regions are defined by 
radius‐based clustering around major medical centres, with fea
tures encoding service coverage, patient flow patterns, and 
aggregate facility capacity within each district. At the corridor 
level (intermediate scale), emergency response pathways connect 
medical facilities with high‐traffic zones, capturing route‐specific 
features including average travel times, road capacity and his
torical emergency vehicle usage. At the infrastructure level 
(coarsest scale), the static road network topology encodes 
fundamental connectivity through adjacency matrices based on 
physical road links.

To address this complexity, our model implements a compre
hensive multi‐scale feature extraction approach that analyses 
spatial dependencies at various levels of granularity. The 
healthcare‐aware spatial feature extraction process can be 
formally expressed as follows:

EH = HGM(Gunit,Gdist,Gpath,Ginf) , (3)

where EH represents the integrated healthcare transportation 
features, Gunit captures individual facility and sensor charac
teristics, Gdist represents healthcare district patterns, Gpath 

models emergency response corridors and Ginf encodes static 
infrastructure information. The function HGM( · ) represents 
the healthcare‐aware gating mechanism that adaptively com
bines features based on their relevance to current system states 
and emergency response requirements.

This multi‐scale approach allows for precise modelling of various 
healthcare transportation scenarios, from routine patient trans
fers to emergency response situations. At the facility level, it 
captures the immediate interaction between hospitals, clinics, 
and their surrounding transportation infrastructure. At the dis
trict level, it models broader patterns of healthcare service 
coverage and accessibility. The emergency response pathway 
scale focuses on critical routes and corridors essential for rapid 
medical response, whereas the infrastructure scale provides 
context about the underlying transportation network's capacity 
and constraints. This comprehensive approach ensures that our 
model can effectively predict and optimise healthcare service 
delivery across the entire urban healthcare transportation 
network, considering routine operations and emergency 
scenarios.

2.3.1 | Healthcare District Feature Extraction Layer

The healthcare district feature extraction layer focuses on 
extracting critical spatial patterns within healthcare service re
gions, considering medical facility distributions and their asso
ciated transportation networks. For any given healthcare facility 

FIGURE 1 | Multi‐scale generative architecture for healthcare and transportation systems.
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hi, we define its service district Di as the collection of all 
monitoring points within a specified radius λ, encompassing 
medical facilities and transportation infrastructure nodes.

The model incorporates demographic and cultural factors 
through a regional adaptation layer. This component adjusts 
predictions based on local healthcare‐seeking behaviours, cul
tural preferences for specific medical facilities and community‐ 
specific emergency response patterns.

Before extracting district‐specific features, our model employs a 
learnable healthcare position embedding matrix Pmed ∈ RN ×N to 
capture dynamic spatial relationships between facilities and 
transportation nodes [28]. The embedded features are computed 
through:

Qʹ = M(Q,Pmed) , (4)

where M( · ) represents a 1 × 1 convolutional layer that in
tegrates dynamic positioning information into the feature space. 
The transformed data Qʹ enters the healthcare district multi‐ 
head attention unit for spatial feature extraction.

The district attention mechanism [29] computes attention scores 
specifically for nodes within each healthcare service district:

Hdist
ij =

Qí U
Q
dist(Qj́ U

K
dist)

T

̅̅̅̅̅
dk

√ + Cij
, (5)

where Qí U
Q
dist represents the query vector for facility i, Qj́ U

K
dist 

represents the key vector for node j, and dk serves as a scaling 
factor. The district selection variable Cij is defined as follows:

Cij = {
0 j ∈ Di

−inf j ∉ Di
. (6)

The attention scores undergo softmax normalisation to generate 
district‐aware attention weights:

Ldist = softmax(Hdist)QʹUV
dist, (7)

where UV
dist represents the value projection matrix for healthcare 

district features.

Equations (5–7) describe how the model processes healthcare 
district information. Equation (5) calculates attention scores 
between facilities using transformed queries and keys, scaled by 
dimension. Equation (6) defines a binary selection variable for 
district membership, whereas Equation (7) normalises attention 
weights using softmax.

To stabilise the learning process, we employ layer normalisation 
with residual connections:

Ld́ist = LN(Qʹ + Ldist). (8)

The healthcare district features are then processed through a 
feed‐forward network with ReLU activation:

Fdist = σ(Ld́istW1 + b1)W2 + b2. (9)

The final healthcare district features are obtained through 
another layer normalisation operation:

Gdist = LN(Linear(ReLU(Linear(Ld́ist))) + Ld́ist). (10)

Equations (8–10) handle feature refinement within healthcare 
districts. Equation (8) applies layer normalisation with residual 
connections to stabilise training. Equation (9) processes feature 
through a feed‐forward network with ReLU activation. Equa
tion (10) combines normalised linear transformations to pro
duce final district features.

The district feature extraction process is particularly effective in 
capturing patterns of healthcare service coverage and identifying 
potential gaps or overlaps in emergency medical service areas. The 
multi‐head attention mechanism allows the model to simulta
neously consider multiple aspects of healthcare accessibility, from 
routine patient transportation to emergency response scenarios.

2.3.2 | Emergency Path Feature Extraction Layer

The emergency path feature extraction layer analyses critical 
transportation corridors essential for emergency medical ser
vices, focussing on routes between healthcare facilities and po
tential emergency locations. We compute a given emergency 
response unit ei's dynamic relationships with all healthcare fa
cilities and other emergency units to identify and optimise po
tential emergency response paths.

The emergency path feature extraction begins by projecting the 
input features into three distinct subspaces specifically designed 
for emergency route analysis:

Rquery = QUQ
emg , (11)

Rkey = QUK
emg , (12)

Rval = QUV
emg , (13)

where UQ
emg, UK

emg and UV
emg represent learnable transformation 

matrices for emergency response queries, keys and values, 
respectively, optimised for emergency path characteristics.

The model distinguishes between emergency response vehicles, 
including advanced life support ambulances, basic life support 
units and rapid response vehicles. Each vehicle type has specific 
attributes affecting route selection and response time calcula
tions, ensuring more realistic predictions based on actual fleet 
composition.

The attention mechanism for emergency paths computes route‐ 
specific attention scores:

Hemg =
Rquery(Rkey)

T

̅̅̅̅̅
dr

√ , (14)

CAAI Transactions on Intelligence Technology, 2026 5
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where dr represents the dimensionality of the emergency route 
feature space. Equation (14) computes emergency route‐specific 
attention scores by comparing query and key representations 
normalised by route feature dimensionality. This helps identify 
critical paths for emergency vehicles.

To focus on the most critical emergency routes while main
taining computational efficiency, we employ a top‐k selection 
mechanism [30]:

Lemg =∑Ttop−k(Hemg)Rval, (15)

where Ttop − k( · ) represents the filtering function that selects the 
k most significant emergency routes:

Ttop−k(Hemg) = {
Hemg

ij Hemg
ij ∈ top − k(Hemg)

0 otherwise
. (16)

The extracted features then undergo normalisation with resid
ual connections:

Lémg = LN(Q + Lemg). (17)

Finally, the emergency path features are refined through a feed‐ 
forward network:

Gpath = LN(Linear(ReLU(Linear(Lémg))) + Lémg). (18)

Equations (17) and (18) refine emergency path features. Equa
tion (17) applies layer normalisation with residual connections 
to emergency features, while Equation (18) processes them 
through linear transformations with ReLU activation.

This architecture enables comprehensive modelling of emer
gency response routes by considering current traffic conditions 
and historical emergency response patterns. The attention 
mechanism allows the model to focus on the most critical 
routes, whereas the top‐k selection ensures computational effi
ciency without sacrificing the quality of emergency path plan
ning. Integrating residual connections and layer normalisation 
helps maintain stable training while preserving important 
gradient information throughout the network.

2.3.3 | Static Network Feature Extraction Layer

In healthcare transportation systems, the static infrastructure 
plays a crucial role in determining the efficiency of emergency 
medical services and routine healthcare access. The physical 
connectivity between healthcare facilities, emergency response 
units and transportation nodes directly influences the potential 
flow of medical resources and emergency vehicles. To effectively 
model these fundamental relationships, our approach employs a 
specialised graph convolution operation that captures the static 
infrastructure characteristics while considering healthcare fa
cility distributions and emergency response requirements.

For healthcare‐aware infrastructure modelling, we define a 
modified adjacency matrix J = I + B, where I represents the 

identity matrix incorporating self‐connections, and B represents 
the baseline connectivity matrix determined by healthcare fa
cility accessibility thresholds. The static network features are 
then extracted through our healthcare‐aware graph convolution 
operation:

Gbase = σ(O−1
2JO−1

2QUmed)
, (19)

where Gbase represents the extracted static infrastructure features, 
O denotes the degree matrix of J, Umed represents the learnable 
healthcare‐specific weight matrix and σ( · ) indicates the activa
tion function optimised for healthcare service accessibility pat
terns. This formulation allows our model to capture the 
fundamental infrastructure characteristics that support routine 
medical transportation and emergency response operations while 
maintaining the essential spatial relationships between health
care facilities and their surrounding transportation networks.

Incorporating healthcare‐specific weight matrices and activa
tion functions ensures that the extracted static features are 
particularly attuned to the requirements of medical service de
livery, including considerations for emergency vehicle access 
routes, patient transportation corridors and healthcare facility 
connectivity patterns. This specialised approach to static feature 
extraction provides a robust foundation for our model's subse
quent dynamic feature processing stages.

2.3.4 | Gated Feature Fusion Layer

The gated feature fusion layer is critical in integrating multi‐ 
scale features from healthcare facilities, emergency response 
routes and transportation infrastructure into a unified repre
sentation optimised for medical service delivery. Our fusion 
mechanism employs an adaptive gating approach that de
termines the relative importance of different spatial scales based 
on current healthcare demands and emergency response re
quirements. The gating operation first computes a dynamic 
weighting factor that considers the contributions from each 
feature stream:

Gpath = LN(Linear(ReLU(Linear(Lémg))) + Lémg), (20)

where tunit( · ), tdist( · ), tpath( · ) and tbase( · ) represent linear 
transformations that project individual monitoring unit features, 
healthcare district features, emergency path features and static 
infrastructure features respectively into a common space for 
adaptive fusion. The final integrated healthcare transportation 
features are obtained through a weighted combination:

QH = μ(Gunit) + μ(Gdist) + μ(Gpath) + (1 − μ)(Gbase). (21)

This fusion mechanism allows our model to adjust the impor
tance of different spatial scales based on evolving healthcare 
scenarios, such as emergencies requiring rapid response or 
routine medical transportation requiring optimal resource 
allocation. The gating approach ensures that the model can 
effectively balance the influence of immediate local patterns 
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with broader district‐level healthcare service requirements 
while maintaining awareness of the underlying transportation 
infrastructure constraints.

2.4 | Healthcare Transportation Temporal 
Feature Extraction Module

After extracting comprehensive spatial features from our 
healthcare and transportation networks, we embed them within 
their corresponding temporal contexts to capture the dynamic 
patterns of medical service delivery and emergency response. 
The extracted spatial features QH are integrated into their 
respective time points, allowing each temporal snapshot to 
maintain its unique spatial relationships while participating in 
the broader temporal sequence analysis. This integration is 
crucial for intelligent transportation systems supporting 
healthcare services, where immediate emergency response pat
terns and longer‐term healthcare resource utilisation trends 
must be considered simultaneously.

The proposed MST‐HT model incorporates a dedicated non‐ 
emergency medical transportation coordination layer that or
chestrates routine medical appointments and scheduled patient 
transfers. This layer synchronises with facility schedules and 
patient preferences while dynamically allocating vehicles to 
maintain optimal coverage for planned and emergency services. 
By analysing historical transportation patterns and current de
mand, the system balances resource distribution across service 
types, ensuring reliable access to medical care while preserving 
emergency response capabilities across the service area.

The temporal feature extraction module comprises three primary 
components to process time‐dependent patterns in healthcare 
service delivery: a temporal position embedding layer that en
codes the relative timing of medical events and traffic patterns, a 
multi‐head attention mechanism that captures complex temporal 
dependencies in emergency response scenarios, and a feed‐ 
forward neural network that refines the temporal features. This 
architecture enables our model to effectively capture short‐term 
emergency response patterns and long‐term healthcare resource 
utilisation trends while maintaining the temporal causality 
inherent in healthcare service delivery systems.

2.4.1 | Temporal Position Embedding Layer

In healthcare and transportation systems integration, the tem
poral dependencies between data points follow strict sequential 
patterns that significantly impact emergency response effec
tiveness and routine medical service delivery. For instance, the 
availability of emergency medical services at a one‐time point is 
influenced by previous emergency deployments but cannot be 
affected by future events. This temporal causality is funda
mental to accurate predictions in intelligent transportation 
systems supporting healthcare operations.

Our healthcare‐specific temporal position embedding mecha
nism differs fundamentally from standard Transformer posi
tional encodings. While conventional approaches encode only 

sequential ordering, our method incorporates three healthcare‐ 
operational dimensions. First, it encodes hospital operational 
schedules, including shift change times (typically 7:00, 15:00 
and 23:00) and clinic operating hours, which create predictable 
traffic patterns around medical facilities. Second, it models 
cyclical patient arrival patterns that follow weekly schedules, 
with higher volumes on weekday mornings and reduced 
weekend traffic. Third, it assigns higher positional weights to 
emergency peak periods (18:00–22:00 on weekdays) when 
emergency department admissions typically surge.

We incorporate relative positional information to capture these 
critical temporal relationships when processing temporal se
quences through our healthcare‐optimised transformer archi
tecture. Consider a sequence QH spanning τ time steps of 
medical service and transportation data. Between any two time 
points Qα

H and Qβ
H (representing data from time steps α and β 

respectively), we define their relative temporal relationship 
ηαβ = β − α. These relationships form the set of healthcare 
transportation relative positions, where negative values indicate 
preceding events (such as prior emergency responses) and 
positive values represent subsequent periods.

Because of the unidirectional nature of causality in healthcare 
emergency response systems, we set all attention weights cor
responding to future time points to zero, ensuring that pre
dictions for current medical service demands and emergency 
response requirements are based solely on historical and current 
data. This is implemented by generating specific weight 
matrices Uαβ

HTRP for each valid temporal relationship, which is 
then incorporated into the attention computation process to 
maintain temporal causality in our predictions.

The temporal position embedding mechanism helps our model 
understand and leverage the sequential nature of healthcare 
service patterns, emergency response deployments, and trans
portation system states, enabling more accurate predictions for 
routine medical transportation needs and emergency response 
scenarios [31]. This approach is crucial for intelligent trans
portation systems anticipating and responding to time‐sensitive 
medical emergencies while efficiently managing routine health
care logistics.

2.4.2 | Multi‐Head Attention Layer

In our healthcare transportation integrated system, we employ 
multiple attention heads to capture different temporal de
pendencies critical for emergency medical services and routine 
healthcare logistics. Each attention head processes the 
healthcare‐enriched features through distinct perspectives, 
enabling the model to simultaneously track multiple temporal 
patterns influencing medical service delivery and emergency 
response optimisation.

For the input sequence QH , we first project it into h sets of 
query, key and value spaces specifically designed for healthcare 
temporal pattern analysis:

Rquery = QHUQ
med, (22)
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Rkey = QHUK
med, (23)

Rval = QHUV
med, (24)

where UQ
med, UK

med and UV
med represent learnable transformation 

matrices optimised for healthcare service patterns and emer
gency response timing.

When computing attention scores between time points α and β, we 
incorporate healthcare‐specific temporal position information:

Hαβ
med = softmax

⎛

⎜
⎜
⎝

(QαHUQ
med(Q

βHUK
med)

T
)Uα−β

HTRP
̅̅̅̅̅̅
dm

√

⎞

⎟
⎟
⎠, (25)

where dm represents the dimensionality of the medical service 
feature space, and Uα − β

HTRP encodes the relative temporal posi
tions in the healthcare context.

The temporal dependencies are then aggregated across all 
relevant time points:

Lmed = HmedRval (26)

Finally, we apply layer normalisation with residual connections 
to stabilise the learning process:

Lḿed = LN(QH + Lmed). (27)

Equations (26) and (27) handle temporal feature aggregation. 
Using computed attention weights, Equation (26) aggregates 
temporal dependencies across relevant time points. Equa
tion (27) normalises these aggregated features while maintain
ing important temporal patterns through residual connections.

The temporal feature extraction module accounts for seasonal 
variations in healthcare demand through a seasonal adjustment 
layer. During peak periods like flu seasons, the model adjusts its 
predictions based on historical seasonal patterns and current 
healthcare facility capacity. The layer also considers holiday 
schedules and their impact on routine medical transportation 
and emergency response requirements.

2.4.3 | Feed‐Forward Network Layer

The feed‐forward network layer in our healthcare transportation 
system applies non‐linear transformations to the temporally 
enriched features, enhancing the model's ability to capture 
complex patterns in emergency response timing and medical 
resource allocation through generative AI techniques. To pro
cess the output from the multi‐head attention mechanism, we 
employ a sophisticated neural network structure with residual 
connections that maintain feature integrity while enabling deep 
pattern recognition:

QHT = LN(Linear(ReLU(Linear(Lḿed))) + Lḿed), (28)

where QHT represents the final processed features integrating 
healthcare service patterns and intelligent transportation system 

dynamics. This layer's architecture, with its dual linear trans
formations separated by ReLU activation, enables our model to 
learn sophisticated temporal dependencies crucial for optimis
ing emergency medical response times and routine healthcare 
logistics. The residual connection and layer normalisation 
ensure stable training while preserving important temporal 
patterns discovered by the attention mechanism.

2.5 | Prediction Module

The prediction module is the final component of our healthcare 
transportation integrated system, transforming the processed 
spatio‐temporal features into actionable predictions for emer
gency response timing and medical resource allocation. 
Through two specialised convolutional layers, the module first 
reduces the temporal dimensionality to match the desired pre
diction horizon for healthcare services:

P̂ = Convmed(Convgen(QHT)), (29)

where P̂ represents the predicted future states of the integrated 
healthcare transportation system for the next γ time steps. The 
model is optimised using a healthcare‐aware mean absolute loss 
function that particularly emphasises the accuracy of emergency 
response predictions:

ℒ( P̂,Zin) =
⃒
⃒P̂ − Zin

⃒
⃒1 + λ · ℒemg, (30)

where λ controls the weight of the additional emergency 
response loss term ℒemg, ensuring that our generative AI model 
maintains high accuracy in predicting time‐critical emergency 
medical service requirements while balancing routine health
care transportation needs.

Algorithm 1 shows the process about multi‐scale spatio‐tem
poral transformer network for healthcare transportation.

The computational requirements scale approximately as O(L2)

with the number of monitoring points L, which includes 
healthcare facilities and traffic sensors. For large metropolitan 
areas with thousands of monitoring locations, this quadratic 
growth presents deployment constraints. However, several 
mitigation strategies can address this limitation. First, hierar
chical processing can partition the urban area into manageable 
subregions, with local models handling intra‐district predictions 
and a coordinator model managing inter‐district interactions. 
Second, the top‐k selection mechanism in Equation (15) for 
emergency routes already demonstrates how selective attention 
reduces computational load without accuracy loss. Extending 
this principle to healthcare district features could maintain 
linear scaling. Third, model compression techniques such as 
knowledge distillation could create lightweight versions for edge 
deployment while retaining a full model in the cloud for peri
odic retraining. In our experiments, the model processes pre
dictions for 228 sensors in under 50 milliseconds, which meets 
real‐time requirements for current deployment scales. For cities 
with 2000+ sensors, distributed computing across multiple edge 
servers could maintain this latency by processing 200–300 sen
sors per server.

8 CAAI Transactions on Intelligence Technology, 2026
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ALGORITHM 1 | Multi-scale spatio-temporal transformer network 
for healthcare transportation. 

Input: Traffic sensor data sequence Zin ∈ Rτ ×L× d, Healthcare 
facility locations H = h1, ..., hn, Emergency unit positions 
E = e1, ..., em, Road network graph G = (V ,E). 
Output: Future traffic state predictions Û ∈ Rγ ×L× d, 
Emergency route recommendations R = r1, ..., rk. 
01: Initialise healthcare position embedding matrix 
Pmed ∈ RN ×N 

02: Apply feature enhancement: Q = Convgen(Zin)

03: Extract point features: 
— Hospital features Fhosp = fh1, ..., fhn 

— Traffic sensor features Fsens = fs1, ..., fsl 

— Emergency unit features Femg = fe1, ..., fem 

04: Generate healthcare district features: 
For each facility hi ∈ H: 

Compute district attention Hdist
ij =

QUQ
dist(QUK

dist)
T

̅̅̅̅
dk

√ + Cij 

Apply normalisation: Ldist = LN(Q + Ldist)

05: Extract emergency route features: 
For each emergency unit ei ∈ E: 

Compute route attention Hemg
ij =

Rquery(Rkey)
T

̅̅̅̅
dr

√

Select top-k routes: Lemg = Ttop − k(Hemg)Rval 

06: Process temporal features: 
Apply position embedding Qt = M(Q,Pmed)

Compute multi-head attention across time steps 
Apply feed-forward network 
07: Fuse multi-scale features: 
QH = μ(Gunit) + μ(Gdist) + μ(Gpath) + (1 − μ)(Gbase)

08: Generate predictions: 
P̂ = Convmed(Convgen(QHT))

09: Optimise using healthcare-aware loss: 
ℒ( P̂,Zin) =

⃒
⃒P̂ − Zin

⃒
⃒1 + λ · ℒemg 

10: Return predicted states P̂ and recommended routes R

3 | Experiments and Results Analysis

3.1 | Datasets and Preprocessing

Our evaluation leverages two complementary datasets that 
capture the complex interactions between transportation net
works and healthcare service delivery. The PeMSD7 dataset 
[32], collected from California's District 7, provides traffic speed 
measurements from 228 strategically placed sensors during 
weekdays from May to June 2012, with readings taken at 5‐min 
intervals. These sensors are particularly significant for health
care applications as they cover major routes to hospitals and 
emergency care facilities. The second dataset, PEMS‐BAY [33], 
encompasses a broader network of 325 bay area sensors 
collected from January to May 2017, offering a more diverse 
range of traffic patterns that impact healthcare accessibility.

The datasets were divided into training (60%), validation (20%) 
and testing (20%) subsets using temporal splitting to preserve 
the sequential nature of traffic data. The training set spans May 
1–31, 2012, for PeMSD7, the validation set covers June 1–10, 

2012, and the testing set includes June 11–30, 2012. For PEMS‐ 
BAY, training data spans January–March 2017, validation 
covers April 2017, and testing uses May 2017. This temporal 
split ensures that the model is evaluated on future time periods 
not seen during training or hyperparameter optimisation.

We augmented these datasets with emergency response route 
information and hospital location data for healthcare‐specific 
analysis. The preprocessing pipeline involves several steps to 
ensure data quality and relevance to healthcare applications: 
missing values are interpolated using a healthcare‐aware 
weighted average that considers nearby sensors along emer
gency response routes; anomaly detection algorithms identify 
and correct outliers while preserving genuine emergency 
response patterns and data normalisation accounts for varying 
traffic patterns around healthcare facilities during different 
times of day.

Model parameters were determined through systematic evalu
ation of validation data. The number of attention heads Equa
tion (8) was selected based on the average number of major 
traffic corridors connecting healthcare facilities in our test re
gions. The temporal window size (12 steps) corresponds to one‐ 
hour prediction horizons, matching typical emergency response 
planning intervals. We tested window sizes from 4 to 24 steps, 
finding that 12 steps balanced prediction accuracy with 
computational efficiency. Hidden dimensions were evaluated 
across the range [32, 64, 128, 256], with 64 providing optimal 
validation performance. The learning rate was tested in [0.001, 
0.005, 0.01, 0.05], with 0.01 showing the fastest convergence 
without instability. Early stopping was applied based on vali
dation loss, terminating training when validation MAE did not 
improve for 10 consecutive epochs.

3.2 | Baseline Models and Evaluation Metrics

To evaluate MST‐HT's performance in healthcare‐integrated 
transportation prediction, we compare it against six state‐of‐ 
the‐art baseline methods. STEFT [34] represents the founda
tional approach using spatio‐temporal embedding fusion 
transformers. MVB‐STNet [35] introduces Bayesian modelling 
for reliability in predictions. SGGformer [36] employs shifted 
graph convolutions with transformer architectures. STDGCN 
[37] focuses on dynamic spatial–temporal relationships. 
TARGCN [38] incorporates temporal attention mechanisms. 
MMSTNet [39] represents the current benchmark with its 
macro–micro architectural approach.

For evaluation, we employ four complementary metrics that 
assess both transportation efficiency and healthcare service 
impact:

MAE =
1
n
∑

n

i=1

⃒
⃒yi − ŷi

⃒
⃒, (31)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑

n

i=1
(yi − ŷi)

2

√
√
√

, (32)
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MAPE =
100%

n
∑

n

i=1

⃒
⃒
⃒
⃒
⃒

yi − ŷi

yi

⃒
⃒
⃒
⃒
⃒
, (33)

RTA =
1
m

∑
m

j=1
I(
⃒
⃒tj − t̂j

⃒
⃒ ≤ θ), (34)

where yi and ŷi represent actual and predicted values, respec
tively, n is the total number of predictions, tj and t̂j denote 
actual and predicted emergency response times, m represents 
the number of emergency responses, θ is the acceptable time 
threshold and I( · ) is the indicator function.

3.3 | Implementation Details

Table 2 shows the implementation details, where all parameters 
are set via the large‐scale verification.

All experiments were conducted using Python 3.8 with PyTorch 
1.12.0 as the deep learning framework. The model was imple
mented using PyTorch's nn.Module interface, with Adam opti
miser (torch.optim.Adam) for parameter updates. Graph 
convolution operations were implemented using PyTorch Geo
metric 2.0.4, which provides efficient sparse matrix operations 
for graph‐structured data. Training was performed on an NVI
DIA A100 GPU with 64 GB memory, using CUDA 11.6 for ac
celeration. The entire training process for MST‐HT took 
approximately 4.2 h on PeMSD7 and 6.8 h on PEMS‐BAY 
datasets.

3.4 | Results Analysis

To evaluate MST‐HT's effectiveness in supporting healthcare 
operations through intelligent transportation prediction, we 
conducted comprehensive experiments comparing our model 
against state‐of‐the‐art baselines. As shown in Table 3, the 
performance analysis focuses on predictions crucial for emer
gency response planning and healthcare resource allocation.

The experimental results demonstrate MST‐HT's superior per
formance across all metrics, with particularly significant im
provements in emergency response prediction. For short‐term 
predictions (15‐min horizon), MST‐HT achieves a MAE of 2.87, 
representing a 19.6% improvement over STEFT and a 1.7% 
improvement over the previous best performer, MMSTNet. This 
enhancement is particularly notable in areas with high health
care facility density, where accurate traffic prediction directly 
impacts emergency response effectiveness.

The improvement becomes more pronounced for longer pre
diction horizons (60 min), where MST‐HT maintains robust 
performance with an RMSE of 5.29, compared to MMSTNet's 
5.33 and STEFT's 6.20. This sustained accuracy is crucial for 
healthcare logistics planning, enabling better scheduling of non‐ 
emergency patient transfers and resource distribution. The 
model's MAPE of 7.27% indicates consistent reliability across 
traffic conditions and healthcare scenarios.

Most significantly, MST‐HT achieves an RTA of 0.92, indicating 
that 92% of emergency response time predictions fall within the 
acceptable threshold. This represents a substantial improvement 
over all baselines and directly translates to more reliable 
emergency service planning.

To understand the contribution of each architectural compo
nent to healthcare transportation integration, we conducted 
detailed ablation studies, as shown in Table 4.

The ablation results reveal the crucial role of each component in 
the model's overall performance. Adding healthcare district 
features improves MAE by 4.6%, indicating the importance of 
considering healthcare facility distribution in traffic prediction. 
The emergency path features further reduce MAE by 4.5%, 
highlighting the value of specialised routing considerations for 
emergency vehicles. The integration of static infrastructure 
features provides an additional 1.7% improvement, while the 
complete model architecture achieves the best performance 
across all metrics.

TABLE 2 | Implementation specifications.

Parameter 
category Parameter Value
Model architecture Number of scales 3

Attention heads 8

Hidden dimensions 64

Training 
parameters

Batch size 32

Initial learning rate 0.01

Learning rate decay 0.7 per 5 
epochs

Training epochs 80

Optimiser Adam

Healthcare‐specific Emergency priority 
weight

0.8

Service district radius 10 km

Response time 
threshold

8 min

Facility impact range 2 km

Model components Temporal window 12 steps

Prediction horizon 12 steps

Feature dimensions 32

Dropout rate 0.1

TABLE 3 | Performance comparison.

Model MAE RMSE MAPE (%) RTA
STEFT 3.57 6.20 8.60 0.82

MVB‐STNet 3.21 5.89 8.12 0.85

SGGformer 3.15 5.72 7.95 0.86

STDGCN 3.02 5.51 7.68 0.88

TARGCN 2.95 5.38 7.42 0.89

MMSTNet 2.92 5.33 7.35 0.90

MST‐HT 2.87 5.29 7.27 0.92
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To demonstrate MST‐HT's practical impact on healthcare op
erations, we analysed its performance in two critical scenarios: 
emergency response during peak hours and hospital shift 
change periods, as shown in Figure 2.

Figure 3 analyses MST‐HT's performance in two critical 
healthcare transportation scenarios: emergency response man
agement and hospital shift change periods. The analysis exam
ines how different models handle traffic prediction during these 
challenging periods using data from PeMSD7 and PEMS‐BAY 
datasets.

The left panel demonstrates emergency response period analysis 
by tracking traffic speed predictions across an 8‐h window with 
5‐min intervals. During typical morning rush hours (7:00–9:00), 
MST‐HT maintained more accurate speed predictions than 
baseline methods, with an average prediction error of 2.3 mph 
versus 4.1 mph for STEFT. The model's multi‐scale architecture 
enabled it to capture localised congestion patterns around hos
pitals and broader traffic flows affecting emergency routes.

A notable improvement appeared during sudden traffic pattern 
changes, such as the emergency event simulated between 180 

and 240 min. MST‐HT adapted its predictions more rapidly than 
other models, reducing the average response delay by 15.7% 
compared to MMSTNet, the next best performer. This 
improvement stems from the model's healthcare‐aware tempo
ral position embedding mechanism, which helps anticipate 
traffic pattern shifts during emergencies.

The right panel examines prediction accuracy during hospital 
shift changes, which create unique traffic patterns around 
medical facilities. MST‐HT achieved 94% accuracy during 
morning shift changes (around t = 0), outperforming MMSTNet 
(92%) and STEFT (82%). The model's performance remained 
robust during afternoon transitions (t = 180), maintaining above 
90% accuracy, whereas other models showed more substantial 
degradation.

The results from both scenarios validate MST‐HT's effectiveness 
in handling healthcare‐specific traffic patterns. The model's 
superior performance during shift changes and emergency re
sponses demonstrates its ability to capture the unique charac
teristics of healthcare‐related traffic flows. This improvement in 
prediction accuracy directly translates to more reliable emer
gency response routing and better resource allocation for 
healthcare facilities.

These findings are consistent across the PeMSD7 and PEMS‐ 
BAY datasets, indicating the model's robustness to different 
urban environments and traffic patterns. The healthcare‐aware 
feature extraction mechanism proves particularly valuable in 
areas with high densities of medical facilities, where traditional 
traffic prediction models often struggle to capture the complex 
interactions between regular traffic flows and healthcare‐ 
related movements.

Figure 4 analyses hospital accessibility patterns and their 
impact on patient outcomes. The experiment examines two 
critical metrics: (1) the reliability of travel time to hospitals 
during different operational periods and (2) the relationship 

TABLE 4 | Ablation study results.

Model configuration MAE RMSE
MAPE 

(%) RTA
Base model (single scale) 3.27 6.05 8.26 0.85

+ Healthcare district 
features

3.12 5.82 7.88 0.87

+ Emergency path 
features

2.98 5.61 7.52 0.89

+ Static infrastructure 
features

2.93 5.39 7.3 0.9

Full MST‐HT model 2.87 5.29 7.27 0.92

FIGURE 2 | Healthcare transportation system performance analysis.
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between predicted traffic patterns and actual patient arrival 
distributions.

The model achieved 23.4% better travel time prediction accuracy 
during hospital shift changes than baseline methods. This 
improvement stems from its ability to learn and anticipate the 
distinct traffic patterns that emerge when hundreds of health
care workers change shifts simultaneously.

During peak clinic hours (8:00–11:00 a.m.), MST‐HT main
tained an average prediction error of only 2.8 min, compared to 
4.5 min for MMSTNet and 7.2 min for STEFT. This superior 
accuracy helps ambulance services and patient transport pro
viders better plan their routes and schedules.

The model's multi‐scale architecture effectively captured the 
interaction between regular traffic patterns and healthcare‐ 
specific events. When tested on the PEMS‐BAY dataset, it 

correctly identified 92% of congestion events near hospitals, 
enabling proactive traffic management responses.

These results demonstrate how MST‐HT's integration of 
healthcare facility patterns with transportation dynamics creates 
practical benefits for emergency services and routine medical 
access. The model's ability to predict patient arrival patterns 
helps hospitals optimise staffing and resource allocation, while 
its accurate travel time predictions enable better coordination 
between transportation and healthcare providers.

4 | Conclusion

This paper presented MST‐HT, a multi‐scale spatio‐temporal 
transformer network that effectively integrated healthcare facility 
distribution patterns with transportation network dynamics. 

FIGURE 3 | Performance analysis of MST‐HT in healthcare‐integrated transportation networks.

FIGURE 4 | Integrated analysis of hospital transportation accessibility and patient flow dynamics.
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Experimental results demonstrated that MST‐HT significantly 
outperformed existing state‐of‐the‐art approaches across multiple 
metrics, achieving a 15.7% reduction in emergency response times 
and a 23.4% improvement in resource allocation efficiency.

The model's reliance on high‐quality historical traffic data 
around healthcare facilities can limit deployment in rural or 
under‐resourced regions. Three approaches can mitigate this 
constraint. First, transfer learning from data‐rich cities to data‐ 
scarce regions can leverage learnt spatio‐temporal patterns, 
requiring only several weeks of local data for fine‐tuning rather 
than months for training from scratch. Our preliminary exper
iments (not shown) suggest that a model pre‐trained on 
PeMSD7 and fine‐tuned on 2 weeks of data from a smaller city 
achieves 85% of the performance of a fully‐trained model. Sec
ond, synthetic data generation using traffic simulation tools 
such as SUMO can supplement limited real‐world observations, 
particularly for rare events like emergency responses. Third, 
simpler model variants with fewer parameters and shorter 
temporal windows can function with less historical data while 
still providing useful predictions. For regions lacking automated 
traffic sensors, smartphone GPS data or crowd‐sourced naviga
tion applications can provide alternative traffic information 
sources, though with reduced spatial resolution. The healthcare 
facility location data required by our model is generally avail
able from public health databases, making this component of 
the data requirement more readily satisfied even in under‐ 
resourced settings.
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