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ABSTRACT

Integrating healthcare systems with intelligent transportation networks represents a critical frontier in modern urban infra-
structure, where efficient resource allocation and timely service delivery can significantly impact patient outcomes. However,
current approaches often fail to capture the complex interplay between healthcare facility accessibility and transportation
dynamics, particularly during emergencies. Additionally, the temporal dependencies in healthcare service delivery follow strict
sequential patterns that significantly influence both routine operations and emergency response effectiveness. To address these
challenges, we propose a multi-scale spatio-temporal transformer network for healthcare and transportation (MST-HT) that
leverages generative Al capabilities. Our model employs multiple specialised transformer networks to model different spatial
scales, capturing hidden dependencies while using graph convolutional networks to learn static infrastructure features. The
architecture incorporates healthcare district patterns, emergency response corridors and facility distributions through a novel
gating mechanism that adaptively combines features based on their predictive importance. The model maintains awareness of
critical service delivery patterns by embedding healthcare-specific temporal position information while optimising resource
allocation. Experiments on real-world datasets demonstrate MST-HT's superior performance, achieving a 15.7% reduction in
emergency response times and a 23.4% improvement in resource allocation efficiency compared to state-of-the-art baselines.

1 | Introduction

The convergence of intelligent transportation systems and
healthcare infrastructure has become increasingly critical in
modern smart cities, where efficient resource allocation and
predictive analytics can significantly impact traffic management
and emergency medical services [1, 2]. Traditional spatio-
temporal data mining approaches in these domains have pri-
marily focused on historical pattern analysis, yet the dynamic
nature of urban environments demands more sophisticated pre-
dictive capabilities. With the emergence of generative artificial
intelligence (AI), particularly transformer-based architectures,

an unprecedented opportunity exists to enhance the prediction
accuracy and reliability of both transportation and healthcare
resource management systems [3-5]. Early research efforts
employed conventional time series models for basic regression
predictions [6]. However, these approaches proved inadequate for
capturing the complex interdependencies inherent in modern
urban systems where traffic patterns directly influence emer-
gency response times and healthcare accessibility.

The intricate relationship between transportation and health-
care systems forms a cornerstone of effective public health
services. Transportation networks directly impact healthcare
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accessibility, emergency response times, and patient outcomes
through multiple pathways: emergency medical services rely on
efficient traffic management for rapid response, patient transfers
between facilities depend on predictable travel times and
routine medical appointments require reliable transportation
access [7, 8]. When transportation systems experience delays or
disruptions, the consequences cascade through the healthcare
network—ambulances face longer response times, patient
transfers are delayed and access to routine care becomes
compromised. This interdependence becomes particularly crit-
ical in urban environments where complex traffic patterns
intersect with high-density healthcare service demands [9].

Integrating machine learning and deep learning methodologies
has markedly improved our ability to model complex spatio-
temporal relationships in urban systems [10-12]. However,
these approaches face several critical challenges when applied
to the interconnected domains of transportation and healthcare.
Firstly, the spatial dependencies in these systems extend beyond
simple physical connections, encompassing hidden relation-
ships formed by various factors such as road attributes, regional
functions, healthcare facility distributions and emergency
response zones. These multiple scales of spatial interaction
create intricate patterns that significantly influence traffic flow
and healthcare resource utilisation. Traditional models focusing
solely on physical connectivity or geographic proximity fail to
capture these multifaceted relationships, leading to suboptimal
predictions and resource allocations across transportation and
healthcare networks.

A fundamental limitation of existing approaches lies in their
treatment of temporal dependencies within spatio-temporal
data streams. The relationship between consecutive time
points in transportation and healthcare contexts follows strict
relative positioning rules, where future states cannot influence
past observations. However, current models often overlook this
crucial aspect, treating temporal relationships as bidirectional or
ignoring the inherent causality in temporal sequences. This
oversight becomes particularly problematic in scenarios
requiring precise emergency response routing or hospital
resource allocation predictions, where accurate temporal
modelling can mean the difference between life and death.
Furthermore, integrating generative Al capabilities introduces
new possibilities for more accurate modelling of these temporal
dependencies, but existing frameworks still need to leverage
these advanced architectural benefits fully [13-16].

The complexity of modern urban systems necessitates a more
comprehensive approach to spatial dependency modelling.

Traditional methods typically focus on a single spatial scale,
such as road-level connectivity or regional clustering, leading to
incomplete representations of the underlying system dynamics
[17]. This limitation becomes particularly evident when
considering the interplay between transportation infrastructure
and healthcare facility access, where multiple spatial scales
simultaneously influence system behaviour. For instance, the
effectiveness of emergency medical services depends not only on
immediate road connectivity but also on broader regional
healthcare facility distribution and specialised care unit loca-
tions [18, 19]. Additionally, generative AI technologies have
introduced new possibilities for modelling these multi-scale
relationships, yet existing frameworks still need to fully incor-
porate these capabilities into their architectural designs.

Recent advances in multi-graph neural networks have demon-
strated improved prediction accuracy through dynamic graph
construction [20, 21]. ASTMGCNet [22] combines GRU with
graph convolutions to capture temporal dependencies, whereas
resource-aware approaches optimise edge computing de-
ployments. Task planning methods [23-25] address vehicle
routing under constraints, providing foundations for emergency
response optimisation. However, these methods do not explic-
itly model healthcare facility distributions or emergency
response corridors, limiting their applicability to medical
transportation scenarios.

This study introduces three key innovations in transportation
systems: First, a multi-scale architecture that processes traffic
patterns at different granularities—from individual road seg-
ments to district-wide flows—enabling more accurate pre-
dictions for emergency vehicle routing. Second, integration of
healthcare facility distribution patterns with traffic prediction to
optimise emergency response paths. Third, adaptive feature
fusion that combines information from multiple traffic moni-
toring sources to improve routing decisions, as shown in
Table 1.

The main contributions of this paper are summarised as follows:

e We propose a multi-scale spatio-temporal transformer ar-
chitecture (MST-HT) that uniquely integrates healthcare
facility distribution patterns with transportation network
dynamics through specialised attention mechanisms.

e We develop a comprehensive multi-scale feature extraction
approach that captures spatial dependencies at various
levels, from individual facility connections to regional
healthcare coverage patterns.

TABLE 1 | Comparison of recent spatio-temporal traffic prediction methods.

Healthcare Multi- Attention Emergency
Method Architecture integration scale mechanism optimisation
DMFGNet [20] Multi-graph GNN No Yes Spatio-temporal No
ASTMGCNet [22] GCN + GRU No Yes Dual attention No
Dynamic multi- STGNN + FL No Yes Adaptive No
graph [21]
MST-HT (ours) Transformer + GCN Yes Yes Multi-head + district Yes
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e We introduce a healthcare-aware temporal position
embedding mechanism that maintains strict causality in
service delivery patterns while optimising resource
allocation.

e We design an adaptive gating mechanism that dynamically
combines features from different spatial scales based on
their relevance to current healthcare delivery requirements.

The rest of the paper is organised as follows: Section 2 in-
troduces the fundamental concepts and definitions underlying
the MST-HT model, details the core architecture of our model,
describes the multi-scale spatial feature extraction module, and
elaborates on the temporal feature extraction mechanisms.
Section 3 presents experimental results. Finally, Section 4 con-
cludes the paper.

2 | MST-HT Model
2.1 | Model Foundations and Definitions

Effective monitoring and prediction in modern intelligent trans-
portation and healthcare systems require sophisticated modelling
of complex spatio-temporal relationships. Our framework estab-
lishes several foundational definitions that capture the intricate
interplay between healthcare facilities, emergency response
units, and transportation infrastructure. The hybrid network we
consider incorporates both physical infrastructure and digital
sensing capabilities, represented through a comprehensive graph
structure H = (P, C, M), where P represents the set of monitoring
points including traffic sensors, ambulance tracking devices and
hospital admission sensors, C denotes the set of connectivity re-
lationships including both physical roads and emergency
response corridors, and M € RE*L represents the multi-
dimensional adjacency matrix constructed using adaptive ker-
nels that account for both geographic distance and functional
relationships between nodes, with L = |P| indicating the total
number of monitoring points in the system.

For each monitoring point p' (where 1 < i < L), we track multiple
time-varying metrics represented by g} € R%, where d indicates
the dimension of features including traffic flow, emergency
vehicle presence, patient transport frequency, and hospital
admission rates at time step t. The complete state of our hybrid
healthcare transportation system at time t is captured by
¢ = (g}, - @\ ... ) € REX9. To enable predictive modelling, we
maintain a historical sequence Zi, = (qi—r+1, ..., g;) € R7¥*¢
comprising 7 time steps of multi-dimensional data across all
monitoring points.

The fundamental prediction task in our framework involves

learning a transformation function ¢ that maps the input

yXLxd

sequence Z;, to future system states UeR , expressed as

Zin A U. This mapping must account for the spatial relation-
ships between different healthcare transportation network
components and system states' temporal evolution. Our model
focuses on predicting critical metrics such as emergency
response times, hospital resource utilisation and traffic
congestion patterns that directly impact healthcare service

delivery. The prediction horizon y is typically set to match
operational planning requirements in healthcare facilities and
emergency response units. However, incorporating multiple
feature dimensions d allows our model to capture the complex
interactions between transportation infrastructure and health-
care service delivery.

This foundational framework enables us to develop sophisticated
prediction mechanisms that account for the unique characteris-
tics of integrated healthcare and transportation systems,
including the need for rapid emergency response, optimal
resource allocation, and efficient patient transport under varying
traffic conditions. The multi-dimensional nature of our moni-
toring points and their associated features allows for compre-
hensive modelling of both routine operations and emergency
scenarios, whereas the graph structure captures both physical and
functional relationships critical for effective system management.

2.2 | Architecture Overview

In developing our healthcare-integrated transportation predic-
tion model MST-HT, we introduce a comprehensive architec-
ture that leverages generative Al capabilities to address the
complex dynamics of urban healthcare and mobility systems. As
illustrated in Figure 1, the model architecture comprises three
primary components: the healthcare-aware multi-scale feature
extraction (HM-SFE) module, the emergency-transportation
temporal extraction module, and the predictive analytics mod-
ule. The input sequence first undergoes feature dimensionality
enhancement through a specialised convolutional layer, trans-
forming the data according to:

Q= Coanen(Zin); @®

where Q € R™*"*L represents the enhanced feature space with
m channels capturing various aspects of healthcare and trans-
portation dynamics.

The HM-SFE module processes spatial features at multiple
scales crucial for healthcare service delivery and transportation
efficiency:

Qu= HSA(Fpoim, Fyones Froutes Fbase) s 2

where Foine represents individual monitoring point features
(including hospitals, clinics and traffic sensors), F,one captures
healthcare district characteristics, Foue models emergency
response corridors and Fy,s encodes static infrastructure infor-
mation. The function HSA( - ) represents our healthcare-aware
selection aggregation mechanism that adaptively combines
features based on their relevance to current system states.

This architecture enables comprehensive modelling of health-
care transportation interactions through Nk iterations of
feature processing, where each iteration refines the under-
standing of spatio-temporal patterns critical for emergency
response and patient care optimisation. The model's innovative
use of transformer-based components and healthcare-specific
feature extraction mechanisms allow it to capture complex
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FIGURE 1 | Multi-scale generative architecture for healthcare and transportation systems.

relationships between traffic conditions, emergency vehicle
routing and hospital resource utilisation patterns.

2.3 | Multi-Scale Spatial Feature Extraction
Module

The spatial dependencies in integrated healthcare and trans-
portation systems extend beyond simple node-to-node connec-
tions, encompassing complex relationships shaped by healthcare
facility distributions, emergency response patterns and regional
medical service demands. In modern intelligent transportation
systems supporting healthcare delivery, these spatial relation-
ships manifest through multiple scales, from individual facility
connections to regional healthcare coverage patterns. The effec-
tiveness of emergency medical services, for instance, depends on
the immediate road connectivity and the broader distribution of
healthcare facilities and specialised medical units [26, 27].
Traditional modelling approaches focussing solely on physical
infrastructure connections often fail to capture these multi-
faceted spatial relationships, leading to suboptimal predictions
and resource allocations in healthcare transportation networks.

The multi-scale spatial features in our framework are defined
across four hierarchical levels. At the facility level (finest scale),
individual monitoring points represent hospitals, clinics, ambu-
lance stations, and traffic sensors, with features capturing point-
specific metrics such as bed capacity, emergency department
status, and real-time vehicle presence. At the district level (in-
termediate scale), healthcare service regions are defined by
radius-based clustering around major medical centres, with fea-
tures encoding service coverage, patient flow patterns, and
aggregate facility capacity within each district. At the corridor
level (intermediate scale), emergency response pathways connect
medical facilities with high-traffic zones, capturing route-specific
features including average travel times, road capacity and his-
torical emergency vehicle usage. At the infrastructure level
(coarsest scale), the static road network topology encodes
fundamental connectivity through adjacency matrices based on
physical road links.

To address this complexity, our model implements a compre-
hensive multi-scale feature extraction approach that analyses
spatial dependencies at various levels of granularity. The
healthcare-aware spatial feature extraction process can be
formally expressed as follows:

Ey = HGM(Gunit Gaist> Gpath» Ging ) » (3)

where Ep represents the integrated healthcare transportation
features, Guni¢ captures individual facility and sensor charac-
teristics, Ggist represents healthcare district patterns, Gpam
models emergency response corridors and Gj,s encodes static
infrastructure information. The function HGM( - ) represents
the healthcare-aware gating mechanism that adaptively com-
bines features based on their relevance to current system states
and emergency response requirements.

This multi-scale approach allows for precise modelling of various
healthcare transportation scenarios, from routine patient trans-
fers to emergency response situations. At the facility level, it
captures the immediate interaction between hospitals, clinics,
and their surrounding transportation infrastructure. At the dis-
trict level, it models broader patterns of healthcare service
coverage and accessibility. The emergency response pathway
scale focuses on critical routes and corridors essential for rapid
medical response, whereas the infrastructure scale provides
context about the underlying transportation network's capacity
and constraints. This comprehensive approach ensures that our
model can effectively predict and optimise healthcare service
delivery across the entire urban healthcare transportation
network, considering routine operations and emergency
scenarios.

2.3.1 | Healthcare District Feature Extraction Layer

The healthcare district feature extraction layer focuses on
extracting critical spatial patterns within healthcare service re-
gions, considering medical facility distributions and their asso-
ciated transportation networks. For any given healthcare facility
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h;, we define its service district D; as the collection of all
monitoring points within a specified radius 4, encompassing
medical facilities and transportation infrastructure nodes.

The model incorporates demographic and cultural factors
through a regional adaptation layer. This component adjusts
predictions based on local healthcare-seeking behaviours, cul-
tural preferences for specific medical facilities and community-
specific emergency response patterns.

Before extracting district-specific features, our model employs a
learnable healthcare position embedding matrix Ppeq € RVXN to
capture dynamic spatial relationships between facilities and
transportation nodes [28]. The embedded features are computed
through:

Q= M(Q: Pmed): 4)

where M(-) represents a 1 X 1 convolutional layer that in-
tegrates dynamic positioning information into the feature space.
The transformed data Q' enters the healthcare district multi-
head attention unit for spatial feature extraction.

The district attention mechanism [29] computes attention scores
specifically for nodes within each healthcare service district:

T
QUS(QUSL)
Was\ YY) ®)

+
Vi ’

where Q; Ugist represents the query vector for facility i, Q]f UK.

st _
Hgls_

represents the key vector for node j, and dj serves as a scaling
factor. The district selection variable Cj; is defined as follows:

_) 0 jeb

CU_{ —inf jé&D;" ©)
The attention scores undergo softmax normalisation to generate
district-aware attention weights:

Lgist = softmax(HdiSt)Q’ Ul @)

where Ul represents the value projection matrix for healthcare
district features.

Equations (5-7) describe how the model processes healthcare
district information. Equation (5) calculates attention scores
between facilities using transformed queries and keys, scaled by
dimension. Equation (6) defines a binary selection variable for
district membership, whereas Equation (7) normalises attention
weights using softmax.

To stabilise the learning process, we employ layer normalisation
with residual connections:

L =LN(Q' + Lais). ®)

The healthcare district features are then processed through a
feed-forward network with ReLU activation:

Fiist = O'(Léistu/l + bl)“’Z + by. (9)

The final healthcare district features are obtained through
another layer normalisation operation:

Gaist = LN(Linear(ReLU(Linear(L};,))) + Ly;,)-  (10)

Equations (8-10) handle feature refinement within healthcare
districts. Equation (8) applies layer normalisation with residual
connections to stabilise training. Equation (9) processes feature
through a feed-forward network with ReLU activation. Equa-
tion (10) combines normalised linear transformations to pro-
duce final district features.

The district feature extraction process is particularly effective in
capturing patterns of healthcare service coverage and identifying
potential gaps or overlaps in emergency medical service areas. The
multi-head attention mechanism allows the model to simulta-
neously consider multiple aspects of healthcare accessibility, from
routine patient transportation to emergency response scenarios.

2.3.2 | Emergency Path Feature Extraction Layer

The emergency path feature extraction layer analyses critical
transportation corridors essential for emergency medical ser-
vices, focussing on routes between healthcare facilities and po-
tential emergency locations. We compute a given emergency
response unit e;'s dynamic relationships with all healthcare fa-
cilities and other emergency units to identify and optimise po-
tential emergency response paths.

The emergency path feature extraction begins by projecting the
input features into three distinct subspaces specifically designed
for emergency route analysis:

unery = QUeng, (11)
Riey = QUg,,» (12)
Ryt = QU (13)

Q K v ;
where Ug,,, Uepg and U, represent learnable transformation
matrices for emergency response queries, keys and values,

respectively, optimised for emergency path characteristics.

The model distinguishes between emergency response vehicles,
including advanced life support ambulances, basic life support
units and rapid response vehicles. Each vehicle type has specific
attributes affecting route selection and response time calcula-
tions, ensuring more realistic predictions based on actual fleet
composition.

The attention mechanism for emergency paths computes route-
specific attention scores:

T
HEMS = unery(Rkey) R (14)

Va
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where d, represents the dimensionality of the emergency route
feature space. Equation (14) computes emergency route-specific
attention scores by comparing query and key representations
normalised by route feature dimensionality. This helps identify
critical paths for emergency vehicles.

To focus on the most critical emergency routes while main-
taining computational efficiency, we employ a top-k selection
mechanism [30]:

Lemg = Z Eop—k(Hemg)Rval’ (15)

where Tiop (- ) represents the filtering function that selects the
k most significant emergency routes:

H™  H™ € fop — k(HE™
Ttop—k(Hemg)z v v < %op . ( ) (16)
0 otherwise

The extracted features then undergo normalisation with resid-
ual connections:

Lipmg = LN(Q + Lemg)- (17)

Finally, the emergency path features are refined through a feed-
forward network:

Gpath = LN(Linear(ReLU(Linear(Lgmg))) + L'emg). (18)
Equations (17) and (18) refine emergency path features. Equa-
tion (17) applies layer normalisation with residual connections

to emergency features, while Equation (18) processes them
through linear transformations with ReLU activation.

This architecture enables comprehensive modelling of emer-
gency response routes by considering current traffic conditions
and historical emergency response patterns. The attention
mechanism allows the model to focus on the most critical
routes, whereas the top-k selection ensures computational effi-
ciency without sacrificing the quality of emergency path plan-
ning. Integrating residual connections and layer normalisation
helps maintain stable training while preserving important
gradient information throughout the network.

2.3.3 | Static Network Feature Extraction Layer

In healthcare transportation systems, the static infrastructure
plays a crucial role in determining the efficiency of emergency
medical services and routine healthcare access. The physical
connectivity between healthcare facilities, emergency response
units and transportation nodes directly influences the potential
flow of medical resources and emergency vehicles. To effectively
model these fundamental relationships, our approach employs a
specialised graph convolution operation that captures the static
infrastructure characteristics while considering healthcare fa-
cility distributions and emergency response requirements.

For healthcare-aware infrastructure modelling, we define a
modified adjacency matrix J = I + B, where I represents the

identity matrix incorporating self-connections, and B represents
the baseline connectivity matrix determined by healthcare fa-
cility accessibility thresholds. The static network features are
then extracted through our healthcare-aware graph convolution
operation:

1 1
Ghase = a(O‘EJO‘EQUmd)’ (19)

where Gpase represents the extracted static infrastructure features,
O denotes the degree matrix of J, Upeq represents the learnable
healthcare-specific weight matrix and o( - ) indicates the activa-
tion function optimised for healthcare service accessibility pat-
terns. This formulation allows our model to capture the
fundamental infrastructure characteristics that support routine
medical transportation and emergency response operations while
maintaining the essential spatial relationships between health-
care facilities and their surrounding transportation networks.

Incorporating healthcare-specific weight matrices and activa-
tion functions ensures that the extracted static features are
particularly attuned to the requirements of medical service de-
livery, including considerations for emergency vehicle access
routes, patient transportation corridors and healthcare facility
connectivity patterns. This specialised approach to static feature
extraction provides a robust foundation for our model's subse-
quent dynamic feature processing stages.

2.34 | Gated Feature Fusion Layer

The gated feature fusion layer is critical in integrating multi-
scale features from healthcare facilities, emergency response
routes and transportation infrastructure into a unified repre-
sentation optimised for medical service delivery. Our fusion
mechanism employs an adaptive gating approach that de-
termines the relative importance of different spatial scales based
on current healthcare demands and emergency response re-
quirements. The gating operation first computes a dynamic
weighting factor that considers the contributions from each
feature stream:

Gpath = LN(Linear(ReLU(Linear(Lémg))) + Lémg), (20)
where funit( - ), Laist( - ) fpan(-) and fyase(-) represent linear
transformations that project individual monitoring unit features,
healthcare district features, emergency path features and static
infrastructure features respectively into a common space for
adaptive fusion. The final integrated healthcare transportation
features are obtained through a weighted combination:

QH = M(Gunit) + #(Gdist) + M(Gpath) + (1 - /'L)(Gbase)- (21)

This fusion mechanism allows our model to adjust the impor-
tance of different spatial scales based on evolving healthcare
scenarios, such as emergencies requiring rapid response or
routine medical transportation requiring optimal resource
allocation. The gating approach ensures that the model can
effectively balance the influence of immediate local patterns
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with broader district-level healthcare service requirements
while maintaining awareness of the underlying transportation
infrastructure constraints.

2.4 | Healthcare Transportation Temporal
Feature Extraction Module

After extracting comprehensive spatial features from our
healthcare and transportation networks, we embed them within
their corresponding temporal contexts to capture the dynamic
patterns of medical service delivery and emergency response.
The extracted spatial features Qp are integrated into their
respective time points, allowing each temporal snapshot to
maintain its unique spatial relationships while participating in
the broader temporal sequence analysis. This integration is
crucial for intelligent transportation systems supporting
healthcare services, where immediate emergency response pat-
terns and longer-term healthcare resource utilisation trends
must be considered simultaneously.

The proposed MST-HT model incorporates a dedicated non-
emergency medical transportation coordination layer that or-
chestrates routine medical appointments and scheduled patient
transfers. This layer synchronises with facility schedules and
patient preferences while dynamically allocating vehicles to
maintain optimal coverage for planned and emergency services.
By analysing historical transportation patterns and current de-
mand, the system balances resource distribution across service
types, ensuring reliable access to medical care while preserving
emergency response capabilities across the service area.

The temporal feature extraction module comprises three primary
components to process time-dependent patterns in healthcare
service delivery: a temporal position embedding layer that en-
codes the relative timing of medical events and traffic patterns, a
multi-head attention mechanism that captures complex temporal
dependencies in emergency response scenarios, and a feed-
forward neural network that refines the temporal features. This
architecture enables our model to effectively capture short-term
emergency response patterns and long-term healthcare resource
utilisation trends while maintaining the temporal causality
inherent in healthcare service delivery systems.

2.4.1 | Temporal Position Embedding Layer

In healthcare and transportation systems integration, the tem-
poral dependencies between data points follow strict sequential
patterns that significantly impact emergency response effec-
tiveness and routine medical service delivery. For instance, the
availability of emergency medical services at a one-time point is
influenced by previous emergency deployments but cannot be
affected by future events. This temporal causality is funda-
mental to accurate predictions in intelligent transportation
systems supporting healthcare operations.

Our healthcare-specific temporal position embedding mecha-
nism differs fundamentally from standard Transformer posi-
tional encodings. While conventional approaches encode only

sequential ordering, our method incorporates three healthcare-
operational dimensions. First, it encodes hospital operational
schedules, including shift change times (typically 7:00, 15:00
and 23:00) and clinic operating hours, which create predictable
traffic patterns around medical facilities. Second, it models
cyclical patient arrival patterns that follow weekly schedules,
with higher volumes on weekday mornings and reduced
weekend traffic. Third, it assigns higher positional weights to
emergency peak periods (18:00-22:00 on weekdays) when
emergency department admissions typically surge.

We incorporate relative positional information to capture these
critical temporal relationships when processing temporal se-
quences through our healthcare-optimised transformer archi-
tecture. Consider a sequence Qg spanning 7 time steps of
medical service and transportation data. Between any two time

points Qf; and Qf, (representing data from time steps o and 8
respectively), we define their relative temporal relationship
naf = B — a. These relationships form the set of healthcare
transportation relative positions, where negative values indicate
preceding events (such as prior emergency responses) and
positive values represent subsequent periods.

Because of the unidirectional nature of causality in healthcare
emergency response systems, we set all attention weights cor-
responding to future time points to zero, ensuring that pre-
dictions for current medical service demands and emergency
response requirements are based solely on historical and current
data. This is implemented by generating specific weight

matrices U;@FRP for each valid temporal relationship, which is
then incorporated into the attention computation process to
maintain temporal causality in our predictions.

The temporal position embedding mechanism helps our model
understand and leverage the sequential nature of healthcare
service patterns, emergency response deployments, and trans-
portation system states, enabling more accurate predictions for
routine medical transportation needs and emergency response
scenarios [31]. This approach is crucial for intelligent trans-
portation systems anticipating and responding to time-sensitive
medical emergencies while efficiently managing routine health-
care logistics.

2.4.2 | Multi-Head Attention Layer

In our healthcare transportation integrated system, we employ
multiple attention heads to capture different temporal de-
pendencies critical for emergency medical services and routine
healthcare logistics. Each attention head processes the
healthcare-enriched features through distinct perspectives,
enabling the model to simultaneously track multiple temporal
patterns influencing medical service delivery and emergency
response optimisation.

For the input sequence Qy, we first project it into h sets of

query, key and value spaces specifically designed for healthcare
temporal pattern analysis:

unery =Qy Ugled’ (22)
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Riey = QU o, (23)

Rya = QHUK—led: (24)

where U2, UX, and U, represent learnable transformation
matrices optimised for healthcare service patterns and emer-

gency response timing.

When computing attention scores between time points a and 8, we
incorporate healthcare-specific temporal position information:

T —
e [(@CHUR(PHUL) Uik
= SoItmax

med \/ﬂ d

(25)

where d,, represents the dimensionality of the medical service

feature space, and U‘I’;}{fp encodes the relative temporal posi-
tions in the healthcare context.

The temporal dependencies are then aggregated across all
relevant time points:

Lined = HyedRval (26)

Finally, we apply layer normalisation with residual connections
to stabilise the learning process:

L;ned = LN(QH + Lmed)- (27)

Equations (26) and (27) handle temporal feature aggregation.
Using computed attention weights, Equation (26) aggregates
temporal dependencies across relevant time points. Equa-
tion (27) normalises these aggregated features while maintain-
ing important temporal patterns through residual connections.

The temporal feature extraction module accounts for seasonal
variations in healthcare demand through a seasonal adjustment
layer. During peak periods like flu seasons, the model adjusts its
predictions based on historical seasonal patterns and current
healthcare facility capacity. The layer also considers holiday
schedules and their impact on routine medical transportation
and emergency response requirements.

2.4.3 | Feed-Forward Network Layer

The feed-forward network layer in our healthcare transportation
system applies non-linear transformations to the temporally
enriched features, enhancing the model's ability to capture
complex patterns in emergency response timing and medical
resource allocation through generative Al techniques. To pro-
cess the output from the multi-head attention mechanism, we
employ a sophisticated neural network structure with residual
connections that maintain feature integrity while enabling deep
pattern recognition:

Qur = LN(Linear(ReLU(Linear(L;.4))) + L,.q)- (28)

where Qyr represents the final processed features integrating
healthcare service patterns and intelligent transportation system

dynamics. This layer's architecture, with its dual linear trans-
formations separated by ReLU activation, enables our model to
learn sophisticated temporal dependencies crucial for optimis-
ing emergency medical response times and routine healthcare
logistics. The residual connection and layer normalisation
ensure stable training while preserving important temporal
patterns discovered by the attention mechanism.

2.5 | Prediction Module

The prediction module is the final component of our healthcare
transportation integrated system, transforming the processed
spatio-temporal features into actionable predictions for emer-
gency response timing and medical resource allocation.
Through two specialised convolutional layers, the module first
reduces the temporal dimensionality to match the desired pre-
diction horizon for healthcare services:

P = ConVimed(Conveen(Qgrr))s (29)

where P represents the predicted future states of the integrated
healthcare transportation system for the next y time steps. The
model is optimised using a healthcare-aware mean absolute loss
function that particularly emphasises the accuracy of emergency
response predictions:

L(P, Zin) = |P = Zin|1 + A+ Lomg, (30)

where 1 controls the weight of the additional emergency
response loss term Lemg, ensuring that our generative Al model
maintains high accuracy in predicting time-critical emergency
medical service requirements while balancing routine health-
care transportation needs.

Algorithm 1 shows the process about multi-scale spatio-tem-
poral transformer network for healthcare transportation.

The computational requirements scale approximately as O(L?)
with the number of monitoring points L, which includes
healthcare facilities and traffic sensors. For large metropolitan
areas with thousands of monitoring locations, this quadratic
growth presents deployment constraints. However, several
mitigation strategies can address this limitation. First, hierar-
chical processing can partition the urban area into manageable
subregions, with local models handling intra-district predictions
and a coordinator model managing inter-district interactions.
Second, the top-k selection mechanism in Equation (15) for
emergency routes already demonstrates how selective attention
reduces computational load without accuracy loss. Extending
this principle to healthcare district features could maintain
linear scaling. Third, model compression techniques such as
knowledge distillation could create lightweight versions for edge
deployment while retaining a full model in the cloud for peri-
odic retraining. In our experiments, the model processes pre-
dictions for 228 sensors in under 50 milliseconds, which meets
real-time requirements for current deployment scales. For cities
with 2000+ sensors, distributed computing across multiple edge
servers could maintain this latency by processing 200-300 sen-
SOI'S per server.
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ALGORITHM 1 | Multi-scale spatio-temporal transformer network
for healthcare transportation.

Input: Traffic sensor data sequence Zi, € R7*Lxd Healthcare
facility locations H = hy, ..., h,, Emergency unit positions

E = ey, ..., ey, Road network graph G = (V, E).

Output: Future traffic state predictions U € RV *1x4,
Emergency route recommendations R = ry, ..., 1.
01: Initialise healthcare position embedding matrix
Pmed c RNxN

02: Apply feature enhancement: Q = Convgen(Zin)
03: Extract point features:

— Hospital features Fosp = fs oos fi,

— Traffic sensor features Fens = fs, .. fy,

— Emergency unit features Fomg = fe,, -.0) fe,,

04: Generate healthcare district features:

For each facility h; € H:

. Q K \T
Compute district attention Hfjl.‘st = i (i)
k

+ Cj
Apply normalisation: Lgis = LN(Q + Lgist)

05: Extract emergency route features:

For each emergency unit e; € E:

emg __ unery(Rkey)T

i =TT

Select top-k routes: Lemg = Tiop— k(H*™8)Ryal

06: Process temporal features:

Apply position embedding Q; = M(Q, Pmed)

Compute multi-head attention across time steps
Apply feed-forward network

07: Fuse multi-scale features:

QH = M(Gunit) + #(Gdist) + :u(Gpath) + (1 - #)(Gbase)
08: Generate predictions:

P = ConVpnea(Convgen(Qur))

09: Optimise using healthcare-aware loss:

L(P,Zin) = |P = Zin|l + 4+ Lomg

10: Return predicted states P and recommended routes R

Compute route attention H

3 | Experiments and Results Analysis
3.1 | Datasets and Preprocessing

Our evaluation leverages two complementary datasets that
capture the complex interactions between transportation net-
works and healthcare service delivery. The PeMSD7 dataset
[32], collected from California's District 7, provides traffic speed
measurements from 228 strategically placed sensors during
weekdays from May to June 2012, with readings taken at 5-min
intervals. These sensors are particularly significant for health-
care applications as they cover major routes to hospitals and
emergency care facilities. The second dataset, PEMS-BAY [33],
encompasses a broader network of 325 bay area sensors
collected from January to May 2017, offering a more diverse
range of traffic patterns that impact healthcare accessibility.

The datasets were divided into training (60%), validation (20%)
and testing (20%) subsets using temporal splitting to preserve
the sequential nature of traffic data. The training set spans May
1-31, 2012, for PeMSD7, the validation set covers June 1-10,

2012, and the testing set includes June 11-30, 2012. For PEMS-
BAY, training data spans January-March 2017, validation
covers April 2017, and testing uses May 2017. This temporal
split ensures that the model is evaluated on future time periods
not seen during training or hyperparameter optimisation.

We augmented these datasets with emergency response route
information and hospital location data for healthcare-specific
analysis. The preprocessing pipeline involves several steps to
ensure data quality and relevance to healthcare applications:
missing values are interpolated using a healthcare-aware
weighted average that considers nearby sensors along emer-
gency response routes; anomaly detection algorithms identify
and correct outliers while preserving genuine emergency
response patterns and data normalisation accounts for varying
traffic patterns around healthcare facilities during different
times of day.

Model parameters were determined through systematic evalu-
ation of validation data. The number of attention heads Equa-
tion (8) was selected based on the average number of major
traffic corridors connecting healthcare facilities in our test re-
gions. The temporal window size (12 steps) corresponds to one-
hour prediction horizons, matching typical emergency response
planning intervals. We tested window sizes from 4 to 24 steps,
finding that 12 steps balanced prediction accuracy with
computational efficiency. Hidden dimensions were evaluated
across the range [32, 64, 128, 256], with 64 providing optimal
validation performance. The learning rate was tested in [0.001,
0.005, 0.01, 0.05], with 0.01 showing the fastest convergence
without instability. Early stopping was applied based on vali-
dation loss, terminating training when validation MAE did not
improve for 10 consecutive epochs.

3.2 | Baseline Models and Evaluation Metrics

To evaluate MST-HT's performance in healthcare-integrated
transportation prediction, we compare it against six state-of-
the-art baseline methods. STEFT [34] represents the founda-
tional approach using spatio-temporal embedding fusion
transformers. MVB-STNet [35] introduces Bayesian modelling
for reliability in predictions. SGGformer [36] employs shifted
graph convolutions with transformer architectures. STDGCN
[37] focuses on dynamic spatial-temporal relationships.
TARGCN [38] incorporates temporal attention mechanisms.
MMSTNet [39] represents the current benchmark with its
macro-micro architectural approach.

For evaluation, we employ four complementary metrics that
assess both transportation efficiency and healthcare service
impact:
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100% <& Vi _)/)\i
MAPE = , 33
b ; " (33)
1 & ~
RTA =3 1(|5 - 5] <6), (34)
=

where y; and J; represent actual and predicted values, respec-
tively, n is the total number of predictions, ¢ and E denote
actual and predicted emergency response times, m represents
the number of emergency responses, 6 is the acceptable time
threshold and [( -) is the indicator function.

3.3 | Implementation Details

Table 2 shows the implementation details, where all parameters
are set via the large-scale verification.

All experiments were conducted using Python 3.8 with PyTorch
1.12.0 as the deep learning framework. The model was imple-
mented using PyTorch's nn.Module interface, with Adam opti-
miser (torch.optim.Adam) for parameter updates. Graph
convolution operations were implemented using PyTorch Geo-
metric 2.0.4, which provides efficient sparse matrix operations
for graph-structured data. Training was performed on an NVI-
DIA A100 GPU with 64 GB memory, using CUDA 11.6 for ac-
celeration. The entire training process for MST-HT took
approximately 4.2 h on PeMSD7 and 6.8 h on PEMS-BAY
datasets.

TABLE 2 | Implementation specifications.

Parameter
category Parameter Value
Model architecture Number of scales 3
Attention heads 8
Hidden dimensions 64
Training Batch size 32
parameters Initial learning rate 0.01
Learning rate decay 0.7 per 5
epochs
Training epochs 80
Optimiser Adam
Healthcare-specific Emergency priority 0.8
weight
Service district radius 10 km
Response time 8 min
threshold
Facility impact range 2 km
Model components Temporal window 12 steps
Prediction horizon 12 steps
Feature dimensions 32
Dropout rate 0.1

3.4 | Results Analysis

To evaluate MST-HT's effectiveness in supporting healthcare
operations through intelligent transportation prediction, we
conducted comprehensive experiments comparing our model
against state-of-the-art baselines. As shown in Table 3, the
performance analysis focuses on predictions crucial for emer-
gency response planning and healthcare resource allocation.

The experimental results demonstrate MST-HT's superior per-
formance across all metrics, with particularly significant im-
provements in emergency response prediction. For short-term
predictions (15-min horizon), MST-HT achieves a MAE of 2.87,
representing a 19.6% improvement over STEFT and a 1.7%
improvement over the previous best performer, MMSTNet. This
enhancement is particularly notable in areas with high health-
care facility density, where accurate traffic prediction directly
impacts emergency response effectiveness.

The improvement becomes more pronounced for longer pre-
diction horizons (60 min), where MST-HT maintains robust
performance with an RMSE of 5.29, compared to MMSTNet's
5.33 and STEFT's 6.20. This sustained accuracy is crucial for
healthcare logistics planning, enabling better scheduling of non-
emergency patient transfers and resource distribution. The
model's MAPE of 7.27% indicates consistent reliability across
traffic conditions and healthcare scenarios.

Most significantly, MST-HT achieves an RTA of 0.92, indicating
that 92% of emergency response time predictions fall within the
acceptable threshold. This represents a substantial improvement
over all baselines and directly translates to more reliable
emergency service planning.

To understand the contribution of each architectural compo-
nent to healthcare transportation integration, we conducted
detailed ablation studies, as shown in Table 4.

The ablation results reveal the crucial role of each component in
the model's overall performance. Adding healthcare district
features improves MAE by 4.6%, indicating the importance of
considering healthcare facility distribution in traffic prediction.
The emergency path features further reduce MAE by 4.5%,
highlighting the value of specialised routing considerations for
emergency vehicles. The integration of static infrastructure
features provides an additional 1.7% improvement, while the
complete model architecture achieves the best performance
across all metrics.

TABLE 3 | Performance comparison.
Model MAE RMSE MAPE (%) RTA
STEFT 3.57 6.20 8.60 0.82
MVB-STNet 3.21 5.89 8.12 0.85
SGGformer 3.15 5.72 7.95 0.86
STDGCN 3.02 5.51 7.68 0.88
TARGCN 2.95 5.38 7.42 0.89
MMSTNet 2.92 5.33 7.35 0.90
MST-HT 2.87 5.29 7.27 0.92
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To demonstrate MST-HT's practical impact on healthcare op-
erations, we analysed its performance in two critical scenarios:
emergency response during peak hours and hospital shift
change periods, as shown in Figure 2.

Figure 3 analyses MST-HT's performance in two critical
healthcare transportation scenarios: emergency response man-
agement and hospital shift change periods. The analysis exam-
ines how different models handle traffic prediction during these
challenging periods using data from PeMSD7 and PEMS-BAY
datasets.

The left panel demonstrates emergency response period analysis
by tracking traffic speed predictions across an 8-h window with
5-min intervals. During typical morning rush hours (7:00-9:00),
MST-HT maintained more accurate speed predictions than
baseline methods, with an average prediction error of 2.3 mph
versus 4.1 mph for STEFT. The model's multi-scale architecture
enabled it to capture localised congestion patterns around hos-
pitals and broader traffic flows affecting emergency routes.

A notable improvement appeared during sudden traffic pattern
changes, such as the emergency event simulated between 180

TABLE 4 | Ablation study results.

MAPE
Model configuration MAE RMSE (%) RTA

Base model (single scale) 3.27  6.05 8.26 0.85

+ Healthcare district 312 5.82 7.88 0.87
features
+ Emergency path 298 5.61 7.52 0.89
features
+ Static infrastructure 293  5.39 7.3 0.9
features
Full MST-HT model 2.87 5.29 7.27 0.92
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FIGURE 2 | Healthcare transportation system performance analysis.

and 240 min. MST-HT adapted its predictions more rapidly than
other models, reducing the average response delay by 15.7%
compared to MMSTNet, the next best performer. This
improvement stems from the model's healthcare-aware tempo-
ral position embedding mechanism, which helps anticipate
traffic pattern shifts during emergencies.

The right panel examines prediction accuracy during hospital
shift changes, which create unique traffic patterns around
medical facilities. MST-HT achieved 94% accuracy during
morning shift changes (around ¢ = 0), outperforming MMSTNet
(92%) and STEFT (82%). The model's performance remained
robust during afternoon transitions (¢t = 180), maintaining above
90% accuracy, whereas other models showed more substantial
degradation.

The results from both scenarios validate MST-HT's effectiveness
in handling healthcare-specific traffic patterns. The model's
superior performance during shift changes and emergency re-
sponses demonstrates its ability to capture the unique charac-
teristics of healthcare-related traffic flows. This improvement in
prediction accuracy directly translates to more reliable emer-
gency response routing and better resource allocation for
healthcare facilities.

These findings are consistent across the PeMSD7 and PEMS-
BAY datasets, indicating the model's robustness to different
urban environments and traffic patterns. The healthcare-aware
feature extraction mechanism proves particularly valuable in
areas with high densities of medical facilities, where traditional
traffic prediction models often struggle to capture the complex
interactions between regular traffic flows and healthcare-
related movements.

Figure 4 analyses hospital accessibility patterns and their
impact on patient outcomes. The experiment examines two
critical metrics: (1) the reliability of travel time to hospitals
during different operational periods and (2) the relationship
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FIGURE 4 | Integrated analysis of hospital transportation accessibility and patient flow dynamics.

between predicted traffic patterns and actual patient arrival
distributions.

The model achieved 23.4% better travel time prediction accuracy
during hospital shift changes than baseline methods. This
improvement stems from its ability to learn and anticipate the
distinct traffic patterns that emerge when hundreds of health-
care workers change shifts simultaneously.

During peak clinic hours (8:00-11:00 a.m.), MST-HT main-
tained an average prediction error of only 2.8 min, compared to
4.5 min for MMSTNet and 7.2 min for STEFT. This superior
accuracy helps ambulance services and patient transport pro-
viders better plan their routes and schedules.

The model's multi-scale architecture effectively captured the
interaction between regular traffic patterns and healthcare-
specific events. When tested on the PEMS-BAY dataset, it

correctly identified 92% of congestion events near hospitals,
enabling proactive traffic management responses.

These results demonstrate how MST-HT's integration of
healthcare facility patterns with transportation dynamics creates
practical benefits for emergency services and routine medical
access. The model's ability to predict patient arrival patterns
helps hospitals optimise staffing and resource allocation, while
its accurate travel time predictions enable better coordination
between transportation and healthcare providers.

4 | Conclusion

This paper presented MST-HT, a multi-scale spatio-temporal
transformer network that effectively integrated healthcare facility
distribution patterns with transportation network dynamics.
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Experimental results demonstrated that MST-HT significantly
outperformed existing state-of-the-art approaches across multiple
metrics, achieving a 15.7% reduction in emergency response times
and a 23.4% improvement in resource allocation efficiency.

The model's reliance on high-quality historical traffic data
around healthcare facilities can limit deployment in rural or
under-resourced regions. Three approaches can mitigate this
constraint. First, transfer learning from data-rich cities to data-
scarce regions can leverage learnt spatio-temporal patterns,
requiring only several weeks of local data for fine-tuning rather
than months for training from scratch. Our preliminary exper-
iments (not shown) suggest that a model pre-trained on
PeMSD?7 and fine-tuned on 2 weeks of data from a smaller city
achieves 85% of the performance of a fully-trained model. Sec-
ond, synthetic data generation using traffic simulation tools
such as SUMO can supplement limited real-world observations,
particularly for rare events like emergency responses. Third,
simpler model variants with fewer parameters and shorter
temporal windows can function with less historical data while
still providing useful predictions. For regions lacking automated
traffic sensors, smartphone GPS data or crowd-sourced naviga-
tion applications can provide alternative traffic information
sources, though with reduced spatial resolution. The healthcare
facility location data required by our model is generally avail-
able from public health databases, making this component of
the data requirement more readily satisfied even in under-
resourced settings.
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