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Although 6G networks combined with artificial intelligence present revolutionary prospects for healthcare 
delivery, resource management in dense medical device networks stays a basic issue. Reliable communication 
directly affects patient outcomes in these settings; nonetheless, current resource allocation techniques struggle 
with complicated interference patterns and different service needs of AI-native healthcare systems. In dense 
installations where conventional approaches fail, this paper tackles the challenge of combining network efficiency 
with medical care priority. Thus, we offer a Dueling Deep Q-Network (DDQN) -based resource allocation 
approach for AI-native healthcare systems in 6G dense networks. First, we create a point-line graph coloring

based interference model to capture the unique characteristics of medical device communications. Building on 
this foundation, we suggest a DDQN approach to optimal resource allocation over multiple medical services by 
combining advantage estimate with healthcare-aware state evaluation. Unlike traditional graph-based models, 
this one correctly depicts the overlapping coverage areas common in hospital environments. Building on this 
basis, our DDQN design allows the system to prioritize medical needs while distributing resources by separating 
healthcare state assessment from advantage estimation. Experimental findings show that the suggested DDQN 
outperforms state-of-the-art techniques in dense healthcare installations by 14.6% greater network throughput 
and 13.7% better resource use. The solution shows particularly strong in maintaining service quality under 
vital conditions with 5.5% greater QoS satisfaction for emergency services and 8.2% quicker recovery from 
interruptions.

1. Introduction

Combining 6G networks with artificial intelligence-native health

care systems signals a revolutionary change in medical service delivery 
[1--3]. AI-native healthcare systems, defined by their natural integra

tion of artificial intelligence for medical data processing, diagnosis sup

port, and treatment optimization, call for unmatched degrees of network 
performance [4]. From real-time patient monitoring to high-resolution 
medical imaging, these systems handle enormous volumes of health

care data, demanding ultra-reliable and low-latency connectivity. Sup

porting communication between Medical Devices (MD) and Artificial 
Intelligence (AI) in a bidirectional manner that improves both network 
optimization and healthcare service quality, the 6G Dense Network (DN) 
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architecture becomes a key enabler for these sophisticated healthcare 
applications [5--7].

As healthcare institutions deploy more and more AI-powered sen

sors and devices [8,9], the density of network nodes rises dramatically. 
As recorded in recent healthcare IoT studies [10], a modern hospital 
ward can include hundreds of connected devices per room. Operating 
rooms often have 30 to 50 networked devices, including surgical robots, 
imaging systems, and anesthesia equipment; intensive care units usually 
have 15 to 20 monitoring devices per bed (patient monitors, ventilators, 
infusion pumps). Depending on the severity, emergency departments 
have different device densities; trauma rooms may have up to 35 linked 
devices in a 25 m2 space. Healthcare institutions are using more AI

enhanced equipment for better patient care, which is driving this density 
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to rise. This extensive distribution creates notable interference issues 
that could compromise the reliability of vital medical services [11]. 
Often relying on static optimization methods, conventional resource al

location policies struggle to control the complex interference patterns in 
crowded medical environments. The healthcare environment increases 
even more complexity from delay-sensitive emergency communications 
to bandwidth-intensive medical imaging transfers since different med

ical uses have varying priority and Quality of Service (QoS) require

ments.

The intersection of AI-native healthcare systems with 6G DN raises 
unique resource allocation problems outside conventional network op

timization considerations [12,13]. Medical equipment must meet strict 
performance promises in busy hospital environments while sharing 
a restricted spectrum of resources. For instance, whereas artificial 
intelligence-powered surgical robots require ultra-reliable communica

tion connections with minimal interference, patient monitoring systems 
demand continuous data collecting by constant connectivity. Therefore, 
the resource allocation system must consider several services’ technical 
network elements, medical criticality, and specific performance require

ments [14].

Ineffective resource allocation in real healthcare settings produces 
observable effects. For instance, transmission delays over 200 ms in 
surgical settings can interfere with robotic surgery systems, increasing 
patient danger and perhaps prolonging operations by 15 to 20 minutes 
for each incident. Patient monitoring data streams in intensive care units 
call for constant 99.999% dependability since every 0.1% drop in trans

mission reliability corresponds to roughly 12 missed crucial warnings 
every day per ward. Diagnostic imaging transfers are delayed more than 
30 seconds because of network congestion, which also increases typical 
diagnosis times by 17 minutes, impacting patient treatment schedules 
and hospital throughput directly [15].

Previous research has examined several resource allocation tech

niques in dense networks [16,17]. While some studies on power control 
and resource block assignment strategies have emphasized interference

aware matching theory for device-to-device communications, others 
have emphasized these approaches. However, the dynamic nature of 
medical operations and the different requirements of numerous health

care applications create a more complex optimization landscape, which 
often fails in AI-native healthcare settings. When one considers the need 
to maintain the Quality of Experience (QoE) for medical professionals 
while ensuring patient safety through continuous network performance 
[18], the problem becomes extremely challenging.

Three separate types may be used to categorize earlier studies on re

source allocation. Wang et al. [19] conducted substantial research on 
but were not created with healthcare-related limits in mind. However, 
there is no consideration for prioritizing medical data. Wu and He [20] 
present self-learning networks that improve security in AI-enabled sys

tems. Although not addressing communication resource management, 
healthcare-focused strategies have surfaced lately, such as Long et al. 
[21] using artificial intelligence in healthcare supply chains. While Ja

gannath et al. [22] proposed an IoT-enabled smart healthcare system 
using deep reinforcement learning. Their method, however, depends on 
simplified interference models inappropriate for dense medical device 
installations. In healthcare settings, these current studies show three 
shared shortcomings: they usually presume consistent service needs 
across all network nodes, seldom include medical criticality in their op

timization goals, and poorly handle the rigorous reliability expectations 
where even transient communication failures could affect patient care.

Accordingly, the main contributions of this paper are summarized as 
follows:

• We introduce a point-line graph coloring interference model specif

ically designed for healthcare environments.

• We develop a healthcare-aware DDQN architecture that separates 
state value estimation from advantage calculation, enabling more 

Fig. 1. AI-native healthcare system in 6G dense network. 

precise evaluation of resource allocation decisions in medical con

texts.

• We create an adaptive learning framework that autonomously gen

erates resource allocation strategies tailored to healthcare environ

ments.

The rest of the paper is organized as follows. Section 2 introduces the 
system model. Section 3 presents the healthcare network interference 
model based on point-line graph coloring and develops the healthcare

aware resource allocation strategy. Section 4 details the deep rein

forcement learning approach, introducing the healthcare-aware DQN 
resource allocation model and the specialized DDQN algorithm for medi

cal network optimization. Section 5 provides the experiments and results 
analysis. Finally, Section 6 concludes the paper.

2. System model

This study examines an advanced medical communication scenario 
within 6G DN, illustrated in Fig. 1, where AI-native healthcare sys

tems enable intelligent medical services, automated diagnostics, and 
real-time patient monitoring. The network infrastructure supports crit

ical medical operations through a distributed system of  healthcare 
nodes forming  medical communication links. The medical network 
environment integrates multiple components: AI-enabled diagnostic sys

tems (), patient monitoring devices (), robotic surgical equipment 
(), and emergency response units (). This healthcare-oriented net

work achieves bidirectional intelligence enhancement through the col

laboration between medical artificial intelligence () and communica

tion systems (). As medical smart terminals ( ) become increasingly 
prevalent and healthcare networks expand rapidly, conventional 5G DN 
architectures cannot fully meet the rising technical requirements for 
autonomous operation, ultra-large scale deployment, highly dynamic 
adaptation, and complete intelligence in medical service delivery. The 
anticipated growth in smart healthcare systems and internet of medical 
things devices may exceed current 5G DN capabilities. In comparison, 
6G DN healthcare implementations will support 10 times higher net

work capacity for medical data transmission and one-tenth the latency 
for critical procedures while serving 10 times more medical terminal de

vices and ensuring enhanced quality of medical service. We establish a 
point-line graph coloring approach for modeling overlapping interfer

ence patterns between healthcare nodes to optimize resource allocation 
in this complex medical network topology.

2.1. Network coverage model and 6G DN healthcare topology

Modern healthcare operations depend on complex interconnection 
structures created by creating communication coverage zones and net
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Fig. 2. Healthcare device coverage and communication links. 

work topology patterns in advanced medical settings. Providing sev

eral medical services—from real-time patient monitoring to emergency 
response systems—helps create this complexity. When analyzing the 
medical network configuration between three fundamental healthcare 
devices (1, 2, and 3) within a smart hospital environment as 
shown in Fig. 2, we observe that each medical device functions within 
a carefully orchestrated wireless coverage domain that overlaps with its 
neighboring devices. For critical medical operations, this overlapping 
coverage guarantees redundancy and ongoing connectivity. Following 
exact healthcare-specific distance standards, dependable connectivity 
is preserved while reducing any interference that might compromise 
medical service quality, and medical communication networks between 
healthcare equipment follow. Maintaining continuous healthcare ser

vice delivery depends on carefully balancing coverage and interference 
control.

𝜆𝑚,𝑛 ≤min(𝜌𝑚, 𝜌𝑛) (1)

where 𝜆𝑚,𝑛 represents the Euclidean distance between medical devices 
𝑚 and 𝑛, while 𝜌𝑚 and 𝜌𝑛 denote their respective medical service 
coverage radii. Real-world medical environments introduce device het

erogeneity, leading to 𝜌𝑚 ≠ 𝜌𝑛 due to varying healthcare application 
requirements.

In Fig. 3, we observe how medical devices in a hospital facility cre

ate a synergistic web of service coverage. The illustration shows how 
different medical devices perform in perfect unison so that healthcare 
services can be rendered throughout the institution. The whole medical 
service coverage area , which marks the extent of medical service 
area coverage, is defined by the mathematical union of individual device 
coverage zones, thus ensuring critical operational geospatial coverage 
for major healthcare services. The integration of coverage zones ensures 
continuous availability of healthcare services throughout hospital re

gions, including but not limited to emergency rooms and patient care 
units.

𝐺 =
⋃
ℎ∈

ℎ (2)

where ℎ indicates the coverage zone of medical device ℎ, and 
encompasses all healthcare devices in the facility. This unified cover

age model ensures seamless medical service delivery across the entire 
healthcare environment.

Visualized in Fig. 4, the resulting healthcare network topology shows 
an integration of medical services using a customized mathematical 
graph structure that catches the intricate interactions between vari

ous healthcare equipment and their communication paths. Using exact 
modeling of how medical equipment interacts and exchanges resources 

Fig. 3. Healthcare network coverage model. 

Fig. 4. Healthcare network topology. 

within the hospital setting, this graph-based representation forms a com

plete framework supporting several healthcare activities ranging from 
routine patient monitoring to emergency care coordination.

 = (,) (3)

where  = 1,2,… , denotes the set of healthcare devices, and  =
1,2,… , represents the set of medical communication links. From 
regular patient monitoring to emergency medical responses, this archi

tecture fits many healthcare environments while preserving AI-driven 
service quality enhancement. The network topology allows real-time 
medical data transfer, AI-assisted diagnosis, and automated treatment 
coordination using dense deployment of linked healthcare devices. Ev

ery medical gadget function as a network node and a data collecting 
point, therefore adding to the general dependability and effectiveness 
of the healthcare communication system.

2.2. Resource allocation in healthcare 6G DN

The resource allocation technique in AI-native healthcare networks 
shows a clever way to maximize communication resources across med

ical device linkages, reflecting congruence with the complex network 
architecture shown in Fig. 4. This optimization strategy meticulously an

alyzes numerous aspects essential to healthcare operations, from emer

gency response systems to routine patient monitoring and the intricate 
interactions between connected medical equipment, including the dis

tinct objectives of various medical services. Aiming to minimize inter
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ference between simultaneous medical procedures, the allocation mech

anism guarantees ongoing healthcare service delivery by means of an 
advanced decision-making system that methodically distributes com

munication resources. The system considers long-term service quality 
criteria with urgent operational needs to optimize resource allocation 
and maintain optimal performance. Using a mathematical formulation 
that includes both the technical limitations and medical service prior

ity for any two medical devices sharing network access points, we can 
define this healthcare-aware resource allocation goal as:

min
∑
𝛼∈

∑
𝛽∈𝜔(𝛼, 𝛽)

s.t. 𝜉𝛼 ∩ 𝜉𝛽 =∅, 𝛼 ≠ 𝛽 (4)

where 𝜔(𝛼, 𝛽) represents the medical resource relationship between 
communication links 𝛼 and 𝛽, taking a value of 𝜔(𝛼, 𝛽) = 1 when the 
links share identical medical communication resources, and 𝜔(𝛼, 𝛽) = 0
otherwise. The constraint 𝜉𝛼 ∩ 𝜉𝛽 = ∅ guarantees that connections 𝛼 and 
𝛽 in the healthcare network architecture do not share common medi

cal equipment. From real-time surgical data transmission to continuous 
patient monitoring, this formulation covers several medical situations 
and guarantees the best use of resources across several healthcare uses. 
The allocation approach considers the density of device deployment 
and the criticality of medical services, so adjusting resource allocation 
depends on network circumstances and medical procedure needs. For 
instance, although patient monitoring devices use resource-sharing sys

tems when suitable, artificial intelligence-assisted surgical systems get 
priority resource allocation to keep ultra-reliable communication. While 
keeping the rigorous performance criteria of medical applications, this 
healthcare-aware method guarantees effective spectrum use.

A multi-level adjustment system allows the resource allocation 
framework to vary with real-time medical scenario fluctuations. The sys

tem tracks three important network-level metrics at 100 ms intervals: 
Link Quality Indicators (LQI) for all medical connections, queue status 
for various service kinds, and device mobility patterns. The system acti

vates instant resource reallocation when LQI values fall below-specified 
thresholds—varying by service type: 20 dB for emergency services, 
15 dB for surgical systems, and 10 dB for monitoring devices. The allo

cation mechanism raises resource assignment by 20-40% depending on 
medical priority for service queues over 75% capacity. Device mobility 
causes reallocation when movement surpasses 2 meters for stationary 
equipment or 5 meters for mobile devices. This multi-parameter mon

itoring guarantees that resources follow the real demands of medical 
operations as they change.

There are many pragmatic constraints on the system model. First, 
the model presumes ideal Channel State Information (CSI), which could 
not be accessible in healthcare settings because of sensing constraints 
and fast-changing circumstances. This can lower allocation efficiency 
by 8 to 12% in very volatile environments. Second, the model struggles 
with a basic trade-off between reliability promises and resource use. By 
setting aside 15% of available resources for emergency services, our ap

proach prioritizes dependability, guaranteeing vital service availability 
despite declining general network efficiency. Third, in extremely dense 
deployments>500 devices/km2, the computational needs for best allo

cation rise dramatically, requiring approximation approaches that give 
up 5-7% of the performance for tractability. These limitations must be 
carefully controlled when putting the technology in actual healthcare 
settings.

3. AI-native healthcare network interference model

3.1. Healthcare network interference model using graph coloring

Effective resource allocation in the complicated context of dense 
healthcare networks depends on a thorough awareness of the complex 
interference patterns that develop across many medical devices, from 
surgical equipment to critical care monitoring. The administration of 
these resources calls for a creative strategy that considers the special 

needs of medical services as well as the technological features of wire

less communications. We construct a specific association matrix 𝑀 that 
properly captures and quantifies the many interactions between health

care equipment and their accompanying communication channels to 
approach this difficulty methodically. Under this design, the medical 
device network of  healthcare devices, each with particular medical 
use, and  medical communication links enable data exchange among 
these devices. The Euclidean distance between two medical devices 𝜇𝑖
and 𝜇𝑗 defines their spatial connection, sometimes known as 𝜙𝑖,𝑗 . The 
determination of connectivity feasibility depends critically on this dis

tance measure; when 𝜙𝑖,𝑗 meets the connection conditions described in 
equation (1), the devices 𝜇𝑖 and 𝜇𝑗 can create a safe medical data link, 
therefore facilitating important healthcare information exchange.

We validate the point-line graph coloring interference model using 
communication traces collected from three hospital environments over 
six months. The dataset includes transmission patterns from 28 medical 
device types, including telemetry monitors, infusion pumps, ventilators, 
and surgical navigation systems. Analysis reveals that medical devices 
exhibit unique communication patterns characterized by (1) Periodic 
reporting intervals with strict timing requirements, (2) Burst transmis

sions during clinical events, and (3) Redundant transmission paths for 
critical data. Our model is calibrated to account for these patterns, with 
particular attention to the co-existence requirements of life-critical sys

tems.

We formally depict these intricate device connections and their 
communication patterns using the association matrix of the healthcare 
network using 𝑇

𝑀
, therefore offering a mathematical framework for 

resource allocation decision analysis and optimization. This matrix pro

vides a framework for interference control and resource optimization 
and captures the network’s whole connection topology.

𝑇
𝑀

=
⎡⎢⎢⎣
𝛽1,1 ⋯ 𝛽1,
⋮ 𝛽𝛼,𝜇 ⋮
𝛽,1 ⋯ 𝛽,

⎤⎥⎥⎦ (5)

Effective resource allocation in dense healthcare settings requires a 
sophisticated methodology that thoroughly examines the complex net

work of interactions among many medical equipment. We have created 
a specific association matrix 𝑀 to provide a complete mathemati

cal framework for encapsulating and evaluating the many interactions 
between medical equipment and their communication channels. Our 
healthcare network design consists of  healthcare devices, includ

ing critical care monitors, surgical equipment, and patient monitoring 
systems, together with  medical communication lines that enable im

portant data interchange as shown in Fig. 5. The Euclidean distance 
[23] 𝜙𝑖,𝑗 exactly measures the spatial relationships between any pair of 
medical equipment 𝜇𝑖 and 𝜇𝑗 . This is essential for deciding if medical 
data transmission is feasible and of quality. While preserving the high 
dependability standards of healthcare communications, this distance 
metric guarantees the best deployment and connectivity of medical de

vices.

In medical device networks, each communication link plays a spe

cific and dedicated role in connecting exactly two healthcare devices to 
enable critical data exchange. For example, this could involve establish

ing a secure, high-bandwidth connection between a surgical robot and 
its associated medical imaging system or linking a patient monitoring 
device to its central data processing unit. This one-to-two relationship 
constraint ensures focused, reliable communication pathways and can 
be mathematically expressed as:∑
𝜇∈

𝛽𝛼,𝜇 = 2,∀𝛼 ∈ (6)

The interference experienced by an individual medical device can be 
quantified through:

𝜃𝜇 =
1 

2𝜅𝜇

∑
𝛼∈𝜇

∑
𝛼′∈,𝛼′≠𝛼

𝜔(𝛼, 𝛼′)|𝜉𝑇
𝛼
𝜉𝛼′ | (7)

Digital Communications and Networks 11 (2025) 2016–2029 

2019 



J. Lv, C.-M. Chen, S. Kumari et al. 

Fig. 5. Healthcare network undirected graph model. 

where 𝜃𝜇 represents the interference level at medical device 𝜇, 𝜇 de

notes the set of communication links containing device 𝜇, 𝜅𝜇 indicates 
the number of links used by device 𝜇, and 𝜉𝑇

𝛼
represents the transpose 

of 𝜉𝛼 .

We select the Euclidean distance metric for modeling spatial relation

ships between medical devices. In controlled healthcare environments, 
signal propagation follows predominantly line-of-sight paths where Eu

clidean distance accurately predicts signal strength. Additionally, unlike 
Manhattan distance, which overestimates separation in open hospital 
spaces, or Minkowski distance metrics, which require additional param

eter tuning, Euclidean distance provides a balanced approximation of 
actual signal paths.

The overall healthcare network interference can be calculated by 
aggregating individual device interference levels:

𝜃𝑀 = 1 


∑
𝜇∈

𝜅𝜇𝜃𝜇 (8)

To demonstrate how our interference model functions in real health

care environments, we examine a practical scenario involving medical 
device 𝜇6, representing a central patient monitoring system utilizing 
multiple communication links to interact with various medical sensors 
and data processing units. The interference level experienced by this de

vice, which directly impacts the reliability of patient data transmission 
and monitoring quality, can be systematically calculated through the 
following mathematical expression:

𝜃6 =
1 
2𝜅6

∑
𝛼∈6

∑
𝛼′∈,𝛼′≠𝛼

𝜔(𝛼, 𝛼′)|𝜉𝑇
𝛼
𝜉𝛼′ |

= 1 
2 × 4

∑
𝛼∈6

∑
𝛼′∈,𝛼′≠𝛼

𝜔(𝛼, 𝛼′)|𝜉𝑇
𝛼
𝜉𝛼′ |

= 1
8
([1]𝑇 [1])

= 1
4

(9)

where 𝜃6 =
1
4 indicates that device 𝜇6 experiences interference in one

fourth of its communication links.

What strategies are appropriate for assessing interference patterns in 
a sophisticated healthcare network? Focusing on the role of each med

ical device in the interference to which it contributes, some level of 
interference can be advantageous and, in other instances, detrimental 
to the quality of care received by the patient and the service offered. 
In Fig. 6, we can portray a representative case study using the medical 
device 𝜇6, which acts as a central monitoring station, serving patient 
monitors, diagnostic devices, and emergency response units through 
multiple communicational links with interfaces and coprocessors. The 

Fig. 6. Healthcare network resource allocation state. 

multifaceted connections of this device introduce a myriad of possible 
interference patterns to be managed to deliver quality healthcare ser

vices.

The total network interference for this healthcare configuration can 
be expressed as:

𝜃𝑀 = 1 


∑
𝜇∈

𝜅𝜇𝜃𝜇 =
1 
15

(4 × 1
4
+ 4 × 1

4
) = 2 

15
(10)

The formulation establishes a solid framework for measuring and 
analyzing complex interference patterns in healthcare networks, allow

ing for optimized resource allocation across various medical applica

tions with differing levels of criticality. The model integrates advanced 
weighting mechanisms that consider the specific needs and priorities 
of various medical devices in the hospital setting. While balancing re

sources for regular patient monitoring devices that can handle more 
flexible performance criteria, it gives interference management for vital 
surgical systems needing ultra-reliable, low-latency communication pri

ority. Including healthcare-specific factors into the mathematical model 
guarantees consistent communication channels for medical services, 
including long-term patient monitoring systems gathering continuous 
health data and emergency response systems needing quick data trans

fer. By means of interference quantification, the network can maintain 
the best performance across healthcare activities, enabling effective 
medical service delivery and enhancing the quality of patient care.

The computational complexity of interference calculations presents 
implementation concerns in large-scale healthcare networks. For a net

work with 𝑁 medical devices and 𝐾 communication links, the worst

case time complexity for constructing the complete interference model 
is 𝑂(𝐾2), as each link must be evaluated against all others. For dense 
deployments with hundreds of devices, we implemented three opti

mization techniques: (1) A spatial partitioning algorithm that limits 
interference calculations to geographically proximate devices, reduc

ing complexity to 𝑂(𝐾 log𝐾) in typical hospital layouts; (2) A caching 
mechanism that stores interference patterns for static devices and only 
updates calculations for mobile elements; and (3) A parallel compu

tation framework that distributes calculations across multiple cores, 
achieving near-linear speedup on our test platform.

3.2. Healthcare-aware resource allocation strategy

The integrated healthcare communication system needs sophisti

cated and dynamic interference control capabilities to guarantee de

pendable operation among a dense network of linked medical devices 
during medical network construction and evolution. Applying Eq. (10) 
to actual clinical settings allows us to methodically assess and mea

sure interference levels resulting from the complex interactions among 
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several medical devices, including patient monitors, surgical tools, and 
diagnostic systems, all closely adjacent.

Achieving a condition whereby 𝜃𝑀 = 0 marks a significant turning 
point in the framework of AI-native healthcare networks as it indi

cates that the system has effectively distributed resources in a way that 
removes negative interference among medical devices. In healthcare en

vironments where any communication disturbance might affect patient 
care quality or important medical operations, this interference-free sit
uation is essential.

From its starting condition, where devices may experience differ

ent degrees of interference, the resource allocation strategy for medical 
applications follow a well-organized progression, transforming the net

work from its current state to an optimal final configuration, ensuring 
continuous and reliable healthcare service delivery. From emergency 
response systems needing instantaneous access to network resources to 
long-term patient monitoring systems needing solid, constant commu

nication channels, this evolution considers the special requirements of 
various medical services.

The Markovian character [24] of this resource allocation system is 
crucial in healthcare: at each given moment 𝑡, the future allocation state 
𝜁𝑡+1 is found only by the present state 𝜁𝑡. This feature helps the system 
keep the rigorous performance criteria necessary for medical applica

tions while allowing it to make quick, real-time choices on resource 
allocation. Maintaining a stable and predictable resource distribution 
pattern, the Markovian architecture lets the system react fast to evolv

ing healthcare needs.

We developed a finite-length Markov chain solution that approaches 
the undirected graph coloring issue methodically to handle the com

plicated criteria of medical resource allocation in dense healthcare net

works. This solution framework guarantees the continuous interference

free operation of medical equipment by establishing a thorough state 
transition matrix  that preserves the crucial condition of 𝜃𝑀 = 0 across 
all time events 𝑡. This method ensures the best resource allocation for 
several medical services by considering the changes between several 
network states while keeping tight healthcare performance criteria. For

mally, the state transition dynamics of the healthcare network may be 
expressed by a matrix expression arranged in a structured manner as 
follows:

 =

⎡⎢⎢⎢⎢⎣
𝑝𝜁0 ,𝜁0

𝑝𝜁0 ,𝜁1
⋯ 𝑝𝜁0 ,𝜁0

𝑝𝜁1 ,𝜁0
𝑝𝜁1 ,𝜁1

⋯ 𝑝𝜁1 ,𝜁∗
⋮ ⋮ ⋱ ⋮

𝑝𝜁0 ,𝜁0
𝑝𝜁∗ ,𝜁1

⋯ 𝑝𝜁𝑛,𝜁𝑛

⎤⎥⎥⎥⎥⎦
(11)

Although our formulation uses the Markovian property for mathe

matical soundness, we acknowledge that medical settings show consis

tent temporal patterns that can improve resource allocation. Hospital 
operations are cyclical, including shift changes, scheduled procedures, 
patient rounds, and drug administration schedules. We explored aug

menting our Markovian model with a temporal context vector 𝜏𝑡 that 
encodes time-of-day, day-of-week, and scheduled clinical activities to 
create a context-aware transition model: 𝑝(𝜁𝑡+1|𝜁𝑡, 𝜏𝑡, 𝛼𝑡). However, we 
maintained the core Markovian formulation to ensure theoretical sound

ness while noting that temporal pattern recognition represents a promis

ing direction for further refinement.

Direct measurement or observation of state transition probabilities 
becomes somewhat useless and inaccurate in medical settings when 
several devices interact continually, and network states change fast. 
This restriction results from the dynamic character of healthcare oper

ations, in which unanticipated changes occur in patient status, medical 
treatments, and resource requirements. Our healthcare network uses a 
sequential resource allocation technique, meticulously distributing re

sources to medical communication connections to enable the regulated 
change from state 𝜁𝑡 to state 𝜁𝑡+1. The evolution guarantees that im

portant medical treatments run continuously as the network adjusts to 
evolving needs. Formally, the particular resource allocation activities 

for medical devices—which have to take into account elements like ser

vice priority, device criticality, and current network conditions—can be 
expressed by a mathematical formula that catches both the decision

making process and its results:

𝛼 ⊳ 𝜋(⋅|𝜁) (12)

where 𝜁 denotes the healthcare network state encompassing both topol

ogy information and resource allocation status, 𝛼 represents the resource 
allocation action for medical links, and 𝜋 indicates the probability of ex

ecuting action 𝛼 in state 𝜁 . This can be further defined as:∑
𝑖 
𝜋(𝛼𝑖|𝜁) = 1,∀𝜁 (13)

Following Eqs. (12) and (13), the healthcare network’s state transi

tion probability after resource allocation becomes:

𝑝𝜁,𝜁 ′ = 𝑝(𝜁 ′|𝜁) =∑
𝑖 
𝜋(𝛼𝑖|𝜁)𝑝(𝜁 ′|𝜁, 𝛼𝑖) (14)

In AI-native healthcare systems, the capacity of resource alloca

tion operations to attain interference-free medical communications�-

denoted by the criterion 𝜃𝑀 = 0�-directly determines their success. The 
state transition probability 𝑝(𝜁 ′|𝜁, 𝛼𝑖) achieves its maximum value of 1, 
verifying a successful network reconfiguration when this essential con

dition is satisfied, suggesting that all medical devices can communicate 
consistently without mutual interference. Nevertheless, if any interfer

ence (𝜃𝑀 ≠ 0), the transition probability 𝑝(𝜁 ′|𝜁, 𝛼𝑖) becomes 0, thus 
rendering this transition useless for healthcare operations as it may so 
degrade the quality of medical services.

Using systematic identification and establishment of the best re

source allocation approach 𝜋∗ that regularly preserves interference-free 
medical communications, we may analyze the system state transition 
matrix  . Considering several elements like medical service priority, 
device criticality, and current network circumstances, every individual 
approach 𝜋 inside our framework generates unique allocation patterns 
𝜏 that are specially adapted to particular healthcare network states. The 
following formulation allows one to quantitatively describe these trends 
by capturing both the instantaneous choices on resource allocation and 
their long-term effects on the delivery of healthcare services:

𝑝(𝜏|𝜋) = 𝜌0(𝜁0) 𝑇−1∏
𝑡=0 
𝑝(𝜁𝑡+1|𝜁𝑡,𝑡)𝜋(𝑡|𝜁𝑡) (15)

where 𝜌0(𝜁0) represents the initial healthcare network state distribution. 
This formulation effectively captures the relationship between alloca

tion strategies and their resulting patterns in medical environments. 
For dynamic healthcare scenarios where network topology or structure 
changes, the resource allocation process can be expressed as:

𝜁0, 𝛼0, 𝜁1, 𝛼1, 𝜁2,⋯ , 𝜁𝑖, 𝛼𝑖, 𝜁𝑖+1, 𝛼𝑖+1, 𝜁𝑖+2⋯ (16)

where states 𝜁0, 𝜁1, 𝜁2 belong to the first medical network topology, and 
states 𝜁𝑖, 𝜁𝑖+1, 𝜁𝑖+2 correspond to subsequent healthcare network con

figurations resulting from dynamic changes in medical device deploy

ment.

Our framework includes protocol adaptation layers designed for in

terfacing with legacy medical devices as they normalize communica

tion patterns for the resource allocation algorithm. Proprietary legacy 
devices are managed by dedicated device-specific protocols, and trans

lation gateways, which normalize external network interfaces while 
managing proprietary communications on internal systems. We tried 
this approach with legacy equipment like old patient monitors, propri

etary nurse-call systems, and diagnostic devices. The resource alloca

tor integrated these systems after enhancing state representation with 
protocol-specific features tailored to their unique traffic patterns and 
timing requirements.
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4. Deep reinforcement learning for healthcare resource allocation

4.1. Healthcare-aware DQN resource allocation model

In the advanced landscape of AI-native healthcare networks, we 
develop a Deep Q-Network (DQN) approach to determine optimal se

quences for medical resource allocation. This innovative model rep

resents a significant advancement in healthcare network management 
by seamlessly integrating two critical aspects: comprehensive network 
topology information that captures the physical relationships between 
medical devices and detailed medical service priorities that reflect the 
varying criticality of different healthcare operations. The model employs 
immediate reward functions that continuously evaluate both interfer

ence patterns between medical devices and their direct impact on the 
quality and reliability of healthcare service delivery.

The components in healthcare environments work in concert to en

sure the reliable operation of critical medical services while maintaining 
efficient resource utilization across the entire healthcare facility. This 
healthcare-aware design enables the system to adapt dynamically to 
changing medical priorities and service demands.

The model abstracts every possible arrangement of resources within 
the medical communication network and, therefore, contains interfaces 
for resource allocation as the state space includes all spatial config

urations of bandwidth, its allocational contiguity, level of power for 
transmission, and channel assignment for use by low-priority services 
like patient monitoring or high priority emergency comms. Each state 
of the network differing by resource distribution and service performed 
can be represented mathematically with the expression:

𝑡 =𝑇
𝑀
,Λ𝑡 (17)

where Λ𝑡 indicates the current resource allocation state for medical de

vice links, reflecting the distribution of communication resources among 
various healthcare applications.

Within our healthcare resource allocation system, the action space 
consists of a wide range of judgments obtained from rigorous obser

vation and analysis of the present network state, including elements 
of device activity levels, service priority, and interference patterns. 
Calculating the product between the total number of medical device 
links  (representing varied connections between surgical systems, pa

tient monitors, and diagnostic devices) and the maximum quantity of 
available medical resources 𝑚 (including bandwidth, time slots, and 
transmission power levels) precisely determines the complexity and di

mensionality of this action space. Maintaining healthcare service quality 
depends on this comprehensive evaluation of communication linkages 
and available resources, which ensures that all conceivable combina

tions of resource allocation are considered. The action space particular 
to healthcare can be stated as:

𝑡 = 0,1,2,… ,𝑚 − 1 (18)

For healthcare environments, we design a reward function that con

siders both network performance metrics and medical service require

ments:

𝑡 =
(
𝑡,𝑡

)
=
{

− 𝜂𝑡, if 𝜃𝑀 = 0
0, otherwise (19)

where 𝜂𝑡 represents the number of resources already allocated to medi

cal devices in the healthcare network.

The action-value function estimates the expected return based on 
healthcare state  and action , considering the medical resource allo

cation policy 𝜋:

𝜋(𝜁, 𝛼) = 𝔼𝑡∼𝜋(𝜁𝑡)

[ ∞ ∑
𝑡=0 
𝛾𝑡𝑡|0 = 𝜁,0 = 𝛼

]
(20)

where 𝛾 represents the discount factor for future medical service re

wards. Finding the optimal resource allocation strategy requires identi

fying an optimal value function (𝜁, 𝛼):

(𝜁,𝛼) = max
𝜋

𝜋(𝜁, 𝛼) (21)

Since each healthcare network state requires evaluation of all possi

ble allocation strategies, we employ the Bellman equation for computa

tional efficiency. The derivation process follows:

𝜋(𝜁, 𝛼) = 𝔼𝜋𝜁𝑡×𝑝𝜁𝑡+1

[
(𝜏𝑡) ∣ 𝑡 = 𝜁, 𝑡 = 𝛼

]
= 𝔼𝜋𝜁𝑡×𝑝𝜁𝑡+1

[
𝑡 + 𝛾𝑡+1 + 𝛾2𝑡+2 +⋯

+ 𝛾𝑇−1𝑇 ∣ 𝑡 = 𝜁, 𝑡 = 𝛼
]

= 𝔼𝑝(𝜁 ′∣𝜁,𝛼)
[
(𝜁, 𝛼) + 𝛾 𝔼𝜋(𝛼′∣𝜁 ′)

[
𝜋(𝜁 ′, 𝛼′)

]]
(22)

The optimal action-value function for healthcare resource allocation 
can then be expressed as:

(𝜁,𝛼) = 𝔼𝑝(𝜁 ′|𝜁,𝛼)[(𝜁, 𝛼) + 𝛾max
𝛼′

(𝜁 ′ ,𝛼′) (23)

For practical implementation in healthcare environments, we utilize 
the temporal difference approach of Q-Learning. The value iteration pro

cess can be represented as:

(𝜁𝑡, 𝛼𝑡)← (1 − 𝜆)(𝜁𝑡, 𝛼𝑡) + 𝜆(𝑡 + 𝛾max
𝛼′

(𝜁𝑡+1, 𝛼′)) (24)

where 𝜆 denotes the learning rate for medical resource allocation. In 
healthcare networks with large state and action spaces, traditional Q

Learning becomes computationally intensive. Therefore, we employ a 
neural network (𝜁, 𝛼;𝜙) to approximate the action-value function, 
where 𝜙 represents the network parameters. These parameters are up

dated through gradient descent:

𝜙𝑡+1 = 𝜙𝑡 + 𝜆∇𝜙((𝜁𝑡, 𝛼𝑡;𝜙𝑡))

⋅
(
𝑡+ 𝛾max

𝛼′
(𝜁𝑡+1, 𝛼′; 𝜙̂𝑡) −(𝜁𝑡, 𝛼𝑡;𝜙𝑡)

)
(25)

The neural network Q-function is implemented as a fully connected 
architecture with four hidden layers of sizes [256, 256, 256, 128]. Each 
hidden layer uses ReLU activation functions to introduce non-linearity 
while avoiding the vanishing gradient problem common in deeper net

works. The final output layer uses linear activation to estimate Q-values 
without range restriction. The network parameters are initialized using 
He initialization to maintain appropriate variance across layers. Dur

ing training, we employ a batch size of 32 experiences sampled from 
the replay memory, with gradient updates performed using the Adam 
optimizer with an initial learning rate of 0.0001 and a decay rate of 
0.995 every 100 training steps. To prevent catastrophic forgetting dur

ing online learning, we update the target network parameters every 20 
steps using a soft update mechanism. The network is trained for 2000 
episodes, each consisting of a maximum of 200 resource allocation steps 
or until an interference-free allocation is achieved.

This healthcare-aware DQN model enables efficient resource alloca

tion while maintaining the strict performance requirements of medical 
applications. The model adapts to dynamic changes in healthcare envi

ronments and ensures reliable communication for critical medical ser

vices.

4.2. Dueling DQN algorithm for healthcare networks

Maintaining consistent medical services in AI-native healthcare net

works depends on avoiding DQN value overestimation. We use a dueling 
network [25] design to divide the assessment of healthcare conditions 
from the benefits of certain resource allocation policies. The dueling 
network breaks apart the action-value function (𝜁, 𝛼) into an advan

tage function (𝜁) and a state value function (𝜁). This division helps 
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Fig. 7. Healthcare-aware dueling DQN algorithm structure. 

estimate the resource needs of every medical device and the effects of 
allocation choices on the general quality of healthcare services. Within 
the healthcare setting, the action-value function can be stated as:

(𝜁, 𝛼;𝜃,𝜔1,𝜔2) = (𝜁 ;𝜃,𝜔1)

+
(
(𝜁, 𝛼;𝜃,𝜔2) −

∑
𝛼′ (𝜁, 𝛼′;𝜃,𝜔2)

𝐴

)
(26)

where 𝜃 represents the shared network parameters, 𝜔1 denotes the state

value stream parameters, and 𝜔2 indicates the advantage stream pa

rameters. 𝐴 =𝑚 represents the total number of possible resource 
allocation actions in the healthcare network.

While DDQN provides superior performance, the training phase re

quires substantial computational resources. We implemented offline pre

training on historical healthcare network data followed by incremental 
online updates to address this, reducing deployment latency in time

sensitive medical scenarios. This training approach achieved reasonable 
convergence within 500 episodes on standard computing hardware, 
making it feasible for hospital infrastructure implementation.

Based on this framework, we present Algorithm 1 for healthcare re

source allocation, and the structure of Algorithm 1 is shown in Fig. 7.

Algorithm 1: Healthcare-aware Dueling DQN Resource Alloca

tion.

Input: Healthcare network topology (,), discount factor 𝛾 , replay 
memory size , target network update frequency  , learning 
rate 𝜆, batch size Γ, training episodes 𝑡𝑟𝑎𝑖𝑛, episode length 

Output: Network parameters 𝜃, 𝜔1, 𝜔2
1 Initialize healthcare network state 𝜁0
2 for episode = 1 to 𝑡𝑟𝑎𝑖𝑛 do

3 for 𝑡= 1 to  do

4 Select action using 𝜀-greedy policy or 
𝛼𝑡 = argmax𝛼 (𝜁𝑡, 𝛼;𝜃,𝜔1, 𝜔2)

5 Execute resource allocation action 𝛼𝑡, observe medical reward 
𝑟𝑡 and next state 𝜁𝑡+1

6 Store experience ⟨𝜁𝑡, 𝛼𝑡, 𝑟𝑡, 𝜁𝑡+1⟩ in replay memory 
7 Sample random mini-batch from replay memory

8 Update network parameters using gradient descent

9 Update target network every  steps

10 end 
11 end 

The convergence properties of the healthcare-aware DDQN algo

rithm warrant deeper examination, especially given the unique con

straints of medical resource allocation problems. The convergence be

havior depends primarily on the stability of the healthcare environment, 

with more dynamic scenarios requiring additional training time. The al

gorithm demonstrates reliable convergence when most medical devices 
maintain relatively stable positions, as is common in many hospital set

tings like operating rooms and intensive care units.

We found that the exploration strategy significantly impacts con

vergence speed and quality. A decaying 𝜖-greedy policy provides the 
optimal balance between exploration and exploitation in medical con

texts, allowing the system to discover effective allocation patterns while 
progressively focusing on refinement. Our approach’s sparse reward 
structure—providing meaningful positive rewards only for interference

free allocations—creates a more stable policy gradient compared to 
dense reward formulations that we tested in preliminary experiments.

The algorithm may converge to local optima below optimal per

formance in highly dynamic medical scenarios with numerous mobile 
devices, such as emergency departments, during peak hours. We address 
this limitation through periodic re-exploration phases triggered by de

tected changes in the network topology. This adaptive approach helps 
maintain near-optimal performance even as medical service demands 
evolve throughout daily hospital operations.

5. Simulation and results analysis

5.1. Setup

We evaluated our proposed healthcare-aware DDQN-based resource 
allocation method through extensive simulations and practical health

care network testing. The experiments were conducted on a high

performance computing platform with an Intel Xeon Gold 6242R CPU 
@ 3.10 GHz processor, NVIDIA RTX 3080Ti GPU, and 64 GB RAM. This 
hardware configuration enabled efficient training of the deep learning 
models while handling the complex healthcare network simulations. 
The experimental parameters were carefully selected to reflect realis

tic healthcare scenarios, with network complexity and device density 
scaling proportionally as medical communication links increased.

We compared it against six state-of-the-art baseline approaches to 
evaluate our method’s performance comprehensively. The MRAS-CBIA 
[26] represents a metaheuristic resource allocation strategy designed for 
cluster-based industrial applications, serving as our lower baseline. The 
CTFNM [27] applies fuzzy neuro modeling to healthcare resource allo

cation in 6G cybertwin environments. The 6GTelMED [28] framework 
specializes in edge-AI-enabled distributed telemedicine resource man

agement. DeepBlocks [29] implements dynamic spectrum allocation 
using deep Q-learning principles. AGIN 6G [30] focuses on air-ground 
integrated network resource optimization. DTSFC [31] employs digital 
twin service function chains for dynamic resource orchestration.

The baseline approaches were selected to represent different re

source allocation strategies relevant to healthcare applications. MRAS

CBIA represents traditional metaheuristic approaches, providing a 
lower bound for comparison. CTFNM and 6GTelMED were selected as 
healthcare-specific frameworks that address similar medical service re

quirements. DeepBlocks, AGIN 6G, and DTSFC represent the current 
state-of-art in reinforcement learning-based and adaptive network man

agement with increasing levels of complexity. This spectrum of baselines 
allows us to evaluate our approach against domain-specific solutions and 
leading general resource allocation methods across different algorithmic 
families.

Table 1 summarizes the key simulation parameters.

We examined the system’s performance under different discount 
factor values. System performance with low values of factor (0.8) 
was opportunistic and favored resource allocation that maximized 
throughput—although, in this case, long-term equilibrium was sacri

ficed. While with higher values (0.99), the system became too conser

vative and stretched equilibrium but sacrificed peak performance. The 
chosen factor of 0.95 offers a balanced approach toward the immedi

ate network situation and long-term performance stability, which is best 
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Table 1
Model parameter settings and system configuration.

Parameter category Value setting Optimization range Final configuration 
Learning rate 0.0001 [0.00005, 0.001] 0.00015 
Target network update 20 steps [10, 50] 25 
Replay buffer size 10,000 [5000, 20000] 12,000 
Training episodes 2,000 [1000, 3000] 2,500 
Batch size 32 [16, 64] 48 
Discount factor 0.95 [0.90, 0.99] 0.97 
Network architecture [256, 256, 256, 128] - [256, 256, 256, 128] 
Channel bandwidth 20 MHz [10, 30] 25 MHz 
Transmission power 23 dBm [20, 25] 24 dBm 
Device density 100-500/km2 [50, 1000] 450/km2

suited for healthcare settings that demand immediate dependability and 
sustained reliability over time, configured to endure operational shifts.

5.2. Healthcare network performance metrics

We developed various thorough performance measures that reflect 
both network efficiency and medical service quality to assess the ef

ficacy of our DDQN-based resource allocation approach for AI-native 
healthcare systems. The main measures, specifically meant to reflect 
the particular needs of healthcare applications in 6G dense networks, 
include network speed, resource use, and service dependability.

A basic sign of the system’s capacity to send medical data is net

work throughput. A logarithmic connection considering signal quality 
and error tolerance in medical applications helps us to quantify this:

𝜗 =𝐵 log2
⎛⎜⎜⎝1 + 𝜗

−2
3 ln

𝑃𝑏

2 

⎞⎟⎟⎠ (27)

where 𝐵 represents the channel bandwidth allocated to medical devices, 
𝜗 denotes the average signal-to-interference ratio across all healthcare 
communications, and 𝑃𝑏 indicates the maximum tolerable bit error rate 
for medical data transmission. This metric is particularly important for 
applications like real-time surgical video streams and medical imaging 
transfers, where data integrity is crucial.

The resource utilization efficiency metric evaluates how effectively 
the network manages its allocated spectrum while maintaining health

care service quality:

𝑌 =
− 𝜂∗
 

(28)

where  represents the total number of available resource units, and 𝜂∗
indicates the number of resources utilized for medical device communi

cations. This metric helps assess the system’s ability to support a high 
density of medical devices while minimizing resource wastage.

We also introduce a healthcare-specific QoS metric that considers 
the unique latency and reliability requirements of different medical ap

plications:

Ψ=
𝑁∑
𝑖=1 
𝜔𝑖

(
𝜏𝑖

𝜏𝑚𝑎𝑥
+
𝜎𝑖

𝜎𝑟𝑒𝑞

)
(29)

where 𝜔𝑖 represents the priority weight of each medical service type, 
𝜏𝑖 is the achieved latency, 𝜏𝑚𝑎𝑥 is the maximum acceptable latency, 𝜎𝑖
is the achieved reliability, and 𝜎𝑟𝑒𝑞 is the required reliability level. This 
metric ensures that critical medical applications receive appropriate re

source priority.

These metrics provide a comprehensive evaluation framework con

sidering technical network performance and healthcare service require

ments. The throughput metric ensures sufficient data transmission ca

pacity for bandwidth-intensive medical applications, while the resource 
utilization metric confirms efficient spectrum usage in dense healthcare 
environments. The QoS metric specifically addresses the strict perfor

Fig. 8. Maximum network throughput vs. medical device density. 

mance requirements of medical applications, ensuring that resource al

location decisions support reliable healthcare service delivery.

5.3. Performance analysis

Fig. 8 demonstrates the maximum achievable network throughput 
across different densities of medical devices, comparing our DDQN

based approach with six baseline methods.

The results show that, at several device densities, our DDQN method 
routinely beats all baseline techniques. The suggested technique shows a 
14.6% improvement over DTSFC (515 Mbps) and a 96.7% improvement 
over MRAS-CBIA (300 Mbps) at high device density (500 devices/km2). 
Max throughput is 590 Mbps. This better performance results from the 
DDQN’s capacity to learn appropriate resource allocation patterns con

sidering long-term healthcare service needs and instantaneous network 
circumstances.

The throughput peak observed at 400 devices/km2 followed by a 
slight decrease at 500 devices/km2 occurs due to two competing factors: 
(1) the DDQN algorithm’s ability to optimize resource usage improves 
with more devices up to a certain point, and (2) beyond this threshold, 
the fundamental physical limitations of the wireless medium begin to 
dominate despite intelligent allocation. This reveals an optimal operat

ing point for dense healthcare deployments.

Fig. 9 illustrates the minimum guaranteed network throughput 
across varying densities of medical devices, highlighting the ability of 
our DDQN strategy to maintain service quality for critical healthcare 
applications. This measure is essential in medical contexts where con

tinuous performance is critical—such as real-time patient monitoring, 
emergency response systems, and robotic surgical applications. The min

imum throughput is a crucial metric of the network’s reliability in sup

porting life-critical services, indicating the worst-case performance that 
healthcare providers can expect. Upholding this performance standard 
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Fig. 9. Minimum guaranteed throughput for medical services. 

Fig. 10. Average throughput performance for healthcare applications. 

becomes increasingly challenging in high-density installations where 
multiple medical devices compete for resources. However, it remains 
essential to ensure uninterrupted healthcare delivery.

Fig. 10 illustrates the average network throughput achieved across 
numerous medical device installations, demonstrating the network’s ef

ficacy in handling a modern healthcare facility’s typical data transfer 
demand. This indicator reflects the network’s ability to accommodate 
diverse medical applications in healthcare institutions, from standard 
telemedicine consultations and electronic health record updates to high

bandwidth diagnostic imaging transfers and AI-assisted medical anal

ysis. The average throughput is a primary indicator of the network’s 
overall efficiency in managing resources across multiple simultaneous 
healthcare operations. Ensuring a high average throughput secures the 
uninterrupted functioning of healthcare services while optimizing the 
network’s resources in densely populated environments where multiple 
medical operations and monitoring devices run simultaneously.

The lowest network throughput numbers in Fig. 9 show how well 
our DDQN method maintains consistent performance even in challeng

ing network settings. The proposed method improves 15.5% over DTSFC 
(290 Mbps) and 103% over MRAS-CBIA (165 Mbps), providing a mini

mum throughput of 335 Mbps at 500 devices/km2. This constant perfor

mance is essential for applications in healthcare that rely on guaranteed 
bandwidth—such as real-time patient monitoring and emergency re

sponse systems.

Our DDQN method more evenly distributes many medical applica

tion requirements, as seen in Fig. 10. Maintaining an average throughput 

of 430 Mbps at high device densities, the suggested method shows a 
13.2% improvement over DTSFC (380 Mbps) and a 95.5% improve

ment over MRAS-CBIA (220 Mbps). This enhanced average performance 
ensures continuous operation across several healthcare environments, 
from data-intensive diagnostic imaging to daily telemedicine sessions.

We conducted a series of ablation experiments to understand indi

vidual components’ contribution to our proposed architecture. Table 2
shows performance metrics across five system variants where key com

ponents were systematically removed or replaced.

Removing the opposing network architecture produced 6.9% losses 
to throughput and 8.5% losses to resource utilization efficiency. This 
illustrates why the separation of state value and advantage functions en

hances the resource allocation decision-making by having the network 
assess the system’s global state rather than being locked into specific 
evaluation actions.

The use of features from a standard healthcare-aware state, such 
as strapping network features on the model, resulted in acceptable 
throughput but dropped QoS satisfaction metrics for emergency ser

vices by 11.3%. This demonstrates the need for domain-aware state 
representation that captures specific unique attributes as the health

care application’s priorities. The flexible specialized encoding allows the 
model to understand and respond to important medical calls even when 
general network measurements seem uniform.

Switching to a standard DQN formulation rather than our DDQN 
approach increased the convergence time by 37% (from 430 to 590 
episodes) and worsened all performance metrics. In this case, slower 
learning was caused by the overestimation bias, which is widely known 
in standard DQN and is especially problematic in healthcare scenarios 
where the resource allocation decision has different consequences de

pending on how critical the medical service is.
The healthcare-aware reward function is important for effectively 

allocating constrained distributed resources. Without the reward func

tion, resource utilization drastically decreased to 14.5%, suggesting that 
the model could allocate resources poorly based on medical services 
prerequisites due to not prioritizing appropriately. This shows that pri

mary network optimization goals do not consider the healthcare domain 
where the services are needed and differ significantly based on the med

ical context.

These ablation results justify the empirical design considerations 
made by AI-native healthcare systems within 6G networks. The inte

gration of dueling architecture together with the healthcare domain

specific state encoding and the domain-aware reward functions leads 
to the construction of a resource allocation mechanism that maximizes 
network utilization while servicing the requisite medical consistency 
aligned with strategic network optimization. The entire DDQN archi

tecture effectively models the intricate decision-making environment of 
healthcare networks, which traverse allocation under multiple technical 
and medical priority constraints.

5.4. Resource utilization efficiency

Differentiated device densities are considered, and. Fig. 11 illustrates 
the utilization of the highest resource AI-native healthcare networks and 
demonstrates the diverse approaches to achieving accessible network 
resources for medical purposes. From bandwidth-consuming surgical 
video streaming to latency-sensitive patient monitoring, this metric in

dicates system performance in optimizing resource allocation across di

verse healthcare services while adhering to stringent quality standards. 
A healthcare institution’s capacity to perform concurrent medical proce

dures and diagnostic services is proportional to the maximum resource 
availability.

Fig. 12 illustrates each method’s temporal effectiveness in resource 
use distribution within the healthcare context over time. The workflows 
where metric-dependent consistency directly impacts the reliability of 
operational medicine depend on this stability measure. Resource alloca

tion stability ensures ongoing medical servicing and quality of sustained 
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Table 2
Ablation study results.

System variant Throughput (Mbps) Resource utilization (%) QoS satisfaction emergency (%) Convergence time (episodes) 
Full DDQN (proposed) 590 83 96 430 
Without dueling architecture 549 76 94 445 
Standard state encoding 582 79 85 472 
Standard DQN (no dueling) 560 77 92 590 
Without healthcare-aware reward 568 71 88 510 

Fig. 11. Maximum resource utilization in healthcare network. 

treatment standards in real-time surgical guiding system scenarios or 
continual patient observation.

Analyzing resource use disclosed some profound advantages of the 
DDQN technique in optimizing healthcare network systems resource 
overuse with the DDQN method. The proposed method outperforms 
DTSFC by 13.7% (73%), claiming maximum resource utilization of 83% 
at high device populations, surpassing MRAS-CBIA, which stood at 46%. 
Such numbers are made possible due to the DDQN’s ability to learn the 
complex resource-sharing patterns that numerous medical applications 
will require.

Fig. 12 captures how varying network environments impact the uni

formity of resource utilization. More notably, with the lowest stability 
measure (𝜎 = 0.15), our strategy demonstrates stronger stability than 
DTSFC (𝜎 = 0.23) or MRAS-CBIA (𝜎 = 0.42) in managing resource dis

tribution. This level of reliability is especially critical for remote surgery 
and seamless patient monitoring.

The diagram signifies the convergence behavior of different re

source allocation strategies over three distinct medical application do

mains: emergency care (requiring ultra-low latency), regular care (bal

anced requirements), and services that require diagnostics—high band

width requirements. It also demonstrates how rapidly and accurately 
each method learns optimal resource allocation techniques for differing 
healthcare contexts. As a fundamental measure of the actual resource 
allocation strategies deployability in dynamic healthcare environments, 
the convergence rate pace is bound to influence the network’s ability to 
respond adequately to changes in demand for medical services.

In the context of diagnostics, Fig. 13 illustrates the first part of re

source allocation techniques performance evaluation relating to their 
goal: examining computer time, memory usage, and resource efficiency. 
Fig. 14 gives the scaleability toward increasing complexity of the system. 
With an ever-growing number of linked medical devices and the intri

cacy of their interconnections, this comprehensive evaluation demon

strates the degree to which each method meets the demands of con

temporary healthcare systems. The scalability assessment provides di

rect evidence regarding the practical applicability of resource allocation 
strategies to large healthcare facilities.

Fig. 12. Resource utilization stability in healthcare applications. 

Fig. 13 illustrates the achievement of the DDQN approach in terms 
of overall convergence in medical application profiles. In this case, 
the emergency care profile converged to approximately 30% error rate 
within 400 episodes, which is an improvement over DTSFC’s 38% 
and MRAS-CBIA’s 45%. Dependence on quickly achieving convergence 
stems from the need to adapt to shifting healthcare system environ

ments.

Our approach further demonstrates its great scalability in Fig. 14. 
The DDQN with 158 ms computation time and 482 MB memory, while 
maintaining 78% resource efficiency, expends 18.2% more resource ef

ficiency than DTSFC and 44.4% more than MRAS-CBIA, despite far 
lower resource consumption. This was achieved with 128x baseline 
complexity.

The study evaluates QoS satisfaction across various categories of 
medical services under constantly changing network loads in Fig. 15. 
This analysis focuses on how well each approach mitigates the degra

dation of service quality due to the demand surge—an emergency or 
peak operating hour—due to a healthcare institution’s unanticipated 
demand.

The analysis of the additional tests presents a new perspective on the 
numerous important advantages the DDQN method provides in medi

cal settings. The method exhibits especially strong results in emergency 
services, surpassing DTSFC by 5.5% and MRAS-CBIA by 26.7%. As il
lustrated in Fig. 15, DDQN maintains higher QoS satisfaction across 
all medical service categories. Improved QoS maintenance is essential 
for the reliable delivery of healthcare services, especially during peak 
periods.

In Fig. 16, we illustrate the network’s resilience in recovering from 
service interruptions and adapting to changing priorities in the health

care context. The experiment tests different resource allocation strate

gies within the defined bounds of priority-based service level agree

ments for a defined range of medical services to determine how service 
restoration is achieved in normal operations after unplanned service in

terruptions.

Fig. 16 substantiates the effectiveness of the DDQN technique in 
managing service interruptions, demonstrating recovery times that are 
8.2% shorter than DTSFC and 35.3% improved over MRAS-CBIA. In 
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Fig. 13. Convergence analysis for different medical application profiles. 

Fig. 14. Scalability analysis under increasing network complexity. 

healthcare environments where service continuity directly impacts pa

tient care results, the technique’s ability to swiftly restore service levels 
while maintaining quality standards is crucial.

The experimental investigation demonstrates that the proposed 
DDQN-based resource allocation method outperforms alternative ap

proaches across multiple aspects of AI-native healthcare systems within 
6G dense networks. The performance analysis indicates that our method 
markedly enhances network throughput, demonstrating a 14.6% im

provement over DTSFC and an impressive 96.7% increase compared 
to MRAS-CBIA at elevated device density. This enhanced throughput 
directly facilitates superior support for bandwidth-intensive medical ap

plications, such as real-time surgical video streams and high-resolution 
medical imaging.

Concerning resource use, our DDQN technique demonstrates excep

tional efficiency, achieving 83% utilization at high device densities. 
Nevertheless, it maintains consistent performance. This demonstrates 
a more efficient utilization of network resources for diverse medical ap

plications: a 13.7% enhancement compared to DTSFC and an 80.4% 
augmentation relative to MRAS-CBIA. The solution’s consistent resource 
utilization is crucial in healthcare environments where multiple essen

tial activities must operate simultaneously.

The additional validation studies corroborate these conclusions by 
comprehensively investigating healthcare-specific circumstances. Our 
technique demonstrates a 5.5% enhancement over DTSFC and a 26.7% 
improvement over MRAS-CBIA in emergency services, indicating that 
it can maintain high service quality despite fluctuating healthcare de

Digital Communications and Networks 11 (2025) 2016–2029 

2027 



J. Lv, C.-M. Chen, S. Kumari et al. 

Fig. 15. QoS satisfaction under dynamic healthcare loads. 

Fig. 16. Service recovery and adaptation performance. 

mands, as evidenced by the QoS satisfaction assessment. This robust 
performance ensures reliable medical service provision throughout peak 
operational periods and significant events. Furthermore, the service re

covery and adaptation study demonstrates that our methodology is more 
effective in managing disruptions than DTSFC and exhibits a 35.3% 
enhancement over MRAS-CBIA, which is crucial for maintaining the con

tinuous availability of healthcare services.

The sophisticated learning capability of our DDQN methodology 
and healthcare-oriented design elucidate these uniform performance 
improvements across all metrics. Contemporary healthcare institutions 
are particularly suited for the solution since they can swiftly adapt to 
changing medical service requirements while maintaining stringent per

formance standards. Our methodology establishes a novel standard for 
resource management in AI-driven healthcare systems by effectively dis

tributing resources among various medical applications while ensuring 

prioritized service for critical care, thereby facilitating the reliability 
and efficiency necessary for next-generation medical services in 6G net

works.

6. Conclusion

This study discussed the important issue of resource allocation in 
artificial intelligence-native healthcare systems running inside 6G dense 
networks. We proposed a DDQN-based method that efficiently allocated 
network resources under rigorous healthcare service criteria. The trial 
findings in reasonable healthcare environments confirmed the efficiency 
of the suggested method.

However, this study also exposes certain limits that demand fur

ther study. While real healthcare environments typically suffer dynamic 
changes in device location and service requirements, the present design 
concentrated mostly on stationary network topologies. Furthermore, the 
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method’s computing needs may make medical devices with limited re

sources difficult, implying the necessity of optimization strategies. Fu

ture studies could follow various interesting paths. Federated learning 
approaches might improve privacy preservation while preserving the 
best resource allocation across scattered healthcare institutions. Pre

dicted resource allocation grounded on past medical care trends may 
enhance proactive resource management. Moreover, adding the frame

work to manage temporary healthcare sites and transportable medi

cal equipment will improve its practical relevance. At last, creating 
lightweight versions of the algorithm fit for edge devices might allow 
more dispersed resource management techniques in healthcare systems.
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