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Fed-HealthGen: A Generative Federated Framework
for Privacy-Preserving Personalized Healthcare
Using Wearable Consumer Electronics
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Abstract— Wearable healthcare consumer electronics generate
substantial medical time-series data with significant potential for
personalized healthcare applications. However, effectively mod-
eling such data in federated settings presents unique challenges
due to pronounced Non-Independent and Identically Distributed
(Non-IID) characteristics, privacy concerns, and personalization
requirements. This paper proposes Med-FedLLSG, a novel feder-
ated learning framework that addresses these challenges through
three key innovations: a variational temporal representation
learning mechanism with explicit disentanglement of shared
and personalized features, a conditional temporal generator
with physiological constraints, and a two-level federated opti-
mization framework based on knowledge distillation. Extensive
experiments on the MIMIC-III clinical database and UCI-HAR
dataset demonstrate that Med-FedLSG consistently outperforms
existing federated learning methods, achieving 85.47% accu-
racy on MIMIC-III and 92.28% on UCI-HAR. Furthermore,
our framework achieves superior intra-user consistency scores
of 0.89 on MIMIC-III and 0.93 on UCI-HAR, demonstrating
enhanced stability for long-term medical monitoring. Ablation
studies validate the effectiveness of our personalized representa-
tion separation mechanism and conditional temporal generator.
The proposed approach successfully balances generalization and
personalization while maintaining privacy, offering promising
solutions for smart wearable health applications.

Index Terms— Federated learning, wearable healthcare, con-
sumer electronics, generative Al, personalized medicine.

I. INTRODUCTION

EARABLE healthcare consumer electronics have been
Wexploited widely and rapidly in recent years [1], evolv-
ing from simple step counters to sophisticated multi-sensor
systems capable of continuous monitoring of vital signs,
activity patterns, and physiological parameters. These devices
generate vast amounts of medical time-series data that hold
immense potential for personalized healthcare applications,
including early disease detection, treatment optimization, and
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wellness management [2]. This technological evolution creates
unprecedented opportunities to transform healthcare delivery
through continuous, personalized monitoring outside tradi-
tional clinical settings.

The effective utilization of wearable consumer electronics
data faces significant privacy challenges [3], particularly
as regulations such as General Data Protection Regulation
(GDPR) and Health Insurance Portability and Accountability
Act (HIPAA) impose strict requirements on medical data han-
dling [4]. Secure data transmission and identity authentication
become critical components in such sensitive healthcare envi-
ronments [5], [6]. Conventional machine learning approaches
typically centralize data collection and processing, creating
privacy vulnerabilities and limiting adoption in sensitive
healthcare contexts. Federated learning has emerged as
a promising paradigm that enables collaborative model
training while keeping data decentralized [7]. However,
physiological data shows significant heterogeneity across
individuals. This variation stems from differences in indi-
vidual physiology, device types, and usage patterns [8].
Traditional federated learning approaches face substantial
challenges with such diverse data. These approaches typ-
ically assume data homogeneity across all participating
clients [9].

Recent advances in generative artificial intelligence
present novel opportunities to address these challenges by
enabling synthetic data generation, knowledge transfer, and
personalized modeling [10]. By combining generative models
with federated learning frameworks, it becomes possible to
share knowledge across users without exchanging raw data,
while still accounting for individual differences. This approach
meets the growing demand for personalized healthcare
solutions. Such solutions require tailored interventions based
on individual physiological characteristics. They must also
account for personal preferences and specific health objectives.
Personalization enables more effective health monitoring and
management for individual users. Moreover, generative
models can help mitigate data imbalance and scarcity issues
commonly encountered in medical applications, potentially
improving model robustness and clinical utility [11].

Despite these promising advances, several critical chal-
lenges remain unresolved in the integration of generative mod-
els with federated learning for wearable healthcare consumer
electronics. Medical time-series data from wearable devices
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presents unique challenges for machine learning models. These
data exhibit significant Non-IID (Non-Independent and Identi-
cally Distributed) characteristics due to inherent physiological
differences among individuals, variations in health conditions,
and heterogeneity in device types and wearing locations [12].
Additionally, medical data are highly sensitive, requiring strict
privacy protection while still enabling effective knowledge
sharing across users [13]. As noted by Wang et al. [14],
traditional centralized learning approaches fail to address these
privacy concerns, while existing federated learning methods
struggle with the personalization required for accurate health
monitoring. The fundamental challenge lies in developing a
framework that can simultaneously preserve privacy, handle
data heterogeneity, and provide personalized health insights
from wearable device data. Specifically, existing approaches
present significant limitations at three key intersections: (1) the
integration of temporal modeling with federated learning for
personalized medical applications, where current methods have
limited capability to capture complex physiological dynamics
while maintaining user privacy; (2) the combination of genera-
tive models with privacy preservation for heterogeneous med-
ical data, as existing generative federated approaches demon-
strate insufficient effectiveness in handling the unique charac-
teristics of medical time-series; and (3) the balance between
knowledge sharing and personal feature protection, where
current frameworks lack systematic mechanisms to distinguish
and disentangle shared medical knowledge from individual
physiological characteristics without compromising privacy.

To address these identified gaps, this research aims to
achieve three specific objectives: (1) Design a privacy-
preserving federated learning framework for heterogeneous
medical time-series data from wearable devices; (2) Develop
an explicit mechanism to disentangle shared medical knowl-
edge from personalized physiological characteristics; and
(3) Create a conditional generative approach that produces
high-quality synthetic medical time-series data for knowledge
transfer without raw data exchange. The main contributions of
this work are threefold:

1) We propose a variational temporal representation learn-
ing mechanism that effectively captures the uncertainty and
complexity inherent in medical time-series data in wearable
healthcare consumer electronics, while explicitly disentangling
shared and personalized features.

2) We develop a conditional temporal generator with
physiological constraints that facilitates knowledge transfer
without exchanging raw data, thereby preserving privacy while
enabling effective learning from heterogeneous medical data
sources.

3) We conduct extensive experiments on two signifi-
cantly heterogeneous datasets, MIMIC-III and UCI-HAR,
demonstrating that Med-FedLSG outperforms state-of-the-art
federated learning methods.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III describes the sys-
tem architecture and problem formulation. Section IV details
the Med-FedLSG method. Section V presents experimental
evaluations on two heterogeneous datasets. Section VI con-
cludes with contributions and future directions.
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II. RELATED WORK

This section reviews the existing literature across three
main areas: traditional deep learning approaches for medical
time-series data, federated learning methods for healthcare
applications, and generative models for medical data synthesis.
We analyze the strengths and limitations of current approaches
to highlight the research gaps our work addresses.

A. Traditional Deep Learning for Medical Time-Series

Traditional deep learning approaches for medical time-series
data predominantly rely on centralized architectures, requir-
ing data collection at a central server. Hannun et al. [15]
demonstrated the effectiveness of deep neural networks for
arrhythmia detection from Electrocardiogram (ECG) signals,
while Choi et al. [16] utilized recurrent neural networks for
disease progression modeling. However, these methods fail
to address privacy concerns and require extensive labeled
data from each individual, which is often impractical in
medical settings. Moreover, as highlighted by Jiang et al. [17],
these models typically struggle with the high inter-subject
variability inherent in physiological data. Recent advances
in large model-driven approaches have shown promise in
handling complex multi-sensor healthcare data fusion [8],
though these typically require centralized architectures that
conflict with privacy requirements. These limitations highlight
the need for privacy-preserving approaches that can handle
data heterogeneity across individuals.

B. Federated Learning for Healthcare

To address privacy concerns while maintaining collabo-
rative learning capabilities, federated learning has emerged
as a promising approach to protect data privacy while
enabling collaborative model training. McMahan et al. [18]
introduced FedAvg, which allows model training without
sharing raw data. Reference [19] demonstrated the poten-
tial of federated learning to address data silos in healthcare
systems, showing that FL can improve equity and compli-
ance while maintaining privacy, achieving 91.3% accuracy
under strict privacy budgets in medical image analysis.
Balancing privacy protection and model performance in fed-
erated learning environments presents a significant challenge.
Wang et al. [20] introduced optimization strategies includ-
ing dynamic privacy budget allocation and adaptive gradient
clipping to improve model convergence and data quality
under limited privacy budgets. To enhance decentraliza-
tion, security, and fairness of federated learning framework,
Wang et al. [21] proposed a blockchain-based federated learn-
ing model with differential privacy mechanisms. However,
federated learning systems remain vulnerable to security
threats, as highlighted by Yazdinejad et al. [22], who devel-
oped robust privacy-preserving approaches against model
poisoning attacks using encrypted gradient evaluation and
byzantine-tolerant aggregation. Several variants have been
proposed for medical applications, such as FedHealth by
Chen et al. [23] for personalized healthcare and FedPer by
Arivazhagan et al. [24] for personalized model adaptation.
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However, these methods face significant challenges in han-
dling heterogeneous medical data. Li et al. [25] showed that
traditional federated learning methods suffer from convergence
issues and performance degradation under Non-IID settings.
Additionally, as observed by Kulkarni et al. [26], these
approaches struggle to effectively transfer knowledge across
users with diverse physiological characteristics while main-
taining personalization. The integration of FL with consumer
IoT devices presents additional challenges, as demonstrated
by Namakshenas et al. [27], who proposed quantum-based
authentication and homomorphic encryption approaches to
address privacy and security concerns in consumer device
networks. While these federated approaches address privacy
concerns, they still lack effective mechanisms for handling the
temporal dynamics and personalization requirements specific
to medical time-series data.

C. Generative Models for Medical Data

Recent advances in generative models have shown promise
in addressing data heterogeneity. Yoon et al. [28] employed
time-series generative adversarial networks for medical
data synthesis, while Zhu et al. [29] explored variational
approaches for physiological data generation. However, these
methods typically operate in centralized settings, compromis-
ing privacy. Attempts to integrate generative models with
federated learning, such as FedGAN by Rasouli et al. [30],
have shown potential but remain limited in their ability to
capture the temporal dynamics of medical data and person-
alize to individual users. Furthermore, as pointed out by
Chen et al. [31], existing approaches lack effective mecha-
nisms to distinguish between general medical knowledge that
should be shared and personal characteristics that should
remain private. These limitations motivate the need for a
novel approach that combines the advantages of generative
models with federated learning while addressing the specific
challenges of medical time-series data.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes the system architecture and
formulates the mathematical problem underpinning the
Med-FedLSG framework, laying the theoretical foundation for
subsequent methodological developments.

A. System Architecture

We consider a federated learning system consisting of a
central server and N users, as illustrated in Fig. 1. Each user
is equipped with various wearable health consumer electronics,
such as electrocardiogram monitors, continuous glucose mon-
itors, or sleep trackers, producing medical time-series data.
The central server coordinates the learning process without
directly accessing users’ raw data, thus preserving privacy.
The central server maintains a conditional temporal generator
that produces high-quality synthetic medical samples, enabling
knowledge transfer across users without compromising indi-
vidual privacy.

The system operates in communication rounds. In each
round ¢, the server selects a subset A; from the user set
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Fig. 1. Architecture of the Med-FedLSG system.
{1,2,..., N} to participate in training. During each round, the

server not only aggregates model parameters but also generates
synthetic samples using the conditional temporal generator,
which are then distributed to selected users to augment their
local training data and facilitate cross-user knowledge sharing.

Each user # maintains a local dataset D, = {(XiT, yi)}?il,
where XIT € RPXT represents a physiological time-series
consisting of p features over t time steps, and y; € ) denotes
the corresponding health status or risk assessment. These
datasets exhibit significant Non-IID characteristics due to
(1) physiological differences among individuals; (2) variation
in health conditions and diseases; and (3) heterogeneity in
device types, wearing locations, and user habits.

B. Problem Formulation

In this subsection, we mathematically formalize the feder-
ated learning problem for medical time-series data within the
Med-FedLSG framework.

1) Definition of Spaces: We first define the critical spaces
of the system:

o XT C RPxT; Space of medical time-series data with p
features and t time steps.

o« Z C RY: Latent feature space with dimension g.

« YV C R: Output space, representing health status or risk
scores.

A key innovation in Med-FedLSG is decomposing the latent
space Z into two complementary subspaces:

e Z, C R?7¢: Shared health feature space, capturing
common medical knowledge across users.
« Z, C R?: Personalized feature space, capturing user-
specific characteristics.
Thus, the latent representation is expressed as z = [z,; Z,],
where z; € Z; and z, € Z),.
2) Model Parameterization: The Med-FedLSG model
parameters are denoted by 6 := [Gf ; 0¢; 67], consisting of:
« A temporal encoder f : X7 — Z parameterized by 67,
mapping time-series data to the latent space.
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o A generator ¢ : Z — VWV parameterized by 6¢, processing

latent representations to generate intermediate features.

o A predictor k : YW — ) parameterized by 67, producing

health assessments.

Following the principles of disentangled representation
learning, the temporal encoder parameters 6/ are further
divided into two parts, o/ = [Gsf ; 9; ], corresponding to shared
and personalized feature extraction, respectively.

3) Task Definition: For each user u, our goal is to find
optimal parameters 6, minimizing the expected loss under the
user’s data distribution:

minExr ), [0 (X" 6):60). )] (1)

where £(-, -) is a task-specific loss function. However, given
the scarcity and imbalance of medical data, optimizing solely
on local data typically leads to overfitting and poor gener-
alization. Therefore, Med-FedLSG introduces a server-based
generator for knowledge transfer, extending the optimization
objective to:

rr;in JOn) = AC1,4 (Ou)
+ E(y,z,w)~G,, [¢(k(W; 67); Y)]
+MmLkrL + )\2£personal )

where:
o L,(6,) is the empirical loss on local data:

>

XT.,y)eD,

1
LuO) = ek(f X7 6]):00). y)

Dyl

o The second term represents the loss derived from the
server’s generator, G,,, parameterized by m.

e« Y,Z,W) ~ G, are sampled as: ¥ ~ P(Y), Z ~
Gn(Z|Y), W~ Gn(W|Z)

e Lk is a KL-divergence regularization term promoting
standardized latent distributions.

o Lpersonal = lZp—ey |? is a personalization regularization
term ensuring consistency of personalized representations
with user characteristics.

4) Server Generator Optimization: The server maintains
a dual-generator model G, to produce synthetic samples
facilitating knowledge transfer. The optimization objective for
the generator is defined as:

n}”in J(m) =Ey~py) [EZ~Gm(Z|Y)[

Ew~c, wiz)[¢(o (g D 8(W:6).Y)
ue A

+ AgrLlkr + )»physioﬁphysio]]] €)]

where g(W; 67) are the logits produced by the predictor of
user u, o(-) is the softmax function, and L,;ysi, ensures
generated data adheres to physiological constraints.

5) Optimization Strategy: The Med-FedLSG framework
employs a two-level parameter optimization strategy that
distinguishes between shared parameters responsible for
capturing common medical knowledge across all users, and
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personalized parameters that model individual-specific physio-
logical characteristics. Shared parameters enable collaborative
learning by aggregating generalizable medical patterns, while
personalized parameters remain local to preserve individual
privacy and capture user-specific health behaviors. To balance
shared knowledge and personalized representations, Med-
FedLSG adopts a two-level optimization strategy:

1. Shared parameters 6° (including shared temporal encoder
parameters 6; that extract common physiological patterns
across users, and conditional generator parameters 6¢ that
synthesize generalizable medical knowledge) are aggregated
through federated averaging:

ZMEA wue;j
ZL[G.A Wy

2. Personalized parameters 67 (including personalized
temporal encoder parameters ¢, that capture user-specific
physiological characteristics such as baseline heart rate
variability and individual response patterns, and predictor
parameters 07 that adapt to personal health conditions and
risk factors) are updated locally without aggregation:

s _
global —

9/7

_ b
global,u — 9’4

This dual-parameter strategy ensures that common medical
knowledge (e.g., general arrhythmia patterns, universal phys-
iological constraints) is shared across all users through 6°,
while individual characteristics (e.g., personal baseline values,
individual medication effects, user-specific device calibration)
are preserved locally through 67. The shared parameters
facilitate knowledge transfer and improve generalization, while
personalized parameters enable accurate modeling of individ-
ual health profiles without compromising privacy.

IV. MED-FEDLSG METHOD

This section details the core components of Med-FedLSG,
including variational temporal representation learning, per-
sonalized representation disentanglement, and a federated
optimization framework based on knowledge distillation.
Together, these components form a comprehensive federated
learning framework capable of effectively modeling medical
time-series data, preserving privacy, and achieving personal-
ized modeling simultaneously.

Specifically, we first employ variational temporal repre-
sentation learning to capture the complexity and uncertainty
inherent in medical data. Next, we propose a dimension selec-
tion strategy based on federated principal component analysis
(Federated PCA) to explicitly partition shared and personal-
ized representations without exchanging raw data, ensuring
privacy protection. Finally, we utilize a conditional temporal
generator and a federated optimization framework based on
knowledge distillation to facilitate effective cross-user knowl-
edge transfer while maintaining data privacy. The overall
architecture of our proposed method is shown in Figure 2.

Med-FedLSG ensures privacy through three key mecha-
nisms: (1) raw medical data never leaves local devices under
the federated paradigm, (2) the conditional generator produces
synthetic data with statistical dissimilarity (MMD distances of
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Fig. 2. Overall architecture of the proposed method.

0.138 and 0.121 on our datasets) that reduces direct reconstruc-
tion risks, and (3) personalized representations remain local to
protect individual characteristics.

A. Variational Temporal Representation Learning

Medical time-series data exhibit complex temporal dynam-
ics and individual differences, necessitating effective repre-
sentation learning techniques. We adopt variational temporal
representation learning to model medical time-series within a
probabilistic framework that captures inherent uncertainty.

We encode time-series data using LSTM and employ varia-
tional inference to transform deterministic representations into
probability distributions:

h, =LSTM(x;,h;—1), t=1,2,...,1 “)

where x; € R? is the feature vector at time step ¢. The final
representation h = h; is mapped to latent space parameters:

[, loga?] = MLP(h) 5)

Using the reparameterization trick, we generate the latent
representation:

z=p+e0Vol, e~N®OI 6)

KL-divergence regularization ensures latent distribution
regularity:

1 3
Lxr =3 > (1 +log(c}) — 4} — o} 7)
j=1
This probabilistic modeling approach facilitates personal-
ized representation disentanglement and enables synthetic data
generation for knowledge distillation in federated learning
scenarios.

B. Personalized Representation Disentanglement

Medical data often exhibit significant individual variabil-
ity due to physiological characteristics, medical history, and
lifestyle differences. To accurately model this heterogeneity,
we introduce a PCA-based mechanism to explicitly disentan-
gle the latent space into shared and personalized components.
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1) Representation  Disentanglement:  Specifically, we
explicitly partition the latent representation z € RY obtained
from the variational encoder into two components:

z=z5;2,], 1z, eRq_d,zp e R? )

where z; captures general health patterns shared across users,
while z, focuses on user-specific medical patterns.

Two independent fully connected networks extract these
representations from the encoder’s output parameters
(u and o):

2y = FCsparea (. 0), z, = Fcpersonal (m,0) 9

This explicit disentanglement facilitates targeted optimiza-
tion of both shared and personalized representations in
federated learning, enhancing the model’s sensitivity and
adaptability to individual differences.
2) Dimension Selection Using PCA: To systematically
determine dimensions for shared and personalized represen-
tations, we propose a PCA-based dimension selection strategy
as follows:
1) Data Preparation: Extract latent representations Z €
R™ 4 from selected users.

2) PCA Computation: Perform PCA on Z to obtain eigen-
values A1 > A2 > --- > A, and calculate the variance
explained:

Aj
ZZ:[ Mk
3) Dimension Selection: Determine the shared dimen-

sion based on cumulative variance explained exceeding
threshold y (e.g., y = 0.9):

nj (10)

m

q—d = argmin erlj >y
j:

(1)

4) Explicit Partitioning: Set the first ¢ — d principal com-
ponents as shared and the remaining d as personalized
dimensions.

This PCA-based strategy ensures shared dimensions effec-
tively capture common health knowledge, while personalized
dimensions reflect unique individual health patterns.

3) Federated PCA Implementation: Conventional PCA
requires global data access, which is not feasible under fed-
erated settings. Therefore, we employ Federated PCA [32],
protecting user privacy and ensuring practical feasibility:

1) Local Computation: Each client computes local covari-

ance matrices:

C, = (Zy — 7)) (Zy — L)

1 12)

2) Aggregation: Server aggregates covariance matrices:

1
Cglohal = Z I’l ZnuCu
u'tu

u

13)

3) Dimension Partitioning: Server performs eigen-
decomposition on Cgope and computes cumulative
variance to determine dimension split.
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4) Broadcast Results: The dimension partitioning results
are sent back to clients for constructing their local
representation networks.

This federated PCA method enables accurate dimension
selection without exchanging raw data, maintaining privacy
compliance within the federated framework.

4) Regularization for Personalized Representation: To
further stabilize personalized representations and maintain
consistency across sessions, we introduce personalized embed-
dings e,:

Epersonal =|zp — eu”z (14)

The embeddings are updated via exponential moving aver-
age (EMA):

e, < (I -a)e, +az, (15)

This approach smooths individual-specific medical features
over time, preventing overfitting to single-session data.

C. Conditional Temporal Generator

In federated learning, effectively sharing knowledge while
preserving privacy remains a core challenge. We design a
conditional temporal generator to produce high-quality per-
sonalized synthetic samples, facilitating knowledge transfer
without exchanging raw data.

1) Conditional Variational Generation: The conditional
temporal generator takes latent representations z and health
labels y as inputs to generate corresponding feature
representations:

w=c(z,y) = c([zs:2p], y) (16)

We employ a conditional variational autoencoder (CVAE)
structure, allowing precise control of the generation process
based on health status y:

heona = MLP([z; Embeddlng(Y)])

w = Activation(h;y,q) a7

This conditional approach allows generating diverse and
targeted synthetic samples corresponding to different health
states.

2) Temporal Reconstruction and Constraints: To recon-
struct realistic medical time-series data, we utilize an
LSTM-based decoder to transform the feature representation
w into sequential data:

hy = MLP;,;; (W)
h; = LSTM(h,_;, w),
X; = MLPoutput (hy),

t=1,2,...,T
tr=1,2,...,1 (18)

We introduce physiological constraints as regularization to
ensure the generated data is medically realistic:

T p
L physio = Z z (max(O, xt”j — uj)2 + max (0, /; — xt/,j)z)

=1 j=1

T
+ hsmoorn D IXp = X [1? (19)
=2
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The first term ensures generated values remain within
physiologically plausible bounds [/;,u;], and the second
promotes smooth temporal variations.

This conditional temporal generator facilitates personal-
ized synthetic time-series data creation, allowing cross-user
knowledge sharing without exchanging raw data, addressing
challenges of data heterogeneity and privacy protection in
federated learning.

D. Federated Optimization Framework Based on Knowledge
Distillation

Building upon the variational temporal representation learn-
ing, personalized representation disentanglement, and condi-
tional temporal generator, we propose a federated optimization
framework utilizing knowledge distillation to coordinate the
optimization between the server and clients.

This federated optimization design inherently provides pri-
vacy preservation. Med-FedLSG ensures privacy through three
key mechanisms: (1) raw medical data never leaves local
devices under the federated paradigm, (2) the conditional
generator produces synthetic data with statistical dissimilarity
(MMD distances of 0.138 and 0.121 on our datasets) that
reduces direct reconstruction risks, and (3) personalized rep-
resentations remain local to protect individual characteristics.

1) Bidirectional Knowledge Distillation: Med-FedLSG
employs bidirectional knowledge distillation, involving global
distillation from the server to clients and personalized knowl-
edge integration from clients to the server:

1. Global knowledge distillation: The server shares inte-
grated knowledge with clients via generated synthetic samples:

Lgiobal_distilt = Ey,z,W~G,, [€(k(W; 67); Y)]

2. Personalized knowledge integration: Clients communicate
personalized knowledge back to the server through model
predictions:

(W) server (W)
‘Cpersonal_distill = DKL |:O’ (g ) ||O' (g UT ):|

T
21

(20)

where g, and ggerper denote the client and server predictors
respectively, and 7 is the temperature parameter.

This mechanism allows effective knowledge exchange
without raw data transmission while preserving personalized
modeling capability.

2) Hierarchical Federated Optimization Objective: For
each user u, we define a hierarchical optimization objective:

r%in T Ou) = Lempirical + M Lglobal_distitt +22LkL
u

+ A3'>£pers0nal + )\4Lpersonalfdistill (22)
where the empirical loss on local data is:
1 .
Lonpirica = 5 2 UR(FXT; 0 00).y)  (23)
u

XT.y)eD,

This hierarchical design balances local data fitting, global
knowledge transfer, and personalized representation learning.
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3) Two-Level Model Aggregation: To balance shared and
personalized knowledge, we introduce a two-level model
aggregation strategy:

1. Aggregation of shared parameters (6°, including shared
encoder parameters 6; and generator parameters 6¢):

1
eglobal = m Z O,

ueA

(24)

2. Preservation of personalized }Jarameters (67, including
personalized encoder parameters 6}, and predictor parameters
0r):

ep

global,u = G’f (25)

During client updates, parameters are updated as follows:

05 < 0500a»  OF < 6L (unchanged) (26)

8

This strategy effectively handles medical data heterogeneity
by retaining personalized parameters while sharing general
medical knowledge.

E. Algorithm Workflow

The complete Med-FedLSG algorithm consists of initial-
ization and iterative federated training phases, detailed in
Algorithm 1.

In summary, Med-FedLSG achieves personalized federated
learning for medical time-series data through: (1) variational
temporal representation learning, (2) explicit disentanglement
of shared and personalized representations, (3) bidirectional
knowledge distillation, and (4) two-level model aggregation.
These components form an integrated framework effectively
addressing data heterogeneity, privacy protection, and person-
alized modeling in medical applications.

V. EXPERIMENTAL EVALUATION AND ANALYSIS

In this section, we systematically evaluate the effectiveness
and advantages of the proposed Med-FedLSG framework in
federated learning for medical time series. We first present
the experimental setup and parameter configuration, then pro-
vide comparative results with existing methods, followed by
detailed ablation analysis and discussion.

A. Experimental Setup

1) Datasets Description and Preprocessing: We conducted
comprehensive evaluations using two representative medical
time-series  datasets. From the MIMIC-III (Medical
Information Mart for Intensive Care III) clinical database,
physiological monitoring data from 5,000 ICU patients
were extracted from the original 40,000 patient records. Key
physiological indicators, including heart rate, systolic/diastolic
blood pressure, respiratory rate, body temperature, and oxygen
saturation, were selected to construct continuous 48-hour
time series samples. We defined a clinically relevant binary
prediction task: predicting the mortality risk of patients within
a 48-hour period. The UCI-HAR (University of California
Irvine Human Activity Recognition) dataset consists of
accelerometer and gyroscope data collected from smartphones
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Algorithm 1 Med-FedLSG (with Federated PCA-Based
Dimension Partitioning)
1: Input: User set U/, total rounds 7, local epochs E
2: Output: Global model parameters and personalized
parameters for each user
3: // Initialization
Initialize model parameters 6 = [67;6¢; 011, generator
m, user embeddings E
5: Perform federated PCA: each user uploads local covari-
ance C,, server computes global covariance Cgjopq; and
determines shared/personal dimensions
6: Broadcast dimension partitioning; each user initializes
FCshareda and Fcperwnal
7: I/ Federated Training
8: for round t =1 to T do

9: Server selects user subset A; and broadcasts 6, m,
and P(Y)

10: for each user u € A; in parallel do

11: Initialize local shared parameters from global
model

12: Generate pseudo samples using generator m

13: for epoch e =1 to E do

14: Train local model with real and pseudo data
to minimize composite loss 7 (6,)

15: Update user embedding e,

16: end for

17: Upload updated 6, and label statistics to server

18: end for

19: Server aggregates shared parameters and updates label
distribution P(Y)

20: if £ mod 7}pgare = O then

21: Update generator m using collected pseudo data
feedback

22: end if

23: end for

24: Return Final global parameters 6,054 and personalized
parameters {6 },cus

worn by 30 subjects at a sampling rate of SOHz. The
raw three-axis acceleration and angular velocity data were
segmented into windows of 2.56 seconds (128 data points)
for classifying six common activities: walking, ascending
stairs, descending stairs, sitting, standing, and lying.

To realistically simulate data heterogeneity encountered in
medical scenarios, we employed non-IID data partitioning. For
the MIMIC-III dataset, we generated 50 virtual users grouped
by age categories (< 40 years, 40-60 years, > 60 years),
introducing feature distribution shifts across groups and label
distribution shifts by assigning a higher proportion of high-risk
samples to the elderly group. Each user had approximately
100 time series samples. For the UCI-HAR dataset, we main-
tained the original 30 subjects as independent users. Each user
primarily retained 80% of the data for 2-4 main activity types,
with only 20% for remaining activities. Additionally, random
noise with a standard deviation of 0-5% was added to simulate
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inter-device variability, creating a significantly heterogeneous
data environment.

2) Implementation Details: The core architecture of
Med-FedLSG includes a temporal encoder, generator network,
and predictor network. The temporal encoder consists of
three layers of bidirectional LSTM (256 hidden units each),
integrated with an attention mechanism to identify critical time
points, and batch normalization layers to enhance training
stability. The latent space dimension was set to 128, with
the ratio between shared and personalized representations
dynamically determined via federated PCA, initialized at 8:2.
The generator network is structured as a three-layer MLP
(256-128-64), incorporating residual connections to mitigate
gradient vanishing issues in deep networks and Leaky ReLU
activation to handle anomalies in medical data effectively. The
predictor network comprises a two-layer MLP (128-64-output
dimension), complemented by a dropout rate of 0.3 to reduce
overfitting.

During training, we utilized the Adam optimizer (initial
learning rate of 0.001, 1 = 0.9, B> = 0.999), along with
weight decay (le-5) for enhanced generalization. The learning
rate followed a stepwise decay strategy, decreasing by 10%
every 10 communication rounds, with a minimum of 0.0001.
Batch sizes were dynamically adjusted based on dataset scale:
64 for MIMIC-III and 32 for UCI-HAR. Each experimental
scenario was repeated five times, and results were reported as
mean performance with standard deviation, ensuring statistical
reliability.

B. Experimental Evaluations

We compared Med-FedLSG with several representative
federated learning algorithms, including both general feder-
ated learning approaches and those specifically designed for
healthcare applications: FedAvg [18] as the standard baseline;
FedProx [25] with proximal regularization; pFedMe [34] for
personalized federated meta-learning; FedBN [35], retain-
ing local batch normalization layers; FedMCSA [36],
using a self-attention mechanism to handle non-IID data.
FedPHP [37], which employs inherited private models with
temporal ensembling of historical personalized models for
enhanced knowledge transfer; and pFedCK [38], which
combines clustering-based client selection with knowledge
distillation between personalized and interactive models.
Additionally, to ensure strong relevance to the health-
care domain, we included two specialized methods: CFG-
SHD [11], a co-training-based personalized federated learning
approach with generative adversarial networks specifically
designed for smart healthcare diagnosis; and a differential
privacy-enhanced federated learning framework [33] devel-
oped for medical image data that balances privacy protection
and diagnostic accuracy in clinical applications. To ensure fair
evaluation, we retain the original CFG-SHD framework and
minimally adapt the convolutional layers to one-dimensional
operations for compatibility with sequential data. Similarly,
for the federated learning framework with differential privacy,
we preserve the overall structure and minimally replace the
input module with a 1D-CNN suitable for time-series inputs.
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TABLE 1
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON
THE MIMIC-III DATASET (MEAN =+ STD)

Method Accuracy (%) F1 Score AUC-ROC

FedAvg 7583 £ 142 0.732 £ 0.021 0.806 + 0.018
FedProx 77.64 £ 131 0.758 +£ 0.019 0.821 + 0.017
pFedMe 80.27 £ 1.18 0.785 + 0.016 0.845 + 0.014
FedBN 79.56 £ 1.23  0.778 £ 0.018 0.839 + 0.015
FedMCSA 83.36 £ 0.97 0.817 + 0.014 0.869 + 0.012
FedPHP 83.94 +£ 095 0.823 + 0.014 0.875 + 0.012
pFedCK 83.67 £ 097 0.821 + 0.015 0.872 + 0.013
CFG-SHD 8421 £ 093 0.826 + 0.013 0.878 4+ 0.011
Ref. [33] 81.92 +£ 1.05 0.803 + 0.015 0.857 4+ 0.013
Med-FedLSG  85.47 + 0.89 0.843 + 0.012 0.891 + 0.010

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS
ON THE UCI-HAR DATASET (MEAN = STD)

Method Accuracy (%) F1 Score AUC-ROC

FedAvg 8532 £ 1.24 0.831 + 0.019 0917 + 0.016
FedProx 86.85 + 1.15 0.852 + 0.017 0.926 + 0.015
pFedMe 88.47 +£ 1.06 0.873 + 0.015 0.938 + 0.013
FedBN 8795 £ 1.09 0.865 + 0.016 0.933 + 0.014
FedMCSA 90.38 £ 092 0.895 + 0.013 0.951 + 0.011
FedPHP 90.85 £ 0.88  0.901 £+ 0.012 0.956 + 0.010
pFedCK 90.62 £ 090 0.898 £+ 0.013 0.954 + 0.011
CFG-SHD 91.15 £ 0.87 0.905 + 0.012 0.959 + 0.010
Ref. [33] 89.26 +£ 0.98 0.882 + 0.014 0.943 + 0.012
Med-FedLSG  92.28 + 0.83  0.917 + 0.011  0.967 + 0.009

For FedPHP and pFedCK, we implement their core personal-
ization mechanisms while adapting the model architectures to
be compatible with our medical time-series tasks.

Firstly, we conducted systematic comparative experiments
on these two significantly heterogeneous datasets. Tables I
and II summarize the final testing performance of all compared
methods across accuracy, F1 score, and AUC-ROC metrics.
The results clearly demonstrate that Med-FedLSG signifi-
cantly outperforms existing federated learning methods in all
evaluation metrics. Specifically, on the MIMIC-III dataset,
Med-FedLSG achieves an accuracy of 85.47%, an F1 score of
0.843, and an AUC-ROC of 0.891, surpassing the second-best
method CFG-SHD by approximately 1.26%, 0.015, and
0.013 respectively. The advanced personalized methods Fed-
PHP and pFedCK achieve competitive performance with
83.94% and 83.67% accuracy respectively, demonstrating the
effectiveness of their personalization mechanisms, yet still
falling short of our comprehensive approach that combines
variational representation learning, explicit feature disentan-
glement, and conditional temporal generation. Similarly, on the
UCI-HAR dataset, Med-FedLSG obtains the highest accuracy
of 92.28%, F1 score of 0.917, and AUC-ROC of 0.967. These
improvements validate the effectiveness of integrating latent
space personalization and adaptive representation learning
within the proposed framework, particularly in addressing data
heterogeneity inherent in medical applications.

In medical applications, the stability and consistency of
model predictions are of critical importance. To evaluate these
aspects, we introduce the metric of Intra-User Consistency
(IUC), which quantifies how consistent a model’s predictions
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Fig. 3. Intra-user consistency comparison across methods.

are for the same user across different time windows. The
results of this evaluation are presented in Figure 3. A higher
IUC score indicates that the model consistently captures the
long-term health characteristics of individual users, rather than
reacting to short-term variations. This is particularly important
in long-term medical monitoring scenarios, such as chronic
disease management, where stable and reliable predictions are
crucial for effective clinical decision-making.

As illustrated in Figure 3, baseline methods such as FedAvg
and FedProx exhibit relatively lower consistency, suggesting
limited capability in capturing stable user-specific patterns
over time. In contrast, methods incorporating personaliza-
tion mechanisms, such as pFedMe and FedBN, demonstrate
notable gains. FedMCSA further enhances consistency by
leveraging latent representations or attention mechanisms.
CFG-SHD achieves the second-highest consistency score,
primarily due to its effective integration of co-training and
GAN-based synthetic data generation that better captures indi-
vidual physiological characteristics. Med-FedLSG achieves
the highest consistency across both datasets, highlighting its
ability to generate stable and coherent predictions for indi-
vidual users. This result indicates that our method not only
maintains strong predictive performance but also more accu-
rately captures users’ long-term stable health characteristics,
thereby offering more reliable decision support for clinical
applications.

Next, we conducted a series of ablation experiments. One
of the core innovations of Med-FedLSG lies in its person-
alized representation separation mechanism, which is based
on federated PCA. To validate its effectiveness, we conducted
systematic ablation studies by comparing three model variants:
(1) Med-FedLSG-Full, the complete version of our model
with adaptive dimension allocation guided by federated PCA;
(2) Med-FedLSG-NP, where the separation mechanism is
removed and all latent dimensions are treated as shared; and
(3) Med-FedLSG-RS, which replaces the PCA-based strategy
with a fixed-ratio random separation.

Table III presents the proportion of latent dimensions allo-
cated to personalized representations in each model variant.
As we can see, Med-FedLSG-NP assigns no dimensions
to personalization, while Med-FedLSG-RS enforces a fixed
allocation of 30%. In contrast, Med-FedLSG-Full employs
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TABLE III
PERSONALIZED DIMENSIONAL RATIO (%) OF DIFFERENT METHODS

MIMIC-III Dataset
Method Personalized Dim. Ratio (%)
Med-FedLSG-NP 0
Med-FedLLSG-RS 30 (fixed)
Med-FedLLSG-Full 24.6 (adaptive)
UCI-HAR Dataset
Method Personalized Dim. Ratio (%)
Med-FedLSG-NP 0
Med-FedLSG-RS 30 (fixed)
Med-FedLLSG-Full 27.3 (adaptive)

an adaptive strategy based on federated PCA, resulting in
slightly lower but data-driven ratios of 24.6% and 27.3%
on the MIMIC-III and UCI-HAR datasets, respectively. The
personalized dimensional ratios in Table III serve as the
underlying configuration for the model variants evaluated in
Figure 4. This figure shows the performance of the three
variants on the MIMIC-III and UCI-HAR datasets. The results
clearly demonstrate that the personalized representation sep-
aration mechanism significantly contributes to performance
improvement. On the MIMIC-III dataset, Med-FedLSG-Full
outperforms Med-FedLSG-NP by a substantial margin in
accuracy, suggesting that explicitly distinguishing between
shared and personalized features helps better capture the het-
erogeneity of medical data. Additionally, Med-FedLSG-Full
achieves higher accuracy than Med-FedLSG-RS, validating
the advantage of adaptive dimension selection guided by
federated PCA. A similar trend is observed on the UCI-HAR
dataset, indicating the generalizability of the mechanism across
different types of medical time-series data.

The PCA threshold y is a critical hyperparameter that deter-
mines the ratio between shared and personalized representation
dimensions. Figure 5 presents the effects of varying y on
performance and dimensionality allocation. At y = 0.85,
the model achieves optimal performance with a personalized
dimension ratio of 23.8%, yielding the highest accuracy of
87.63% on the MIMIC-III dataset. Lower values of y (e.g.,
0.75) assign a larger proportion of dimensions to personalized
components, which enhances individual expressiveness but
weakens knowledge sharing across users, slightly reducing
performance. Conversely, higher values (e.g., 0.95) overly
restrict personalized capacity, leading to underfitting of user-
specific characteristics. These results validate the effectiveness
of our adaptive dimension allocation strategy in balancing
generalization and personalization.

To further examine the semantic structure captured by the
personalized representations, we conduct a clustering analysis
on user representations from the MIMIC-III dataset. Table IV
summarizes the clustering performance across various demo-
graphic and clinical subgroups, including age brackets, gender,
and illness severity levels. Notably, the clustering accuracy
ranges from 84.96% to 89.24%, indicating that the person-
alized representation space effectively preserves meaningful
user distinctions. Among all subgroups, the elderly population
(> 60 years) and patients with severe conditions achieve
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Accuracy Comparison across Datasets

F1 Score Comparison across Datasets
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AUC-ROC Comparison across Datasets
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Fig. 4. Performance comparison of different personalization strategies on MIMIC-III and UCI-HAR datasets. Error bars indicate standard deviation across
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TABLE IV
CLUSTERING RESULTS OF PERSONALIZED REPRESENTATIONS BY USER GROUP (MIMIC-III DATASET)

User Group Clustering Accuracy (%) Silhouette Score Inter-Cluster Dist. Intra-Cluster Dist.
Age < 40 87.35 0.713 3.85 1.42
Age 40-60 85.92 0.682 3.64 1.57
Age > 60 88.41 0.726 3.97 1.35
Gender: Male 86.73 0.695 3.72 1.49
Gender: Female 87.05 0.704 3.78 1.45
Severity: Mild 84.96 0.673 3.58 1.62
Severity: Moderate 86.37 0.688 3.69 1.53
Severity: Severe 89.24 0.741 4.05 1.28

the highest clustering accuracies of 88.41% and 89.24%,
respectively. These groups also exhibit superior silhouette
coefficients (0.726 and 0.741), larger inter-cluster distances,
and smaller intra-cluster distances, suggesting higher internal
consistency and clearer separation from other groups. Such
results demonstrate that the proposed Med-FedLSG frame-
work effectively captures salient user-specific characteristics,
particularly for populations with more pronounced medical
heterogeneity.

We further evaluate the effectiveness of the conditional
temporal generator, a key component introduced in the
Med-FedLSG framework to facilitate knowledge transfer in

federated learning by generating high-quality pseudo samples.
The evaluation is conducted from three perspectives: com-
parison of model variants, analysis of the impact of pseudo
sample ratios, and assessment of the quality of generated
data. We first compare five model variants to isolate the
contributions of different generator components: the complete
Med-FedLSG, Med-FedLSG-NG (with the generator mod-
ule removed), Med-FedLSG-UP (utilizing an unconditioned
generator), Med-FedLSG-NoPhysio (removing physiological
constraints by setting A ,jy5i0 = 0), and Med-FedLSG-Uncond
(removing the conditional mechanism where the generator
operates without health label y as input).
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Fig. 6. Comparison of different med-fedlsg variants on two datasets across
four evaluation metrics.

As shown in Figure 6, each generator component
significantly influences model performance. On the
MIMIC-III dataset, Med-FedLSG achieves an improvement
of 3.29 percentage points in accuracy over Med-FedLSG-NG,
along with increases in F1 score, AUC-ROC, and intra-
user consistency. The physiological constraints contribute
1.53 percentage points in accuracy (85.47% vs. 83.94% for
Med-FedLSG-NoPhysio), while the conditional mechanism
adds 1.18 percentage points (85.47% vs. 84.29% for
Med-FedLSG-Uncond). Compared to the unconditioned
variant (Med-FedLSG-UP), the complete model also yields
notable gains, confirming the importance of conditioning
in temporal generation. A similar trend is observed on the
UCI-HAR dataset, where Med-FedLSG improves accuracy by
2.72 percentage points compared to its no-generator variant,
with physiological constraints contributing 1.26 percentage
points and the conditional mechanism adding 0.81 percentage
points. These results suggest that the conditional temporal
generator effectively mitigates non-IID challenges in medical
federated learning by enabling privacy-preserving cross-user
knowledge transfer, with both physiological constraints and
conditional mechanisms playing essential roles.

To identify an optimal strategy for incorporating pseudo
samples during training, we analyze the effect of varying
pseudo sample ratios. As shown in Figure 7, model
performance improves as the proportion of pseudo samples
increases, but begins to plateau around 75%. On the
MIMIC-III dataset, increasing the pseudo sample ratio from
0% to 75% improves accuracy by 3.29%, while the gain from
75% to 100% is only 0.18%. Similar trends are observed
for other evaluation metrics. This indicates that a moderate
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Fig. 7. Impact of pseudo sample ratio on performance of two datasets.
amount of pseudo data effectively enhances model perfor-
mance, while excessive reliance may lead to distributional
drift. Based on this observation, we adopt a 75% pseudo
sample ratio as the default configuration in Med-FedLSG to
balance accuracy and computational efficiency.

To comprehensively evaluate the quality of generated
samples, we analyze both their statistical properties and
utility in downstream tasks, as presented in Tables V and VI
For the MIMIC-III dataset, the relative differences between
generated and real samples in terms of mean, standard
deviation, and autocorrelation are 5.83%, 8.27%, and 7.12%,
respectively, with a maximum mean discrepancy (MMD) of
0.138. The UCI-HAR dataset shows slightly lower variation,
with relative differences ranging from 4.87% to 7.25%. These
results suggest that the generator is capable of simulating
realistic medical time-series data. Notably, the utility of
generated data in downstream tasks is high, with only minor
AUC-ROC differences of 2.47% (MIMIC-III) and 1.65%
(UCI-HAR) compared to real samples. In addition, the
physiological constraint satisfaction rates reach 94.37% and
96.85% on MIMIC-III and UCI-HAR, respectively, indicating
that the generated sequences adhere to realistic physiological
patterns. The radar chart in Figure 8 illustrates the relative
differences across multiple evaluation metrics, further
validating the fidelity of synthetic data across both datasets.

To analyze the scalability of Med-FedLSG, we examine the
theoretical communication and computational complexity. The
communication cost per round scales linearly with the number
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TABLE V
QUALITY EVALUATION OF GENERATED SAMPLES (MIMIC-III DATASET)

Evaluation Metric

Generated Samples

Relative Difference (%)

Real Samples

Mean Difference 0.127 4+ 0.018 5.83

Standard Deviation Difference 0.185 4+ 0.022 - 8.27

Autocorrelation Difference 0.154 4+ 0.019 - 7.12

MMD Distance 0.138 + 0.014 - 6.41

Downstream Task Effectiveness (AUC-ROC) 0.869 4+ 0.013 0.891 4+ 0.010 2.47

Physiological Constraint Satisfaction Rate (%) 9437 £ 1.25 100 5.63
TABLE VI

QUALITY EVALUATION OF GENERATED SAMPLES (UCI-HAR DATASET)

Evaluation Metric

Generated Samples

Real Samples Relative Difference (%)

Mean Difference 0.109 + 0.015 - 4.87
Standard Deviation Difference 0.163 4+ 0.019 - 7.25
Autocorrelation Difference 0.132 + 0.016 - 5.94
MMD Distance 0.121 4+ 0.012 - 5.36
Downstream Task Effectiveness (AUC-ROC) 0.951 £+ 0.011 0.967 4+ 0.009 1.65
Physiological Constraint Satisfaction Rate (%) 96.85 £ 1.08 100 3.15

—e— MIMIC-III
UCI-HAR

" Mean Diff
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Fig. 8. Relative difference between generated and real samples.

of participating clients, requiring O(K) parameter transmis-
sions for K selected clients. Given that only shared parameters
(1.6M) are transmitted while personalized parameters remain
local, the framework maintains constant per-client communica-
tion overhead regardless of total federation size. The server’s
aggregation complexity is O(K), making it computationally
feasible for large-scale deployments.

To validate this theoretical analysis, we conduct additional
simulations with up to 200 virtual clients on MIMIC-III
by further partitioning the existing data. Results show that
Med-FedLSG maintains stable convergence with accuracy
degradation of only 1.2% (84.23% vs 85.47%) when scal-
ing from 50 to 200 clients, while requiring 15% more
communication rounds to achieve convergence. The frame-
work demonstrates robust performance even with client partic-
ipation rates as low as 10% (20 out of 200 clients per round).

To evaluate the robustness of Med-FedLSG against sys-
tem failures, we simulate random client dropout scenarios
where 10-30% of selected clients fail to participate in each

communication round. Results show that the framework main-
tains stable performance with only 2.1% accuracy degradation
under 15% dropout rate, demonstrating resilience to client
unavailability commonly encountered in real-world deploy-
ments. Med-FedLSG incorporates several design elements that
provide inherent robustness: (1) the two-level parameter aggre-
gation prevents individual malicious clients from completely
compromising the global model since personalized param-
eters remain local, (2) the federated PCA-based dimension
allocation reduces the impact of outlier representations, and
(3) the conditional generator’s physiological constraints help
filter unrealistic synthetic data that might result from corrupted
inputs.

To assess the practical feasibility of Med-FedLSG for
deployment on resource-constrained devices, we analyze the
computational and communication overhead. The total model
parameters of Med-FedLSG is approximately 2.1M, which is
comparable to other personalized federated learning methods
such as pFedMe (1.8M) and CFG-SHD (2.3M). The commu-
nication overhead per round is dominated by shared parameter
transmission (approximately 1.6M parameters), while person-
alized parameters remain local. Memory requirements during
training peak at approximately 45MB on MIMIC-III and
32MB on UCI-HAR, which falls within the capabilities of
modern mobile devices and edge computing platforms such
as smartphones and IoT healthcare devices.

VI. CONCLUSION

In this paper, we proposed Med-FedLSG, a novel federated
learning framework for medical time-series data from wear-
able health consumer electronics. Our framework effectively
addresses three critical challenges in federated learning for
medical applications: data heterogeneity, privacy preserva-
tion, and knowledge transfer. The key innovations include a
variational temporal representation learning mechanism with
explicit disentanglement of shared and personalized features,
and a conditional temporal generator that facilitates knowledge
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transfer while maintaining privacy. Experimental results on the
MIMIC-III clinical database and UCI-HAR dataset demon-
strated that Med-FedLSG consistently outperforms existing
federated learning methods across multiple evaluation metrics,
including accuracy, F1 score, and AUC-ROC. Our ablation
studies validated the effectiveness of the personalized repre-
sentation separation mechanism and the conditional temporal
generator. The adaptive dimension allocation strategy guided
by federated PCA significantly improved model performance
by balancing generalization and personalization capabilities.
While our framework demonstrates promising performance
and theoretical scalability, several important limitations point
to critical directions for future research. First, comprehensive
evaluation in large-scale federated settings with thousands of
clients and real-world deployment studies on wearable devices
remain essential for validating practical feasibility. Second,
formal privacy analysis including differential privacy guaran-
tees and resistance to adversarial attacks such as model poison-
ing and membership inference requires further investigation to
ensure robust security for sensitive medical applications.
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