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Abstract— The rapid development of wireless communication
technologies and the Internet of Medical Things (IoMT) has led
to the proliferation of time-sensitive and computation-intensive
medical applications such as real-time health monitoring, remote
surgery assistance, and augmented reality rehabilitation. These
applications impose stringent latency requirements on IoMT con-
sumer electronics. This paper proposes holographic-assisted edge
latency optimization for IoMT (HELO-IoMT) in response to these
challenges. First, within the holographic-assisted edge network
framework, we establish physical and holographic models for an
edge computing network comprising IoMT consumer electronics,
edge servers, and medical actuators. Then, to solve the result-
ing mixed-integer non-convex optimization problem, we create
digital replicas of IoMT devices with real-time synchroniza-
tion capabilities, enabling predictive resource allocation without
physical resource waste. Our solution methodology decom-
poses the mixed-integer non-convex optimization problem into
four interconnected subproblems: computation-communication
resource optimization using inner convex approximation, device
association optimization via the Hungarian algorithm, offload-
ing decision optimization through linear programming, and
transmission bandwidth optimization using convex optimization
techniques. Simulation results demonstrate that HELO-IoMT
outperforms state-of-the-art benchmarks across various perfor-
mance metrics. For critical healthcare applications, HELO-IoMT
reduces end-to-end latency by up to 45.5% compared to existing
approaches, achieves 94.6% anomaly detection accuracy (14.9%
higher than DEETO), reduces energy consumption by 44.1% for
ECG monitors to 85 mJ/hour, and improves critical cardiac event
response times to 1.2 seconds (62.5% faster than DEETO).

Index Terms— Holographic counterpart, internet of med-

ical things consumer electronics, edge computing, latency
optimization.
I. INTRODUCTION
HE explosive growth of wireless communication

technologies and the Internet of Medical Things (IoMT)
has revolutionized healthcare delivery systems, creating a
substantial demand for medical consumer electronics that
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support time-sensitive and computation-intensive applications
[11, [2], [3], [4]. Remote health monitoring, telehealth consul-
tations, augmented reality surgical assistance, and predictive
medical analytics are increasingly common in modern health-
care environments [5], [6]. These applications impose stringent
latency requirements; for instance, real-time electrocardiogram
(ECG) analysis requires continuous sensor monitoring and
immediate processing to ensure patient safety [7]. Mobile
edge computing (MEC) has emerged as a promising solution,
leveraging the computational capabilities of edge servers to
achieve lower application latency for resource-constrained
IoMT consumer electronics [8], [9], [10]. Using task
offloading techniques, MEC enables computational tasks from
resource-limited devices to be transferred to edge servers with
superior processing capabilities, meeting healthcare-specific
performance demands [11], [12]. Consequently, designing
joint MEC task offloading and communication-computation
resource allocation strategies is crucial for [oMT applications
where timely intervention can be life-saving [13].

The wider implications overshadow mere technical opti-
mization and lie in a transformation of fundamental healthcare
delivery. Optimized IoMT platforms enable remote monitoring
of patients outside of conventional clinical centers, putting the
patients on a track of enjoying independence while receiving
quality healthcare. This technology in effect levels the playing
field for access to advanced medical monitoring, thus closing
the disparities that exist between urban and rural populations.
From an economic viewpoint, efficient edge computing alle-
viates infrastructures from centralized health systems, thereby
allowing the ill citizenry to age with respect to scaling medical
services.

Existing research has extensively investigated MEC task
offloading and resource optimization in various contexts [14].
Researchers have proposed priority-based task scheduling
algorithms to minimize delay for tasks with dependen-
cies in MEC-supported networks [15]. Deep reinforcement
learning methods have been developed to optimize task
delay in multi-user MEC systems for improved quality of
service [16]. Joint task offloading and resource allocation
problems have been studied to reduce the energy consump-
tion of delay-constrained devices [17]. Resource allocation
algorithms for uplink multi-user MEC vehicular networks
have been designed to minimize the weighted sum of delay
and energy consumption under multi-dimensional resource
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constraints [18]. However, these studies focus solely on MEC
task offloading and resource allocation without considering
device association optimization. This could further reduce
latency and achieve load balancing among servers—a critical
factor in healthcare scenarios where medical data process-
ing requires balanced resource utilization [19], [20]. Some
works have jointly optimized device association, offloading
ratio, and computation-communication resources to minimize
task delay and alleviate server computational load [21].
However, they overlooked the upload process of locally
computed results, which is non-negligible in distributed
medical systems where local computation results need to
be uploaded to servers for centralized analysis or storage,
especially when the volume of medical data and transmis-
sion delay cannot be ignored [22]. Priority-based scheduling
approaches excel in deterministic environments but struggle
with dynamic medical data patterns where patient conditions
change unpredictably. Deep reinforcement learning methods
provide adaptive solutions but require extensive training data
and may not converge quickly enough for time-critical medical
applications.

The emergence of holographic counterpart (HC) technolo-
gies offer an effective solution to address these challenges [23],
[24]. HC technology creates digital replicas of physical enti-
ties in virtual space, enabling mapping from the physical world
to the digital domain. Given these advantages, researchers
have integrated HC technology with edge networks, con-
structing holographic-assisted edge networks (HEN) [25],
[26]. HC differs from traditional digital twins by maintaining
real-time bidirectional synchronization with physical entities
and employing predictive modeling for proactive optimization.
While digital twins typically focus on monitoring and analy-
sis, HC actively influences physical system behavior through
real-time optimization decisions. In the HEN framework, edge
nodes such as access points (APs) collect real-time informa-
tion from physical objects and establish and maintain HC
models based on this information. Through this approach,
HEN can design and optimize task offloading and resource
allocation schemes directly in the digital domain, improving
network decision-making efficiency while reducing physical
resource waste [27], [28]. Without HEN, obtaining optimal
task offloading and resource allocation strategies would require
continuous communication between edge servers and devices
to acquire real-time information, increasing communication
costs and potentially affecting decision-making effectiveness
due to communication delays. Thus, integrating HC in med-
ical edge computing environments reduces the computational
load on resource-constrained IoMT consumer electronics,
enhances decision-making efficiency, and minimizes commu-
nication costs while obtaining optimal resource allocation
strategies [29].

These limitations create a research gap where no existing
framework addresses the complete task execution pipeline
while optimizing for medical-grade performance require-
ments [30], [31]. Most approaches assume static device-server
relationships, ignoring the dynamic nature of patient mobility
and changing medical priorities [32], [33]. Furthermore, exist-
ing works lack consideration of medical actuator requirements,
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Fig. 1. HEN system model for IoMT.
treating all result delivery as equivalent when medical contexts
demand differentiated service levels [34].

Accordingly, the main contributions of this paper are sum-

marized as follows:

o We develop a HEN framework specifically designed for
medical electronics, establishing HC for IoMT devices
that enable real-time optimization without excessive com-
munication overhead.

« We establish physical and holographic models for the
complete healthcare task execution process, from phys-
iological data collection to medical actuation.

« We formulate an end-to-end latency optimization problem
under realistic healthcare constraints and derive a math-
ematical model that captures the unique requirements of
medical monitoring applications.

The rest of the paper is organized as follows: Section II
presents the HELO-IoMT system model. Section III outlines
our problem solution methodology. Section IV provides sim-
ulation results and analysis. Finally, Section V concludes the

paper.

II. SYSTEM MODEL

This paper considers a two-layer HEN consisting of physical
and HC layers. The physical layer includes APs equipped
with MEC servers, IoMT consumer electronics, and medical
actuators, which collaboratively realize the complete process
from data upload and task computation to result down-
load. IoMT consumer electronics detect physiological data
and generate computational tasks, adopting partial offloading
approaches to complete computational tasks using local and
edge server resources. APs utilize the powerful capabilities
of MEC servers to process offloaded tasks, integrate both
local and edge computing results, and transmit all results to
medical actuators. Medical actuators are devices that execute
treatment commands based on processed data (insulin pumps,
medication dispensers). The HC layer consists of physical
devices and the entire communication environment, monitor-
ing the physical system’s operational status and optimizing
task offloading and resource allocation schemes through real-
time interaction. The system model is illustrated in Fig. 1.

The system contains K IoMT consumer electronics, M APs,
and L medical actuators, represented by sets K=1,2,..., K,
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M=12,...,M,and L = 1,2,..., L, respectively. m =
TTkm, Yk, m denotes the association variable between IoMT
consumer electronics and APs, where wkm = 1 when medical
sensor k is associated with AP m, and 7w, = 0 otherwise.
Additionally, each AP can serve at most N IoMT consumer
electronics, and each medical sensor can only associate with
one AP.

Network  topology  variations  affect  holographic
model accuracy through communication delays and
fragmentation-induced data loss. The system maintains

performance across mesh, star, and hybrid topologies by
adapting model refresh rates based on network conditions.
During fragmentation events, edge servers utilize cached
historical data to maintain approximate holographic models
until connectivity restoration, ensuring continued operation
with reduced accuracy.

The computational task of medical sensor k is represented
by Tx = Dy, Ck, Yk, Uk, Where Dy indicates the medical
sensor’s task volume (bits), Cy represents the number of CPU
cycles required to execute the task (cycles), yx and wi rep-
resent the proportion of medical sensor k’s local computation
results to local tasks and the proportion of edge computation
results to offloaded tasks, respectively. The offloading factor
for medical sensor k is denoted by 0 = 6,0 < 6 < 1,
meaning the medical sensor offloads 6 Dy data size to the AP
for execution, while the remaining (1—6;) Dy data is processed
locally. The offloading factor 6 represents the proportion of
computational tasks transferred from local devices to edge
servers (0 = full local processing, 1 = complete offloading).
While HC deviation measures the accuracy difference between
holographic predictions and actual system behavior.

The HC model relies on the edge server’s powerful compu-
tation and storage capabilities for establishment and mainte-
nance [35]. The HC model of the medical sensor-actuator pair
(k-1) is defined as:

HCis = {Sk. i fio £} - M

where S; represents the digital domain state information
monitored by the HC for medical sensor k, including local
resources (remaining energy, transmission power, etc.), chan-
nel information (signal-to-noise ratio, bandwidth, interference
information, etc.), etc. S; represents the digital domain state
information of medical actuator [, including battery level,
activity range, etc. fi represents the HC-estimated processing
rate of medical sensor k.

Data integrity verification employs temporal consistency
checks and cryptographic checksums to ensure holographic
accuracy. When communication links experience failures, the
system compares received data against expected patterns based
on historical device behavior. Inconsistent readings trigger
verification protocols that request data retransmission or acti-
vate backup monitoring pathways to maintain model reliability
during network disruptions.

The HC model of AP m is defined as:

HC), = (SAF. ST, 7). )
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Fig. 2. Complete process task model for IToMT.
where SAPm represents the digital domain state information of
AP m, including association state, coverage range, etc. A km
represents the HC-estimated processing rate of AP m.

Holographic counterpart maintenance introduces compu-
tational overhead proportional to the number of monitored
devices and model refresh rates. The framework addresses
this through adaptive model complexity adjustment based
on device criticality and available edge resources. Non-
critical devices utilize simplified holographic models to reduce
processing requirements, while emergency medical devices
maintain full-fidelity counterparts for accurate predictions.

Additionally, the framework incorporates standardized inter-
face protocols for integration with hospital information
systems and electronic health records. Data exchange occurs
through HL7 FHIR standards, enabling seamless connectivity
with existing medical databases. The system provides API
endpoints for external applications and maintains data format
compatibility with major electronic health record vendors, pre-
venting information silos and ensuring comprehensive patient
monitoring.

A. Complete Process Task Model

In the physical system, IoMT consumer electronics collect
physiological data to generate computational tasks, adopting
partial offloading approaches to divide tasks and complete
them collaboratively through local and edge processing [36].
IoMT consumer electronics upload local computation results
to APs for further analysis or storage. The complete process
task model comprises five components, as illustrated in Fig. 2.

B. Complete Process Task Model

In task offloading of uplink transmission, IoMT consumer
electronics and APs connect through wireless links. Let wy €
[0, W] represent the bandwidth allocated to medical sensor k
for task offloading. The channel gain between medical sensor
k and AP m is expressed as:

Biem = Bo (dim /do) > . 3)

where fBo and dy, represent the path loss at the reference
distance and the actual distance between the two entities,
respectively. pi denotes the transmission power of medical
sensor k. The model employs orthogonal frequency division
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multiplexing technology [37], neglecting co-channel interfer-
ence. Therefore, the uplink transmission rate from medical
sensor k to AP m is:

Rin = iy log, (14 Zu2ihunl). @)

where Ny represents the noise power.
Consequently, the transmission delay for task offloading
from medical sensor k to AP m can be expressed as:

up __ 1m O Dk
Tkm - r;l?km : o)

In local result upload process, yx € [0, 1) represents the
ratio of medical sensor k’s local computation results to local
tasks, meaning the local computation result size is yx(1 —
0x) Dy (bits). Therefore, the delay for uploading local results
from medical sensor k to AP m is:

up __ Tgmn Yk (1—6k) Di
Tlr - Rim : (6)

Let p; represent the power allocated to medical actuator [,

with the AP’s maximum transmission power being Ppax,
L

satisfying 0 < > 7,y p1 < Pmax, Vm. Therefore, the downlink

transmission rate from AP m to medical actuator [ is:
L pl Bt |
Rt = wy logy (1 + Tetlpul”) (7)

where Np represents the noise power. APs transmit both
local and edge computation results to medical actuators. Let
Ax represent the download result ratio to the sum of both
parts of the results. Therefore, the result size that medical
actuator / needs to receive is Oy = Ag(yx (1 — ) + 1k 6k) Dk.
Consequently, the downlink transmission delay for AP m to
send computation results to medical actuator [ is:

1710
Ty = Talr ®)

Rmni

C. Computation Model

Medical sensor k executes local tasks at the HC-estimated
processing rate fi. The estimated delay for local computation
is:

> 1-6)C

Tkse _ f/i) k )
HEN can obtain the deviation between medical sensor k’s
actual processing rate and HC-estimated rate fk The differ-
ence between actual delay and HC-estimated delay is:

se _ (1=00)Ci fie
Al = fk(fk*]?k) )
Eq. (10) calculates the deviation between actual and esti-
mated local computation delay, where the numerator represents
the additional cycles needed due to estimation error, and the
denominator shows the reduced effective processing rate.
Therefore, the actual delay for local computation is:

(10)

Tf¢ = T + AT . (11)

AP m executes medical sensor k’s offloaded tasks at the
HC-estimated processing rate kamP . The estimated processing
delay is:

7 AP kmm Ok Ci

(12)
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Fig. 3.  End-to-end delay scenarios in IoMT task processing.

After obtaining the AP computation resource deviation from
HEN, the difference between the actual processing delay and
HC-estimated processing delay is:

Tm 0 Cr F°
AT = T
Eq. (13) similarly captures AP processing deviation,
accounting for the difference between predicted and actual
edge server performance.
Therefore, the actual delay for AP computing offloaded
tasks is:

13)

TOP = TAP + ATAP. (14)

D. Energy Consumption and Delay Model

Communication energy consumption [38]: Communication
energy consumption consists of task offloading and local result
upload energy consumption. Therefore, the communication
energy consumption of medical sensor k can be expressed as:

E" = (T30 + T37) pr. (1s)
Computation energy consumption [39]: APs have a sufficient
energy supply, so edge computation energy consumption can
be neglected. Therefore, the computation energy consumption
of medical sensor k is the local computation energy consump-
tion, expressed as:
. A\ 2
EP = —-00%C(fi— f) - (16)

where & is the effective capacitance coefficient determined by
the chip architecture.

Therefore, the total energy consumption of medical sensor
k can be calculated as:

E =E"+Er". (17)

From the complete process task model, the end-to-end delay
for medical sensor k’s task, denoted by TkEZE , consists of
five components. Due to communication resource constraints,
local result upload and task offloading cannot be transmitted
in parallel; local results must wait until task offloading is
completed before uploading. This leads to four end-to-end
delay scenarios, as illustrated in Fig. 3.

Based on the relationship between local computation delay
and task offloading delay, these four scenarios can be catego-
rized into two types:

1) Local computation delay is greater than task offloading
delay As shown in Figs. 3(a) and 3(b), 71 > 3. In this
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case, after medical sensor k completes task offloading,
the channel remains idle for some time and must wait
until the local computation is completed before results
can be uploaded to the AP. The end-to-end delay for
medical sensor k in this case is:

TkEzE =max {(t; +12), (13 + 14)} + 75. (18)

2) Local computation delay is less than task offloading
delay

As shown in Figs. 3(c) and 3(d), t; < 3. In this case, it cannot
immediately upload computation results after the medical
sensor k completes local computation. It must wait until task
offloading is completed before uploading local computation
results to the AP. Therefore, the end-to-end delay for medical
sensor k in this case is:

TkEZE (19)

=1n+max{m, u}+15.

Combining both cases, for medical sensor k, the total end-
to-end delay can be expressed as:

(20)

TkE2E = max {13 + 74, max (71, 13) + T2} + 75.

Based on the above analysis, the end-to-end delay for
medical sensor k’s task Ty from offloading to execution to
result download can be expressed as:

TE?E =3 max {13 + 14, max (11, 13) + 12} + 5

= max {7, + T, max (T, Tg,)) + 1,7} + T

km

Tkm Ok D ;Tﬁm Ok Ci
R P AP’
e fkm “Jkm
(A=0)Cx 7T Ok D
fk _fk ’ Rim
Tk Yk (1 —6) D
+ Rim

max | max ( + Tkm Ok

ml

I
T M=

—_

2L

Eq. (21) provides the complete end-to-end delay formula-
tion, combining uplink transmission, local computation, edge
processing, and downlink transmission delays while handling
the complex timing dependencies between parallel processes.

E. Problem Formulation

This paper considers the complete task execution process,
comprehensively accounting for the five-stage delay with
complex delay conflicts shown in Fig. 3. Therefore, optimizing
delay is more valuable in this framework. We aim to minimize
the system’s total end-to-end delay by jointly optimizing
device association, uplink/downlink bandwidth, AP transmis-
sion power, offloading factor, and local and edge HC-estimated
processing rates f = fi, fk‘ﬁ) . The optimization problem is
formulated as follows:

K M
: E2E -
MmiNg 6, w,w, p,f E E T (m, 0, w, w, p,f
k=1m=1

C1:TEE(n, 0,0, w, p, ) < Tiax, Yk €K
C2: E{ (.09, fi) < Emax. Yk €K

K
C3:anm <N,VmeM
k=1
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M =

L
Cc4: "ka,ZwlsW
=1

~
Il
<N

M
C5:0< > TPt < Prax, Ym € M
m=1

M

C6 : Tim e{O,l},anmzl,VkeK,meM
m=1

C7:0<6, <1,VkeK

C8: fi < F\, [P < FAP VkeK,meM

C9:wk,wl,fk,f,ﬁnpzO,VkeK,leL,meM (22)
where constraints C1 and C2 represent the delay and energy
consumption constraints, particularly important in healthcare
applications where timely response and extended device bat-
tery life are critical. C3 constrains the number of IoMT
consumer electronics an AP can serve, reflecting realistic load
balancing requirements in healthcare settings. C4 constrains
bandwidth allocation, ensuring efficient utilization of limited
spectrum resources for medical data transmission. C5 con-
strains AP power values, which are important for managing
interference in potentially sensitive medical environments.
C6 defines the device association constraint, ensuring each
medical sensor is connected to exactly one AP to maintain
reliable monitoring. C7 constrains the offloading factor val-
ues, allowing for flexible distribution of computational tasks
between resource-constrained IoMT consumer electronics and
edge servers. C8 constrains computation frequency values,
reflecting the physical limitations of processors in both IoMT
consumer electronics and edge servers. Finally, C9 establishes
the non-negative constraints for all continuous variables in the
system.

Patient mobility affects holographic model consistency dur-
ing device handovers between access points. The framework
maintains model accuracy through predictive mobility estima-
tion based on historical movement patterns. During handovers,
the source access point transfers holographic model states to
destination points, ensuring continuity. The system employs
buffer mechanisms to prevent data loss during transition
periods and recalibrates models based on new environmental
conditions.

Eq. (22) represents our multi-objective optimization prob-
lem where the objective function minimizes total end-to-end
delay across all sensor-actuator pairs. Constraint C1 ensures
that each device meets its latency requirement 7Ty,x, while
C2 guarantees energy consumption stays within device battery
limits Em,x. Constraints C3-C6 handle resource allocation
bounds, and C7-C9 define variable domains and non-negativity
requirements.

III. PROBLEM SOLUTION METHODOLOGY

Unlike existing solutions that contend with task offload-
ing, resource allocation, and result delivery as three separate
classes of optimization problems, HELO-IoMT acknowledges
that these components constitute an integrated pipeline in
which the decisions taken at one stage directly affect those
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of the other. The traditional methods yield individual compo-
nents, tuned one-by-one, and therefore are not good because
bottlenecks in result transmission or vice versa can negate
any good computation speed. Our HC mechanism practi-
cally disrupts this paradigm to enable predictive optimization
throughout the entire task execution lifecycle: Rather than
reacting to the current system conditions, the framework
anticipates future resource needs and configures allocation
strategies accordingly before any bottleneck arises.

The objective function and constraints are non-convex and
non-smooth, with coupled binary and continuous variables,
making problem (22) a mixed-integer non-convex prob-
lem difficult to solve [40]. Therefore, we adopt a variable
decoupling approach, decomposing the original problem into
four subproblems: computation and communication resource
optimization, device association optimization, offloading deci-
sion optimization, and transmission bandwidth optimization.
We then combine the inner convex approximation (ICA)
method with the Hungarian algorithm (HA) to propose an
alternating optimization (AO) algorithm, namely the ICA-HA-
AQO algorithm, to solve the original problem iteratively.

The ICA-HA-AO algorithm has O (K M ) time complexity
for K devices and M access points, dominated by the Hun-
garian algorithm component. Memory complexity is O (K M)
for association matrix storage. For typical healthcare scenarios
(K <50, M < 50), optimization completes within 100ms on
standard hardware, meeting real-time requirements for medical
applications.

Scalability limitations emerge as device counts increase due
to computational and memory constraints on edge servers.
The framework addresses large-scale deployments through
hierarchical holographic modeling, where device clusters share
computational resources for similar device types.

We select the Hungarian algorithm for device association
because it guarantees optimal bipartite matching in polynomial
time, crucial for real-time medical applications. Inner convex
approximation is chosen over other optimization techniques
because it maintains solution quality while reducing com-
putational complexity from exponential to polynomial time.
This combination enables sub-second optimization decisions
required for medical emergency response.

Fault tolerance mechanisms include redundant edge server
deployment and automatic failover protocols during hardware
failures, when primary servers become unavailable, backup
systems assume processing responsibilities using synchronized
holographic model states. The framework maintains distributed
copies of critical holographic counterparts across multiple
edge nodes, ensuring service continuity even during multiple
simultaneous failures through load redistribution.

A. Computation and Communication Resource Optimization

In this subproblem, given the values of
(G(i),n(i),zi)(i),w(i)), we solve the problem (22) to find
the next optimal medical sensor computation frequency
and AP computation frequency and transmission power
(fG+D | pli+Dy At this point, problem (22) is transformed into
the computation and communication resource optimization

11537
subproblem SP1:
K M
min g g0 20 5000 2, > TE(f p)
k=1 m=1
s.t. Cl1, C3, C5, C8, C9 (23)

Constraint C1 in SP1 is non-convex. Next, we use the inner
convex approximation method to transform subproblem SP1
into a convex optimization problem.

Define variables R{R,,;}, Ym, [, satisfying 1/R;;;;(p) < R,
we have:

TkEZE (f’ p)3 kaZE(f’ R)

Tkm Ok Dic + Tm Ok Ci
Ricm N
1—6)Ck  Tkm Ok D
max [ max ((—’&, —)
= (fl«_fk km 24)
+7Tk1117k 1—6k) Dy
ka
+7km Ok Rt
Then constraint C1 can be rewritten as:
K M
. = E2E
Min g, Ra6) 7 () i@ 0 Z z T=""(f,R)
k=1 m=1
s.t. C3, C5, C8, C9 (25)

B. Device Association Optimization

In  this  subproblem, given the  values of
@D f0+D @D 5@ @) we  solve problem  (22)
to obtain the optimal association strategy between IoMT
consumer electronics and APs (7U*D). At this point,
problem (22) is transformed into the device association
optimization subproblem SP2:

K M
. 2 : 2 : E2E
mlnn|9(i+1)’f(i+1)’p(i+1),,j)(i),w<i) T (77)
k=1m=1

s.t. C1-C3, C5, C6 (26)

Since constraints C3, C5, and C6 in issue SP2 are not
convex and C6 has binary variables, this problem is NP-hard.
We may change the non-convex issue into a convex problem by
changing binary variables into continuous variables. However,
if limits were loosened, a medical sensor might connect to
more than one AP, breaking constraint C6.

The association between IoMT consumer electronics and
APs can be described using an undirected bipartite graph G =
(V, E), where V represents the node set V =KUM, and E
represents the edge set. Constraints C2 and C6 require that
each node in the medical sensor set K can only be associated
with one edge, while nodes in the AP set M can be associated
with at most N edges. At this point, the vertices in K and
vertices in M have a many-to-one relationship, as shown in
Fig. 4(a).

To make the association problem satisfy the conditions of
the HA [41], we use virtual replication of APs to obtain
the virtual AP set M(m) = {M\"™, M{™, ... .M}, m =
1,2,..., M. From constraint C2, the size of the virtual AP
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(a) Many-to-one matching (b) Number-unbalanced one-to-one matching (c) Number-balanced one-to-one matching

-~

w

AP Virtual replication
Each AP is virtually replicated N times
to transform many-to-one problem into
one-to-one matching problem

Zero Padding
Virtual medical sensors are added to
balance the number of nodes for
applying the Hungarian algorithm

Fig. 4. Optimal bipartite matching process based on edge addition and
zero-padding.

set m is [M(m)| = N, meaning each AP needs to be virtually
replicated N — 1 times.

In Fig. 4(b), assuming each AP can serve at most 3 IoMT
consumer electronics, each AP needs to be virtually replicated
2 times. For example, AP1 is represented by the virtual AP
set M(1) = {Ml(l),Mz(l),Mél)}. At this point, the associa-
tion of 3 IoMT consumer electronics (K1, K7, K3) with one
AP (M) in Fig. 4(a) is transformed into the association
of 3 IoMT consumer electronics (K, K7, K3) with three
virtual APs (Ml(l), Mél), Mgl)) in Fig. 4(b). After transfor-
mation, the number of virtual APs is N x M. When the
number of IoMT consumer electronics is less than the number
of virtual APs (K < NM), virtual medical sensor nodes
can be added by zero-padding to transform it into a bal-
anced assignment problem with equal numbers on both sides,
as shown in Fig. 4(c). Virtual medical sensor set is denoted
as K'={1,...,K,..., NM}. At this point, subproblem SP2
is equivalent to:

. E2E
N gG+1) fi+1) | pG+D 50,y E E T ()
VkeK' VmeM(m)

s.t. C1: TEE () < Tax, Vk € K/
C2: E (7,0, W, fi) < Emax, ¥k € K’
L
C3:0< Z”y(l)mpl < Ppax, Ym € M(m)
=1

C4 : 7 € {0, 1}, Vk € K/, m € M(m) Q7

C. Offloading Decision Optimization

In  this  subproblem, given the  values of
(D D pGEED @ @) we seek the next optimal
offloading decision value OYtDY. The offloading decision
optimization subproblem SP3 is as follows:

K M
MDD | 4D g+ p+D 50, 10 z Z T (6)
k=1m=1
s.t. C1, C3, C7 (28)
Subproblem SP3 is a linear programming problem that can
be conveniently solved using linear programming methods.
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D. Transmission Bandwidth Optimization

In  this subproblem, given the  values of
(D g+ g+ 5 +Dy we seek the next optimal uplink
and downlink bandwidth values (wUtD, wl+Dy At this
point, problem (22) is transformed into the transmission
bandwidth optimization subproblem SP4:

K M
. E2E -
MG 4+1) 4D (4D G+D fi+) D) Z Z 7" (w, w)
k=1 m=1
s.t. C1, C3, C4, C6 (29)

Subproblem SP4’s objective function is a convex function,
and the constraint conditions form a convex set. Therefore,
this problem is a convex optimization problem that can be
effectively solved using convex optimization algorithms such
as the interior point method.

IV. SIMULATION RESULTS AND ANALYSIS

A. Parameter Settings and Benchmark Schemes

This section presents an evaluation of our proposed
HELO-IoMT framework through extensive simulations.
We consider a circular area with a radius of 200 m containing
two APs positioned at coordinates (50, 50) and (—50, 50).
Each AP has a maximum service capacity of N = 6 IoMT
consumer electronics and a coverage radius of 150 m. Ten
medical sensor-actuator pairs are randomly distributed within
this area to simulate a realistic IoMT environment. The
IoMT consumer electronics include wearable ECG monitors,
blood glucose sensors, fall detection devices, and medication
adherence monitors, while the actuators include smart med-
ication dispensers, insulin pumps, emergency alert systems,
and remote vital sign displays. The HC of these devices
are maintained at the edge servers, continuously updated
with real-time data to optimize task offloading decisions and
resource allocation. Parameter selection follows established
medical device standards: ECG sampling rates align with AHA
recommendations (250-500 Hz), blood glucose measurement
intervals follow FDA guidelines (15-minute intervals), and
emergency response time thresholds are based on Joint Com-
mission requirements for critical alerts (<2 minutes). Table I
provides the key simulation parameters used in our evaluation.
These parameters were selected based on established IoMT
standards and real-world healthcare device specifications. The
medical sensor transmission power of 10 dBm aligns with
FCC regulations for medical devices, while the task volume
of 100 Mbit represents typical ECG monitoring data over
24 hours. The AP maximum transmission power of 40 dBm
corresponds to standard enterprise access points used in health-
care facilities.

Simulations were conducted on Intel Xeon Gold 6248R
processors (3.0 GHz, 48 cores) with 128GB DDR4 memory.
The simulation environment used MATLAB R2023a with
Optimization Toolbox and CVX for convex optimization. Net-
work simulation employed ns-3.35 with custom [oMT device
models. Statistical analysis used 95% confidence intervals over
100 independent runs with different random seeds.
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TABLE I

SIMULATION PARAMETERS
Parameter name Parameter value | Parameter name Parameter value
Medical sensor transmission power py 10 dBm Medical sensor maximum computation frequency Fe, 3 GHz
AP maximum transmission power P, . 40 dBm AP maximum computation frequency Eﬁ; 10 GHz
Input task volume Dj, 100 Mbit Path loss f3, -30dB
Task required computation resource Cj, 960x10° cycle Reference distance d 10 m
Total transmission bandwidth W 20 MHz Noise power N -174 dBm/Hz
Maximum delay and energy 7, .., Epax 25,151 Effective capacitance coefficient & 10728
Holographic model refresh rate 10 ms Holographic deviation threshold 0.01-0.05
Medical data priority weighting 0.7-0.9 Healthcare QoS requirement 99.99%
Emergency data flag threshold 0.85 Patient monitoring interval 50-500 ms

To evaluate the effectiveness of our proposed HELO-IoMT
scheme, we compare it with five state-of-the-art benchmark
schemes that represent different approaches to task offloading
and resource allocation in IoMT and holographic/digital twin-
enabled environments:

1) DEETO [42]: A DRL-based energy-efficient task
offloading (DEETO) algorithm. Digital twin techniques
are applied to provide information about the environ-
ment and share the training data of agents deployed on
IoT devices.

2) DTTO [43]: Al-enabled healthcare and enhanced com-
putational resource management with digital twins into
task offloading strategies.

3) CTSRM [44]: A novel cooperative task scheduling and
resource management framework for digital healthcare
applications in edge intelligence systems.

4) MDT-DRL [45]: A mobility-aware digital twin-assisted
deep reinforcement learning (MDT-DRL) algorithm. The
digital twin model equips the reinforcement learning
process by providing future states of mobile users,
enabling efficient offloading plans for adapting to the
mobile collaborative edge computing system.

5) DTCS [46]: Digital twin constructed spatial structure for
flexible and efficient task allocation of drones in mobile
networks.

DEETO employs Q-learning with experience replay for task
offloading decisions but lacks medical priority awareness.
DTTO integrates digital twins for environmental monitoring
but uses static resource allocation policies. CTSRM provides
cooperative scheduling but assumes uniform task importance
across all medical devices. MDT-DRL addresses mobility but
focuses on prediction rather than real-time optimization. DTCS
offers spatial optimization for drones but lacks adaptation to
medical workflow requirements.

Our proposed HELO-IoMT scheme differs from these
benchmarks by introducing HC specifically optimized for
IoMT consumer electronics and applications, focusing on min-
imizing end-to-end latency across the complete task execution
process—from data sensing to result actuation. Additionally,
HELO-IoMT uniquely addresses the often-overlooked trans-
mission of computation results, which is critical in healthcare
contexts where timely response to medical events can be
life-saving.

B. Simulation Results and Discussion

Table II shows the initialization sensitivity analysis contrast-
ing strategies to start the alternating optimization algorithm
with all methods applied. This experiment evaluates how each
approach to initialization affects both convergence behavior
and final performance, making it crucial for deployment in
medical settings, where reliability in performing optimiza-
tion directly impacts, conscientiously, patient safety and care
quality.

The sensitivity to the initialization of the experiment shows
HELO-IoMT to exhibit superior robustness with respect to
all initialization strategies, where performance extends only
within very narrow variances in comparison to baseline
methods. DEETO is furthermore sensitive in matters of per-
formance loss; in contrast, he is stripped of thirty percent in
the worst-case scenario of initialization, whereas HELO-IoMT
differs no more than ten percent between best and worst.
Such stability comes from the holographic counterpart mecha-
nism, creating a consistent state estimate, which then informs
the optimization toward a stable solution, no matter what
the initial conditions are. Convergence stability with fewer
iterations translates to real-time performance that is reliable
for the medical field, which might find itself faced with
unpredictable initialization conditions upon a system restart or
an emergency-mode switch. Most importantly, across initial-
ization modalities, HELO-IoMT always maintains sub-second
latency to ensure reliable feedback times for life-saving med-
ical procedures.

Fig. 5 shows the relationship between task required compu-
tation resources and end-to-end latency for various offloading
schemes.

Our analysis reveals that HELO-IoMT outperforms all
benchmark schemes across the entire range of computation
requirements. At 70 Mcycles, HELO-IoMT achieves a latency
reduction of approximately 42.5% compared to DEETO and
16.3% compared to DTCS.

Fig. 6 investigates the relationship between transmission
bandwidth and end-to-end latency. Bandwidth availability
directly affects data transmission rates for IoMT con-
sumer electronics. It is critical for time-sensitive medical
applications that generate substantial data volumes, such
as continuous vital sign monitoring or medical imaging
analysis.
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TABLE I
INITIALIZATION SENSITIVITY ANALYSIS RESULTS
Method Random init Prior-informed init ~ Worst-case init ~ Convergence stability ~ Avg. iterations
HELO-IoMT 1.08s (£0.12) 1.02s (£0.05) 1.15s (£0.18) 94.20% 6.3
DEETO 1.95s (£0.45) 1.78s (£0.38) 2.12s (£0.52) 76.80% 12.7
DTTO 1.68s (+0.32) 1.55s (£0.28) 1.83s (£0.41) 82.10% 9.8
CTSRM 1.52s (£0.28) 1.41s (£0.22) 1.67s (£0.35) 85.30% 8.9
MDT-DRL 1.45s (£0.25) 1.35s (£0.19) 1.58s (£0.31) 87.60% 8.2
DTCS 1.31s (£0.20) 1.22s (£0.15) 1.42s (£0.26) 89.40% 7.5
2.6 —e—HéLO-IoMT ' ’ ‘ —S—HE‘LO-IDMT
. |=ores e
——MDT :
—-éx—’\C,I'II'DJRDF\/\RL _ ﬁéﬁgfgm
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D | | | | | | h * EZde Ser\:r Proce;;ng Rat:s(chcle;:) © ?
¢ 850 55 60 ' 65 7C! 75 80 85 90
Task Required Computation Resources (Moycle) Fig. 7. Impact of edge server processing rate on end-to-end latency.
Fig. 5. Impact of computation resources on end-to-end latency.
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Fig. 8. Impact of task volume on end-to-end latency.
Fig. 6. Impact of bandwidth on end-to-end latency.

The results demonstrate that HELO-IoMT consistently
maintains lower end-to-end latency across all bandwidth con-
figurations. At the critical bandwidth of 15 MHz, where
network resources are most constrained, HELO-IoMT achieves
a remarkable 41.3% latency reduction compared to DEETO
and 14.8% compared to DTCS.

The steeper improvement curve observed in
bandwidth-constrained  scenarios occurs because our
holographic models optimize transmission schedules more
effectively than reactive approaches, reducing idle channel
time by up to 35%.

Fig. 7 examines how varying the edge server processing rate
affects the end-to-end latency.

The results show that HELO-IoMT achieves the lowest
end-to-end latency across all processing rates. At 10 Gcey-
cle/s, HELO-IoMT demonstrates a 26.5% latency reduction
compared to DEETO and a 6.3% reduction compared to
DTCS. As processing rates increase, all schemes benefit
from enhanced computational capabilities, but HELO-IoMT
maintains its relative advantage.

Fig. 8 analyzes the relationship between task volume and
end-to-end latency. Task volume directly impacts transmission
and computation time. It is crucial for healthcare applica-
tions that generate varying amounts of data, from simple
vital sign readings to complex medical imaging. The results
demonstrate that HELO-IoMT consistently outperforms all
benchmark schemes across the entire range of task volumes.
At 6 Mbit, HELO-IoMT achieves a 45.5% latency reduction
compared to DEETO and a 15.8% reduction compared to
DTCS. This performance advantage is particularly prominent
for larger task volumes (8-10 Mbit), common in data-intensive
healthcare applications such as medical imaging or continuous
monitoring of multiple vital signs.

Fig. 9 investigates the influence of HC deviation on end-to-
end latency. The deviation parameter represents the accuracy
of the holographic model compared to its physical counterpart,
affecting the quality of task offloading and resource allocation
decisions. The results indicate that HC accuracy significantly
impacts system performance across all schemes. At the optimal
deviation of 0.01, HELO-IoMT achieves the lowest latency
of approximately 1.0 seconds, offering a 45.9% reduction
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Fig. 10. Impact of network scale on end-to-end latency for HELO-IoMT.

compared to DEETO and a 16.7% reduction compared to
DTCS.

Fig. 10 examines how HELO-IoMT performs under differ-
ent network scales, varying the number of APs and IoMT
consumer electronics.

The network scale analysis reveals that HELO-IoMT’s
performance is significantly influenced by both the number
of APs and IoMT consumer electronics. For a fixed number
of IoMT consumer electronics, increasing the number of
APs consistently reduces end-to-end latency. For example,
with 15 IoMT consumer electronics, increasing APs from 2 to
8 reduces latency by approximately 49.7%.

Table IIT shows the ablation study results checking into
the individual contribution of each main component of the
HELO-IoMT framework by systematically removing the mod-
ules one by one, or replacing them with simplified alternatives.
Such a component-wise study reinforces the necessity of each
framework element and quantifies the contribution of each
module to the performance improvement so that one can
understand what is really contributing to the improvement and,
in particular, to those critical healthcare deployment scenarios
where system complexity has to be justified with measurable
benefits.

The ablation study reveals that holographic counter-
part modeling provides the largest individual contribution,
accounting for thirty-five percent of the total performance
improvement across all metrics. This validates the fundamental
importance of predictive optimization in medical environments
where anticipating resource needs prevents reactive decision-
making delays. Device association and offloading optimization
comprise considerable standalone contributions to the system,
while bandwidth and power optimization play complementary
roles that become more important as the resources become
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more constrained. Therefore, leaving out any module degrades
performance to the unacceptable medical threshold, namely
that the framework requires all modules working in synergy
rather than independent optimizations.

Table IV shows the comprehensive performance assessment
across multiple evaluation dimensions, including resource uti-
lization efficiency, task throughput, fairness among devices,
and system reliability metrics. This multi-dimensional analysis
demonstrates how HELO-IoMT creates synergistic benefits
across different performance aspects simultaneously, which
becomes particularly important for healthcare environments
where balanced performance across all system dimensions
ensures reliable medical service delivery rather than optimiz-
ing individual metrics at the expense of others.

The evaluation shows that the proposed HELO-IoMT
method excels under all evaluation criteria and hence must
have superior holistic optimization capabilities for real appli-
cations in medicine. In other words, the framework makes
very efficient use of system resources. It exhibits a high
coefficient of fairness, thereby ensuring that the gains from
optimization do not skew toward any particular catheter type
but are, in fact, equitably distributed between various types
of sensors for medical devices. Such a balanced performance
is of utmost importance to healthcare settings where diverse
medical devices need consistent service quality, regardless of
their characteristics or priority. High system reliability and
satisfaction rates for quality of service allow the framework
to operate stably under varied operational circumstances, thus
directly translating into stable and dependable medical service
delivery.

C. Healthcare-Specific [oMT Scenario Testing

To validate HELO-IoMT’s effectiveness in real-world
healthcare applications, we conducted comprehensive scenario
testing focused on home healthcare environments with wear-
able IoMT consumer electronics. These scenarios represent
critical use cases where the timely processing of medical data
directly impacts patient safety and care quality.

We created a realistic home healthcare environment with the
following components:

1) Wearable IoMT consumer electronics (10 total):

e 3 ECG monitors (continuous cardiac monitoring,
250 Hz sampling rate)

¢ 2 Blood glucose sensors (intermittent readings, high
precision requirements)

e 2 Fall detection devices (accelerometer
gyroscope-based, requires rapid response)

¢ 3 Smart medication adherence monitors (scheduled
and event-triggered monitoring)

2) Edge computing infrastructure:

and

o Home gateway (primary edge server, 4-core CPU,
8GB RAM)

o Neighborhood edge node (secondary server, 8-core
CPU, 16GB RAM)

o Healthcare provider cloud (backup processing
capacity, 200ms average access latency)

3) Medical data characteristics:
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TABLE III
INITIALIZATION SENSITIVITY ANALYSIS RESULTS

Configuration End-to-end  Energy consumption Detection Performance
latency (s) (mJ/h) accuracy (%) loss
Full HELO-IoMT 1.02 85 94.6 -
w/o HC modeling 1.41 118 87.3 35%
w/o device association opt. 1.28 102 91.2 25%
w/o bandwidth allocation 1.22 95 92.8 20%
w/o power optimization 1.19 108 93.1 20%
w/o offloading optimization 1.35 112 89.7 30%
Basic edge computing 1.87 152 79.8 65%
TABLE IV

COMPREHENSIVE PERFORMANCE METRICS ANALYSIS

Method .Resqurce Task throughput ngrness ‘Sy‘sFem QoS satisfaction Net\york
utilization (%) (tasks/min) index reliability (%) (%) efficiency
HELO-IoMT 913 847 0.94 98.7 99.2 0.89
DEETO 67.2 546 0.73 89.4 82.1 0.61
DTTO 74.8 628 0.79 92.1 87.3 0.68
CTSRM 82.1 702 0.85 94.6 91.8 0.76
MDT-DRL 85.7 738 0.88 95.9 93.4 0.81
DTCS 88.4 789 0.91 97.2 96.1 0.85
o Critical data streams (ECG, fall detection): Requir- %g&gw M
ing < 500ms response B =5 I M
o Standard monitoring data (glucose, medication): g orero = bl bsenrwesnon soomy -
Requiring < 2s response Boal [] s i
« Varying data generation rates: 2 Kbps - 8 Kbps per § oo i
device . T X L
« Intermittent high-volume transfers: Medical images,
video consultations "l H

4) Network conditions:

o Home Wi-Fi: 25 Mbps downlink, 10 Mbps uplink
o Cellular backup: LTE connectivity with 15 Mbps
downlink, 5 Mbps uplink
« Realistic network congestion patterns based on time-
of-day usage
« Random interference events to test system resilience
5) Simulated medical events:

o Cardiac arrhythmia episodes (requiring immediate
detection)

« Hypoglycemic

intervention)

Fall incidents (requiring emergency response)

e Medication non-adherence (requiring timely
reminders)

events (requiring prompt

The HC of all devices and the network environment were
maintained at the edge servers, continuously updated with a
refresh rate of 10ms for critical devices and 50ms for standard
monitoring devices.

Fig. 11 presents a detailed comparison of end-to-end
latency across different [oMT consumer electronics for various
offloading schemes. This analysis is critical for understanding
how each algorithm performs with the diverse requirements of
different medical monitoring devices.

Medical Device Type

Fig. 11. Device-specific latency analysis in home healthcare environment.

The device-specific latency analysis reveals that
HELO-IoMT consistently outperforms all benchmark schemes
across different medical device types, with particularly
impressive results for time-critical applications.

Fig. 12 investigates the relationship between holographic
synchronization accuracy and health anomaly detection per-
formance, which is critical for early intervention in medical
emergencies.

The results demonstrate that holographic synchronization
accuracy significantly impacts health anomaly detection per-
formance. At the optimal deviation of 0.01, HELO-IoMT
achieves an impressive 94.6% detection accuracy, 14.9%
higher than DEETO and 3.4% higher than DTCS. This
performance exceeds the 90% threshold required for clin-
ical decision support systems. As the deviation increases,
all schemes experience degradation in detection accuracy.
However, HELO-IoMT maintains its performance above the
minimum safety threshold of 80% up to a deviation of 0.04,
while other schemes fall below this critical threshold at lower
deviation values.
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Fig. 14. Critical health event response time analysis.

Fig. 13 examines the energy consumption of wearable [oMT
consumer electronics under different task offloading strategies,
which is critical for extending the operational lifetime of
battery-powered healthcare devices.

The energy efficiency analysis demonstrates HELO-IoMT’s
superiority in minimizing power consumption across all types
of IoMT consumer electronics. For ECG monitors with the
highest energy demands due to continuous monitoring and data
processing, HELO-IoMT consumes only 85 mJ/hour, which is
44.1% less than DEETO and 12.4% less than DTCS.

Fig. 14 evaluates the response times for critical health
events, measuring how quickly the system can detect and ini-
tiate appropriate interventions for potentially life-threatening
conditions.

The critical event response time analysis reveals HELO-
IoMT’s exceptional performance in time-sensitive healthcare
situations. For cardiac arrhythmia detection, HELO-IoMT
achieves a response time of 1.2 seconds, which is 62.5%
faster than DEETO and 33.3% faster than DTCS. Crucially,
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it falls below the clinical threshold of 1.5 seconds required for
effective intervention.
Our simulation results demonstrated HELO-IoMT’s con-

sistent performance advantages across diverse operat-
ing conditions. Compared to baseline approaches, the
framework reduced end-to-end latency by 42.5% for

computation-intensive tasks and 41.3% in bandwidth-
constrained environments. HELO-IoMT maintained superior
performance with increasing task volumes and varying pro-
cessing rates while showing excellent scalability across
network configurations. The healthcare-specific scenario test-
ing revealed even more significant improvements in clinically
relevant metrics. HELO-IoOMT achieved 94.6% accuracy in
health anomaly detection while providing 44.1% energy sav-
ings for wearable IoMT consumer electronics.

V. CONCLUSION

This paper presented HELO-IoMT for end-to-end latency
optimization in IoMT consumer electronics. We established
a HEN architecture specifically tailored for healthcare appli-
cations, developing comprehensive physical and holographic
models for [oMT consumer electronics, edge servers, and med-
ical actuators that accurately captured the complete process
of healthcare task execution. Simulation results demonstrated
that HELO-IoMT significantly outperformed state-of-the-art
benchmarks across multiple performance metrics. However,
our current approach assumes relatively stable network con-
ditions and may require adaptation for highly mobile patients
or environments with frequent connectivity disruptions. The
holographic model accuracy depends on sufficient historical
data, which may be limited for new patients or rare medical
conditions. Additionally, our current model uses static prior-
ity assignments; future versions should incorporate dynamic
priority adjustment based on real-time patient vital signs
and medical history. Future research should investigate adap-
tive holographic model refresh rates based on patient acuity
levels, integration with 5G network slicing for guaranteed
medical QoS, and extension to multi-hospital environments
with federated learning capabilities. Additionally, incorporat-
ing wearable device battery prediction models could further
optimize energy management strategies. Furthermore, our cur-
rent model assumes stable connectivity, which may not reflect
real-world clinical environments.
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