
4248 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 6, NOVEMBER/DECEMBER 2025

TiAD-DQR: Software Aging States Determination
and Rejuvenation Decision Generation for

Docker Platform
Jing Liu , Senior Member, IEEE, Quan Zhou , Xingyu Chen , Jiantao Zhou , Member, IEEE,

and Keqin Li , Fellow, IEEE

Abstract—Docker has evolved into core container platform in
cloud-native environments. However, it is susceptible to software
aging problem after long-time running, which seriously impairs
the overall system reliability and performance. Existing aging re-
lated research mainly focuses on verifying the presence of software
aging phenomena and predicting resource consumption changes
caused by it, with insufficient research on how to implement tar-
geted and effective rejuvenation strategies on the Docker platform.
This paper proposes an integrated framework, called TiAD-DQR,
to comprehensively and effectively mitigate the platform aging
challenge, where Trend Decomposition Dense Encoder (TDDE)
and Gaussian Mixture Aging Detection (GMAD) are combined
for accurate determination of aging states and then to assist in
intelligent rejuvenation decision generation based on the Double
Q-Learning (DQL). The sufficient experimental results show that
our TiAD-DQR can effectively delay the software aging process,
maximize system availability, and significantly improve the service
quality and system stability of the Docker platform.

Index Terms—Docker platform, aging states determination,
rejuvenation decision generation, double Q-learning (DQL).

I. INTRODUCTION

SOFTWARE aging refers to the phenomenon where soft-
ware systems experience progressively decreased perfor-

mance and increased failure rates during continuous operation,
manifesting as service errors, system stoppages, or prolonged
response times. A key reason for this is that although soft-
ware errors exist as inherent defects from development, their
accumulation during operation leads to gradual performance
degradation and aging-related faults [1]. With the rapid ad-
vancement of cloud-native technologies, Docker has become
the mainstream container platform for container creation, de-
ployment, and management. Empirical evidence from Oliveira

Received 8 August 2025; revised 14 October 2025; accepted 23 October 2025.
Date of publication 28 October 2025; date of current version 11 December
2025. This work was supported in part by the Natural Science Foundation of
China under Grant 62462047, in part by the Natural Science Foundation of
Inner Mongolia of China under Grant 2023ZD18, and in part by the Engi-
neering Research Center of Ecological Big Data, Ministry of Education, Inner
Mongolia Engineering Laboratory for Cloud Computing and Service Software.
(Corresponding author: Jing Liu.)

Jing Liu, Quan Zhou, Xingyu Chen, and Jiantao Zhou are with
the College of Computer Science, Inner Mongolia University, Hohhot
010021, China (e-mail: liujing@imu.edu.cn; wr_z0930_keyan@outlook.com;
32409064@mail.imu.edu.cn; cszjtao@imu.edu.cn).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TSC.2025.3625955

et al. [2] underscores that resource mismanagement, particu-
larly memory leaks and fragmentation, is prevalent in long-time
running Docker environments, often escalating into systemwide
performance degradation, more directly, Vinícius et al. [3] in
their 2022 experimental study targeting Docker’s core runtime
component dockerd, using Docker 17.05.0-ce, explicitly demon-
strate that the Docker platform suffers from distinct software
aging effects in long-running scenarios. This not only renders the
platform more susceptible to reliability issues but also escalates
into cascading risks. As aging intensifies, critical services may
experience sudden performance collapses during peak loads,
and mission-critical tasks could face unpredictable interruptions.
Additionally, the cumulative effect of prolonged degradation can
erode system availability to a point where even basic operations
falter, ultimately triggering severe economic losses that extend
beyond direct downtime to encompass reputational damage and
customer attrition.

To effectively address software aging on the Docker platform,
there is a need to accurately identify aging states and develop rea-
sonable rejuvenation strategies to reduce downtime. However,
traditional rejuvenation measures primarily rely on rebooting,
yet such operations may increase downtime and compromise
system availability [4]. Thus, there is a need to develop strategies
that ensure system state restoration, reduce rejuvenation costs,
and maintain service quality and stability. In view of this, this
paper proposes an integrated framework named TiAD-DQR,
designed for the Docker platform. The framework combines
the TDDE-GMAD approach, which integrates the TDDE and
GMAD, for precise aging state identification. It also employs a
reinforcement learning algorithm based on DQL [5] to generate
intelligent rejuvenation decisions, maximizing Docker platform
availability by balancing immediate response and long-term
sustainability. The principal contributions of this work are as
follows.
� Based on the TDDE model, we developed an aging

trend prediction approach. Existing time-series models for
Docker aging often fail to filter non-aging fluctuations or
capture long-term patterns, leading to low accuracy. Our
TDDE uses trend decomposition to eliminate noise and
a dense encoder to extract long-term features, boosting
long-term prediction precision.

� Based on the GMAD model, we proposed an aging
states determination method. Traditional methods rely on

1939-1374 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4641-1326
https://orcid.org/0009-0001-7321-5833
https://orcid.org/0009-0004-1733-4581
https://orcid.org/0000-0002-7066-9282
https://orcid.org/0000-0001-5224-4048
mailto:liujing@imu.edu.cn
mailto:wr_z0930_keyan@outlook.com
mailto:32409064@mail.imu.edu.cn
mailto:cszjtao@imu.edu.cn
mailto:lik@newpaltz.edu

LIU et al.: TIAD-DQR: SOFTWARE AGING STATES DETERMINATION AND REJUVENATION DECISION GENERATION 4249

manual thresholds, which are inflexible for dynamic
Docker environments and cause misjudgments. Our
GMAD combines unsupervised anomaly detection and
clustering to auto-generate thresholds, precisely dividing
Docker into four aging states without manual intervention.

� Using the DQL algorithm, we designed a rejuvenation
decision approach. Existing Docker rejuvenation mostly
uses fixed operations like periodic restarts, ignoring actual
aging states and causing unnecessary downtime. Our DQL
defines state space with current and predicted aging states,
builds a reward matrix balancing immediate and long-term
benefits, and selects optimal actions to reduce downtime.

� The TiAD-DQR framework integrates these three modules
into a closed-loop system, different from fragmented ex-
isting solutions. TDDE provides accurate predictions for
GMAD, GMAD guides DQL’s action selection, and DQL’s
decisions update the system state. This synergy compre-
hensively addresses Docker’s software aging, improving
the platform’s reliability, service quality and stability.

II. RELATED WORK

This section systematically reviews and classifies existing
studies into two main categories: cloud-based aging detection
methods and rejuvenation decision methods.

A. Cloud-Based Aging Detection Methods

Cloud-based aging detection methods primarily rely on using
time series models to predict software resource usage, assisting
in forecasting potential future aging issues by analyzing resource
consumption trends.

Early studies focused on traditional statistical and machine
learning models for specific scenarios. Grottke et al. analyzed
software aging issues in Web servers, such as memory leaks
and resource exhaustion, and provided a series of monitoring
and mitigation strategies [6]. Magalhães and Silva developed
a predictive model based on ARIMA and Holt-Winters for
predicting performance anomalies in web applications due to
software aging [7]. Jia et al. used multivariate linear regression
to analyze the aging trends of software in Web servers and
discussed how to use these prediction models to optimize re-
juvenation strategies [8]. Yan et al. in two papers used SVM and
a hybrid method combining ARIMA and ANN, respectively,
to predict resource consumption in IIS Web servers, aiming
to enhance prediction accuracy [9][10]. Additionally, Yan and
Guo provided a practical guide to predicting software aging in
Web servers using machine learning technologies, offering an
effective resource consumption prediction method for potential
future aging issues by comparing models such as ARIMA, ANN,
and SVM [11].

Subsequent research extended to cloud, edge, and container-
ized environments. Chen et al. developed a tool named ARF-
Predictor, designed to forecast failures and resource consump-
tion trends in cloud-based application software, combining mul-
tiple algorithms and technologies to enhance the accuracy and
efficiency of prediction [12]. Sudhakar et al. used an ANN
model to predict aging and failure times of virtual machines

in cloud systems [13]. Andrade et al. studied software aging
phenomena in continuously running image classification sys-
tems within cloud and edge computing environments, using
statistical analysis methods to detect trends in memory usage
growth in cloud and edge computing systems [14]. Oliveira et
al. investigated software aging phenomena in container-based
virtualized environments, particularly Docker, using time se-
ries models to predict the progression of resource consump-
tion caused by software aging [15]. Xie et al. used a hybrid
model to real-time predict resource loads of Docker contain-
ers, to identify potential performance degradation and resource
depletion [16].

For deep learning-based prediction models, recent advanced
methods such as FEDformer [17], Autoformer [18], In-
former [19], and Transformer [20] have shown effectiveness in
long-term time series forecasting.

In summary, existing cloud-based aging detection methods
predominantly rely on single-step prediction, focusing on single-
step accuracy but fails to capture long-term aging trends in
time-series data. Although deep learning models are capable
of extracting long-term features, they are not tailored to soft-
ware aging scenarios and often underperform when handling
non-stationary, aging-specific patterns in Docker platforms. To
overcome these limitations, our proposed TDDE model incorpo-
rates trend decomposition and long-term feature extraction, ef-
fectively reducing error accumulation and enhancing long-term
prediction accuracy.

B. Cloud-Based Rejuvenation Decision Methods

Cloud-based rejuvenation decision methods primarily rely on
traditional rebooting and virtualization-based migration tech-
niques aimed at mitigating aging phenomena by optimizing
resource allocation, thus enhancing system performance and
stability.

Studies focusing on virtualization-based strategies have ex-
plored various approaches to address aging. Silva et al. pro-
posed a virtualization-based automated software rejuvenation
plan by continuously monitoring system performance metrics,
effectively preventing transient faults and software aging [21].
Puliafito explored time-based rejuvenation strategies for virtual
machine monitors, which optimize the operation and availability
of the monitors by collecting and analyzing resource usage
data [22]. Fakhrolmobasheri et al. proposed a power-aware
software rejuvenation strategy for cloud data centers, analyzing
the rejuvenation effects on virtual machine monitors using a
stochastic activity network model to enhance energy efficiency
and system stability [13]. Torquato et al. studied the use of virtual
machine migration as a rejuvenation strategy to improve the
availability and reliability of cloud systems, evaluating its posi-
tive impact on overall system performance through simulations
of various workloads [23].

Research on application and component-level rejuvenation
has focused on targeted strategies for specific systems. Parri et al.
applied fault injection and accelerated life testing techniques to
assess the impact of soft errors on software aging in component-
based web applications and implemented micro rejuvenation

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

4250 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 6, NOVEMBER/DECEMBER 2025

strategies by altering component configurations to slow down
the aging process [24].

Studies specifically targeting Docker environments have
investigated rejuvenation effects in containerized settings.
Torquato and Vieira conducted experimental studies on apply-
ing the SWARE method within Dockerd daemons to provoke
aging and assess the effects of rejuvenation strategies, finding
that rebooting significantly improves system performance and
stability [25]. Vinícius et al. conducted a detailed study on
software aging issues on the Docker platform, using the SWARE
method to detect aging signs and test rejuvenation strategy
effects. Experimental results showed that LSTM machine learn-
ing algorithms offer higher prediction accuracy than traditional
time series models, and strategies like system rebooting can
significantly reduce resource consumption [3].

In summary, existing cloud-based rejuvenation methods are
predominantly relying on system rebooting. Such strategies lack
targeted measures for diverse aging states and may disrupt sys-
tem stability due to excessive or untimely operations. To address
these limitations, this paper employs the Double Q-Learning
algorithm for rejuvenation decision-making, which balances
immediate response needs and long-term sustainability, reduces
system downtime, and ensures service continuity and quality.
For performance comparison, we select Q-learning and SARSA,
two representative reinforcement learning algorithms, as base-
line methods, given their widespread application in adaptive
decision scenarios.

C. Research Limitations and Our Contribution

Current studies on the Docker platform aging often focus on
providing decision support by improving prediction accuracy,
however, they tend to overlook the long-term characteristics of
software aging data, which limits the precision of predictive
models. Additionally, there are insufficient approaches on how
to use predictive outcomes to implement effective rejuvenation
measures, often resulting in a lack of diversity and intelli-
gence in rejuvenation decision. Therefore, our work proposes
a comprehensive framework designed for the Docker platform,
TiAD-DQR. This framework enables a more complete process.
Accurate long-term trend prediction informs robust state deter-
mination, and precise state judgments guide adaptive rejuvena-
tion strategies. This integration achieves more coherent, targeted
aging management.

III. CONSTRUCTION OF THE TIAD-DQR FRAMEWORK

As shown in Fig. 1, our framework uses the TDDE-GMAD
aging states awareness approach to accurately determine the
long-term aging states of software, combined with the DQL re-
inforcement learning algorithm for intelligent rejuvenation deci-
sion. This approach significantly improves system performance
and stability, while providing a more efficient and sustainable
rejuvenation strategy for the Docker platform. To elaborate,
we first introduce the three constituent modules separately,
followed by a detailed description of the overall framework they
form.

A. Software Aging Trends Prediction Based on the TDDE
Model

First, the time series data on software aging is decomposed to
preserve the trend component. Then, this component is standard-
ized and inputted into the Time-series Dense Encoder (TiDE)
model for prediction. Finally, the predicted data is denormalized
to obtain the final prediction results. The entire construction
process of the TDDE model can be summarized in the following
three steps.

1) Trend Decomposition Process
In the context of software aging, the monotonicity of the data

represents its overall trend, which is crucial for understanding
the aging behavior of software [26]. However, the common
seasonal components in the data, manifested as time-related
repetitive patterns, may obscure the real trend. Therefore, to
emphasize monotonicity and reduce the interference of seasonal
fluctuations, this paper opts to remove the seasonal components.
This process can be represented by the following (1).

T̂t =
1

m

k∑
j=−k

Yt+j (1)

where T̂t represents the estimate of the trend component at time
point t,m is the total number of observations, k is the half-width
of the sliding window, and Yt+j is the original observation at
time point t+ j.

Fig. 2 shows the decomposition results of three key aging
metrics, CPU utilization, memory usage, and network received,
collected from the Docker platform. The data was sampled at
1-minute intervals, with each time step on the horizontal axis
corresponding to 1 minute. These metrics were selected because
CPU utilization directly reflects container workload and com-
putational resource consumption, serving as a critical parameter
for detecting computing resource leaks and performance degra-
dation; memory usage monitors container memory allocation
and release patterns, effectively identifying aging phenomena
such as memory leaks; and network received indicates container
network I/O load and service responsiveness, enabling timely
detection of network resource anomalies.

Collectively, these metrics comprehensively characterize
hardware resource states and can pinpoint leakage sources. As
the subfigures illustrate, by decomposing and retaining the trend
components, not only is the data’s trendiness more pronounced,
which helps improve the accuracy of prediction, but it also
effectively reduces fluctuations in the data that are unrelated to
aging. These fluctuations may originate from temporary factors
such as excessive instantaneous loads, and the anomalies they
cause are usually transient and recoverable, unlike the continu-
ous performance degradation caused by software aging.

2) TiDE Model Construction Process
The TiDE model is a dedicated model for long-term time

series forecasting, featuring an encoder-decoder structure. It
combines the simplicity and efficiency of Multilayer Percep-
trons (MLP) and is capable of handling complex nonlinear
dependencies and covariate information in time series data,
thereby enhancing the speed and accuracy of prediction [27].

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TIAD-DQR: SOFTWARE AGING STATES DETERMINATION AND REJUVENATION DECISION GENERATION 4251

Fig. 1. Architecture of the TiAD-DQR framework.

Fig. 2. Decomposition of time series aging indicator data.

The construction process of the TiDE model is shown in Fig. 3
and includes the following steps.

Feature Projection. This projects the dynamic covariates at
each time point into a low-dimensional space, reducing dimen-
sions and capturing key information.

Encoding Process. The dense encoder section uses a Resid-
ual Block to process historical information and dynamic co-
variates, mapping them into a high-dimensional space to cap-
ture the intrinsic features and dynamic relationships of the
data.

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

4252 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 6, NOVEMBER/DECEMBER 2025

Fig. 3. Architecture of the TiDE model.

Decoding Process. The dense decoder section uses a Residual
Block to map the encoded features back to the original space,
generating prediction for future time points, including a dense
decoder and a temporal decoder.

3) Obtaining Final Prediction
As normalization is used during the model training process to

improve training efficiency and model performance, the output
of the model is also within this normalized range. Therefore,
to make the prediction results meaningful to the end user, it is
necessary to perform a denormalization operation so that the
output has the same scale and distribution as the original data.
This process can be represented by the following (2).

Xoriginal = Xstd × σ + μ (2)

where Xoriginal is the denormalized prediction value within the
range of the original data, Xstd is the normalized model output,
and σ and μ are the mean and standard deviation of the original
data, respectively.

B. Software Aging States Determination Based on the GMAD
Model

First, the UnSupervised Anomaly Detection (USAD) model
is trained using data from the software running in its normal
state, allowing the model to accurately reconstruct this data
and amplify the reconstruction errors when faced with aging
trend data. Then, by performing GMM clustering analysis on
the reconstruction errors output by the USAD model, thresholds
for different software aging states are automatically determined,
differentiating the various aging states. Finally, to enhance the
accuracy of aging states determination and reduce the impact of

Fig. 4. Architecture of the USAD model.

noise, a time window analysis is employed, thus more accurately
assessing the software’s aging condition. The entire construction
process of the GMAD model can be summarized in the following
three steps.

1) USAD Model Construction Process
The USAD model combines the advantages of autoencoders

and adversarial training. It consists of an encoder network E
and two decoder networks D1 and D2, which together form
two autoencoders, AE1 and AE2, sharing the same encoder E.
The model enhances sensitivity to anomalous data by learning
the feature distribution of normal data, where the autoencoder
structure captures long-term dependencies and dynamic changes
in time-series data. Adversarial training amplifies reconstruction
errors when encountering anomalous data, thus boosting the
model’s ability to recognize anomalies [28]. GMAD leverages
this characteristic to determine aging states based on the magni-
tude of reconstruction errors. Crucially, the TDDE’s prior trend
decomposition removes peak fluctuations, allowing USAD to
analyze purified aging trends. This pipeline design enhances
robustness and reduces misjudgment risks. The construction
process of the USAD model is illustrated in Fig. 4 and primarily
includes the following steps.

Autoencoder Training. Two similar autoencoders, AE1 and
AE2, are trained using a normal data set to minimize the recon-
struction error between the input and output.

Adversarial Training. After training the autoencoders, adver-
sarial training methods are employed to further optimize the
model. Here, AE2 is trained to differentiate between real data
and data reconstructed by AE1, while AE1 is trained to deceive
AE2 by generating reconstructions indistinguishable from real
data by AE2.

Anomaly Detection. The USAD model uses reconstruction
errors to detect anomalies. An increase in reconstruction error
indicates that the input data deviates from the feature distribution
of normal data learned by the model, thereby signaling potential
anomalies.

2) Aging Thresholds Determination Based on GMM
Clustering

To accurately identify different aging states from the re-
construction errors output by the USAD model, this paper

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TIAD-DQR: SOFTWARE AGING STATES DETERMINATION AND REJUVENATION DECISION GENERATION 4253

employs Gaussian Mixture Model (GMM) clustering methods
to automatically determine the thresholds for aging states, thus
effectively recognizing different software aging states. The ap-
plication of the GMM method primarily includes the following
steps.

Model Fitting. The reconstruction error data is fitted using
GMM by maximizing the log-likelihood function, which can be
represented by the following (3).

l(θ) =

N∑
i=1

log

(
4∑

k=1

πkN
(
x(i);μk,

∑
k
))

(3)

where θ represents the model parameters, x is the reconstruction
error data, N is the total number of data points, πk is the mixture
weight of the k-th Gaussian distribution, and N (x(i);μk,

∑
k)

is the probability density function of the Gaussian distribution
with mean μk and covariance matrix

∑
k.

Thresholds Calculation. The means of four Gaussian dis-
tributions from the GMM model are extracted and sorted in
ascending order to determine the central positions of different
aging states. Then three thresholds are calculated based on these
sorted means, each threshold being the midpoint of adjacent
means. These thresholds divide the reconstruction error space
into four distinct intervals, each corresponding to a specific aging
state.This process can be represented by the following (4).

Ti =
μi + μi+1

2
(4)

where Ti is the threshold for the i-th aging state.
Aging States Classification. Based on the calculated thresh-

olds, the reconstruction error data is categorized, and each data
point is assigned an aging state label, including healthy, aging,
severely aging, and failed states.

The core of this process is its ability to focus on abnormal
patterns, enhancing the capability for anomaly detection while
significantly reducing the impact of random noise. Specifically,
GMM clustering focuses on analyzing atypical patterns in the
reconstruction errors, which are key indicators of aging states,
thus enabling precise capture of abnormal software behaviors.
Additionally, due to the unique design of the USAD model,
which amplifies anomalous patterns through autoencoders and
adversarial training, the application of GMM clustering on these
amplified errors further enhances the detection capabilities for
subtle signs of aging.

3) Obtaining Final Aging States Based on Time Windows
To enhance the stability of aging states determination and

reduce the impact of random prediction errors on the final results,
this paper adopts a time-window-based approach to analyze the
aging states of software. By considering the aging states over a
period rather than at a single time point, this time-window-based
method can reduce the effects caused by instantaneous errors
in model prediction or random fluctuations in the data. This
method offers a more stable and reliable determination of aging
states, helping to avoid overinterpretation or misjudgment of
software aging trends. This process can be represented by the

Algorithm 1. Rejuvenation Decision Generation.
1: Input: States S, Actions A, Reward matrix R, Learning

rate α, discount factor γ, exploration rate ε, Max
episodes N , max steps T

2: Output: Trained Q-tables Q1 and Q2

3: Initialize: Q1(s, a), Q2(s, a), ∀s ∈ S, a ∈ A
4: for episode = 1 to N do
5: Initialize s randomly
6: for step = 1 to T do
7: Choose action a and calculate rewards
8: a← ε-greedy(Q1 +Q2, s)
9: Execute the action T , obtain new state s′

10: (s′, a)← execute(a)
11: Update Q-table
12: if Qupdate = Q1 then
13: Q1(s, a)← Q1(s, a) + αΔ(r,Q2, s

′)
14: else
15: Q2(s, a)← Q2(s, a) + αΔ(r,Q1, s

′)
16: end if
17: s← s′

18: if s is terminal then break
19: end if
20: end for
21: end for
22: return Q1, Q2

following (5).

Label(i) =

⎢⎢⎢⎣ 1

window

i+window−1∑
j=i

y(j)

⎥⎥⎥⎦ (5)

where Label(i) is the final aging state of the i-th window, �·�
denotes rounding down, and y(j) is the aging state label of the
j-th time point.

C. Software Rejuvenation Decision Generation Based on the
DQL Algorithm

Software rejuvenation, as an effective preventative measure
against software aging, is crucial for ensuring the stable opera-
tion of software systems. However, deciding when and how to
implement software rejuvenation is a complex decision gener-
ation process. It requires consideration of the system’s current
state as well as the long-term benefits of rejuvenation actions.
Therefore, this paper employs the DQL algorithm to enable more
intelligent and diversified software rejuvenation decision. The
Algorithm 1 for rejuvenation decision generation based on DQL
is as follows.

Define states and actions. States should include the aging state
of the current time window and the predicted aging state of the
next time window. These can be defined as a tuple (Current State,
Future State), where each state can be either ”healthy”, ”aging”,
”severely aging”, or ”failed”. The four actions for rejuvenation
are ”take no action”, ”restart container”, ”migrate tasks”, or
”reboot operating system”.

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

4254 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 6, NOVEMBER/DECEMBER 2025

Define the reward matrix and state transition function. Set
up the reward matrix, which defines the rewards obtained under
given states and actions. And define the state transition function,
which specifies the new state to which the system will transition
after executing a specific action from the current state.

Initialize Q-tables. Initialize two Q-tables, QA and QB . For
all state-action pairs (s, a), set QA(s, a) and QB(s, a) to zero.

Choose action and calculate rewards. For a given state s, use
an ε-greedy strategy based on the average of the current QA

and QB tables to choose an action a, balancing exploration and
exploitation. After executing the chosen action a, calculate the
immediate reward r and the new state s′ based on the reward
matrix and state transition function.

Update Q-table. Randomly select one Q-table for updating.
For the selected Q-table, apply the expectation maximization
update rule, updating the Q-value based on the immediate reward
received and the discounted future reward. The unselected Q-
table is used to provide the value of the optimal action for the
next state, helping to reduce overestimation issues. When using
QA to select action a∗, the update for theQA table is represented
by the following (6).

QA(s, a)← QA(s, a) + α

[
r + γQB(s′, argmax

a′
QA(s′, a′))

−QA(s, a)

]
(6)

where s is the current state, a is the current action, r is the
reward, α is the learning rate, γ is the discount factor, s′ is the
next state, and a′ is the optimal action chosen in state s′ based
on QA. When selecting actions using QB , the update rule for
the QB table is similar to that of QA, but QA is used to compute
the maximum action value for the next state.

Loop iteration. Repeat the above steps for multiple iterations,
adjusting the strategy with each iteration based on environmental
feedback until the termination conditions of reaching the max-
imum number of iterations or Q-value convergence are met.
Monitor and record the Q-value changes at each step to assess
the effectiveness of the learning process and strategy.

Strategy application. Use the average values of the learnedQA

and QB tables for generating rejuvenation decision to optimize
system performance and reduce downtime.

This method dynamically selects optimal rejuvenation strate-
gies by aligning action intensity with the system’s current and
future aging severity. It promotes cost-effective actions such
as container restarts for mild aging and penalizes mismatched
decisions like unnecessary reboots. This balanced approach
minimizes downtime, prevents over-intervention, and enhances
long-term system adaptability and intelligence.

D. Integration of the TiAD-DQR Framework

In summary, the TiAD-DQR framework systematically ad-
dresses software aging in Docker platforms through a three stage
pipeline shown in Fig. 1. First, the TDDE model achieves high
precision aging trend prediction by trend decomposition and
long-term feature extraction, laying a foundation for subsequent
state determination by clarifying the underlying patterns of

aging evolution. Second, the GMAD model enables robust aging
state determination through automated threshold partitioning
and smoothed time-window analysis, leveraging the decom-
posed trends from TDDE to more accurately distinguish between
different aging states and reduce misclassification. Finally, the
DQL algorithm generates dynamic rejuvenation strategies by
jointly optimizing immediate responsiveness and long-term sus-
tainability, relying on GMAD’s precise state judgments to ensure
that decisions are targeted and avoid unnecessary interventions.
This modular design, where each stage enhances the next, es-
tablishing a closed-loop workflow of prediction, determination,
and decision that significantly enhances system availability and
service stability. Subsequent experiments validate each compo-
nent’s individual efficacy and their synergistic integration.

IV. EXPERIMENTAL SETUP

In this section, we introduce the research questions addressed
in this paper and detail the datasets utilized and the evaluation
metrics employed. All experiments were run on an NVIDIA
GTX 1650 Super with 4 GB memory, using TensorFlow for
prediction, PyTorch for state determination, and standard Python
libraries for rejuvenation.

A. Research Questions

The overall performance of our TiAD-DQR framework is ver-
ified by conducting comprehensive experiments. In particular,
we aim to answer the following four research questions (RQs).
� RQ1: Compared to other time-series prediction methods,

can the TDDE model improve the accuracy of aging trends
prediction on the Docker platform by reducing non-aging
related fluctuations and extracting and leveraging long-
term features?

� RQ2: Relative to traditional methods, can the GMAD
model enhance the accuracy of aging states identification
on the Docker platform by automating the determination
of aging thresholds?

� RQ3: How does the Double Q-Learning algorithm balance
immediate response and long-term sustainability when
generating rejuvenation decision? How does it compare
in terms of stability and effectiveness with other reinforce-
ment learning methods?

� RQ4: What is the overall impact on system performance
and stability in Docker environments following the imple-
mentation of the TiAD-DQR framework?

B. Experimental Environment and Dataset Description

Due to the scarcity of public datasets for Docker platform
aging studies, we constructed an experimental dataset using a
cloud-edge testbed comprising one cloud node and two edge
nodes. The cloud node was equipped with 8 vCPUs and 4 GB
RAM, while each edge node had 4 vCPUs and 2 GB RAM. All
nodes ran Docker 20.10.12 with Cgroups v2 on CentOS 7. To
accelerate aging observation, we adopted the cyclic container
operation method from Vinicius et al. [3], performing repeated
container creation and deletion under controlled conditions.

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TIAD-DQR: SOFTWARE AGING STATES DETERMINATION AND REJUVENATION DECISION GENERATION 4255

The test involved 50 httpd containers, a number adapted to
our hardware configuration, with operations executed at 10-
second intervals. Each container was constrained to 512 MB
memory and 0.5 CPU cores. System metrics including CPU
utilization, memory usage, and network received were col-
lected at one-minute intervals using cAdvisor and Prometheus,
yielding 1,745 high-resolution records. The complete dataset
is publicly available at: https://github.com/DockerSADataset/-
DockerSoftwareAging-CloudEdge-Dataset -. The dataset’s dis-
tinctive contribution lies in its controlled simulation of aging
within an authentic cloud-edge environment, with validation
through post-load analysis that effectively separates persistent
aging effects from transient workload fluctuations.

C. Evaluation Metrics

In order to comprehensively assess the effectiveness of the
TiAD-DQR framework and its constituent modules proposed
in this study, we employed multiple evaluation metrics to sep-
arately evaluate the predictive accuracy, judgment results, and
performance of the decision generation strategies according to
different experimental goals.

1) Metrics for Aging Trends Prediction: Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) are used to
assess the performance of aging trends prediction, as shown in
(7) and (8).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

where yi is the actual observed value, ŷi is the predicted value,
and n is the total number of observations.

2) Metrics for Aging States Determination: Precision (P),
Recall (R), F1 Score (F1), and F1* Score (F1*) [29] are used to
assess the performance of aging states recognition, as shown in
(9) to (12).

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

F1 = 2 · P ·R
P +R

(11)

F1∗ = 2 · P ·R
P +R

(12)

where TP is true positive, FP is false positive, FN is false
negative, whileP and R stand for average precision and average
recall respectively.

3) Metrics for Rejuvenation Decision Generation Algorithm:
In assessing rejuvenation decision methods based on the DQL
algorithm, we focus particularly on the average maximum Q-
value change, a metric used to measure the stability of Q-value

updates in Q-learning algorithms, as shown in (13).

Max Q =
1

m

m∑
k=1

maxi,j |Qk+1(si, aj)−Qk(si, aj)| (13)

where Qk(si, aj) represents the Q value for action aj taken
in state si during the k-th iteration, m is the total number of
iterations, and maxi,j represents the maximum change in all Q
values during the k-th iteration.

V. EXPERIMENTAL RESULTS

In this section, we systematically present the experimental
results and their analysis for each component of the TiAD-DQR
framework. First, we demonstrate the performance of the TDDE
aging trends prediction module. Next, the effectiveness of the
GMAD aging states determination module is analyzed. Then, we
detail the implementation results of the DQL rejuvenation de-
cision generation algorithm. Finally, the overall performance of
the TiAD-DQR framework is discussed. Each part is supported
by detailed data analysis and charts to verify the effectiveness
and reliability of the framework in practical applications.

A. Results of the Aging Trends Prediction: RQ1

1) Baseline Models: To assess performance, this study com-
pares the proposed TDDE model with various benchmark mod-
els, including two simple linear and nonlinear models: DLinear
and NLinear [30]; four advanced deep learning-based mod-
els: FEDformer, Autoformer, Informer, and Transformer; and
two widely used time series forecasting models: SARIMA and
LSTM.

In the training of all models, MSE is uniformly used as the
loss function, with a historical length set at 120 time steps, and
the prediction steps of the models set at 15, 30, 60, and 120
respectively. All experiments are conducted on datasets that
have been standardized and normalized, divided into training,
validation, and test sets, with proportions of 70%, 10%, and
20% respectively. The above settings aim to ensure fairness and
scientific validity in the comparisons between the models.

2) Results: The performance of all methods on the RMSE
and MAE metrics is presented in Table I, with the best results
highlighted in bold. The results indicate that the TDDE model
significantly outperforms other baseline models on both eval-
uation metrics, demonstrating higher prediction accuracy. For
instance, with a prediction step of 15, the TDDE model reduced
the RMSE by 72.40% and 75.27% compared to the simple
models NLinear and DLinear, respectively. Compared to ad-
vanced models such as FEDformer, Autoformer, Informer, and
Transformer, the reductions are 69.51%, 70.44%, 88.59%, and
88.10%, respectively. Compared to traditional models SARIMA
and LSTM, the reductions are 96.96% and 97.95%, respectively.
Notably, these improvements become even more pronounced in
long-term predictions: at 120-step horizon, TDDE outperforms
FEDformer by 34.43%, Autoformer by 37.70%, and LSTM by
98.16%. This significant advantage in long-horizon forecasting
directly stems from TDDE’s ability to extract and leverage
long-term aging features through trend decomposition, while

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

https://github.com/DockerSADataset/-DockerSoftwareAging-CloudEdge-Dataset
https://github.com/DockerSADataset/-DockerSoftwareAging-CloudEdge-Dataset

4256 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 6, NOVEMBER/DECEMBER 2025

TABLE I
COMPARISON OF TDDE MODEL WITH OTHER MODELS

TABLE II
COMPARISON OF TDDE AND TIDE MODELS IN ABLATION STUDY

Fig. 5. Comparison of true and predicted memory usage.

other models fail to decouple persistent aging trends from
short-term noise, leading to error accumulation over time. These
data highlight the TDDE model’s exceptional performance in
predicting aging trends on the Docker platform.

3) Ablation Study: As shown in Table II, the TDDE model
exhibits significant improvements in the RMSE and MAE met-
rics compared to the TiDE model. Additionally, a performance
comparison of the TDDE model at different prediction steps on
the aging metric of memory usage is shown in Fig. 5, showing
that the model fits the aging trends well across various prediction
lengths. These results further confirm that by decomposing

time-series data to extract long-term aging features and suppress
non-aging fluctuations, the TDDE model significantly enhances
the accuracy of long-term aging trend prediction on the Docker
platform.

B. Results of the Aging States Determination: RQ2

1) Baseline Models: To assess performance, this study com-
pared the proposed GMAD model with various traditional
benchmark models, including supervised classification mod-
els: Logistic Regression (LR), Random Forest (RF), K-Nearest
Neighbors (KNN), Gradient Boosting Decision Trees (GBDT),
Support Vector Machine (SVM), and Light Gradient Boosting
Machine (LightGBM) [31]; as well as unsupervised clustering
models: Hierarchical Clustering (HC), KMeans, and Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN).

All experiments were conducted on a dataset that was stan-
dardized and normalized, divided into training, validation, and
test sets with proportions of 70%, 10%, and 20%, respectively.
Aging states were categorized into four types: healthy, aging,
severely aging, and failed states. All models utilized the same
test set, but due to methodological differences, the GMAD
model used only non-aging data during training and validation.
Additionally, the clustering models automatically determined
the aging thresholds by the midpoints between two clusters to
assess the aging states. The above settings aim to ensure fairness
and scientific rigor in the comparisons between the models.

2) Results: The performance of all methods across the P, R,
F1, and F1* metrics is shown in Table III, marking the best
results in bold. The results show that the GMAD model signifi-
cantly surpasses other baseline models in the P, R, F1, and F1*
evaluation metrics, exhibiting higher judgment accuracy. For ex-
ample, in terms of the F1 metric, GMAD outperforms traditional
classification models such as LR, RF, KNN, GBDT, SVM, and
LightGBM with increases of 54.57%, 19.31%, 14.83%, 13.95%,
10.36%, and 8.29% respectively. Relative to traditional cluster-
ing models such as HC, KMeans, and DBSCAN, the increases
are 480.48%, 445.22%, and 27.59% respectively. These figures
underscore the outstanding performance of the GMAD model
in determining the aging states on the Docker platform.

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TIAD-DQR: SOFTWARE AGING STATES DETERMINATION AND REJUVENATION DECISION GENERATION 4257

TABLE III
COMPARISON OF GMAD MODEL WITH OTHER MODELS

Fig. 6. Performance comparison of GMAD with traditional models.

TABLE IV
COMPARISON OF GMAD AND GMM MODELS IN ABLATION STUDY

Moreover, the notable performance disparities between the
GMAD model and traditional classification and clustering mod-
els is illustrated in Fig. 6. Traditional classification models are
observed to have high performance. However, they depend on
supervised learning and need manually labeled data, which could
be restrictive in real-world applications. Conversely, traditional
clustering methods, while providing some automation, often fall
short in effectiveness evaluation.

3) Ablation Study: As shown in Table IV, we illustrates
that the GMAD model significantly enhances performance
on the P, R, F1, and F1* metrics over the standalone GMM
model. This outcome validates the strengths of the GMAD

Fig. 7. Evolution of average maximum Q-values across learning episodes.

model in concentrating on aging data patterns and amplifying
aging detection capabilities. It not only automatically sets aging
thresholds but also precisely determines the aging states of the
Docker platform, addressing the constraints of manually set
thresholds in conventional methods. Moreover, compared to the
non-window GMAD, the GMAD shows a modest improvement
in performance, suggesting that time-window-based analysis
can effectively mitigate the adverse effects of random errors,
thus increasing the accuracy of aging states assessments.

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

4258 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 6, NOVEMBER/DECEMBER 2025

Fig. 8. Recovery efficiency of system indicators post TiAD-DQR framework
implementation.

C. Results of the Rejuvenation Decision Generation: RQ3

1) Baseline Models: For performance evaluation, the pro-
posed DQL algorithm was compared with two other reinforce-
ment learning algorithms, Q-Learning and SARSA. All algo-
rithms were implemented under identical experimental condi-
tions to guarantee the consistency and fairness of the compar-
isons.

During the implementation, the same reward matrix and state
transition functions were used, actions were selected using an
ε-greedy strategy, and parameters like learning rate, discount
factor, and exploration rate were kept consistent. States are
defined as S0 (healthy), S1 (aging), S2 (severely aging), and
S3 (failed). Actions are A0 (take no action), A1 (restart con-
tainer), A2 (migrate tasks), and A3 (reboot operating system).
These actions represent varying levels of rejuvenation measures.
Higher-level actions, while more effective in recovery, can result
in longer system downtimes.

TABLE V
FINAL Q-TABLE AND OPTIMAL ACTIONS DERIVED FROM DQL ALGORITHM

2) Results: As shown in Table V, the Q-table ultimately
derived from the DQL algorithm is displayed, representing the
average of two separate Q-tables throughout the training phase.
As the algorithm undergoes continuous cyclic iterations, the Q-
table within the model approaches convergence, demonstrating
that the algorithm integrates considerations of both current and
future aging states to select the optimal strategy from multiple
rejuvenation actions. For instance, in the state (S0, S1), the
Q-table suggests the optimal action as A0, a choice that re-
flects the strategy of maintaining system stability during initial
aging stages, effectively balancing immediate responsiveness
with long-term sustainability. Conversely, the optimal action A1

under the state (S2, S2) is unexpected, potentially reflecting the
effects of randomness during training or specific settings of the
reward mechanism.

Furthermore, we illustrates the comparison of the three al-
gorithms in Fig. 7 based on the trends in average maximum
Q-values. Notably, the DQL algorithm converges towards the
optimal value more quickly than the Q-Learning and SARSA
algorithms, demonstrating its pronounced advantage in learning
stability. This stability allows DQL to rapidly approximate the
optimal strategy while minimizing fluctuations during training,
thus enhancing reliability when designing long-term effective
and adaptable rejuvenation strategies. This characteristic is crit-
ical in devising rejuvenation strategies, ensuring the efficiency
and effectiveness of rejuvenation decision, aiding the system in
maintaining high performance and stability amidst continuous
aging challenges.

D. Results of the TiAD-DQR Framework Implementing: RQ4

We present a comparison of the duration in failed state
between the TiAD-DQR framework and traditional reboot

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: TIAD-DQR: SOFTWARE AGING STATES DETERMINATION AND REJUVENATION DECISION GENERATION 4259

TABLE VI
COMPARISON OF FAILED STATE DURATION BETWEEN TIAD-DQR FRAMEWORK

AND TRADITIONAL RESTART STRATEGIES

strategies in Table VI, including a periodic reboot strategy on a
24-hour cycle and a threshold reboot strategy triggered imme-
diately upon the system’s CPU utilization reaching 100%. The
results distinctly demonstrate that the TiAD-DQR framework
significantly excels in preventing the Docker platform from en-
tering failed state, thereby effectively safeguarding the system’s
availability and stability.

Furthermore, we extensively illustrate three key performance
metrics of the Docker platform under extreme conditions in
Fig. 8, i.e., CPU utilization, memory usage, and network re-
ceived. In the diagrams, the blue line indicates the trajectory
of the system’s original data, and the green line displays the
changes in data following the implementation of rejuvenation
strategies. The figures reveal that the system underwent four
phases:S0,S1,S2, andS3, ultimately stabilizing in aS3 state. By
implementing the TiAD-DQR framework, which entails using
the TDDE-GMAD model to predict and determine aging states
and following rejuvenation measures guided by the Q-table
generated by the DQL algorithm, system performance was
significantly restored to its optimal state. Notably, the memory
usage in Fig. 8 demonstrates successful rejuvenation through its
return to healthy state operation characteristics, starting with the
creation/deletion of 50 httpd containers every 10 seconds. This
further validates the capability of the TiAD-DQR framework to
sustain Docker platform performance and operational efficiency
in extreme conditions. In addition, the time cost of our model
training is at the minute level, and the inference cost is at the
millisecond level, which can meet the actual application.

VI. CONCLUSION

This paper addresses the prevalent issue of software aging on
the Docker platform by introducing the TiAD-DQR framework,
which integrates advanced technologies to predict, assess, and
alleviate aging impacts, thereby improving the Docker plat-
form’s stability and availability. Its core strengths lie in three
integrated modules: the TDDE model enables long-term precise
prediction of aging trends to guide rejuvenation decisions; the
GMAD model automates accurate aging state determination,
overcoming reliance on human experience; and the Double
Q-Learning algorithm optimizes rejuvenation decisions by bal-
ancing current and future states. Experimental results validate
that the TiAD-DQR framework effectively restores system per-
formance to optimal levels, significantly enhancing operational
efficiency and service quality.

The current research uses specific experimental scenarios to
collect data for studying Docker software aging, and these con-
trolled simulation scenarios effectively support our exploration
of core aging trends while providing a reliable foundation for

the research. In future work, we plan to extend our research
in two key directions. First, we will deploy the experimental
environment across multiple edge nodes to collect data under
more complex cloud-edge scenarios. Second, we will introduce
greater diversity and intensity in workload patterns to build a
more comprehensive dataset. These efforts will help develop
a more universally applicable framework for detecting Docker
software aging across diverse operational contexts.

REFERENCES

[1] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in Proc. IEEE Int. Conf. Softw. Rel. Eng. Workshops, 2008, pp. 1–6.

[2] F. Oliveira, J. Araujo, R. Matos, L. Lins, A. Rodrigues, and P. Maciel,
“Experimental evaluation of software aging effects in a container-based
virtualization platform,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
2020, pp. 414–419.

[3] L. Vinıćius, L. Rodrigues, M. Torquato, and F. A. Silva, “Docker platform
aging: A systematic performance evaluation and prediction of resource
consumption,” J. Supercomputing, vol. 78, no. 10, pp. 12898–12928, 2022.

[4] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software reju-
venation: Analysis, module and applications,” in Proc. 25th Int. Symp.
Fault-Tolerant Comput.. Dig. Papers, 1995, pp. 381–390.

[5] H. Hasselt, “Double Q-learning,” in Proc. Adv. Neural Inf. Process. Syst.,
2010, pp. 2613–2621.

[6] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of soft-
ware aging in a web server,” IEEE Trans. Rel., vol. 55, no. 3, pp. 411–420,
Sep. 2006.

[7] J. P. Magalhães and L. M. Silva, “Prediction of performance anomalies in
web-applications based-on software aging scenarios,” in Proc. IEEE 2nd
Int. Workshop Softw. Aging Rejuvenation, 2010, pp. 1–7.

[8] S. Jia, C. Hou, and J. Wang, “Software aging analysis and prediction in a
web server based on multiple linear regression algorithm,” in Proc. IEEE
9th Int. Conf. Commun. Softw. Netw., 2017, pp. 1452–1456.

[9] Y. Yan, P. Guo, and L. Liu, “A practice of forecasting software aging in
an IIS web server using SVM,” in Proc. IEEE Int. Symp. Softw. Rel. Eng.
Workshops, 2014, pp. 443–448.

[10] Y. Yan, P. Guo, and L. Liu, “A novel hybridization of artificial neural
networks and ARIMA models for forecasting resource consumption in an
IIS web server,” in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops,
2014, pp. 437–442.

[11] Y. Yan and P. Guo, “A practice guide of software aging prediction in a
web server based on machine learning,” China Commun., vol. 13, no. 6,
pp. 225–235, 2016.

[12] P. Chen, Y. Qi, X. Li, D. Hou, and M. R.-T. Lyu, “ARF-predictor: Effective
prediction of aging-related failure using entropy,” IEEE Trans. Dependable
Secure Comput., vol. 15, no. 4, pp. 675–693, Jul./Aug. 2018.

[13] C. Sudhakar, I. Shah, and T. Ramesh, “Software rejuvenation in cloud
systems using neural networks,” in Proc. Int. Conf. Parallel, Distrib. Grid
Comput., 2014, pp. 230–233.

[14] E. Andrade, F. Machida, R. Pietrantuono, and D. Cotroneo, “Software
aging in image classification systems on cloud and edge,” in Proc. IEEE
Int. Symp. Softw. Rel. Eng. Workshops, 2020, pp. 342–348.

[15] F. Oliveira, J. Araujo, R. Matos, and P. Maciel, “Software aging in
container-based virtualization: An experimental analysis on docker plat-
form,” in Proc. 16th Iberian Conf. Inf. Syst. Technol., 2021, pp. 1–7.

[16] Y. Xie et al., “Real-time prediction of Docker container resource load based
on a hybrid model of ARIMA and triple exponential smoothing,” IEEE
Trans. Cloud Comput., vol. 10, no. 2, pp. 1386–1401, Second Quarter,
2022.

[17] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “FedFormer:
Frequency enhanced decomposed transformer for long-term series fore-
casting,” in Proc. Int. Conf. Mach. Learn., 2022, pp. 27268–27286.

[18] H. Wu, J. Xu, J. Wang, and M. Long, “AutoFormer: Decomposition
transformers with auto-correlation for long-term series forecasting,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 34, pp. 22419–22430,
2021.

[19] H. Zhou et al., “Informer: Beyond efficient transformer for long se-
quence time-series forecasting,” in Proc. AAAI Conf. Artif. Intell., 2021,
pp. 11106–11115.

[20] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

4260 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 6, NOVEMBER/DECEMBER 2025

[21] L. M. Silva, J. Alonso, and J. Torres, “Using virtualization to im-
prove software rejuvenation,” IEEE Trans. Comput., vol. 58, no. 11,
pp. 1525–1538, Nov. 2009.

[22] S. Fakhrolmobasheri, E. Ataie, and A. Movaghar, “Modeling and evalua-
tion of power-aware software rejuvenation in cloud systems,” Algorithms,
vol. 11, no. 10, 2018, Art. no. 160.

[23] M. Torquato, P. Maciel, and M. Vieira, “Availability and reliability model-
ing of VM migration as rejuvenation on a system under varying workload,”
Softw. Qual. J., vol. 28, no. 1, pp. 59–83, 2020.

[24] J. Parri, S. Sampietro, L. Scommegna, and E. Vicario, “Evaluation of
software aging in component-based web applications subject to soft errors
over time,” in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops, 2021,
pp. 25–32.

[25] M. Torquato and M. Vieira, “An experimental study of software aging and
rejuvenation in dockerd,” in Proc. 15th Eur. Dependable Comput. Conf.,
2019, pp. 1–6.

[26] N. Padhy, R. Panigrahi, and K. Neeraja, “Threshold estimation from soft-
ware metrics by using evolutionary techniques and its proposed algorithms,
models,” Evol. Intell., vol. 14, no. 2, pp. 315–329, 2021.

[27] A. Das, W. Kong, A. Leach, S. Mathur, R. Sen, and R. Yu, “Long-term fore-
casting with tide: Time-series dense encoder,” 2023, arXiv:2304.08424.

[28] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“USAD: Unsupervised anomaly detection on multivariate time series,” in
Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020,
pp. 3395–3404.

[29] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei, “Robust anomaly
detection for multivariate time series through stochastic recurrent neural
network,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2019, pp. 2828–2837.

[30] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective
for time series forecasting?,” in Proc. AAAI Conf. Artif. Intell., 2023,
pp. 11121–11128.

[31] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision
tree,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 3146–3154.

Jing Liu (Senior Member, IEEE) received the PhD
degree in computer architecture from the Institute of
Computing Technology, Chinese Academy of Sci-
ences, China, in 2011. He is currently an full profes-
sor of computer science and technology with Inner
Mongolia University. His major research interests
include software reliability and cloud computing. He
has published more than 70 papers in international
conferences and journals.

Quan Zhou is currently working toward the MS
degree with Inner Mongolia University, China. His
research interests include software reliability and time
series prediction.

Xingyu Chen is currently working toward the MS
degree with Inner Mongolia University, China. His re-
search interests include software reliability and fault
prediction.

Jiantao Zhou (Member, IEEE) received the PhD
degree from the Tsinghua University, in 2005. Since
1999, she has been on the faculty with Inner Mongo-
lia University, China, where she is now a professor.
Her research interests include formal methods, cloud
computing and software engineering.

Keqin Li (Fellow, IEEE) received the BS degree
in computer science from Tsinghua University, in
1985 and the PhD degree in computer science from
the University of Houston in 1990. He is a SUNY
distinguished professor with the State University of
New York and a national distinguished professor with
Hunan University (China). He has authored or co-
authored more than 1200 journal articles, book chap-
ters, and refereed conference papers. He holds nearly
80 patents announced or authorized by the Chinese
National Intellectual Property Administration. He is

among the world’s top few most influential scientists in parallel and distributed
computing, regarding single-year impact and career-long impact based on a
composite indicator of the Scopus citation database. He is listed in Scilit Top
Cited Scholars (2023-2025) and is among the top 0.02% out of more than
20 million scholars worldwide based on top-cited publications in the last ten
years. He is listed in ScholarGPS Highly Ranked Scholars (2022-2024) and is
among the top 0.002% out of more than 30 million scholars worldwide based
on a composite score of three ranking metrics for research productivity, impact,
and quality in the recent five years. He received the IEEE TCCLD Research
Impact Award from the IEEE CS Technical Committee on Cloud Computing
in 2022 and the IEEE TCSVC Research Innovation Award from the IEEE CS
Technical Community on Services Computing in 2023. He won the IEEE Region
1 Technological Innovation Award (Academic) in 2023. He was a recipient of the
2022-2023 International Science and Technology Cooperation Award and the
2023 Xiaoxiang Friendship Award of Hunan Province, China. He is a member
of the SUNY Distinguished Academy. He is an AAAS fellow, an AAIA fellow,
an ACIS fellow, and an AIIA fellow. He is a member of the European Academy
of Sciences and Arts. He is a member of Academia Europaea (Academician of
the Academy of Europe).

Authorized licensed use limited to: Inner Mongolia University. Downloaded on December 26,2025 at 07:38:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

