2588

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 5, SEPTEMBER/OCTOBER 2025

A Utlity-Optimal Reverse Posted Pricing Mechanism
for Online Mobile Crowdsensing Task Allocation
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Abstract—In contrast to traditional mechanism design, the
posted pricing mechanism can quickly determine the winning user
and ensure the revenue of the seller through a predetermined price.
Additionally, the posted pricing mechanism inherently possesses
economic properties such as truthfulness and individual rationality.
These properties make it an ideal method for solving online task
allocation problems for mobile crowdsensing services (MCSs). The
challenge in posted pricing mechanism design is being able to find
reasonable posted prices under complex MCS task constraints.
This article presents an innovative posted pricing mechanism to
solve a general point of interest (POI)-based online MCS task
allocation problem. We transform the problem into an integer pro-
gramming model with the goal of maximizing the total utility of the
system while satisfying various constraints. We prove that under
any user arrival order, there must exist a posted price structure
that can ensure that the total utility of the system is approximately
optimal, with an approximation ratio of 1/(d + 1) in the worst
case. With the support of theoretical analysis, the posted price
calculation can be completed using only a simple gradient descent
algorithm. Compared with existing methods, our solution achieves
very good results in terms of total utility and the task completion
ratio, indicating that it can effectively improve the efficiency and
service quality of MCSs.

Index Terms—Mechanism design, mobile crowdsensing, online
allocation, posted pricing.

I. INTRODUCTION

OBILE crowdsensing services (MCSs) use many
Mubiquitous sensing devices through conscious [1] or
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unconscious [2] collaboration involving user participation to
overcome the high costs of relying solely on actively deployed
sensors. Mobile crowdsensing realizes the large-scale and low-
cost potential of the Internet of Things, greatly expanding the
depth and breadth of possible applications. At present, MCSs
play an important role in the Internet of Vehicles (IoV) [3],
edge-assisted crowdsensing [4], and digital twins [5]. Most early
MCSs adopted a voluntary approach, and users expressed low
enthusiasm for participation. Therefore, many subsequent stud-
ies have incorporated incentive mechanisms into MCSs to en-
courage more users to join by offering rewards or compensation,
with the ultimate goal of improving the data collection quality or
service quality of MCSs. Among the many mobile crowdsensing
application models, point of interest (POI)-based models [6]
have received considerable research attention because they can
accurately reflect task collection requirement information.

Incentive mechanisms are often used to solve resource al-
location or task scheduling problems [7] in cloud computing
or edge computing scenarios [8]. When a traditional incentive
mechanism is used in mobile crowdsensing services, it usually
takes the form of a reverse auction mechanism [9]. The MCS
provider collects user data, makes decisions in real time, and
finally calculates the task allocation and payment solutions for
the winning users. This method may consume considerable
time because the user task allocation problem is NP-hard and
cannot be solved in polynomial time via an optimal mechanism
such as that of VCG theory [10] or AMA theory [11], and
some approximation mechanisms also consume a great deal of
exponential time [12]. Although some mechanisms [6] designed
using monotonic allocation and critical price theory can ensure
operational efficiency, they may reduce the utility obtained by
the system or MCS provider.

The posted price mechanism, as a dynamic pricing method,
attracted the attention of researchers very early on [13] and has a
wide range of applications [14]. Unlike the above mechanisms,
the posted price mechanism can collect user information in ad-
vance to set appropriate prices for items, ensuring that sellers can
maximize their revenue when users arrive randomly. Moreover,
the posted price mechanism executes quickly, can satisfy the
requirements of real-time environments, and naturally provides
economic characteristics such as truthfulness and individual
rationality. In this paper, we integrate the posted pricing mech-
anism into the POI-based MCS context and explore a new way
to solve online MCS task allocation problems. Fig. 1 shows the
POI-based MCS under a posted pricing mechanism.

1) The MCS provider collects and evaluates the user data

collection cost and data value information.
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Fig. 1. POI-based MCS under a posted pricing mechanism.

2) Based on the user data collection cost and data value, the
MCS provider calculates the posted price for each POI.
3) The MCS provider notifies the users of the posted price.
4) Each user randomly enters the area where data collection
is required and determines which POIs the data collection
task needs to run.
5) Users perform data collection tasks at their own selected
POIs and then transmit the data to the MCS provider.
6) The MCS provider confirms the task and pays the users.
In this scenario, users can enter the POI area at any time
and either select tasks to execute or leave based on the current
task execution situation and posted price. This method has high
operability, high operating efficiency, and natural guarantees
regarding the truthfulness and individual rationality of the de-
signed mechanism. Different from the existing studies, in this
paper, we assume that the cost of collecting user data can be
determined in advance, which greatly reduces the complexity of
the mechanism design process.

A. Motivation and Challenges

Although the posted price mechanism has many advantages,
unfortunately, existing research cannot be directly applied to
MCSs. The application of a posted pricing mechanism in an
MCS faces three challenges. First, the greatest challenge is due
to the characteristics of MCSs. The traditional posted pricing
mechanism is used mostly for one seller and multiple buyers,
and the pricing power is in the hands of the seller; in contrast,
MCSs have one buyer (MCS provider) and multiple sellers
(users), and the pricing power is in the hands of the buyer. This
is a completely new problem for the design of posted pricing
mechanisms, which we call reverse posted pricing mechanism
design. The second challenge is how to determine the reward
price (posted price) and how to evaluate whether this price
is reasonable. Unlike the previously mentioned posted pricing
mechanism that seeks to maximize revenue, in an MCS, the
service provider is the only buyer that hopes to obtain greater
data value with as little payment as possible. In short, it hopes to
maximize the difference between the data value and payment.
On the other hand, users incur costs when collecting data, so
they hope to obtain more compensation. In this scenario, the
MCS provider and the users aim to maximize their own utility.
Thus, the reward price is the leverage between them. If the

2589

reward is too high, the utility gained by the MCS provider will
decrease. If the reward is too low, no users will be willing to
collect data. Therefore, it is necessary to design a reasonable
algorithm for calculating reward prices that can maximize utility
while achieving an approximation ratio that can be theoretically
proven. The third challenge arises from the features of the MCS
data collection task. Compared with general trading items, the
data collection tasks of MCSs are subject to more constraints.
For example, to ensure the service quality of MCSs, each user
can collect data only once at the same POI. To reflect the
importance of different POIs, the number of times data need
to be collected at a POI differs among different POIs. Because
the data value meets the diminishing marginal utility effect, the
MCS data collection problem needs to be transformed into a
submodular [15] or ordered submodular [16] problem. All of
these features further complicate the problem. The above two
challenges greatly increase the difficulty of designing a posted
pricing mechanism for an MCS.

B. Main Contributions

This paper applies the concept of posted pricing to POI-based
MCSs and determines the reward price for the data collection
task for each POI based on the data collection cost and data value
information of users. A reasonable reward price can ensure that
the total system and MCS provider obtain the greatest possible
utility while encouraging users to actively participate. To our
knowledge, this study is the first attempt to apply a posted pricing
mechanism to MCS data collection task allocation. In this paper,
we do the following.

1) We propose a reverse posted pricing mechanism to solve

a POI-based online MCS data collection and task alloca-
tion problem. We transform the problem into an integer
programming model with the goal of maximizing the
total utility of the system while satisfying various data
collection constraints typical of actual situations.

2) We prove that in the case where users may arrive in
any order (worst case), there must exist a posted price
structure that can ensure that the total utility of the system
is approximately optimal with an approximation ratio of
1/(d+1) in the worst case, where d is the maximum
number of users who can perform data collection tasks.
Then, we design a gradient descent algorithm to determine
the optimal reward price to verify our theoretical analysis.

3) We compare our algorithm with the FixedPrice algorithm,
the optimal algorithm, and an existing advanced online
MCS algorithm (OMZ) [6]. The results show that our
algorithm has advantages in terms of total utility and the
task completion ratio, enabling it to effectively improve
the efficiency and service quality of MCSs.

The remainder of this paper is structured as follows: In
Section II, we analyze the existing research results obtained
with respect to mobile crowdsensing and posted pricing
mechanism designs. In Section IIl, we analyze the offline
optimal utility model and the online utility model for an MCS
operating under reward price constraints. In Section IV, we
provide an approximation ratio proof for the online approximate
optimization of utility under optimal reward price constraints. In
Section V, we present an algorithm for determining the optimal
reward price. In Section VI, we evaluate the performance
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of wvarious algorithms through extensive experimental
demonstrations. Finally, in Section VII, we conclude the paper
and provide an overview of possible future research directions.

II. RELATED WORK

Numerous scholars have conducted research in the field of
MCSs, focusing mainly on incentive mechanism design, user
recruitment strategies, and deep learning. Early MCS incentive
mechanisms were primarily designed for offline scenarios. Yang
etal. [17] proposed a user-centric model, utilizing the submodu-
larity of utility functions to design an incentive mechanism based
on reverse auctions. In this mechanism, users report executable
tasks and bids, and the service provider collects information
to determine task allocation and payment schemes. Cheng
et al. [18] introduced a reverse auction incentive mechanism
that considers the average age of information (Aol) under budget
constraints. Zhao et al. [6] considered that users arrive in a ran-
dom order and may leave at any time. Consequently, the service
provider must make irrevocable decisions based solely on the
information of users arriving before the current moment, without
knowledge of future information. To address this, they designed
two multi-stage online mechanisms, OMZ and OMG, which
calculate thresholds based on past information to determine user
allocation and payments. Hu et al. [19] employed a two-stage
Stackelberg game to analyze the reciprocal relationship between
service providers and mobile users, using backward induction to
optimize incentive gains. Regarding user recruitment strategies,
Wang et al. [20] estimated user contact probabilities based
on a semi-Markov process model and proposed a predictive
user recruitment algorithm for mobile crowdsensing, aiming to
minimize data upload costs. With the increasing application of
deep learning in various fields, researchers have begun to use
neural networks to solve MCS problems. MCSs involve many
issues worthy of investigation, and this paper focuses on pricing
challenges. Unlike the reverse auction mechanism, in the sce-
nario in this study, users can independently choose POIs rather
than leaving the final task allocation to the service provider. The
advantage of this design is that the service provider does not
need to spend extra effort monitoring each user’s behavior.

Posted pricing mechanisms are commonly used in the eco-
nomics and computation literature due to their simplicity. The
approximation guarantees of posted pricing mechanisms can
be derived from prophet inequalities [21]. In 1978, Krengel
et al. [22] showed that a player who selects a stopping time
based on current and past observations can achieve at least half
the return of a prophet. Subsequent research extended this result
by allowing both the player and the prophet to select at most
d elements. Alaei et al. [23] presented a factor-d optimal stop-
ping prophet inequality witha (1—1 v/d + 3)~*-approximation.
Later, Kleinberg et al. [24] proved a prophet inequality for
matroids, providing a 1 (4d — 2)-approximation under the in-
tersection of d matroid constraints, which was improved to
1(e(d+ 1)) by Feldman et al. [25]. The prophet inequality
problem for the intersection of d partition matroids can be
generalized to the d-dimensional hypergraph prophet inequality.
When the buyer is single-minded, the MPH-d combinatorial
auction problem can be transformed into a d-dimensional hy-
pergraph prophet inequality. Diitting et al. [26] generalized
the previous results to settings where players make choices
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regarding multiple elements of a matroid and have submodular
preferences over subsets of elements. They also obtained a
polynomial-time 1 (4d — 2)-approximate prophet inequality for
MPH-d combinatorial auctions. Subsequently, Correa et al. [27]
improved the bound to 1 (d + 1), which is tight. The posted pric-
ing problem for MCSs is the inverse optimization problem of the
posted pricing problem in combinatorial auctions and involves
a redefinition of the utility function. As a result, designing the
corresponding posted pricing mechanism becomes a significant
challenge.

To date, there are still many aspects of the MCS problem based
on posted pricing mechanisms that are worth further exploration.
Singla et al. [28] and Balkanski et al. [29] explored how to de-
termine posted pricing mechanisms in crowdsourcing problems,
with the goal of maximizing the total valuation of the organizer
under budget constraints. [28] assumed that each worker’s task
has a unit value, while [29]’s valuation function is submodular.
Han et al. [30] studied a Bayesian-based quality-aware pricing
problem, aiming to minimize payment prices under budget
constraints. Unlike these studies, our proposed posted pricing
mechanism starts with the goal of maximizing total utility and
adjusts the posted prices to balance the utility between the
service provider and the users, ensuring that both parties achieve
satisfactory outcomes. Table II compares our approach with the
main closely related methods from five perspectives.

III. PARAMETERS AND PROBLEM FORMULATIONS

We assume that the MCS provider needs to collect data from
m POIs within a given period. These POIs are represented by
a set M ={1,2,...,m}. There are n users, represented by
N ={1,2,...,n}. Within the given period, users can arrive
in any order to perform data collection tasks. We use a vec-
tor ; = (41, T2, - . - ,xim)T € {0,1}™ to represent user i’s
(i=1,2,...,n) data collection result, where z;; = 1 means
that user 4 should collect data at POI j; otherwise, x;; = 0.
For convenience, we let X = (x1, @2, . . ., ,, ) represent the data
collected by all users.

For each user, the cost of data collection is ¢; (;), whichis an
m-dimensional function represented by ¢; : {0,1}"" — Rt U
{0}. The value of ¢;(x;) depends on many factors, such as the
energy consumption of the sensors used for data collection. We
refer to [31] to calculate the data collection cost. Assume that
user ¢’s device has L; sensors. We assume that the power per
unit time of sensor | € (1,2,...,L;) on user i’s device when
collecting data is n;; and that the time required to stay at POI
J to collect data is ¢;;. Thus, if user i collects data at POI j,
the energy cost required is Zf;l 7 - t;5. In addition, we define
a constant, A, to represent the possible transportation cost of
any user moving to POI j to collect data. Therefore, when the
data collection result x; of user 7 is determined, the user data
collection cost is

m L;
ci(w) =) @iy (Z M tij + Aj> : (1)
j=1 =1

By obtaining a user’s device type, the MCS provider can
approximately determine the data collection cost for that user
in advance, thereby determining the cost function in advance (a
simple method is for the MCS provider to ask users to download
a piece of test data to evaluate the performance of their devices).
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TABLE I
COMPARISON BETWEEN OUR APPROACH AND RELATED WORKS

Related works Mechanism | Resource Features Mechanism Design Goals Algorithm Theory Approximation Guarantee
Features
Yang et al. [17] Reverse Mobile crowdsensing | Seller’s utility Heuristic /
Offline Task Auction
Cheng et al. [18] Reverse Mobile crowdsensing | Seller’s valuation Heuristic Auction /
Offline Task
Zhao et al. [6] Reverse Mobile crowdsensing | Seller’s valuation Heuristic Auction /
Online Task
Alaei et al. [23] Forward Items Revenue Approx.
Online Prophet Inequality (1-1/vd+3)~1
Bayesian
Kleinberg et al. [24] | Forward Items Revenue Approx.
Online Prophet Inequality 1/(4d — 2)
Bayesian
Diitting et al. [26] Forward Items Social welfare Approx.
Online (Sum of the winning users’ bids) | Prophet Inequality 1/(4d — 2)
Posted Pricing
Correa et al. [27] Forward Items Social welfare Approx.
Online (Sum of the winning users’ bids) | Prophet Inequality 1/(d+1)
Posted Pricing
Singla et al. [28] Reverse Tasks of workers Regret Posted Pricing Regret Bound
Online
Balkanski et al. [29] | Reverse Tasks of workers Buyer’s valuation Approx. ((1— \/21771 (1- é))71
Online Posted Pricing
Han et al. [30] Reverse Mobile crowdsensing | Seller’s payment Posted Pricing Regret Bound
Online Task
Our Work Reverse Mobile crowdsensing | Total system utility Approx.
Online Task (Refer to formula 5,6,7) Prophet Inequality 1/(d+1)
Posted Pricing

Additionally, lambda can cover the transportation costs of most
users. We therefore assume that the cost function is generated
by the device and is truthful.

MCS providers hope that more different users will participate
in data collection to meet the diversity of collected data. If the
same user performs too many tasks, it may cause data pollution
(for example, in an MCS, which measures signal strength in
the same area, the hardware on different devices will show
large differences). Therefore, we limit the upper limit of data
collection tasks that each user can perform to d. That is, each

user is restricted to collect data at no more than d POIs.
m

laill, = wij <d 2
j=1

The importance of each POI is different, so the number of
data collection tasks required to be performed on these POIs is
also different. For example, for earthquake center POIs, more
users are required to participate in data collection to ensure
sufficient data for analysis [32]. Conversely, for unimportant
POIs, only a small amount of data needs to be collected. We use
k; to represent the maximum number of users who should cover
POI j (meaning that at most k; data collection tasks should be
performed at POI 7) and define a vector k = (kq, ko, . . .km)T to
represent the coverage requirements for all the POIs.

In addition, a vector y = (y1,%2,...,Ym) represents the
results for the number of users performing tasks at each POL.
For example, y; denotes the total number of tasks performed by
users at POI j. Thus, we have

yi =Y wi; <k;jVi=12...m 3)

i=1
We also define a valuation function for the MCS as vy (y), where
vo :N™ — R U {0} is a nondecreasing function. In this paper,

we assume that the number of tasks performed by users at POI
j does not necessarily have to reach k; because the data value
collected by each user is the same and independent. As long as a
user performs a task at POI j, the MCS provider will obtain the
data value of v;. The definition of v; varies across MCS tasks.
For example, in [33], the data value depends on the semantic
information in the collected video, while in [34], the age of the
collected data is used. To facilitate subsequent analysis, we make
the simple assumption that the value function is additive. Thus,

we have
UO(y):Zyj‘Uj :szij'vj “4)
j=1 1

j=11i=

Through the value function, the MCS provider can evaluate
how much value the data collected by users can generate.

To encourage more users to participate in the data collection
tasks, the MCS provider offers rewards to users who complete
the data collection tasks. Specifically, if user < completes a data
collection task at POI j, the MCS provider will pay a reward p;
to user 7. We use the vector p = (p1 , P2, - .pm)T to represent the
reward price offered by the MCS provider for each POI (that is,
the posted price structure for data collection tasks).

We assume that the MCS provider needs to announce the
reward prices in advance to inform all users and that users
will then choose which tasks to perform based on their own
circumstances. Thus, the calculation of the reward prices is
crucial.

A. Offline Optimal Total Utility Model

In the overall system, both the users and the MCS provider
wish to obtain the greatest possible utility; thus, the maximiza-
tion of user utility and the maximization of MCS provider utility
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are two objectives of a mutual game. The reward price p is a
lever: if the reward price is too high, the utility of the MCS
provider will be low, whereas that of users will be high; in
contrast, if the reward price is too low, no user will wish to
participate in the data collection tasks, and the utility of both
users and the MCS provider will be 0. The offline model is used
for verification, and we find that different reward prices affect the
total utility of the system. In the experiment, the offline algorithm
is used only as a baseline algorithm to evaluate the superiority
of our solution.

Given a reward price vector p and an allocation solution X,
the utility uo(p, X) of the MCS provider can be viewed as the
valuation obtained at each POI minus the compensation paid to
users, that is,

u(p, X) = vo(y) — (¥)'p

= v (le> iygpj

i=1
= o (Z :B1> - Z injpj 5
i=1 Jj=11i=1

The utility of user ¢ can be defined as follows:

ui(p,X) = ()" p — ci(=s) (©)
Thus, the total utility of the system can be defined as

+Zuz p, X

n

= 0o(y) — 3 i)

i=1

0 <Z CL%) - Zcz(mz) @)

where payments have been offset.
Therefore, under a given reward price vector p = (p1,p2,
..pam)7T, the offline optimal total utility model can be formu-
lated as follows:

Mazimize OPT (p, M) =g <Z CBZ> — Zcz(wz) ¢))
i=1 i=1

U’(p7 ) = Uo p7

n
inj Sk‘j, Vj: 1,27...7’[77,

(8a)
i=1
m
Y wy<d, Vi=1,2,...,n (8)
j=1
ci(x;) < ijxij,w =1,2,...,n (8¢)
j=1
zij € 0,1} (8d)
pe (RN (8e)

Constraint (8a) indicates that the number of data collection
tasks at POI m cannot exceed the specified limit. Constraint
(8b) indicates that for any user ¢, the number of tasks performed
cannot be greater than d. Constraint (8c) indicates that for any
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user, the total cost of the tasks performed must be less than or
equal to the total reward received. Constraint (8d) states that x;;
is a 0-1 integer decision variable, and constraint (8e) indicates
that the reward price vector is an m-dimensional real-valued
decision variable.

Here, we provide a simple example to illustrate how the
reward prices p impact the optimal total utility of the system. Itis
assumed that there is one POI for which data need to be collected
once. The completion of data collection at this POl yields a value
of 2 for the MCS provider, and the MCS provider is willing to
reward the user with a fee of 1. At this time, there is only one
user in the system, and the cost of collecting data at the POI is
1.2. Thus, the cost for this user to complete the data collection
task is 1.2. Therefore, the optimal solution to the problem at this
time is O because the user’s data collection cost is greater than
the reward, meaning that the condition for the user to be willing
to participate in data collection is not met; thus, the user’s utility
is 0. The MCS provider’s utility is also 0 because no data are
collected. However, if the MCS provider increases the reward
price to 1.5, then the user’s utility will be 1.5 — 1.2 = 0.3, the
MCS provider’s utility will be 2 — 1.5 = 0.5, and the optimal
total utility of the system will be 0.3 + 0.5 = 0.8. Notably, as
long as the reward price set by the MCS provider exceeds 1.2
and is less than 2, the total utility of the system is always 0.8.
Therefore, it is crucial for the MCS provider to determine a
reasonable reward price vector p.

B. Online Total Utility Model TU (p)

Before we discuss how to determine the reward price, we need
to describe user behavior in an online MCS system because the
priceis closely related to user behavior. In this paper, we consider
that all users arrive in the MCS system in an arbitrary order, and
this assumption satisfies the online characteristic of the problem.

When user ¢ arrives in the system, she or he will choose
an allocation solution x; from the set of POIs for which tasks
currently need to be performed to maximize her or his utility ;.
The corresponding maximization problem can be represented as
follows:

Maximize wu; = (Cci)Tp —ci(x;) )
m
injgd,vz'zl,l...,n (9a)
7j=1
zi; <71, Vi=1,2,...,n,5=1,2,...,m,r; €N
(9b)
zi; € {0,1} ©c)

where r; = (11,72, - - - rim)T represents the vector of the
remaining numbers of tasks that need to be executed at the
POIs when user ¢ arrives in the system; thus, k; > r;; > 1. For
example, r;; = 2 means that when user 4 arrives, POI j still has
2 tasks that need to be executed. When all users have selected
their allocation solutions in accordance with the order in which
they entered the system, then we can calculate the total utility of
the system after task completion and payment according to the
formula (7) as vo (D1 @i) — Y ory ci(x;).

The user arrival order clearly affects the total utility of
the system. Thus, we define o as a given user arrival order
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TABLE II
FREQUENTLY USED NOTATIONS

Notation Meaning
N The set of users.
M The set of POIs.
C The subset of POIs.
R After all users have selected, the POI set for which
the data collection tasks has still remaining.
v The data value that MCS provider can be obtained
due to a user performing data collection at POI j.
kj The maximum number of data collection tasks that
POI j needs to perform.
o The arrival order of users.
7 = (r, 7%, 'r;.’m)T represents the vector of the
remaining task numbers under o when user % arrives.
T = (z41, 42, - ,zim)T represents user ¢’s data
collection result.
Tic, T o User 4’s data collection result and optimal data
' collection result under POI set C.
x7 = (z7, 2%, - ,oc”n) represents the data
collection result for user 7 under o.
Yy = (y1,92," "~ 7ym)T represents the results for the
number of users performing tasks at each POIL.
p,p* Reward price vector and optimal reward price vector.
d The upper limit of data collection tasks that each user
can perform.
vo(.) The data value function of the MCS provider.
ci(.) The cost function of user 4.
uf, p.C The positive utility of user ¢’ under reward price
vector p and POI set C.
OPT(M) The offline optimal total utility under POI set M.
OPT(p, M) | The offline optimal total utility under reward price
vector p and POI set M.
TU(p) the minimum value (worst case) of the total utility
under an arbitrary user arrival order.
and 77 = (r%,7%,...,r%,)" as the vector of the remaining

task numbers under o when user ¢ arrives. Similarly, 7 =
(29, 2%, ...,22 )" € {0,1}™ is defined as the data collection
result for user 7 under o. Because there is a limit on the number
of tasks that can be performed on POIs, high-reward tasks are
completed in the early stage, and users who enter later can choose
only small-reward tasks to perform. The individual rationality of
the mechanism can ensure that the reward for performing tasks
is greater than is the cost of user data collection. Therefore, for
users, entering the system as early as possible may be a better
choice because doing so can enable them to obtain greater utility.

Finally, we use T'U (p) to represent the minimum value (worst
case) of the total utility under an arbitrary user arrival order when
the reward prices p are determined.

n

- ZCZ(J:Z) )

i=1

TU(p)

Zw

Val, <rl,j=12,.

= min
[ea

m,ag € {0,1}  (10)

For ease of reference, Table II lists the notations that are fre-
quently used in this paper.
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IV. THE PROPERTIES OF TU (p)

In this section, we prove that T'U (p) approximates the offline
optimal total utility O PT'(p, M) within an approximation ratio
of 1/(d 4 1). Itis worth noting that this approximation ratio can
be guaranteed only when all users enter the system to perform
task selection.

We define OPT (M) as the optimal solution when the POI
set is M, regardless of the reward price; that is, constraints (8c)
and (8e) are not considered in formula (8). It is obvious that
OPT(M) > OPT(p, M). OPT (M) is described as follows.

n

n
Z Tim | — Z ci(@im)
i=1

Maximize OPT(M) =

=1
(11)
D wy <kpVi=1,2,...,m (11a)
m
injgd,vz'zlﬂ,...,n (11b)
7j=1
Ti5 € {0 1} (11c)

where x, ,, is a feasible allocation solution for user 7 under POI
set M and i 1s the optimal allocation solution for user ¢
under POI set M.

Similarly, for CCM, we define OPT(C)=
Mazimize(vo(> 1 @ic) — Yy ¢i(x;c)) as the optimal
solution under POI set C and ] as the optimal allocation
solution for user ¢ under POI set C. We use u; , . to denote
the positive part of the utility of user ¢, based on the above
description and a reward price p.

* * T * .
U pe = [(mw) p— cl(azlc)} +,Vz =1,2,...,n

In the following, we prove a theorem that states that there
must exist a determined reward price vector p* € Rf that
satisfies (d + 1)TU (p*) > OPT (p*, M). Before this theorem
is proven, we need to provide some definitions. First, we adopt
the following notations:

kC _( / / k/ )
kj, VRS C,CCM
0, otherwise

Second, we define R (R C M) as the set of POIs for which tasks
remain at the end of the task allocation process. Accordingly,
MA\R is the set of POIs for which the allocated data collection
tasks have been completed.

(12)

K. =

/ (13)

Lemma 1: For any fixed reward price vector p € RM | we
can obtain
TU(p) = wo(kpg) = (kar) P+ Y _uipm  (14)
i=1

Proof: We divide TU (p) into two parts: the utility of the
MCS provider, ug, and the utility of all users, > - ; u;. That is,
TU( ) = Up + 2221 Uj-

The MCS provider utility ug is equal to the utility gained from
the POIs for which all data collection tasks have been either
completed or partially completed. Therefore, we have

— (kpr)' P (15)

ug > vo(kanr)
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According to formula (9), each user’s strategy is to choose the
set of remaining POIs that maximizes her or his utility when she
or he enters the system. Therefore,

wi = max ((@f)"p — ci(f) )
> ujpn = (@) P~ cil@ig) (16)
Here, a:ZR is the optimal allocation solution for user ¢ under POI
set R. The reason is that for any fixed reward price vector p, the
utility of the optimal allocation solution (under the remaining
POL set R), uj ,, R> must be less than or equal to the maximal
utility when user ¢ arrives.
Formulas (15) and (16) are summed to obtain

(kar) P+ _uipr (D

i=1

TU(p) > vo(kanr) —

O
Lemma 2: For any fixed reward price vector p € Rﬂ‘f , We
can obtain

OPT(M) < vo(k) —k"p+_ ul, (18)
i=1
Proof: From formula (11), we know that

OPT (M) = max (vo (Z xi7M> — ZC;‘(%,M))

Ti M -
i=1

We define x; , as the optimal allocation solution for user . We
divide OPT (M) into two parts, namely, the optimal utility uy,
of the MCS provider and the optimal utility - ; u} of all users,

where
Ui =uipa = @) P al@ing] (9

We can obtain

OPT(M) =uj+ Y u;

:,M)Tp + Zuz,p,/\/l
=1
(20)

Because the optimal utility v of the MCS provider must be less
than or equal to the utility when all tasks at all the POIs are
completed, it can be seen that

— (Z a;;M> (@) P < volk) —

i=1

Tp 1)
Thus, according to formulas (19), (20), and (21), we can obtain
OPT(M) < vo(k) =k p+> uip, v

i=1

Il

Lemma 3: There must exist a reward price vector p* € RY
that satisfies
vo(kyjy) — 22)

wauun Mo J=L2,...m

Proof: Here, k;; denotes a vector in which only the value
of the jth element £; in vector k is preserved, whereas the other

elements’ values are set to 0 (such as kg, = (0,0,2,0,0.. .)T).

kjp; =

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 18, NO. 5, SEPTEMBER/OCTOBER 2025

According to formula (13), vo(k{j}) is a constant, so we can
modify formula (22) as follows:

o Uo(k{j}) - Ez 1 xmuz,p/\/l
i = o (23)
J
We define D = [0, v0(k)]™ C (R* U {0})™ as a domain of m-

dimensional vectors, and we define a function f(p): D — D
for any p € D. For each POI j, we define the jth dimension
function f;(p) of f(p) as follows:

Uo(k{j}) - Zl 1 mv]uz,p,M

fi(p) = » 24)

+
Here, [-], represents the positive part of the argument in brack-
ets. f;(p) is a continuously decreasing function of p. Therefore,
for all p e D and each POI j, we can obtain 0 < f;(p) <
f;(0) < T 20®) Tt follows that if p € D, then f(p) € D. Ac-
cording to Brouwer’s theorem [35], there must exist a reward
price vector p* that satisfies formula (22). U
Lemma 4: There must exist a reward price vector p* € RY

that satisfies
)~ KB = 303wt

j=11i=1

(25)

Proof: By summing all the values of j in formula (22), we
can obtain

m m m n
Dokpy | =D kipi =YY @iy M (26)
j=1 j=1 j=1i=1
That is,
m n
T, % %
vo(k) — k = Z Z LW p* M
j=1i=1
(]
Theorem 1: There must exist a determined reward price

vector p* € RY that satisfies (d + 1)TU (p*) > OPT(p*, M)
Proof: According to Lemma 1, we can obtain

T *
— (kar) P+ Z UipR
i=1
Upon the replacement of R with M, the following inequality is
still satisfied:

TU(p) = vo(kaam)

TU(p) > vo(krnr)

— (kpom)' P

+ Z Ui p M = Z Ui p M @7
=1 =1
Thus,
TUp) > Yl pu (28)
=1

We use the reward price vector p* calculated according to
Lemma 3 and substitute it into Lemma 2. We can see that

n

1‘” zp*M+Zu,p/\/l
]:11:1 =1
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Algorithm 1: GD for Reward Prices.
Input: the optimal solution x*, vg(-),
Output: the reward price vector p

1: Initialize p < 0™, «
2: h(p) = -21 (vo(kyjy) —

Jj=

ail), k

2

n
kip; — 21 xfjuf,p,M)
1=

3:  while 2(p) > 105 do
4: Optimize p using gradient descent
5 p=p—oa-Vph(p)
6: end while
7: return p
=D (D +1 | uipn
i=1 \j=1
(d+1 Zuww (d+1)TU(P*) (29)
i=1

where the first equation in formula (29) uses Lemma 4 and
the last line of inequalities is based on Z;nzl zj; < d. Be-
cause OPT (M) > OPT (p, M), we obtain (d + 1)TU (p*) >
OPT (p*, M).

V. DETERMINING p* USING A GRADIENT DESCENT
ALGORITHM

Under the assumption that we have the optimal solution
OPT (M) (which can be obtained through CPLEX [36]), the
valuation function vg(-) and the user cost function ¢;(-), we
can determine the reward price vector p* in accordance with
Lemma 3. We design a gradient descent (GD) algorithm to obtain
the optimal reward price solution. The basic idea is to construct
a function

2
Z(vo k() — kjp; — ZxL]uLpM) (30)

and use GD to update p on the basis of V,h(p). When h(p) = 0,
p is the required reward price vector. Notably, formulas (12) and
(25) indicate that (vo(k;)) — kjpj — D1y 5;uj, ) in the
h(p) function is monotonic. Moreover, according to Lemma 3,
there exists a reward price vector that makes h(p) equal to
0. Therefore, theoretically, the function h(p) should converge
quickly, which is also demonstrated in subsequent experiments.
Therefore, we can use gradient descent to solve the optimal
price vector. The proposed algorithm can efficiently calculate
the reward prices. The details are shown in Algorithm 1.

In this algorithm, we use the GD approach to calculate the
optimal reward prices. The inputs are the optimal solution x*,
the MCS valuation function vg(-), the cost function ¢;(-) for
each user, and the POI coverage requirement vector k. « is the
learning rate. The design of the function h(p) satisfies formula
(22). The algorithm executes multiple rounds of updating p.
When the condition h(p) < 10~ is met, a reward price vector p
is found that approximately satisfies Lemma 3, and the algorithm
terminates. The running time of this algorithm depends on the
number of POIs, the number of users, the constraints of the
data collection task, and the number of iterations. The number
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TABLE III
EXAMPLE RESULTS UNDER DIFFERENT USER ARRIVAL ORDERS

User arrival  Total system  MCS provider  User util-  Payment
order utility utility ity

ul, u2,u3 170.0 86.88 83.12 253.12
ul, u3, u2 165.0 86.88 78.12 253.12
u2,ul,u3 170.0 86.88 83.12 253.12
u2,u3, ul 175.0 86.88 88.12 253.12
u3,ul, u2 165.0 86.88 78.12 253.12
u3, u2,ul 175.0 86.88 88.12 253.12

of iterations is related to the learning rate and the termination
condition.

A. A Simple Example

We consider a simple example with two POIs, A and B, and
3 users, ul, u2, and u3. Collecting data once at POI A can yield
a value of 120 for the MCS provider. Similarly, collecting data
once at POI B can yield a value of 100. At POI A, data need
to be collected 2 times, and at POI B, data need to be collected
3 times. The data collection costs of ul at POIs A and B are
(70,40). Similarly, the collection costs of u2 are (60,75), and the
collection costs of u3 are (65,80). The number of data collection
tasks performed by each user cannot exceed d = 2.

According to Algorithm 1, the final reward prices for
POIs A and B are 91.25 and 70.62, respectively. The op-
timal total utility of the system without reward price con-
straints is OPT({A, B}) = 220, where y4 = {u2,us} and
yp = {u1,us,us}. The optimal total system utility with re-
ward price constraints is OPT'(p, {A, B}) = 175, where ¢/ 4 =
{ua,us} and y' 5 = {uq}. Table III shows the results obtained
for different user arrival orders with the reward prices determined
by Algorithm 1.

For illustration, we describe in detail the case in which the
user arrival order is (u1l, u2, u3). First, ul enters the system. At
this time, data need to be collected at both POIs A and B. The
reward prices are 91.25 and 70.62, respectively. The utilities
that u1 can obtain at POIs A and B are 91.25 — 70 = 21.25 and
70.62 — 40 = 30.62, respectively. Therefore, u1 obtains a total
utility of 21.25 4 30.62 = 51.87. The utility obtained by the
MCS provider is 120 — 91.25 + 100 — 70.62 = 58.13, and the
payment made is 91.25 + 70.62 = 161.87. Next, u2 enters the
system. At this time, data still need to be collected at both POIs
A and B. The utility that u2 can obtain at POI A is 91.25 — 60
= 31.25, whereas the utility that can be obtained at POI B is
70.62 — 75 = —4.38; thus, u2 chooses not to collect data at POI
B. Ultimately, the utility of u2is 31.25, the utility obtained by the
MCS provideris 120 — 91.25 = 28.75, and the payment made is
91.25. Finally, u3 enters the system. At this time, data need to be
collected only at POI B. Since the utility that can be obtained by
u3 at POI B is 70.62 — 80 = —9.38, u3 does not select any POI
for data collection. The user utility, MCS provider utility, and
payment are all 0. When the above results are summed, the total
utility of the MCS provider is 58.13 + 28.75 = 86.88, the total
utility of the users is 51.87 + 31.25 = 83.12, the total payment
made by the MCS provider is 161.87 4+ 91.25 = 253.12, and
the total utility of the system is 86.88 4+ 83.12 = 170. The
analysis for other user orders is similar.
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(@) collection area

Fig. 2.  Establishment of POIs on real terrain.

This example shows that (u2,u3,ul) is the optimal user
arrival order, resulting in a total system utility that is con-
sistent with the optimal solution OPT (p,{A, B}), whereas
(ul,u3,u2) and (u3,ul,u2) are the worst cases but still result
in a total system utility that is not much different from the
optimal solution. In the next section, we present more detailed
experimental analyses.

VI. EXPERIMENTS AND ANALYSES

A. Experimental Setting

1) To ensure the reliability of the experimental data, we set
up various data collection scenarios on real terrain (Fig. 2).
In the experimental area, we set up 6 POIs (m = 6),
publish tasks for signal strength detection at these POIs
to assist in choosing base station sites, and recruit users
to collect data for these POIs. The data value of a POI
is evaluated according to the population density of the
selected area. For example, densely populated areas have
higher data values and a greater number of data collection
requirements.

2) We used data from 250 users and set the cost function for
each user based on the mobile device type and hardware
information (such as the power consumption of the CPU,
GPS and baseband chips). Based on the above information,
we can calculate the posted price of each POI.

3) Regarding the user’s decision, we assume that when he
or she enters the MCS system, he or she has an expected
compensation for performing data collection tasks, which
is used to evaluate whether to accept the reward prices for
the POIs. Each user’s expected compensation for each POI
was generated according to a normal distribution with a
mean of 50% of the POI data value and a variance of
5.

4) For each experimental indicator, 500 groups of data sam-
ples for different users were extracted from the dataset,
and the user arrival order was determined for each group.
These data were subsequently fed into different algorithms
for experimental evaluation, and the average values of the
results were plotted.

5) We compared the proposed PostedPrice algorithm with
the OPT(p, M) solution as well as the OMZ [6] and
FixedPrice algorithms. OMZ is an excellent algorithm for
online MCS discrete task allocation. In the FixedPrice
algorithm, a fixed reward price is set based on 40% of the
data value for each POI task. (For example, if the data value
obtained by the MCS provider for data collection at a POI
is 100, then the reward price offered to the user is set to 40
for this POI). Notably, we have made some improvements
to the OMZ algorithm. In OMZ, it is assumed that the
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Poisson distribution with A = 5; this assumption is used
to calculate the winning users and the payment prices.
Moreover, the data values that may be obtained from all
the POIs are summed to serve as the budget in the OMZ
algorithm.

6) All algorithms used in these experiments were imple-
mented in Python. The hardware configuration of the
experimental platform was as follows: the processor was
an AMD Ryzen 7 5800H CPU with 16 GB of memory,
and the storage device had a 512 GB SSD.

7) We have uploaded the code used in the experiments
to https://github.com/YNU-DMC-ReversePostedPricing/
ReversePostedPricing.

B. Experimental Results

1) Impact of the Number of Users, n: The main purpose of
this experiment is to analyze how the total utility of the system,
the MCS provider utility, the user utility, the total payment paid
out by the MCS provider, the number of winning users and
the POI coverage rate change under different algorithms as the
number of users in the MCS system varies. The number of POIs
is 6, and the POI coverage limit for each user is d = 2. The value
of k; for each POI lies within the interval [50,150].

Fig. 3(a) shows the differences in total utility between the
different algorithms. The total utility is the sum of the user utility
and the MCS provider utility and is one of the main optimization
objectives in this article. The total utility of all four algorithms
increases with the number of users, due primarily to the fact that
the increase in the number of users leads to more winning users,
thereby resulting in a greater number of completed transactions.
The O PT'(p, M) and PostedPrice solutions yield relatively high
total utility. The reason is that both algorithms obtain the total
utility based on the optimal reward price vector p*. p* plays
a significant role in driving the market, allowing the system
to achieve high utility. The difference between PostedPrice and
OPT(p, M) is that PostedPrice depends not only on the user set
but also on the user order, whereas O PT'(p, M) depends only
on the user set. In contrast, FixedPrice results in low total system
utility. This outcome is due primarily to its conservative pricing
strategy, which strictly selects high-quality (i.e., low-cost) users.
Such a strategy discourages broader participation, limiting the
number of winning users and ultimately reducing total utility.

Fig. 3(b) shows the differences in the MCS provider utility.
The MCS provider utility of all four algorithms increases with
the number of users, due primarily to the rise in the number
of winning users. The MCS provider utility of the PostedPrice
mechanism is very small at the beginning, due mainly to the
fact that the reward price on POIs is set high to attract more
users to participate in task execution. As the number of users
increases, the reward price will gradually decrease. The data
value generated by the execution of more tasks plus the lower
reward price (this can be seen in Fig. 3(g)) will cause the MCS
provider utility to grow sharply. Conversely, the MCS provider
utility of the OMZ and FixedPrice algorithms is linearly related
to the growth of the number of users, which is related to the way
in which their algorithms are designed.

Fig. 3(c) shows the differences in the user utility. The user
utility under the PostedPrice mechanism shows a trend of ini-
tially increasing and then slightly decreasing. This phenomenon

RS eQliUREES ATV AN SA SIS IR ARL RS PrenES T D654 6 BN TS B RPERQL SIS IS sy iligigt to cover


https://github.com/YNU-DMC-ReversePostedPricing/ReversePostedPricing
https://github.com/YNU-DMC-ReversePostedPricing/ReversePostedPricing

ZHANG et al.: UTILITY-OPTIMAL REVERSE POSTED PRICING MECHANISM FOR ONLINE MOBILE CROWDSENSING TASK ALLOCATION

d=2,POI numbers=6 d=2,POI numbers=6

e 14000 v poapice”
—= o

120001 == rucirie

10000

8000

6000

4000

2000

20000

ity

ity

15000

10000

Total Utili
MCS Provider Util;

5000

30 50 100 150 200 250 30 50 100 150 200 250
User Numbers (1) User Numbers (n)

(@) Total utility (Ib) MCs provider utility

d=2,POI numbers=6 d=2,POI numbers=6

$000) e 250001 _ e
70001 == ovz H = owz
con0] = 2 20000 | = "o
B £
E 5000 5 15000
= 4000 2
5
23000 £ 10000
2000 4
5000
1000 1 I, I =
0 0
30 50 100 150 200 250 30 50 100 150 200 250
User Numbers () User Numbers (1)
(C) User utility (d) MCS provider payment
d=2,POI numbers=6 d=2,POl
2501 ormp. a0 1.0{ ormpa
Postre Postre
" [pe | o
£ 200 == rocsree 2 0.8] = i
£ &
£ ©
= 150 2o
% 5
2 2
2100 So4
] S
Z 50 0.2

=3

30 50 100 150 200 250 30 50 100 150 200 250
User Numbers (n) User Numbers (n)

(e) Number of winning users (f) POl coverage rate

d=2,POI numbers=6

n=100

n=150

n=200

n=250

POI POI, POI3 POl POIs POIg

(g) Heatmap of price

Fig. 3. Impact of the number of users, 7.

all POIs, continuing to add users will only reduce the reward
price (because the MCS provider has more users from which
to choose), thereby reducing the user’s utility. This can also be
seen from Fig. 3(e). When the number of users reaches 250,
not all users can win. Theoretically speaking, although a larger
user base results in more winners, the optimal reward prices in
p* are moderately reduced to balance formula (25). In contrast,
FixedPrice results in near-zero user utility, reflecting an overly
conservative pricing strategy that sets reward levels too low for
most users to gain any meaningful profit from participation.
Generally speaking, if the number of users is not enough to cover
the POIs, then increasing the number of users will definitely lead
to an increase in user utility. At the same time, each POI will
offer a high price to attract users to participate in task execution.
However, under the premise that the number of users is sufficient
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to cover the POIs, continuing to increase the number of users
will not bring about an increase in total utility. Instead, it will
lead to a decrease in the reward price at the POIs (Fig. 3(g)),
thereby reducing user utility. This phenomenon is in line with
market laws.

Fig. 3(d) shows the fees that the MCS provider needs to
pay out under the different algorithms. As the number of users
increases, the MCS provider payment also increases under all
four algorithms. The OPT(p, M) and PostedPrice solutions
result in nearly identical payment. The reason is that these two
algorithms use the same reward prices p*. Furthermore, this
situation also indicates that even though O PT'(p, M) and Post-
edPrice have different allocation solutions, p* provides nearly
identical rewards to all users for each POI, which helps stabilize
the market and prevents users from becoming overly biased
toward any particular POIL.

Fig. 3(e) shows the changes in the number of winning users.
As the number of users increases, the number of winning users
also increases under all four algorithms. It is noteworthy that
when n = 250, the number of winners under the PostedPrice
mechanism is lower than that of O PT'(p, M). The PostedPrice
mechanism allows users to freely select POIs—as long as the
utility of executing a task is positive, users will choose as
many POIs as possible to maximize their own benefit. In con-
trast, OPT(p, M) is designed solely to maximize total system
utility and does not take truthfulness into account. Therefore,
on the premise that the POI coverage requirements are met,
each user in PostedPrice generally executes d POIs, whereas
in OPT(p, M), some users may execute fewer than d POIs.
As a result, PostedPrice has fewer winning users than does
OPT(p, M).

Fig. 3(f) shows the POI coverage rate (task completion ratio).
As the number of users increases, the POI coverage rate also
increases under all four algorithms. Under reasonable reward
prices p*, users actively participate in MCS tasks, and the
OPT(p, M) and PostedPrice algorithms achieve high allo-
cation efficiency. However, under the FixedPrice and OMZ
algorithms, all MCS tasks still cannot be completed even when
the number of users reaches 250. The reason for this is that the
threshold in the OMZ algorithm is unstable, making it difficult
to achieve 100% coverage, while the FixedPrice algorithm sets a
very low price, requiring more users to achieve 100% coverage.

Fig. 3(g) presents the heatmap of pricing across different
POIs. As shown in the figure, the overall trend in prices
is decreasing, which is consistent with fundamental market
dynamics—when the number of users is limited, the service
provider tends to offer higher prices to incentivize participation.
As the user population increases and competition intensifies,
lower prices are sufficient to attract users. In addition, POI5
exhibits the greatest data valuation, while POI; and POI exhibit
the lowest data valuation. This pattern is clearly reflected in the
heatmap—POIs with higher data valuations are associated with
higher prices, whereas those with lower valuations correspond
to lower prices.

The above results prove that the PostedPrice algorithm can
ensure high system performance and stability even with widely
varying numbers of users.

2) Impact of the Per-User POI Coverage Limit, d: The main
purpose of this experiment is to analyze how the total utility
of the system, the MCS provider utility, the user utility, the
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Fig. 4. Impact of the per-user POI coverage limit, d.

total payment paid out by the MCS provider, the number of
winning users and the POI coverage rate change under different
algorithms as the per-user POI coverage limit d varies. The
number of POIs is 6, and the number of users is n = 100. The
value of k; for each POI lies within the interval [50,150].

Fig. 4(a) shows the changes in the total utility of the sys-
tem. The total utility of OPT(p, M) continues to increase
because some users incur low costs across multiple POIs. For
the PostedPrice mechanism, total utility initially rises as each
user becomes capable of covering a broader range of POIs.
However, it subsequently declines. The reason for this is mainly
that the users who enter early cover too many POls, thus leaving
those who enter later with no tasks to perform. This situation
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is a tradeoff inherent to the PostedPrice mechanism, which
emphasizes truthfulness and online decision-making. Although
the total utility gap between PostedPrice and OMZ narrows
as d increases, PostedPrice still has the advantage. Under the
FixedPrice strategy, due to its low pricing policy, increasing d
yields a limited improvement in total utility.

Fig. 4(b) shows the MCS provider utility under the different
algorithms. The trend observed for the OPT (p, M) and Post-
edPrice mechanisms can be attributed to the same underlying
factors as those illustrated in Fig. 4(a). In contrast, the MCS
provider utility fluctuates under the OMZ algorithm because
of the multistage allocation process and algorithm threshold
restrictions.

Fig. 4(c) shows the results for user utility. The user utility of
OPT(p, M), PostedPrice and OMZ shows a trend of increasing
first and then decreasing. When d = 4, the user utility of all
algorithms begins to stabilize, as the coverage has approached
saturation, and increasing d can only lead to more intense
user competition and lower reward prices on POIs. Under the
FixedPrice algorithm, because the fixed reward prices are lower,
the users’ utility is also lower.

Fig. 4(d) shows the fees paid out by the MCS provider. The
trend observed for the OPT(p, M) and PostedPrice mecha-
nisms can be attributed to the same underlying factors as those
illustrated in Fig. 4(a). For the OMZ algorithm, as the number
of users increases, the threshold calculated by this algorithm
increases, causing the payment fee to gradually decrease. For the
FixedPrice algorithm, because the reward price offered for each
POl is fixed, the overall payment fee shows minimal changes.

Fig. 4(e) shows the differences in the number of winning users.
Both OPT(p, M) and PostedPrice result in the largest number
of winning users. This outcome demonstrates that setting reason-
able reward prices can significantly enhance market efficiency.
As the number of users entering OMZ is phased and only some
users can be selected in each round, the number of winning users
is not high. For the FixedPrice algorithm, the lower fixed reward
prices already result in a small number of winning users, and
thus, there is not much change.

Fig. 4(f) shows the results for the POI coverage rate. The
reason that OPT (p, M) does not achieve 100% coverage is
that each user can cover only the same POI once, and the
maximum value of k; that we set (i.e., 150) is insufficient to
fully cover all 100 users. Both OPT'(p, M) and PostedPrice
achieve high-level coverage. This result demonstrates that a
well-designed reward price vector, p*, can effectively drive the
market toward high-level coverage. In contrast, because the
FixedPrice algorithms inherently result in few winning users,
the task completion rate is also low.

Fig. 4(g) presents the heatmap of pricing across different
POIs. As shown in the figure, the price vector p* decreases. The
main reason for this is that the increase in d leads to more intense
competition among users, which reduces the reward price on
POIs. Specifically, in formula (25), auser’s utility is accumulated
across multiple POIs. As a result, under the same coverage level,
the right-hand side of formula (25) becomes larger when a user
performs multiple POIs compared to when they perform only
one.

The above results prove that the PostedPrice algorithm can
ensure high system performance and stability even with widely
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Fig. 5. Impact of the number of POIs, m.

varying limits d on the number of POIs that can be covered by
each user.

3) Impact of the Number of POIs m: In this experiment, we
further introduce 6 additional POIs to extend the evaluation.
The main purpose of this experiment is to analyze how the total
utility of the system, the MCS provider utility, the user utility,
the total payment paid out by the MCS provider, the number of
winning users and the POI coverage rate change under different
algorithms as the number of POIs in the MCS system vary. The
POI coverage limit for each user is d = 2, and the number of
users is n = 250. The value of k; for each POI lies within the
interval [30,70].
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Fig. 5(a) shows the changes in the total utility of the
system. OPT'(p, M) and PostedPrice achieve relatively high
total utility, which is consistent with our optimization objectives.
When m = 11, the total utilities of O PT(p, M), PostedPrice,
and OMZ begin to stabilize, as all users have been fully utilized
to execute POI tasks. In contrast, FixedPrice consistently yields
the lowest total utility due to its low-pricing strategy.

Fig. 5(b) shows the differences in the MCS provider utility.
For OPT(p, M), as the number of POIs increases, the MCS
provider utility continues to increase, which is due to the optimal
solution characteristics. For the PostedPrice mechanism, before
the number of POIs is 11, the MCS provider utility continues
to increase because the number of users is greater than the
number of tasks to be performed, and thus, a larger number
of users means greater utility. However, when the number of
POIs reaches 12, the MCS provider’s utility decreases because
the number of tasks to be performed exceeds the number of
users, causing the MCS provider to increase the reward price to
incentivize more users. Conversely, FixPrice adopts a low-price
strategy, which yields high MCS provider utility at the expense
of user utility. OMZ shows noticeable fluctuations, attributed
primarily to the threshold-based selection mechanism.

Fig. 5(c) shows the differences in user utility. For
OPT(p, M), PostedPrice and FixedPrice algorithms, as the
number of POIs increases, user utility tends to increase. The
reason for this is that when the number of users is fixed, in-
creasing the number of POIs means that more tasks need to
be performed, and thus, user utility increases. However, the
user utility of FixPrice is low and OMZ shows fluctuations,
the reasons for which are analyzed in Fig. 5(b). At the same
time, the experimental results show that both PostedPrice and
OPT(p, M) maintain a balanced utility between the MCS
provider and users, suggesting that a carefully selected reward
price vector p* can achieve a fair utility allocation in the market.

Fig. 5(d) shows the fees paid out by the MCS provider. As the
number of POIs increases, both OPT'(p, M) and PostedPrice
exhibit a corresponding growth. The initial increase is attributed
to users’ more active participation in MCS tasks, while the
subsequent growth is driven by the increase in the reward price
vector p*.

Fig. 5(e) shows the number of winning users. As the number
of POIs increases, both O PT'(p, M) and PostedPrice are able to
reach 250 winning users, indicating that a well-designed reward
vector, p*, can effectively incentivize broader user participation.
However, for the OMZ algorithm, the number of winning users
grows slowly due to the threshold-based selection mechanism. In
addition, FixedPrice fails to sufficiently incentivize users due to
its low-pricing strategy, resulting in a limited number of winning
users.

Fig. 5(f) shows the results for the POI coverage rate. Except
for FixedPrice, the coverage rates of the other three algorithms
exhibit a declining trend. The reason for this is that users’
coverage capacity in these algorithms has reached its limit,
while the number of coverable POIs continues to increase.
Both OPT(p, M) and PostedPrice are still able to maintain
the highest coverage levels. In contrast, the inherent design of
the FixedPrice mechanism restricts the number of winning users,
resulting in a lower overall task completion rate. For the OMZ
algorithm, achieving greater coverage remains challenging due
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to its multistage allocation strategy and threshold-based con-
straints.

Fig. 5(g) presents the heatmap of pricing across different
POIs. As shown in the figure, the reward prices remain stable at
the beginning. When m = 11, the reward prices start to increase.
The main reason for this is that the increase in the number
of POIs requires the MCS system provider to increase reward
prices to attract more users to perform tasks. This trend aligns
well with general market principles—when users are able to
fully cover all POIs, the market remains stable and no price
adjustment is necessary, but when POIs cannot be sufficiently
covered, the service provider raises the reward prices to increase
user participation.

The above results prove that the PostedPrice algorithm can
ensure high system performance and stability, even with a widely
varying number of POls.

VII. CONCLUSION

In practical applications, incorporating posted pricing theory
into MCSs is an innovative approach. This approach can avoid
the problems of low execution efficiency or unsatisfactory util-
ity optimization of traditional mechanism design and naturally
possesses the desired economic properties of mechanism design,
such as truthfulness and individual rationality. Theoretically, the
posted pricing mechanism proposed in this article allows MCS
providers to find a theoretical basis and calculation method for
reward pricing for data collection tasks and achieves total utility
within a provable lower bound. In experiments, we observed
that by setting reasonable reward prices, the posted pricing
mechanism improves the operating efficiency of the market
and achieves high utility for both the MCS provider and users.
However, the work presented in this article still has limitations.
For example, the mechanism currently relies on knowing the
cost information of all users, which is a heavy burden for
MCS providers. An effective improvement is to combine the
dynamic pricing method with the posted pricing mechanism to
determine the reward price in real time based on user information
and environmental conditions. This approach can improve the
execution efficiency and accuracy of task allocation. We will
address this issue in future research.
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