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CAMVA: An Extension Architecture of CNN
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Abstract—Autopilot vehicles integrate additional views to
capture comprehensive feature information, enhancing target
detection accuracy. However, this integration imposes a higher
computational burden on CNN accelerators in autopilot systems,
potentially increasing the response latency of autopilot systems. It
is a challenge for safety-critical autopilot systems. Traditionally,
researchers have addressed this challenge by employing complex
designs and processes to enhance the arithmetic capabilities
of chips. In contrast, the paper proposes a simple technology
that is an extension architecture of CNN accelerators for multi-
view acceleration (CAMVA). The extension architecture utilizes
the characteristic of multi-view approximation to enhance the
sparsity of input features and dynamically reuse the approxi-
mated feature extraction results, accelerating CNN accelerators.
This paper uses multi-view autonomous driving datasets (KITTI
and nuScenes) to create two tasks, and evaluates the impact of
CAMVA on 2D and 3D object detection networks by simulating
their data flows. Results of 2D experiments show that for 2D
object detection, the accuracy of the KITTI task decreases by
2.29%~4.26%, while that of the nuScenes task decreases by
0.37%~1.11%. For 3D object detection, the accuracy of the
KITTI task decreases by 1.97 % ~-0.22%. Then, the paper utilizes
the pruning operation of CAMVA to create two subtasks, which
are subsets of the KITTI with sparsity of 9.6% and 19.8%,
respectively. It evaluates the performance, energy consumption,
and RTL of CAMVA at the hardware architecture level based on
the two subtasks. The results show that CAMVA enhances the
performance of CNN accelerator by 1.04~1.08x and reduces
energy consumption by 4.23%~8.01% in the sparsity 9.6%
subtask; additionally, it improves performance by 1.13~1.34x
and decreases energy consumption by 14.13%~25.97% in the
sparsity 19.8% subtask. CAMVA increases CNN accelerator’s
area by a mere 0.75%.
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1. INTRODUCTION

UTOPILOT technology relies on perception systems

equipped with a target detection module to detect and
recognize objects in the surrounding environment accurately. In
autopilot companies, such as Tesla [1], Mobileye [2], and Fore-
sight [3], the target detection module comprises image feature
detection and image target detection. Image feature detection
extracts key features to reinforce the functioning of autopilot
systems, such as multisensor data fusion [4], autonomous nav-
igation [5]. Image target detection utilizes convolutional neural
networks (CNNs) to implement perception tasks, e.g. target
identification, road recognition, and decision making, ensuring
the safety and high efficiency of autopilot vehicles [6].

Target detection modules, as an essential component of au-
topilot perception systems, are transitioning from single-view
detection to multi-view detection to achieve superior perception
performance. Multi-view detection necessitates the integration
of multiple cameras capturing simultaneous images from di-
verse perspectives, thereby expanding the field of view and
enhancing detection accuracy. The increased camera numbers
result in a larger input data volume per unit of time, imposing
a significant computational burden on CNN accelerators in au-
topilot vehicles and potentially increasing the response latency
of autopilot systems. The presence of overlapping regions in
these data exhibits the characteristic of convolutional feature
approximation [7] and local feature approximation [8], leading
to a large number of redundant features across views. However,
most of the existing efficient techniques only utilize intra-view
redundancy features for acceleration, without considering inter-
view relationships, and cannot effectively address the latency
challenges posed by multi-view scenarios in autopilot systems.

Traditionally, researchers have endeavored to tackle this issue
of declining real-time performance of accelerators by enhancing
the computational power of CNN accelerators through complex
designs and processes, which are costly and not conducive to
rapid development. In contrast, the paper proposes an extension
architecture of CNN accelerators for multi-view acceleration
(CAMVA). It enhances the inference performance of CNN
accelerators [9], [10], [11] in multi-view scenes by pruning
approximate redundant input features and reusing results in
multi-view scenes without incurring additional overheads or
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Fig. 1.

The approximate relationships in multi-view.

requiring more expensive and power-consuming alternatives.
CNN accelerators are able to store such input features in a
suitable format [10] to facilitate the elimination of zero-valued
inputs. Additionally, the current mainstream multi-view match-
ing methods are designed for dual-view and may not be suitable
for multi-view. Therefore, the paper proposes a novel Multi-
View Dynamic Matching Algorithm (MVDMA) to accurately
match approximation regions in multi-view tasks with excellent
real-time performance.

The scale-invariant feature transform (SIFT) flow [8] is em-
ployed to demonstrate the approximation in multi-view. Specif-
ically, the SIFT flow is a technique that aligns an image with
other images and visualizes differences. Fig. 1 depicts the ap-
proximation relationship [12] between the two perspectives in
the KITTI dataset. Fig. 1(a) and 1(b) display the left view cap-
tured by the binocular camera and its corresponding visualized
SIFT descriptors [13], while (c) and (d) exhibit the right view
and its corresponding visualized SIFT descriptors. The visually
approximate regions between views are depicted with similar
colors in their visualized SIFT descriptors. Fig. 1(g) shows (c)
warped onto (a). Fig. 1(h) presents the estimated SIFT flow
field, which reflects the degree of dissimilarity between views.
Consequently, the variations in the SIFT flow field are stable,
and differences between views are negligible.

Our contributions to this work include the following:

1) We propose CAMVA, which accelerates inference and
saves energy by skipping unnecessary data access and
computation, reusing computed results, without compro-
mising detection accuracy. It benefits the reduction of
reaction latency in the autopilot systems.

2) We propose a multi-view dynamic matching algorithm,
which utilizes SIFT features to match approximate re-
gions in multi-view and provides metadata to CAMVA.

3) We evaluate the validity of reusing approximate results
in multi-view, showcase the impact of CAMVA on the
performance of the CNN accelerator, and demonstrate the
advantages of CAMVA in energy consumption and real-
time performance for end-to-end applications.

The rest of this paper is organized as follows. Section II

presents background and motivation. Section III discusses the
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algorithms for CAMVA, including the SIFT algorithm, multi-
view dynamic matching algorithm, pruning strategy, dynamic
feature restoration strategy, and error correction strategy. Sec-
tion IV discusses the architecture for CAMVA in the CNN
accelerator, data flow, and feature restoration. Section V de-
scribes the experimental methods. Section VI describes the
experimental results. Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

The paper is based on two research fields: multi-view align-
ment and convolutional neural network (CNN) accelerators.

A. Multi-View Alignment

Multi-view is a crucial research direction in computer vision,
robotics, and autopilot. It utilizes multiple viewpoints or sensors
to capture objects or scenes information and has a broad range
of applications, such as image alignment [14].

Image alignment is a fundamental technique and a central
topic in computer vision. It is commonly employed to in-
vestigate various tasks, including image-stitching [15], stereo
matching [16]. In the past, traditional approaches for matching
views relied on techniques such as phase [17], filter banks [18],
and gradient analysis [19]. However, these techniques often
yield unreliable results when confronted with rapidly changing
images. Nowadays, researchers widely realize the significance
of intermediate-level representations in image alignment. These
include SIFT [13], shape context [20], and histograms of ori-
ented gradients [21], which capture significant differences be-
tween images and have proven effective in various applications.
The two types of intermediate-level representations are dense
and sparse representations, respectively. Dense representations
establish correspondences at the pixel level, such as optical
flow for motion analysis and differential fields for stereo vision.
Sparse representations establish correspondences at the feature
level using techniques like Harris [22] and SIFT [8], effectively
identifying local or global image approximations.

The SIFT algorithm extracts scale, rotation, and illumination
invariant features extensively used in diverse autopilot systems.
Therefore, the paper utilizes SIFT features as the matching
feature for MVDMA. Considering the high computation and
energy consumption of the SIFT algorithm, autopilot vehicles
employ SIFT accelerators [23], [24] to reduce costs in extract-
ing these features from input images.

B. CNN Accelerator

In autopilot systems, the strategy of using multiple cameras
not only helps compensate for data degradation and feature
insufficiency problems that occur during target detection but
also effectively tackles common challenges in the real world,
such as target occlusion and depth perception. However, the
current multi-view technique has a fundamental drawback in
the form of duplicate approximation regions between multiple
views. These regions are redundantly processed multiple times
during image rendering and target detection, resulting in a
significant computational burden on both the image rendering
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module and target detection module of autopilot vehicles. Fur-
thermore, as the number of views increases, the time required
for image rendering and target detection increases linearly, lead-
ing to higher reaction latency for autopilot vehicles with strict
safety requirements. Many researchers have investigated skip-
ping these overlapping regions to avoid repeatedly rendering
them during multi-view rendering. Inspired by this research,
this paper focuses on approximating computations for the target
detection module in multi-view autopilot systems to effectively
skip redundant computation and improve system efficiency.

Target detection neural networks typically employ approx-
imate computing techniques, such as quantization methods,
weight approximation, and computational reuse, to improve
inference performance. However, due to limitations in com-
putational power and energy consumption of embedded sys-
tems, researchers often design specific CNN accelerators for
different approximate computing techniques. Based on the good
fault-tolerance property of CNN [25], quantization accelerators
use low-bit data for approximate computation to enhance the
performance of inference and training while reducing storage
and transmission costs. For example, Jung et al. [26] proposed
a quantizer that accelerates computation and compresses the
model with an accuracy comparable to that of a full-precision
network. Sparse accelerators utilize skipping invalid computa-
tion techniques to improve inference performance and reduce
energy consumption. The skipping operations can be divided
into two types: feature skipping which compresses zero values
in input features to reduce data accesses and computations; and
weight skipping which avoids loading parameters with zero
weights into processing element (PE) arrays to reduce data
accesses and computations. For example, Cnvlutin [9] utilizes
sparsity in the input feature to improve the performance of
accelerators. Reuse accelerators focus on data reuse to improve
CNN inference performance and reduce energy consumption
by reusing features or sharing weights among PEs. Eyeriss
[27] achieves efficient convolutional computation by reusing
features across multiple layers.

The techniques effectively enhance CNN inference perfor-
mance and save energy. However, further exploration of the
multi-view potential for improving CNN inference performance
is necessary to address latency challenges in multi-view ap-
plications. This paper deeply explores redundancy characteris-
tics in multi-view target detection using approximate comput-
ing techniques and proposes an extension architecture that is
compatible with high-efficiency techniques and applicable to
multi-view scenarios without affecting the operation mode of
existing CNN accelerators. CAMVA is not a standalone accel-
erator but an extension architecture of CNN accelerators that
can accelerate ones supporting one-sided sparse input, reducing
computational and data access overheads.

III. ALGORITHM FOR CAMVA

This section describes the algorithm for providing meta-
data to CAMVA based on the execution flow. First, the SIFT
algorithm extracts view features. Then, the meta_process_unit
(MPU) uses the Multi-View Dynamic Matching Algorithm
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Fig. 2. The correlation of 7" and SIFT features in the autopilot datasets.

(MVDMA) to match views, construct macroblocks, and prune
macroblock features. Finally, CAMVA restores features with
error correction using metadata to accelerate CNN inference.

A. SIFT Algorithm

The scale-invariant feature transfor (SIFT) algorithm extracts
SIFT features, which exhibit a notable degree of robustness
against variations in viewpoint, affine transformations, and
noise, rendering the algorithm one of the most dependable
techniques for extracting image features [28].

After SIFT feature extraction, the SIFT features are matched
using Lowe’s ratio test [13], with the hyperparameter 71" being
set. T" denotes the Euclidean distance ratio between the nearest
and the next closest matched key points [29], which determines
the matching quality. To investigate the correlation between T’
and the autopilot datasets (KITTI and nuScenes), RANSAC
[30] is employed to distinguish between the correct and error-
matched features, using Numcorrect and Nume,,.or to repre-
sent their respective quantities. Eq. (1):

Numcorrect - Numerror
Matching_Trends =

total_matches (M
represents the normalized discrepancy between the correct and
error-matched features, which assesses the relative matching ac-
curacy in a set of features. Fig. 2(a) depicts the matching trends
for different values of 7" on KITTI and nuScenes. Fig. 2(b)
displays the difference between the correct and error-matched
features, denoted as Diff, for various values of 7" in KITTI
and nuScenes. The experimental results show that both datasets
have higher correct matching rates and more matching features
for T'= 0.54 and 0.597, respectively.

SIFT features exhibit remarkable capabilities in feature rep-
resentation, but their computational overhead cannot be over-
looked. Therefore, the autopilot perception system employs
SIFT accelerators to reduce the computational overhead of ex-
tracting SIFT features, with the features then stored in memory
[31], [32].

B. Multi-View Dynamic Matching Algorithm

The Multi-View Dynamic Matching Algorithm (MVDMA)
based on SIFT features consists of two components: matching
multi-view and constructing approximate regions.
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Algorithm 1 Multi-view Matching Features Algorithm
inpput: MMVSet = {MV;2,...MV,.1 1}
output: multiview_match_features

1: Initialize empty match list m_list < ()

2: for each MV, € MMVSet do

3 for each fpi: (fpvk: fPor1,k) € MV, do

4 matched < False

5: for each existing set S € m_list do
6: if fp,r €S or fp,411 €S then
7.
8
9

S < SU{fPoks [Po+1,k}
matched < True

if not matched then

10: m_list <~ m_list U{{fpv i, [Dv+1.k}}

11: for each M'V,, € MMVSet and MV, !=MV,, do
12: for each (fp), 1, fpy1) € MV, do

13: for each S € m_list do

14: if fp,, €Sor fp, ;€S then

15: S SU{LSD ko [Pt

16: Construct multiview_matches_features from m_list
17: return multiview_matches_features

1) Matching Multi-View: Multi-view matching refers to
matching features across two or more views. The paper pro-
poses a multi-view matching algorithm based on the SIFT fea-
ture to address the issue. Algorithm 1 describes the multi-view
matching process.

Firstly, Algorithm 1 loads SIFT features of each view from
memory and builds the matched features groups in multi-view,
denoted as MMV Set = {{MV1 2, MVs3, ..., MV,,_1,}, n
= views number}, where MV; ;11 ={{fpo. fr1, ..., fPm},
m=features number} represents the matched features group
between view; and view; 1.

fpm= (fDi,m: fPi+1,m) represents the matched relationship
between the feature m in wview; and its matched feature m
in view;y1. fp;,m contains 128-dimensional features and the
coordinates (z, y) of m in view;.

Secondly, Algorithm 1 establishes the matching relationship
between views and features by utilizing matched features within
MMV Set to generate a table (multiview_match_features
(mmf)). mmf represents matched features groups in multi-
view, categorized as complete or incomplete. A complete group
means each feature has matches in every view, while an in-
complete group means each feature only has matches in some
views. Fig. 3 shows an example of matched features in three
views (view,, viewy, and view,.). Table I depicts the matched
relationship between views and features in mmf. fpg repre-
sents a group of complete matched features (underlined), while
fpi (i=1,2,3,4,5) represents a group of incomplete matched
features.

2) Constructing Approximate Regions: The discreteness of
SIFT features presents a challenge for CNN in extracting valu-
able information. To address this, the paper proposes an approx-
imate region construction method inspired by image stitching
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The example of matched features in three views.

Fig. 3.

TABLE 1
THE EXAMPLE OF MULTIVIEW_MATCH_FEATURES
fpi fre  fps  fpa  fps  fpe
viewg  fai fas  faz - - faq
view,  fb1 fba  fbs  fbs  fbs  fbe
viewe - - - fer fea fes

[15], which involves clustering and transforming the SIFT fea-
tures into macroblock (MB) features.

Clustering The paper applies the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) algorithm [33] to
cluster features in each view, overcoming the challenge of ex-
tracting valuable information from the discreteness of SIFT fea-
tures. The algorithm is an efficient unsupervised machine learn-
ing technique that assumes close spatial connectivity among
samples of the same category [34]. It has a time complexity
of O (nlogn) and does not require pre-setting the number of
clusters, making it suitable for dense datasets of any shape. The
clustered objects within a view consist of SIFT features in the
same category. These clusters exhibit consistent matches with
their corresponding SIFT features in multi-view. This aligns
with the concept proposed in this paper for constructing ap-
proximate regions based on SIFT features. For example, the
clustering in Table I results in {fp1, fp2, fps}, {fpe. f05}
and { fpe}. The performance of DBSCAN is influenced by two
crucial parameters: minPts and epsilon, which represent the
minimum number of data points required for a core point in its
neighborhood and the radius size used to define a data point’s
neighborhood, respectively. Appropriate parameters are chosen
based on the dataset, and this paper utilizes methods [34], [35]
to determine these parameters.

Constructing The clustered objects constructed by the clus-
tered SIFT features are approximately [7], and the paper uses
bounding_boxes, i.e., MBs, to mask the features in the clus-
tered. This conversion transforms the matched relationship
of features into that of MBs. The location of MB is deter-
mined by clustering features (FP°={fpS 1, Py 2> - - - [Py >
c¢={1,2,...,n}, m=features number, n=clusters number),
where ¢ denotes the index of the clustered object, and the min-
imum and maximum z and y coordinates are selected to calcu-
late its width (W = Ty — Timin), height (b = Ymaz — Ymin)s
and center coordinates (3 (Zmaz + Tmin), 5 (Ymaz + Ymin))-

C. Pruning of Redundant Macroblocks Strategy

This subsection proposes a redundant macroblocks prun-
ing strategy to enhance the sparsity of multi-view inputs.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 02,2026 at 13:43:17 UTC from |IEEE Xplore. Restrictions apply.



CHEN et al.: CAMVA: EXTENSION ARCHITECTURE OF CNN ACCELERATORS

Fig. 4.

The results of three different pruning strategy.

The set of matched macroblocks retains one specific mac-
roblock, referred to as the retention macroblock (RTMB), while
the remaining macroblocks are designated as redundant mac-
roblocks (RDMBs) and undergo feature pruning. The pruning
strategy is crucial in the study as it can conserve more re-
sources. Therefore, the study evaluates three pruning strate-
gies: Round-Robin strategy (RR_S), Load-Balancing strategy
(LB_S), and Maximum-Approximate-Region-Retention strat-
egy (MARR_S) using FasterRCNN on the KITTI dataset.

RR_S allocates RTMB and RDMB in each group of matched
MBs based on the index of view using a Round-Robin approach,
as illustrated in Fig. 4(a). This strategy guarantees that the num-
ber of RTMBs is evenly distributed across all views. LB_S aims
to minimize the discrepancy in the total area of pruned RDMBs
across different views, as illustrated in Fig. 4(b). This strategy
ensures equitable computational cost distribution among views,
optimizing resource utilization. MARR_S selects the matched
MB with the largest area in a set of matched MBs as RTMB, as
illustrated in Fig. 4(c). This strategy preserves the most features
within each matched MB group, facilitating feature extraction
and restoration.

The paper uses the raw results as the baseline (normalized:
1, mAP: 70.41%) to assess the impact of the three strategies
on the performance and accuracy of FasterRCNN, respectively.
Compared with the baseline, the normalized performance and
accuracy of the three strategies are RR_S (0.91, 68.11%),
LB_S (0.96, 67.59%), and MARR_S (1.26, 62.22%). MARR_S
demonstrates a significant performance improvement but lower
accuracy, whereas RR_S and LB_S exhibit good accuracy but
minimal performance improvements compared to the raw re-
sults. Two factors contribute to this phenomenon. Firstly, in
RR_S and LB_S, the restoration operation for partially matched
MBs is triggered prematurely, hindering the computation re-
duction. Secondly, the larger area of RDMBs compared to
RTMBs leads to additional interpolation computations during
restoration, resulting in increased computational overhead. In
contrast, MARR_S avoids restoring any RDMB feature ex-
traction results in advance, and the RTMB feature extraction
results only restore the RDMB feature extraction results through
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downsampling to avoid extra computational overhead. There-
fore, CAMVA using MARR_S can effectively accelerate CNN
accelerators.

D. Dynamic Feature Restoration Strategy

The MARR_S can prune RDMB features in multi-views to
enhance input sparse features, accelerating CNN accelerator
inference performance. However, the pruning may result in
missing certain features, particularly RDMB feature extraction
results. To accelerate the CNN accelerator without affecting
detection accuracy, two methods can be used: static restoration
and dynamic restoration to restore the missing features. Static
restoration refers to reusing the RTMB! feature extraction re-
sults in the specified neural network layer under static configu-
ration to restore all matching RDMB! feature extraction results.
Dynamic restoration refers to reusing the RTMB! feature extrac-
tion results under specific conditions, and dynamically restoring
each RDMB feature extraction result in each group of matching
macroblocks on the optimal neural network layer (conv;), where
i={1,2,...,n} and n is the number of convolutional layers. The
layer responsible for the feature restoration is called the feature
restoration layer.

In previous research, EVA? [36] selected the final convolu-
tional layer of CNN as the optimal feature restoration layer for
reconstructing other input features. The static method may give
rise to two restoration cases in this paper when restoring missing
features. 1) The restoration results do not accurately represent
the RDMB feature extraction results due to the delayed restora-
tion. 2) The premature restoration of the RDMB feature ex-
traction results leads to suboptimal performance enhancement.
The reason is that the dimensions of RDMBs in each group of
matched macroblocks vary, and a uniform static configuration
cannot fit all RDBMs. Therefore, the static method is unsuitable
for the proposed approach.

In light of this, the paper proposes a dynamic feature restora-
tion strategy that assesses the correlation between the dimen-
sions of RDMBs in the input of each CNN layer and the
dimensions of filters in corresponding layers. Based on this
correlation, an optimal feature restoration layer is selected for
each RDMB in the CNN. The strategy utilizes RTMB feature
extraction results to restore matched RDMB feature extraction
results in other views, achieving superior performance enhance-
ment with minimal accuracy impact. Specifically, the dynamic
feature restoration strategy assesses the correlation between the
dimensions of the RDMBiV,1 (cd, Wq, hq) of view, at the con-
volutional layer (conv;) and the dimension of the filter; 1 (ck,
wy, hy) at the subsequent convolutional layer (conviyi). If wg
<wy or hy <hy, it indicates that the RDMBiV feature extraction
results will be integrated with its neighboring features, leading
to the loss of independence of the RDMB!, feature extraction
results in convi; . The judgment condition triggers a critical
case to restore the RDMB!, feature extraction results. Fig. 5
illustrates the dual-view triggered feature restoration mecha-
nism. View, and view,, contain macroblock pairs {RDMB, i,
RTMB,,} and {RDMBy,;, RTMB,,} respectively. After pro-
cessing through the (i-1)-th convolutional layer (convj ), both
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Fig. 5. An example of the dynamic feature restoration in two views.

views yield output features with dimensions (C,13,13). The
matched macroblock pairs are defined as MB;={RDMB] ,,
RTMB] ,} and MB,={RTMB! ,, RDMB} ,}. Following pro-
cessing by conv;, the output dimensions for each macroblock
are: RDMB;’] (C,2,2), RTMB;{L2 (C,6,0), RTMB{,,1 (C/4,4), and
RDMB{,,2 (C.9,9). The dynamic feature restoration strategy
evaluates the dimensional compatibility between macroblocks
and filter;;, determining that only RDMB:Q1 triggers fea-
ture restoration due to sufficient dimensional matching, while
RDMBE;1 fails to trigger due to inadequate dimensional com-
patibility. Thus, conv;, ; is the optimal feature restoration
layer for RDMB, ;, enabling dynamic feature reconstruction for
pruned macroblocks.

The dynamic feature restoration strategy is suitable for the
study because MARR_S retains the largest macroblock, RTMB,
among a group of matched macroblocks. MARR_S enables
the dynamic feature restoration strategy to reuse the RTMB
feature extraction results in a down-sampling manner to re-
store the RDMB feature extraction results, achieving optimal
performance enhancement while minimizing accuracy degra-
dation. Each RDMB has its own optimal feature restoration
layer, except for cases where the dimension change magnitude
fails to trigger the restoration strategy. In such cases, the last
convolutional layer serves as the default restoration layer.

E. Error Correction Strategy

The dynamic feature restoration strategy detects changes in
the dimensions of RDMBs and reuses the matching RTMB fea-
tures to restore the RDMB features based on the judgment con-
dition of feature restoration dynamically. This approach restores
the missing features while disregarding the errors introduced by
edge features, which need to be promptly corrected, otherwise
they will have a detrimental impact on target detection accuracy.
Edge features denote the outputs obtained after processing input
features, including general and RDMB features, through feature
extraction. General features encompass those other than RDMB
features in the input. To address this issue, the paper proposes
an operation for correcting edge feature errors. Specifically,
the downsampling of the RTMB feature extraction unaccumu-
lated multiplication results (feature x weight) is then utilized to
correct the RDMB edge feature errors based on the correlation
between RTMB and RDMB during the inference process.
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Fig. 6.  An example of the edge feature error correction.

Fig. 6 illustrates an example of edge feature error correction.
Fig. 6(a)—(1) and (2) represent the left and right views, respec-
tively. In the left view, the solid red box represents RTMB, and
its partial features are displayed in Fig. 6(c)—(1). In the right
view, the solid red box represents RDMB, and its partial fea-
tures are displayed in Fig. 6(c)—(2). Fig. 6(b) shows magnified
key regions (dashed red boxes) and utilizes a 2 x 2 filter (yellow
boxes) to extract features. Fig. 6(c) depicts the edge feature
extraction operation in both views. Fig. 6(c)—(1) shows the fea-
ture extraction operation on an input that includes general and
RTMB features, resulting in a feature extraction result of 60.
Fig. 6(c)—(2) illustrates the edge feature extraction operation,
which is represented by the intersection area of yellow and red
boxes, where the input consists of general and pruned RDMB
features, leading to a feature extraction result of 33.8. The data
enclosed in parentheses represent the RDMB features prior to
pruning in Fig. 6(c)—(2). In the example, the same computation
method is used to demonstrate the error caused by pruning.
Before pruning, the features extracted from the input of the
right view produce a result of 61.1. In this case, feature (9) at
coordinates (2,2) in the left view matches with feature (9.1) at
coordinates (2,2) in the right view. The error between features
before and after pruning is 27.3, indicating a significant error
between matched feature extraction results in pruned views. The
example reuses the multiplication result (27) of feature (9) in
the left view coordinates (2,2) to correct the result of the pruned
feature in the right view coordinates (2,2), avoiding adversely
affecting subsequent inference. After correction, the feature
extraction result is 60.8 with an error rate of only 0.4%. This
subsection demonstrates the effective error correction capability
of the operation for edge features discussed in Section IV-C
regarding its hardware implementation.

IV. ARCHITECTURE FOR CAMVA

This section presents the CAMVA workflow in pseudocode
(Algorithm 2), with subsequent subsections providing detailed
explanations of its functionality. As an extended architecture
for accelerating multi-view tasks in CNN accelerators, CAMVA
dynamically restores pruned approximate feature extraction
results across multiple views, thereby accelerating multi-view
inference without compromising accuracy. The implementation
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Algorithm 2 CAMVA-CNN Accelerator with Feature Pruning
inpput: meta_data(static, dynamic), features
output: Skipping computation and restoring features
1: Meta_Fetcher loads meta_data during weight loading
: CAMVA updates (mbi, mmi,ri) via trigger mechanism
: Loading features from HBM by filter size
. Classify features: {GENERIC, RDMB}
FC_Q1 + Push feature values
FC_Q2 + Push type codes (1:GENERIC, 0:RDMB)
: mixed_buffer +— {FC_Q1[i] | FC_Q2[i] =1}
: PE Array extracts feature maps
- if FC_Q1l.len == count(FC_Q2,1) then
No-skip computation
. else if count(FC_Q2,1) == 0 then
Complete-skip computation
Reuse Intermediate reuslts and restore features
14: else
15: Incomplete-skip computation
16: Reuse Intermediate reuslts and restore features

— o ks
w2

of CAMVA within a CNN accelerator [10] is illustrated in
Fig. 7.

A. Metadata

The CAMVA metadata is divided into static and dynamic
data. Static data refer to the structured data of each CNN layer,
such as filter size and strides, which are written into the static
data table (base_info (b¢)) during compilation time. Dynamic
data refer to the macroblock (MB) data of each view, including
the size, properties, and multi-view matching relationship of the
MB in each layer, which are generated by meta_product_unit
(MPU). Dynamic data tables (multiview_boundingbox_info
(mbi), multiview_match_info (mmi), rtmb_info (r7)) are writ-
ten when weights are updated. Note that the MB size may
change after extracting features.

MPU and CAMVA present the producer-consumer strategy.
As a metadata producer, MPU efficiently writes dynamic data
into the meta_buffer using Direct Memory Access (DMA)
technology. As a consumer, CAMVA uses the meta_fetcher
to retrieve data from the meta_buffer based on address index

CAMVA: An extension architecture of the CNN accelerator for multi-view accelerations.

and then updates the dynamic data table using the macroblock
unique identifier (mb_uid). CAMVA employs a trigger mech-
anism to update metadata, which is activated when the cur-
rent layer is computed and weight_fetcher is ready to load
weights for the next layer. The metadata update occurs during
weight loading without requiring additional clock cycles. The
meta_buffer, introduced by CAMVA, is additional storage and
a component of the global buffer.

MPU generates metadata in the following steps. Firstly, it
loads SIFT features from DRAM using SIFT-specific accelera-
tors (SSAs). Then, it matches the features across multiple views
using Algorithm 1 to establish view-feature relationships. Next,
it clusters the features of each view using DBSCAN and creates
a MB for each cluster. Fourthly, it establishes view-MB relation-
ships based on the view-feature relationships, resulting in mmi
formation. Additionally, it creates a boundingbox_info (bbz) for
each view by mapping internal and external storage addresses.
The tables form mbi in multi-view. Each bbi contains param-
eters such as mb_index, mb_uid, start_addr, w_t, h_t, interval,
and mode representing row index, macroblock unique identifi-
cation, start address of macroblock features, width, height, fea-
ture address interval, and mode respectively. Finally, MARR_S
is utilized to identify RTMBs within the group of matched
MBs and record their corresponding mb_uids in 4. This allows
retrieval of RTMB’s mb_uid from the matched MB group. The
method is implemented in this paper to evaluate MPU perfor-
mance on multi-view autopilot datasets at various sizes. The
running time (RT) denotes the time cost of MPU to process one
frame, and the frame rate (FR) represents the number of images
processed by MPU per second. FR is calculated using Eq. (2):

1
FR=— Xxn,

BT @

where n refers to the number of cameras involved in multi-view
tasks. The evaluation results are presented in Table II.
CAMVA consumes metadata from the meta_buffer and up-
dates the dynamic data table by loading the MB information of
each view into mbi, the matched MB information of each group
into mm¢, and the mb_uid of RTMB into ri. After computing
layer feature extraction, certain data in the dynamic data table,
such as MB size, interval, and MB index, may become outdated.
Updating the MB index is crucial because RDBMs’ indexes
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TABLE 1T
THE FR AND RT OF MPU FOR VARIOUS IMAGE SIZES

Image size KITTI (binocular cameras) | nuScenes (six cameras)

= RT (ms) FR (fps) RT (ms) FR (fps)
600X 600 14.8 135.14 5.02 1195.22
300x300 5.21 383.88 2.82 2127.66
416x416 9.02 221.73 3.88 1546.39
640640 14.73 135.78 5.28 1136.36

are invalidated due to feature restoration of RDMBs after layer
computation. Therefore, it is necessary to remove outdated MB
information from mbi to reduce memory storage and access
overhead for dynamic data tables.

B. Dataflow

The CAMVA-equipped CNN accelerator loads features from
High Bandwidth Memory (HBM) according to the filter; size
(¢ X w x h) in conv;. The CAMVA triage module identifies the
input feature type based on the matching relationship between
MBs in mma, the mb_uid of RTMB in 7¢ and the address range
of each MB feature in bbi. The input feature types are divided
into general features, RTMB features and RDMB features. The
general and RDMB features constitute the entirety of the view.
The RTMB features are contained in the general features and
match with other views RDMB features. CAMVA prunes the
input features, i.e. input_fetcher prefetches the general features
involved in the computation from HBM into FC_Q1 by fea-
ture type and address. FC_Q1 stores the general features and
the placeholder “0” @ that replaces the RDMB feature. The
CAMVA feature module encodes the feature types in FC_Q1
with binary encoding, where “1” denotes general features, “0”
denotes RDMB features, and the results are stored in FC_Q2 @.
The CAMVA-equipped CNN accelerator stores input features,
such as the Zero-Free Neuron Array format (ZFNAf) [9], in a
suitable format based on the data and indexes in FC_Q1 and
FC_Q2 to reduce the computational overhead. The CAMVA
feature module writes the general features, represented by “1”,
into the mixed_buffer while skipping over the placeholders
“0” associated with RDMB features using an index offsetting
method @. The FC_Q1, FC_Q2, mixed_buffer, introduced by
CAMVA, are additional storage and a part of the global buffer.
Additionally, if the input features contain RTMB features, the
extraction results are written to the on-chip buffer. The type of
computation processed by the PE array in the CNN accelerator
is determined by CAMVA based on the encoding results in
FC_Q2 @. The computations encompass three types, which are
illustrated in Fig. 8.

No-skip computation The type indicates that the input features
are general and stored in FC_QI1, while their binary codes
are stored in FC_Q2. All features from FC_Q1 are written to
mixed_buffer. In the no-skip computation, these general fea-
tures are involved in feature extraction. Fig. 8(a) illustrates the
data flow for the no-skip computation.

Incomplete-skip computation The type indicates that the input
consists of both general and RDMB features, where RDMB
features are represented by “0” placeholders and are stored
in FC_QI1. After binary encoding, the encoded general and
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RDMB features are stored as “1” and “0” in FC_Q2, re-
spectively. Therefore, the CAMVA-equipped CNN accelerator
stores the general features in a suitable format (e.g., ZFNAf) in
mixed_buffer based on the features in FC_Q1 and the feature
types in FC_Q2, thereby skipping zero-valued inputs computa-
tion by PE arrays. Fig. 8(b) depicts the data flow for incomplete-
skip computation.

Complete-skip computation The type indicates that the input
features are the RDMB features (wxh), and the placeholders
are used to replace the RDMB features. These placeholders are
stored in FC_Q1. After undergoing binary encoding, the binary
codes are stored FC_Q2. Consequently, during the complete-
skip computation, the RDMB features are not involved in any
computations. The CAMVA controls the pointer to skip w x
h placeholders by index, and these placeholders do not occupy
any computation cycles in PE arrays. Fig. 8(c) depicts the data
flow for the complete-skip computation. Section IV-C describes
the hardware architecture in detail regarding the restoration of
the RDMB feature extraction results.

Consequently, CAMVA improves the performance of the
CNN accelerator by pruning the RDMB features so that the
CNN accelerator, which supports the data flow optimization
method for one-sided sparse feature maps [9], [37], can skip
the computation of approximate redundant features in multi-
view without affecting the normal pipeline execution. However,
to mitigate the impact of pruning on target detection accuracy,
CAMVA dynamically restores the RDMB feature extraction
results based on filter and MB sizes using the RTMB feature
extraction results.

C. Feature Restoration

Feature restoration consists of three parts: 1) retrieving the
matched features, 2) correcting the edge feature errors in real-
time, and 3) restoring the RDMB features.

1) Retrieving the matched features: Feature restoration
hinges on fast and accurate reuse of RTMB features while max-
imizing CNN accelerator speedup. CAMVA employs down-
sampling to load RTMB features matching RDMB features
from memory based on MARR_S, with the downsampling in-
terval calculated from the matched MB size. For instance, to
restore RDMB features in view,, using RTMB features in view,,,
assuming their sizes are (C,w,h,) and (C,wg,hg), respectively,
the interval is computed as Eq. (3):
interval,, = ﬂ, intervaly, = E 3)

wq ha
RTMB features are stored in the row-major order, with each
row stored consecutively. Therefore, CAMVA is capable of ex-
tracting RTMB features from memory that approximate RDMB
features at regular intervals of k elements, where k=m X
intervalp+n x interval,,(n €[0,wq-11, me[0,hq-1]).

The steps of feature retrieving and matching between MBs
in CAMVA are as follows. Firstly, CAMVA retrieves the bbi of
view, from the mbi. Secondly, the mb_uid of the loaded fea-
ture’s corresponding MB in view, can be deduced by referenc-
ing the MB feature address range from bb:. Thirdly, using the
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Fig. 8.

mb_uid of RDMB in view,, CAMVA determines the matched
RTMB’s mb_uid in viewy,, based on the mmz. Subsequently,
based on the mb_uid of the RTMB in view,,, CAMVA deter-
mines the address range of RTMB features from bbi. Finally,
CAMVA extracts RTMB results that match RDMB results ac-
cording to the interval.

2) Correcting the edge feature errors: The CAMVA-
equipped CNN accelerator loads input features from the HBM
and performs the incomplete-skip computation. The input fea-
tures consist of the general and RDMB features. The output
features comprise edge features. In the incomplete-skip com-
putation, the RDMB features are not involved in the feature
extraction, which makes the edge features have errors compared
to the actual results. However, these errors must be corrected
to minimize the pruning operation impact on the detection
accuracy. To bridge these errors, two modules are proposed: the
loading RTMB features module (LF module) and reusing the
extraction results module (RR module) to accommodate diverse
cases of edge feature restoration.

LF module In the incomplete-skip computation, RDMB fea-
tures are involved in feature extraction before the matched
RTMB features, which means CAMVA cannot reuse the RTMB
feature extraction results to correct errors in the edge features.
The reason is the absence of on-chip memory-stored RTMB
feature extraction results that approximate the RDMB feature
extraction results. To address the issue, CAMVA employs the
LF module to load RTMB features from other views that match
pruned RDMB features into the computation process. Specif-
ically, the CAMVA-equipped CNN accelerator loads general
features into PE arrays from memory and uses the LF module to
load matching RTMB features into PE arrays. Then, the RTMB
feature extraction results are stored in the on-chip buffer during
the feature extraction. The method corrects errors and facilitates
an accumulative construction of the RTMB feature extraction
results group in the on-chip buffer. The RTMB features can be
reused multiple times by the RR module after being computed
once.

RR module In the incomplete-skip computation, RTMB fea-
tures are extracted before the matched RDMB features. General
features are also computed. The pruned RDMB features do not
require the LF module to load the matching RTMB features for
computation but can directly access and reuse the RTMB fea-
ture extraction results from the on-chip buffer. The RR module
retrieves the feature address range of each RTMB in mb: to

()

The three computations types in the CAMVA-equipped CNN accelerator. The yellow box denotes the filter. The red and blue boxes denote macroblocks.

determine matching RTMB features with the RDMB features,
followed by retrieving addresses for matching RTMB feature
extraction results based on the address mapping relationship
in the memory controller. The results are accumulated in the
accumulator after being extracted by PE arrays; otherwise, the
RR module invokes the LF module.

Fig. 9 illustrates a simplified example of error restoration
for incomplete-skip computation in two views (view,, viewy).
Fig. 9(a) shows edge feature extraction in a CAMVA-equipped
CNN accelerator with RTMB features (instead of RDMBs),
while Fig. 9(b) shows the error between restored and actual
edge features via RTMB result reuse. Red boxes in Fig. 9(a)—(1)
and 9(b)—(1) denote RTMB; of view, and matching RDMB;
of view,, respectively; yellow matrix boxes represent filters.
Input features are shown in Fig. 9(a)-(2) and 9(b)—(2), with
black boxes indicating computation-involved features. For fea-
ture extraction of view, before view, in Fig. 9(a)—(3): First,
the accelerator loads view, general features (1.2, 3.8) @ and
RTMB; features (3, 12) matched to view,’s RDMB; @ into
the on-chip buffer, extracting the results of edge features in the
PE array ®. Second, the results (9, 2.4, 12, 15.2) are stored in
the intermediate result buffer (IM buffer), while the accumu-
lator performs feature accumulation and outputs to the output
buffer. The IM buffer operates as an on-chip buffer without
occupying additional PE array storage space. When feature
reuse is required, CAMVA implicitly retrieves data from the
global buffer to the on-chip buffer through the feature loading
process. Third, for view, feature extraction, since (3, 12) are
precomputed, CAMVA controls the input fetcher to load the
remaining features (1, 4) @ for PE array computation ®, storing
results in the IM buffer and triggering RTMB reuse ®. Finally,
the accumulator outputs the accumulated features. For feature
extraction of view, before viewy, in Fig. 9(b)—(3): The CAMVA-
equipped CNN accelerator first loads view, general features (3,
1, 12, 4) @ for PE array extraction @, storing results (9, 2, 12,
16) in the IM buffer. Next, for view,, CAMVA loads general
features (1.2, 3.8) @, computes (2.4, 15.2) in the PE array @,
and stores them in the IM buffer. Finally, CAMVA reuses results
(9, 12) and the accumulator accumulates the results (9, 2.4, 12,
15.2) for output.

3) Restoring the RDMB features: The CAMVA-equipped
CNN accelerator loads input features from HBM, where the
addresses of RDMB within the input features exhibit conti-
nuity and regularity. By exploiting these characteristics, the
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Fig. 9. A simple example of errors restoration. (a) Load RTMB features. (b) Reuse RTMB feature extraction results.

CAMVA-equipped CNN accelerator enables complete-skip
computation of RDMB features, reducing computational and
memory access overhead associated with inference. However,
the complete-skip computation results in missing representa-
tions for RDMB feature extraction in the output, potentially
compromising detection accuracy. Unlike edge features, which
have errors that need to be restored after each feature extrac-
tion, RDMB features retain their ability to represent themselves
across successive convolutional layers until they lose indepen-
dence. Feature restoration is necessary before complete loss of
independence occurs, a crucial case proposed in Section III-D.
The compare (CMP) module of CAMVA assesses the dimen-
sion relationship between RDMBs and filters to identify critical
cases for each RDMB and determine the corresponding feature
restoration layer. Upon being triggered by an RDMB for each
critical case, CAMVA utilizes both the LF module and RR
module at the feature restoration layer to effectively restore
feature extraction results for that specific RDMB, mitigating
any impact on detection accuracy caused by pruned features.
Restoring RDMB features is a special example of edge feature
restoration that allows multiple complete-skip computations
before triggering a critical case.

V. EXPERIMENTAL METHODOLOGY

The study evaluates the impact of CAMVA operations on the
accuracy of four target detection neural networks and CAMVA’s
performance optimization for CNN accelerators on the multi-
view autopilot datasets. The results indicate that CAMVA en-
hances the performance of CNN accelerators in multi-view
tasks and has little impact on accuracy.

A. Validation on Target Detection Accuracy

The subsection outlines the steps to validate the impact of
CAMVA feature pruning and dynamic restoration operations
on accuracy. The experiment is conducted using an Intel i5-
12500H CPU with 16 GB RAM and an NVIDIA Tesla A100
80 GB int the experimental environments. Firstly, SIFT features
of the autopilot datasets (KITTI and nuScenes) are extracted by

software. Secondly, matched SIFT features are filtered based
on the hyperparameter 7', determined by the method described
in Section III-A, to remove incorrect matches. Higher cor-
rect match rates and more matched features are achieved with
Trrrrr=0.54 and T}, 5cenes=0.597 on the datasets, although
a few remaining incorrect matches slightly affect accuracy.
Thirdly, DBSCAN clusters SIFT features within each view to
construct macroblocks. Finally, CAMVA feature pruning and
dynamic restoration operations are implemented during the in-
ference of four target detection neural networks, with accuracies
evaluated on the datasets.

The presence of mismatched features during macroblock
construction can lead to the matching of dissimilar mac-
roblocks, which degrades the target detection accuracy due to
the CAMVA pruning and restoration operations for the mac-
roblocks. To mitigate this issue, the paper utilizes Perceptual
Hashing (pHash) [38] and Hamming Distance (Ham) [39] to
calculate the similarity degree (SD) of macroblocks. It intro-
duces a hyperparameter (H1") as the threshold for filtering out
these macroblocks, reducing the impact on accuracy caused by
CAMVA operations. S D is calculated by Eq. 4:

Ham(pHash(RTMB),pHash(RSM B))

SD=1-— 6

G

The paper defines the set of HT, denoted as HT _Set={0.1,
0.2,...,09, 1.0}, where HT; € HT Set and i € {0,1,2,...,9}.
Only matched macroblocks with SD > HT; are pruned. The
KITTT and nuScenes datasets are partitioned into separate train-
ing and testing sets for validation accuracy. Four target detec-
tion neural networks (FasterRCNN, SSD, Yolo-v3, and Yolo-
v5) are trained on the training sets to establish base mod-
els. Subsequently, their accuracies are evaluated on the testing
sets as baselines. Finally, the impact of CAMVA operations
on accuracy is assessed by implementing feature pruning and
restoration operations on the testing sets.

To verify the universality and effectiveness of the proposed
method, experiments are conducted on three 3D object detec-
tion networks (RTMDet-s [40], Mono3D [41], YoloStereo3D

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 02,2026 at 13:43:17 UTC from |IEEE Xplore. Restrictions apply.



CHEN et al.: CAMVA: EXTENSION ARCHITECTURE OF CNN ACCELERATORS

[42]) for the car category under easy, moderate, and hard diffi-
culty levels using the KITTI 3D dataset. The dataset is divided
into a training subset and a validation set. Models are trained
on the training subset, with final performance evaluated on the
validation set.

B. Modeling CAMVA

CAMVA consists of the Feature module, Triage module,
CMP module, LF module, and RR module, which implement
at a clock frequency of 250 MHz in RTL. The design is synthe-
sized using Synopsys Design Compiler (DC) with the TSMC
130 nm layout and wiring process. Additionally, CAMVA ex-
tends the global buffer to store mbi, mmi, ri and bi. CACTI 6.0
tool [43] is used to estimate the extra area occupied by memory.

1) SpeedUp: This study develops a cycle-accurate simulator
org_sim based on the Eyriss-v2, with an integrated CAMVA
mechanism forming camva_sim for convolutional accelerator
evaluation. The experimental dataset is derived from KITTI
2D benchmark, and the dataset initially constructs original
subsets org_subsets (subset10, subset20) with negligible spar-
sity. After pruning, we generate camva_subsets (subsetl(’,
subset20’) exhibiting 9.6% and 19.8% sparsity respectively.
Baseline cycles (cycle_org) are measured via org_sim process-
ing org_subsets, while optimized cycles (cycle_opt) are ob-
tained from camva_sim evaluating pruned subsets. Layer-wise
speedup ratios (SU;) are defined as Eq. 5:

_ cycle_org;

SU; = i=(1,2,... 5)

=R n
cycle_opt;’ 1),

where cycle_org; is a baseline clock cycle overhead in conv,,
cycle_opt; is a optimized clock cycle overhead in conv; and n
is the number convolutional layers. While the neural network
speedup (nn_SU) is calculated by Eq. 6:

Yo, cycle_org;
Yoo cycle_opt;”
2) Energy Analyze: The paper analyzes and evaluates the
energy consumption associated with three phases, highlight-
ing the energy-saving benefits of CAMVA: SIFT feature ex-
traction, MVDMA execution, and inference. Firstly, we an-
alyze the energy consumption of SIFT feature extraction in
the SIFT-specific accelerator (SSA) [32] for various image
sizes. The SSA uses a 130 nm 1P6M CMOS process, occupies
a chip area of 32 mm?, and consumes 9.6 ml/frame when
processing 720P images (1280x 720). Secondly, we monitor
CPU power consumption during MVDMA execution using
HWiINFO64 to evaluate its energy usage. Finally, we employ
org_sim and camva_sim to count MAC operations and data
accesses for four object detection neural networks in org_subset
and camva_subset. Based on the energy analysis framework
[27], we evaluate the Energy Conservation Ratio (FCR) of
CAMVA-equipped Eyeriss-v2 in each convolutional layer of
these networks. We also analyze the energy consumption break-
down for each network. Eyeriss-v2 incorporates a three-level
memory hierarchy (DRAM, SRAM, SPad) with access costs of
200x, 6, and 2x relative to a MAC operation. Using Eyeriss-
v2 parameters (200 MHz, 192 PEs, 8-bit, 253.20 GOPS/W

nn_SU = (6)
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for AlexNet, 102.10 fps for AlexNet), we calculate theoretical
energy consumption and frame rates for various neural net-
works. Then, we incorporate CAMVA'’s energy-saving effects
to evaluate system-wide energy overhead. Each convolution
layer’s energy consumption is calculated as EC;=200x DRAM
+ 6 XSRAM + 2xSPad + 1 xMAC. ECR is defined as (EC;-
EC*)/EC;, where EC; and EC’; represent normalized energy
consumption for Eyeriss-v2 and CAMVA-equipped Eyeriss-v2,
respectively.

VI. EXPERIMENTAL RESULTS

The section demonstrates the performance advantages of
CAMVA, evaluates its speedup and energy consumption us-
ing the simulators (org_sim and camva_sim), and analyzes the
power and area of CAMVA through DC.

A. Accuracy

The multi-view autopilot datasets (KITTI and nuScenes) are
used to simulate two multi-view tasks, with the data pruned us-
ing techniques proposed in Section III-B and Section III-C. The
baseline accuracies of the four target detection neural networks,
along with the accuracies after introducing the CAMVA oper-
ations (HT=0.6), are presented in Table III. After introducing
the CAMVA operations, there is a 20.3% increase in average
sparsity for images from the KITTI dataset and a 10.9% in-
crease for images from the nuScenes dataset, with a correspond-
ing decrease in accuracy by 2.29%~4.26% and 0.37%~1.11%,
respectively. The difference in accuracy drop between the two
tasks is due to the difference in view similarity, which is 88.51%
for the KITTI task and 42.66% for the nuScenes task. The ex-
perimental results suggest that the impact of CAMVA on target
detection accuracy is influenced by the similarity between views
in multi-view tasks, as matching SIFT features in highly similar
multi-view tasks introduces more errors. In Table III, parame-
ters such as mAP, mAA, mR, and mF1 correspond to detection
ability, classification ability, recall rate, and overall recognition
capability. The relationship between multi-view sparsity and
target detection accuracy is shown in Fig. 10 after introducing
the CAMVA operation. The pruning threshold HT € HT Set
is a crucial parameter affecting this relationship. The experi-
mental results demonstrate that the sparsity remains constant
within the range of HT €[0.1,0.2,...,0.6]. When HT > 0.6,
the sparsity gradually decreases until it reaches 0, leading to
target detection accuracy initially stabilizing and subsequently
converging towards the baseline.

To validate the proposed method, we conducted 3D de-
tection accuracy experiments on the KITTI dataset for cars
at three levels: easy, moderate, hard, under Intersection over
Union(IoU)=0.5, for the 3D object detection networks [40],
[41], [42]. Table IV compares baseline accuracy with results af-
ter introducing CAMVA (Column 1: network; Column 2: base-
line accuracy; Column 3: accuracy after introducing CAMVA).
After pruning and feature restoration, the accuracy changes of
each network are as follows: a decrease of 0.4%~1.97% under
easy, 0.22%~1.1% under moderate, and 0.09%~-0.22% under

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 02,2026 at 13:43:17 UTC from |IEEE Xplore. Restrictions apply.



54 IEEE TRANSACTIONS ON COMPUTERS, VOL. 75, NO. 1, JANUARY 2026

TABLE III

THE COMPARISON OF BASELINES AND CAMVA RESULTS ACROSS DATASETS IN THE DIFFERENT TARGET

DETECTION NEURAL NETWORKS
network Baseline Introduced the CAMVA operations
mAP (%) mFI mR (%) mAA (%) mAP (%) mFI mR (%) mAA (%)
KITTI

FasterRCNN 70.86 0.63 77.34 54.10 66.60 0.61 72.55 53.08

SSD 45.08 0.35 24.12 84.91 42.45 0.34 23.03 82.49

Yolo-v3 55.30 0.49 38.20 87.24 51.42 0.47 35.93 85.75

Yolo-v5 89.34 0.89 85.28 93.06 87.05 0.87 83.07 91.96
nuScenes

FasterRCNN 61.50 0.61 62.03 62.28 60.39 0.59 60.37 60.40

SSD 46.60 0.45 32.43 83.44 46.12 0.44 31.95 82.48

Yolo-v3 47.87 0.47 35.52 89.28 47.32 0.46 35.31 89.67

Yolo-v5 60.55 0.56 43.75 91.91 60.18 0.56 43.73 93.50

maPc) FasterRenn  — T2, sparsity) mAPC) ssD — Tansty sparsity(%) maRC) Yolowd Ty sparsit) - mAPC) Yolovs o Ty sparsity(%)
(a) KITTL.
mapt) FasterRenn 2 D sparsits) | mAPCH SSD S i mavey YoloS S W o maPOi) YOIoNS = B ot
(b) nuScenes.
Fig. 10.  The trend relationship between accuracy and sparsity.

TABLE IV
COMPARISON OF 3D DETECTION RESULTS FOR CARS

AP: ToU=0.5) Ours (IoU=0.5)
Network Easy Dl\/iod. Hard Easy Mod. Hard
RTMDet-s [40] 38.30 | 28.65 | 24.34 | 37.79 | 28.43 | 24.56
Mono3D [41] 60.92 | 42.18 | 32.02 | 5895 | 41.08 | 32.06
YoloStereo3D [42] | 65.68 | 41.25 | 3042 | 65.28 | 40.57 | 30.33

hard. DA3D shows smaller accuracy changes due to data aug-
mentation during training. YoloStereo3D also maintains stable
performance thanks to binocular data use, multi-scale feature
extraction, and fusion. Mono3D experiences slower accuracy
decline compared to Table III, which is attributed to its training-
time data augmentation.

B. Performance

1) SpeedUp: The paper employs clock-accurate simulators
(org_sim and camva_sim) to execute target detection networks
on the testing subsets. It then calculates the clock cycle of each
layer, i.e., cycle_org;, cycle_opt;, as well as the system clock
cycle of the target detection network, i.e., sys_cycle_org =
St (eycle_org;), sys_cycle_opt =7, (cycle_opt;). The
speedup of each layer in CNNs with the CAMVA operations

is depicted in Fig. 11, as evaluated according to Eq. 5 and
Eq. 6. Further analysis reveals that on subset10, CNNs achieve a
nn_SU of FasterRCNN: 1.05x, SSD: 1.08 x, Yolo-v3: 1.04x,
and Yolo-v5: 1.07 x, while on subset20 CNNs achieve a nn_sp
of FasterRCNN: 1.13x, SSD: 1.22x, Yolo-v3: 1.34x, and
Yolo-v5: 1.23x respectively. The experimental results show
that increasing the input sparsity improves the performance of
CNNs and their convolutional layers. Moreover, the observed
trend in the speedup of layers from the experiments is also
related to the CNN architecture.

2) Energy Analyze: The paper uses simulators (org_sim
and camva_sim) along with the energy framework [27] to
analyze the computational and storage access overhead of
CNNSs on testing subsets, aiming to evaluate the energy con-
sumption advantages provided by CAMVA. Fig. 11 shows
ECR of CAMVA-equipped Eyeriss-v2 for each convolutional
layer, which changes in the same trend as SU. Fig. 12 shows
the energy breakdown of simulators performing FasterRCNN,
SSD, Yolo-v3, and Yolo-v5 on org_subset and camva_subset.
Fig. 12(a) illustrates the energy breakdown on subsetlO and
subset10’, while Fig. 12(b) presents it on subset20 and sub-
set20’. The energy breakdown (light) of the CNN on org_subset
by org_sim serves as a baseline for evaluation, representing
computational and storage access without optimization. The
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Fig. 11.  The SU and ECR of CAMVA-equipped eyeriss-v2 at each neural
network CNN layer in the subset10 and subset20.
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Fig. 12. The energy breakdown in eyeriss-v2 and CAMVA-equipped
eyeriss-v2 for the CNNs in subset10 and subset20.

energy breakdown (dark) of the CNN on camva_subset by
camva_sim represents optimized results for evaluation, incor-
porating feature pruning and restoration operations. The overall
energy consumption reduction achieved by camva_sim com-
pared to org_sim in each of the four target detection networks
18 6.23%, 8.01%, 4.23%, and 7.12% on subset10, and on sub-
set20, the reductions are 14.13%, 19.95%, 25.97%, and 19.89%
respectively.

C. End to End Performance

The lowest-performing module in the autopilot system is
the performance bottleneck of the entire system. The paper
evaluates the performance of SIFT-specific accelerator (SSA),
meta_process_unit (MPU), and CNN accelerator (CNNA) ac-
cording to the data flow execution order. Table V presents the
frame rate (FR) for each phase with different image sizes. For
720P images, SSA [32] achieves a FR of 30fps when extracting
SIFT features. The second column represents the FR of SSA for
other image sizes, using the image proportional scaling method.
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TABLE V
THE OVERALL FRAME RATE EVALUATION ON VARIOUS
IMAGE SIZES

Image SSA MPU CNNA Opt-CNNA
Size FR(fps) | FR(fps) | FR(fps) FR(fps)
600 x 600 76.80 135.14 2.80 3.16
300x 300 307.2 383.88 8.15 9.94
416x416 159.76 221.73 6.07 8.13
640 %640 67.50 135.78 1.51 1.86
TABLE VI
THE OVERALL ENERGY COMSUMPTION IMPACT OF CAMVA FOR
CNNs
CNN oP | ssA IMPUlCcAMVA Inferred CAMVA-.equlpped
Model [GOP] EC Eyeriss-v2
EC | EC EC |Inferred EC| Optimiezed EC
FasterRCNN
(600%600) 48.42 |+3.75|+1.72| -27.05 | +191.43 164.38
SSD
(300%300) 16.66 |+0.94(+0.47| -13.13 +65.77 52.64
Yolo-v3
(416%416) 22.38 |+1.80(+0.94| -22.95 +88.30 65.35
Yolo-v5
(640%640) 90.13 |+4.27|+4.21| -70.44 | +354.97 284.53

The third column represents the FR of the MPU, which is the
reciprocal of the RT in Table II. The fourth and fifth columns
represent the FR of CNNA and CAMVA-equipped Eyeriss-v2
(Opt-CNNA), respectively. The performance (frame rate (FR)
and energy consumption (EC)) of different neural networks on
Eyeriss-v2 and CAMVA-equipped Eyeriss-v2 can be inferred
according to YC Lu et al.’s approach [44]. The experimental
evaluation shows that FRypy >FRgsa >FRcnna, and CNNA
is the performance bottleneck of the system. By integrating
CAMVA with CNNA, Opt-CNNA achieves higher performance
than CNNA alone.

The paper evaluates energy consumption on subset20. Ta-
ble VI shows the energy consumption by SSA for feature ex-
traction and MPU for MVDMA on CPU (positive, “+”) across
models with different input image sizes, as well as the reduced
energy consumption of Eyeriss-v2 with CAMVA (negative,
“-). Results show that the energy saved by CAMVA exceeds
the additional energy cost of SSA and MPU, demonstrating its
effectiveness in reducing energy consumption for CNN accel-
erators in SSA-equipped autopilot systems.

D. Synthesize

CAMVA is evaluated by DC in the TSMC 130 nm pro-
cess, consuming 126.72 mW of power and having an area
of 0.477517 mm?. It requires a global buffer to store feature
extraction results, mapping relationships between dynamic data
tables, and address index entires of features. To meet the stor-
age requirement for simulating multi-view tasks in KITTI and
nuScenes, CAMVA is equipped with 32 KB on-chip storage.
Since Eyeriss-v2 is implemented in the TSMC 65nm, the paper
employs the scaling compensation process described in [36],
which involves normalizing the area and power for Eyeriss-
v2 to the technology scaling factor. The area for Eyeriss-v2 is
31.86 mm? in the TSMC 65 nm process; compensating for the
process difference, Eyeriss-v2 occupies approximately 63.72
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mm? in the TSMC 130 nm process. CAMVA accounts for only
0.75% of the total area, with its on-chip buffer making up about
99.68% of that space usage within CAMVA itself. Further-
more, CAMVA primarily involves basic logic operations while
restoring RDMB edge features and RDMB features, resulting
in minimal power consumption.

VII. CONCLUSION

In this study, we propose CAMVA, a method that uses ap-
proximate regions in multi-view inputs to enhance the per-
formance and energy efficiency of CNN accelerators without
incurring high chip design and manufacturing costs. Experi-
ments show that CAMVA accelerates CNN inference, reduces
energy consumption in multi-view scenarios, and maintains ac-
curacy. By leveraging both simultaneous and sequential inputs,
CAMVA exploits inter-view redundancy, potentially improving
accuracy, a key focus of future work.
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