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A Multimodal Lightweight Transformer for Bearing
Fault Diagnosis Under High-Noise Industrial

IoT Environments
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Abstract—Industrial IoT (IIoT) sensing nodes for bearing
monitoring often operate in high-noise environments, where
acoustic and mechanical interference masks weak fault sig-
natures and undermines diagnostic reliability. To address this
challenge, we propose a lightweight multimodal fusion framework
for robust fault diagnosis under extreme noise. Our method
first applies multiresolution decomposition with selective recon-
struction and adaptive enhancement to preserve fault-related
components while suppressing interference. The enhanced signals
are transformed from 1-D time series into 2-D representations to
jointly capture temporal dynamics and spectral characteristics.
We then design a tri-branch multihead attention architecture
that integrates a multiscale recurrence plot (MSRP) network, a
Gramian-angular-field (GAF) network, and a lightweight residual
network. Learnable attention weights enable adaptive fusion
of complementary cross-modal features with low computational
overhead. Extensive experiments on the CWRU benchmark
show superior robustness from 0 to −6 dB signal-to-noise ratio
(SNR), with a mean accuracy above 99.6% and consistent gains
over eight state-of-the-art methods. Additional tasks on single-
domain diagnosis, cross-condition fault type recognition, and
fault degree discrimination (T1–T3) confirm strong generaliza-
tion and multiscale adaptability, with average improvements of
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2%–4% over the second-best baseline and stable variance under
noise. The compact architecture and high noise immunity indicate
practical suitability for IIoT sensing nodes and edge deployment
in complex industrial scenarios.

Index Terms—Attention mechanism, discrete wavelet trans-
form (DWT), fault diagnosis, multimodal fusion, multiscale,
rolling bearing.

I. INTRODUCTION

ROLLING bearings constitute the linchpin of rotating
machinery, governing both transmission precision and

load-bearing capacity while directly dictating system relia-
bility and operational lifespan [1]. Statistical analyses reveal
that bearing failures precipitate 40%–90% of all mechani-
cal breakdowns, emerging as the predominant culprit behind
equipment downtime and safety incidents across critical indus-
trial applications [2]. This vulnerability manifests most acutely
in demanding scenarios such as wind turbine drivetrains, CNC
machine tool spindles, and aerospace propulsion systems [3],
[4]. The diagnostic challenge intensifies as bearing vibration
signals are invariably corrupted by broadband noise stemming
from electromagnetic interference, structural resonance, and
stochastic impacts inherent to industrial environments [5],
[6]. Consequently, the pursuit of high-fidelity bearing health
assessment under extreme noise conditions (signal-to-noise
ratio (SNR) ≤ 0 dB) and variable loading regimes has crystal-
lized as a pivotal research frontier in predictive maintenance.

Current bearing fault diagnosis methodologies bifurcate
along two principal paradigms. Traditional techniques lever-
age handcrafted feature engineering coupled with machine
learning classifiers, exemplified by complete ensemble local
mean decomposition with adaptive noise (CELMDAN) [7]
and Wigner–Ville distributions [8]. While computationally
efficient, these methods exhibit three fundamental limita-
tions, i.e., susceptibility to noise contamination exceeding
−4 dB SNR, dependence on expert-designed features, and
performance degradation under nonstationary loads [9], [10].
Modern data-driven approaches employ hierarchical feature
learning through architectures, such as physics-informed con-
volutional neural networks (CNNs) [11] and multiscale CNNs
and long short-term memory (LSTM) hybrids [12]. Although
achieving superior accuracy on benchmark datasets, these
models frequently falter under data scarcity scenarios or
when confronted with distribution shifts between training and
deployment environments [13].

The persistent diagnostic challenges stem from three intrin-
sic complexities. First, multidimensional bearing states are
compressed into univariate vibration time-series, obscuring
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fault signatures when noise power spectral density exceeds
−6 dB/Hz [14]. Second, load fluctuations induce time-
varying spectral characteristics that violate the stationarity
assumptions underpinning conventional methods [15]. Third,
existing frameworks inadequately fuse complementary tem-
poral, spectral, and topological descriptors, compromising
diagnostic robustness [16]. These limitations are particu-
larly acute in single-sensor scenarios where fault signa-
tures must be extracted from information-starved vibration
channels.

To address these challenges, we propose an intelligent
fault-diagnosis framework that innovates across three syner-
gistic dimensions. First, we exploit the dyadic decomposition
properties of discrete wavelet transforms (DWTs) to imple-
ment sub-band-specific noise suppression while preserving
transient impulses through nonlinear thresholding in the
wavelet domain. Second, through simultaneous projection of
denoised signals into multiscale recurrence plots (MSRPs)
and Gramian-angular-fields (GAFs), we construct comple-
mentary representations capturing both phase-space dynamics
and time-delay embeddings. Third, a tri-branch architecture
comprising CNN-MSRP, CNN-GAF, and lightweight ResNet
(LRNet) modules enables cross-modal feature integration via
learnable attention weights, dynamically rebalancing contribu-
tions based on SNRs.

Our work introduces three main innovations compared
with existing studies. First, a theoretically grounded strat-
egy for noise-robust representation learning is developed by
integrating discrete wavelet decomposition with multimodal
feature encoding. The DWT-based denoising mechanism effec-
tively preserves informative frequency components while
suppressing interference, enabling stable feature representation
under extremely low SNRs. Second, a lightweight tri-branch
transformer architecture is proposed for complementary
extraction and adaptive fusion of temporal, recurrence, and
energy–correlation features from MSRP, Gramian angular
summation field (GASF), and time-domain modalities. Unlike
previous frameworks that independently process time or image
data, the proposed cross-modal attention mechanism dynami-
cally aligns feature representations across domains with shared
parameters and residual compression, achieving high efficiency
with reduced computational cost. Third, extensive experi-
ments on the Case Western Reserve University (CWRU) and
PT datasets verify the superiority and generalization of the
proposed framework. The method maintains accuracy above
99.6% across noise levels from 0 to −6 dB and outperforms
eight state-of-the-art baselines by 3.2–15.7 percentage points.
Ablation, attention map visualization, and t-SNE analysis
further confirm the interpretability and robustness of the
design. These contributions collectively distinguish the pro-
posed approach from prior works by combining noise-resilient
signal decomposition, efficient tri-modal feature fusion, and
strong transferability across varying operating conditions.

II. RELATED WORK

Rolling-element bearings (REBs) constitute the cornerstone
of rotating machinery systems, with their operational status

directly impacting industrial safety and productivity. The evo-
lution of fault diagnosis methodologies has progressed through
three distinct paradigms, i.e., traditional signal processing
techniques, hybrid machine learning approaches, and contem-
porary deep learning architectures. Each paradigm reflects the
technological advancements and theoretical breakthroughs of
its respective era, while addressing the specific limitations of
its predecessors.

A. Time–Frequency Analytical Methods

Traditional diagnostic approaches primarily rely on signal
processing techniques to extract handcrafted features from
vibration data. Time-domain methods such as peak detection,
kurtosis analysis, and root mean square (rms) measurements
provide preliminary fault indicators but lack frequency res-
olution [17]. Frequency-domain transformations, including
fast Fourier transform (FFT) and envelope analysis, enable
characteristic frequency identification, yet fail to capture tran-
sient features in nonstationary signals [18]. To address these
limitations, time–frequency analysis techniques have emerged
as the predominant solution, with wavelet transforms (con-
tinuous wavelet transform (CWT)/DWT/WPT) and empirical
mode decomposition (EMD) demonstrating particular effec-
tiveness in resolving nonlinear and nonstationary bearing
vibrations [19]. However, these methods exhibit inherent
constraints in automated decision-making, requiring expert
knowledge for feature selection and threshold setting [20].
Recent advancements in entropy-based domain adaptation
have sought to mitigate these limitations through information-
theoretic optimization strategies. Jiao et al. [21] developed
an entropy-oriented domain adaptation (EODA) framework
combining entropy optimization with convolutional networks
for improved generalization across operating conditions, while
Ding et al. [22] proposed deep imbalanced domain adaptation
(DIDA) to address label shift and class imbalance in cross-
domain scenarios.

B. Hybrid Intelligent Diagnosis Systems

The integration of signal processing with machine learning
classifiers represents a significant advancement in bearing
fault diagnosis. Yu et al. [23] pioneered a hybrid approach
combining K-SVD sparse representation with particle-swarm-
optimized time-varying filtering (PSO-TVF-EMD), achieving
enhanced sparsity and automated parameter tuning for early
fault detection. Subsequent work [17] demonstrated the effec-
tiveness of CWT coupled with k-nearest neighbors (kNNs)
classifiers for robust fault categorization. More sophisti-
cated frameworks have incorporated evolutionary algorithms,
such as the life-cycle approach [24] integrating genetic-
algorithm-based variational mode decomposition (GA-VMD)
with improved gray-wolf-optimized support vector machines
(IGWO-LSSVM), and beluga-whale optimizer [25] combined
with maximum correlated kurtosis deconvolution (VME-
MCKD) for weak fault detection. Despite their improved
performance, these hybrid systems remain constrained by
their dependence on manual feature engineering and empirical
parameter tuning, limiting adaptability to variable operating
conditions and complex noise environments.
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Fig. 1. Overall architecture of the proposed DAMMF-FD model.

C. Deep Learning Paradigms

Deep neural networks have revolutionized bearing fault
diagnosis through end-to-end feature learning and classifi-
cation. CNNs have demonstrated exceptional capability in
extracting spatial patterns from vibration signals, with archi-
tectures like LeNet-5 and customized CNNs achieving superior
performance in raw signal processing [26]. The integration of
recurrent structures, particularly LSTM networks, has further
enhanced temporal feature extraction, leading to hybrid models
such as CNN-LSTM (CNN-L) [27] and CNN-transformer
(CNN-T) [28] that simultaneously capture spatial and temporal
dependencies.

Recent innovations have focused on attention mechanisms
and specialized architectures, including dual-channel attention
(DCA) [29] with bidirectional GRU for handling scarce labels,
quadratic CNN (QCNN) [30] for noise-robust feature extrac-
tion, and QNN-Bi-LSTM [31] combining quadratic neurons
with bidirectional LSTM for rapid diagnosis. In addition,
a triple domain adversarial neural network (TDANN) with
a multiscale feature extractor [32], [33], triple classifier,
and adaptive back-propagation coefficient has been proposed
to enhance bearing fault diagnosis under varying operating
conditions [34].

While these deep learning approaches have significantly
advanced diagnostic accuracy, three fundamental challenges
persist: 1) inadequate multiscale feature extraction across
time–frequency domains; 2) insufficient noise robustness in
feature extraction; and 3) incomplete integration of com-
plementary feature representations. Our proposed framework
addresses these limitations through a novel combination of
frequency-domain decoupling, 2-D signal re-encoding, and
attention-based multimodal fusion.

III. METHODOLOGY

A. Problem Formulation

In a noisy, univariate bearing-vibration dataset, the mea-
sured signal y = {y1, y2, . . . , yT } ∈ R

T is contaminated by

random noise εt induced by electromagnetic coupling, struc-
tural resonance, and sensor errors, where each observation at
time t can be expressed as yt = xt + εt for t = 1, 2, . . . ,T .
Here, xt ∈ R represents the true vibration component while
εt denotes a zero-mean disturbance with bounded variance.
Given a labeled vibration database D = {(y(i), ci)}Ni=1 with
ci ∈ C = {c1, c2, . . . , cK} indicating fault classes, our objective
is to establish a discriminative mapping under noise contami-
nation through the composite function

ĉ = G (F (D (y))) (1)

where D(·) denotes a denoising operator that suppresses εt

while restoring salient fault patterns, F(·) performs multi-
scale feature extraction across time–frequency domains, and
G(·) constitutes the classification decision function yielding
predicted fault category ĉ. This formulation addresses three
critical aspects of bearing fault diagnosis in noisy environ-
ments: 1) temporal dependencies through dynamic evolution
modeling; 2) frequency-domain fingerprints characterized by
energy surges at fault frequencies and harmonics where noise
induces spectral leakage; and 3) outlier detection for abrupt
changes. The proposed solution follows a three-stage pipeline
comprising signal denoising via DWTs, multiscale feature
extraction in time–frequency domains, and robust classification
through attention-based fusion, as detailed in Section III-H.

B. Overall Framework

Fig. 1 presents the overall architecture of the pro-
posed DAMMF-FD model. The framework is composed
of two major components: a noise-mitigation module and
a lightweight multiscale multimodal fusion network. The
first module applies the DWT to decompose each vibra-
tion signal into low- and high-frequency channels, which
enhances robustness by isolating informative frequency
bands from noise-dominant components. The second module,
referred to as AMMF, integrates three cooperative feature-
extraction branches to capture complementary information
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across temporal and spatial representations. The MSRP branch
encodes temporal recurrence patterns through fast-DTW-
driven MSRPs, while the GASF branch preserves signal
polarity and energy correlations through GASFs. The third
branch learns temporal dependencies directly from the recon-
structed time-domain sequences using a residual-enhanced
transformer block. Features from the three branches are then
adaptively fused through a cross-modal attention module,
forming a unified representation for classification.

This tri-branch design differs from prior frameworks
that simply combine separate image or temporal encoders.
The proposed structure enables simultaneous modeling of
local temporal cues and global dependency structures under
high noise conditions. Although multiple transformations are
involved, parameter sharing across transformer heads and
lightweight residual operations substantially reduces compu-
tational cost, achieving an effective balance between model
complexity and diagnostic accuracy.

C. DWT Denoising

The DWT provides simultaneous time–frequency analysis
through a variable resolution window. For a square-integrable
mother wavelet ψ(t) ∈ L2(R) satisfying the admissibility
condition CΨ =

R +∞
−∞
|Ψ(ω)|2/|ω|dω < +∞, its scaled and

translated versions are defined as

ψa,b (t) =
1
√

a
ψ

�
t − b

a

�
, a > 0, b ∈ R (2)

where a and b represent scale and translation parameters,
respectively. The continuous wavelet transform of signal f (t) ∈
L2(R) is

Wψ
f (a, b) =

Z +∞

−∞

f (t)ψa,b (t)dt. (3)

Discretizing via a = a j
0 and b = ka j

0b0 yields the discrete
wavelet basis

ψ j,k (t) = a− j/2
0 ψ

�
a− j

0 t − kb0

�
. (4)

Setting b0 = 1 produces an orthonormal basis {ψ j,k(t)} with
reconstruction formula

f (t) =
X

j,k

Wψ
f ( j, k)ψ j,k (t) . (5)

Our implementation employs Daubechies 1 and Haar
wavelets for bearing vibration analysis, leveraging their com-
pact support and vanishing moment properties for effective
noise suppression while preserving transient fault impulses.

D. MSRPs Feature Enhancement

The MSRP enhancement addresses a critical challenge in
bearing fault diagnosis, i.e., extracting discriminative features
from noisy vibration signals where fault signatures are often
obscured. Traditional single-scale approaches fail to capture
the complex temporal dynamics of bearing faults, which
manifest across different time scales. Our innovation lies in
transforming the 1-D vibration signal into a multiscale 2-D
representation that simultaneously preserves amplitude-phase

Algorithm 1 MSRP Generation Algorithm
1: Input: time-series matrix x(t) ∈ RN×P; scale set S =

{s1, s2, . . ., sk}

2: Output: combined multi-scale recurrence plot Cmsrp
3: Initialize Dataset ← x(t); N ← GetSampleCount(x(t))
4: for each sample x in Dataset do
5: FeatureData← GetFeatureData(x)
6: NormalizedData← Normalize(FeatureData)
7: MultiScaleR← ∅// list to hold resized RPs
8: for each si ∈ S do
9: R[i, j]← Sim(Xsi , Xs j )// Eq. (6)

10: R← NormalizeMatrix(R)
11: Rresized ← ResizeMatrix(R, (W,H))
12: MultiScaleR.append(Rresized)
13: end for
14: CombinedR← CombImages(MultiScaleR)
15: SaveImage(CombinedR)
16: end for
17: return Cmsrp

correlations while enhancing fault-related features through
scale-specific analysis.

Given a time series X = (x1, x2, . . . , xp), we first nor-
malize the data and then construct multiscale subsequences
Subsi = {(n j, n j+si )| j = 0, 1, . . . , p − si} for each scale si

in S = {s1, . . . , sk}. For each scale, the pairwise similar-
ity between subsequences is quantified by computing their
Euclidean distance in the phase space. This formulation is
a multiscale generalization of the traditional recurrence plot
definition, where the distance matrix characterizes the local
temporal recurrence of the system states. The similarity matrix
at each scale is computed as

M(si)
j,m =

rXsi−1

l=0

�
n j

l − nm
l

�2
, j, m = 1, 2, . . . ,Nsi (6)

where Nsi = p − si + 1. After normalization and resizing to
target dimensions H ×W using

R(si)
rsize = Zoom

�
R(si)

N ,

�
H
Nsi

,
W
si

��
. (7)

The final MSRP representation combines all scales

Cmsrp =
h
R(s1)

rsize, . . . ,R
(sk)
rsize

iT
. (8)

This multiscale fusion captures both local fault tran-
sients and global vibration patterns, overcoming the limi-
tations of conventional single-scale methods. The approach
effectively suppresses noise while preserving critical fault
signatures across different temporal resolutions, as demon-
strated by the framework’s superior performance in high-noise
environments.

The pseudocode for our MSRP generation algorithm is
presented as Algorithm 1.

E. Gramian Signal Feature Enhancement

Industrial vibration signals often suffer from severe noise
contamination and nonstationary characteristics, making it
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challenging to extract discriminative fault features directly
from raw time-series data. To overcome this limitation, we
design a Gramian-based feature enhancement method that
simultaneously preserves amplitude-phase correlations while
amplifying fault-related patterns through polar coordinate
transformation. Our method addresses the critical need for
noise-robust representations in bearing fault diagnosis under
harsh industrial conditions.

Given a denoised time series X = (x1, x2, . . . , xp), our
method first normalizes the signal to [−1, 1] range and converts
each point to polar coordinates through a nonlinear mapping

ui = cos (θi) = ni (9)

vi = sin (θi) =

q
1 − n2

i . (10)

The key innovation lies in constructing complementary
Gramian matrices that capture distinct aspects of fault signa-
tures. The GASF preserves global phase relationships through
cosine summation

GG
i j = nin j −

q
1 − n2

i

q
1 − n2

j . (11)

Conversely, the Gramian angular difference field (GADF)
emphasizes local variations via sine differences

GD
i j = n j

q
1 − n2

i − ni

q
1 − n2

j . (12)

The fusion of these orthogonal representations through
learnable weights η creates a comprehensive feature space that
is more robust to noise than either individual representation

GF
i j = ηGG

i j + (1 − η) GD
i j , 0 ≤ η ≤ 1. (13)

This adaptive fusion mechanism automatically balances the
contributions of global phase coherence (GASF) and local
dynamic variations (GADF) based on signal characteristics to
improve feature discriminability in low SNR conditions.

1) GAF Generation: The fused matrix GF undergoes
normalization and resizing to prescribed dimensions H×W fol-
lowing the scaling rule in (7), yielding the GAF representation.
This transformation preserves the intrinsic amplitude-phase
coupling through polar coordinate mapping, significantly
enriching the signal feature space’s descriptive capacity. The
synergistic fusion of GASF and GADF components selec-
tively amplifies discriminative patterns while suppressing noise
artifacts, resulting in enhanced SNR for more reliable fault
detection. The adaptive weighting parameter η dynamically
balances the contributions of GASF and GADF representations
according to varying fault conditions, demonstrating robust
performance against nonlinear signal variations and dynamic
operational environments. The resulting GAF images provide
a comprehensive encoding of temporal dynamics and spectral
characteristics that prove particularly effective for bearing
fault diagnosis in high-noise scenarios. The multiscale GAF
algorithm for a given time series is illustrated in Algorithm 2.

F. Feature Extraction Network

As shown in Fig. 1, our DAMMF-FD framework encodes
the MSRP and the GAF with a CNN-T backbone. Our
feature extraction network integrates convolutional layers with

Algorithm 2 GAF Generation Algorithm
1: Input: data matrix X ∈ RN×P, fusion weight η
2: Output: Gramian Angular Field plot Cgaf
3: Dataset ← X; N ← GetSampleCount(X)
4: for each sample x in Dataset do
5: n← Normalize(x)
6: for i← 1 to P do
7: θi ← arccos(ni)
8: ui ← ni

9: vi ←

q
1 − n2

i
10: end for
11: for i← 1 to P do
12: for j← 1 to P do
13: GG

i j ← uiu j − viv j// Eq. (14)
14: GD

i j ← viu j − uiv j// Eq. (15)
15: end for
16: end for
17: GF

i j ← ηGG
i j + (1 − η)GD

i j// Eq. (16)
18: GF ← NormalizeMatrix(GF)
19: Cgaf ← ResizeMatrix(GF , (W,H))
20: SaveImage(Cgaf)
21: end for
22: return Cgaf

Fig. 2. Feature extraction network.

transformer attention to embed each 2-D image into a compact
latent space. For the MSRP, the encoder analyzes the spatial-
temporal signatures of distinct fault modes, which are mapped
onto the k-dimensional scale axis and observed under multiple
delay settings. The GAF models the intricate amplitude-phase
couplings characteristic of the same faults.

Fig. 2 illustrates the feature extraction network employed in
DAMMF-FD. The architecture is a serial cascade of two units:
1) a patch embedding layer that extracts latent local patterns
hidden in the 2-D representation of the original waveform;
and 2) a transformer block equipped with self-attention and
residual learning to capture global contextual information.

The network outputs a knowledge-level encoding of each
MSRP/GAF, which is subsequently fed to the modality-fusion
layer.

1) Patch Embedding Layer: As shown in Fig. 2, the patch
embedding layer proceeds in three steps. First, a K-channel
convolution extracts high-dimensional local spatial features
from the input image. Then, a ReLU(·) activation introduces
nonlinearity and improves the learning of local patterns.
Finally, the original image is partitioned into patches and
projected into an embedding space.

For an input GAF/MSRP image X ∈ RC×H×W , we apply
K convolutional filters W to extract features. Each filter has
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a size of (C,Kh,Kw), where C is the number of channels. H
and W denote the image height and width, respectively.

a) Convolutional operation layer: The output tensor Y ∈
RN×K×H′×W′ of the convolution is computed as

Y
�
n, k, h′,w′

�
=

C−1X
c=0

Kh−1X
i=0

Kw−1X
j=0

X

×
�
n, c, h′ · S + i − P,w′ · S + j − P

�
×W (k, c, i, j) + bk (14)

where Y(n, k, h,w′) denotes the value at sample n, output
channel k, and spatial location (h′,w′). X(·) is the input tensor
after stride S and padding P. W(k, c, i, j) and bk are the weight
and bias of the kth kernel, respectively. Kh and Kw are the
kernel height and width. We use a nonlinear transformation
σ(·) = ReLU(·) to prevent vanishing gradients and enforce
sparsity.

b) High-dimensional patch embedding: A second con-
volution with kernel size equal to the patch size embeds Y (1)

into a higher dimensional space

Y (2) (b, p, d) = Conv2d
�
Y (1)� (15)

where Y (2) ∈ RN×K′×H′′×W′′ , b ∈ {0, . . . , batch size − 1},
p ∈ {0, . . . , npatches − 1}, d ∈ {0, . . . , embedding dim − 1}, and
npatches = bH/patch sizec× bW/patch sizec.

c) Positional encoding: We add a learnable positional
code to retain spatial ordering for the final embedding

Y (3) (b, p, d) = Y (2) (b, p, d) + pos embedding1 (0, p, d) (16)

where Y (3) ∈ RN×K′×H′′×W′′ , and pos embedding1(0, p, d)
supplies the position information of the pth patch in the dth
dimension to better capture spatial dependencies.

2) Transformer Layer: After high-dimensional feature
extraction and embedding, we feed the data into a transformer
layer composed of multiple self-attention modules and feed-
forward networks to capture global contextual information.

a) Self-attention mechanism: For each patch in Y (3) ∈

RN×K′×H′′×W′′ , the query, key, and value are obtained by

Q = WQY (3), K = WKY (3), V = WVY (3) (17)

where WQ,WK ,WV ∈ R
K′×Katt project the embedded features

into a lower dimensional space RK′×Katt .
The self-attention allows each patch to weigh all others

dynamically. For head i in a multihead setting

headi = Attention (Qi,Ki,Vi) = softmax
�

QiKT
i

ıp
dk

�
Vi

(18)
and the combined output is

MultiHead (Q,K,V)=W0 Concat (head1, head2, . . . , headH)
(19)

where dk is the key dimension, H is the number of heads, and
W0 is a learnable projection matrix.

b) Residual connection and layer normalization: Resid-
ual links and normalization improve stability

Z(1) = LayerNorm
�
Y (3) + MultiHead (Q,K,V)

�
(20)

Z(2) = LayerNorm
�
Z(1) + FeedForward

�
Z(1)�� (21)

FeedForward
�
Z(1)� = ReLU

�
Z(1)W1 + b1

�
W2 + b2 (22)

where W1 ∈ R
dmodel×d f f , W2 ∈ R

d f f ×dmodel , and b1 and b2 are
learnable parameters.

c) Positional encoding: We add a positional code to
preserve spatial relations since the transformer lacks intrinsic
order awareness

Z(3) (b, p, d) = Z(2) (b, p, d) + pos embedding1 (0, p, d) . (23)

To summarize, the feature extract network first extracts
local patterns from the MSRP and GAF images and then
captures their global dependencies. The resulting embeddings
are Outputmsrp = Zmsrp and Outputgaf = Zgaf.

G. Lightweight Convolutional Residual Network

Conventional 1-D processing may overlook salient char-
acteristics embedded in vibration signals. To address this
limitation, we propose a LRNet. The LRNet consists of two
core operations, i.e., convolution-based feature extraction and
feature embedding.

Let the reconstructed time-series signal after the DWT be
X ∈ RB×P, where B is the batch size and P is the sequence
length. We reshape X for convolutional processing as

X′ = TF
�
X
�
b, p

�
,K, 1

�
, X′ ∈ RB×K×P×1 (24)

where TF(·) first performs dimensional expansion using
unsqueeze(X,1), producing a tensor of shape RB×1×P×1,
and then replicates the channel to obtain RB×K×P×1.
The parameter K denotes the expanded number of
channels.

1) Convolutional Feature Extraction: The LRNet employs
residual blocks composed of a convolution and identity map-
ping. The output of a block is

F (x) = conv (x,W) + x = σ (W ∗ x + b) + x (25)

where x ∈ RH×W×Cin is the input feature map, W ∈

RKernel×Kernel×Cin×Cout is the kernel, σ(·) = ReLU(·), and
b ∈ RCout is the bias.

2) Feature Mapping: Global average pooling compresses
the high-dimensional map into a fixed-length vector, which is
then linearly projected

Z = WLCR G
�
F
�
X′
��

+ bLCR (26)

where WLCR and bLCR are the weights and bias of the output
embedding layer.

The pooling operator is channel-wise as

G (F) =

"
1

HW

HX
h=1

WX
w=1

F [h,w]

#
(27)

where H ×W is the spatial size of the feature map.

H. Multimodal Attention Fusion Layer

The multimodal attention fusion layer (MAFAL) integrates
three heterogeneous feature sources-MSRP, GAF, and TimeS-
by means of self-attention. The layer analyses, aligns, and
fuses complementary cues from the separate streams to
enhance the decision reliability.
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1) Input Concatenation: The branch outputs are denoted
as X(1) = Outputmsrp, X(2) = Outputgaf, and X(3) = OutputTimes.
They are concatenated to form

Xin =
�
Outputmsrp; Outputgaf; OutputTimes

�
∈ RB×DMAFAL (28)

where B is the batch size and DMAFAL = dmsrp + dgaf + dTimes.
2) Dynamically Weighted Multihead Attention: For each

head h ∈ {1, . . . ,H f }, the attention map Att(h)
f (Q(h)

f ,K
(h)
f ,V (h)

f )
is computed as in (18) and (19). A learnable weight matrix
W f projects the head output to a scalar importance

βh = softmax
�

W f

h
Att(h)

f

�
Q(h)

f ,K
(h)
f ,V (h)

f

�i>�
(29)

with βh ∈ R
B×1 and Att(h)

f ∈ RB×D f ×Dv , where D f is the
sequence length and Dv the embedding dimension.

3) Fusion Output: The final fusion is a weighted sum over
all heads as

Y (M out) =

H fX
h=1

βh Att(h)
f

�
Q(h)

f ,K
(h)
f ,V (h)

f

�
(30)

with Y (M out) ∈ RB×D and D = D f Dv. The coefficients βh

adaptively modulate the contribution of each head to tailor
the fusion to the current input.

I. Fault-Diagnosis Classifier and Loss Function

The DAMMF-FD employs a two-layer MLP to map the
fused feature vector Z = Y (M out) ∈ RB×D to class probabili-
ties. The forward computation is

ŷi = Softmax
�
Dropout (ReLU (ZW1 + b1) , p) W2 + b2

�
(31)

where W1 ∈ R
D×H and b1 ∈ R

H are the weights and bias of the
first fully connected layer with H hidden units. W2 ∈ R

H×C

and b2 ∈ R
C correspond to the second layer, and C is the

number of fault classes. The output ŷi ∈ R
C is the probability

vector for the ith sample, and the batch output is ŷ ∈ RB×C .
We train the DAMMF-FD by cross-entropy loss

L = −
1
B

BX
i=1

CX
j=1

yi
�

j
�

log
�
ŷi
�

j
��

(32)

where yi[ j] ∈ {0, 1} is the ground-truth indicator of class j for
sample i.

IV. EXPERIMENTS

A. Dataset Description

We employ the publicly available rolling-bearing dataset
from CWRU, USA, as the benchmark to evaluate the perfor-
mance of our DAMMF-FD [35]. The experimental platform
is shown in Fig. 3.

From the data-acquisition platform, the CWRU dataset
records single-point defects with diameters of 7, 14, and
21 mm on the bearing outer race, inner race, and rolling
elements. All vibration signals are sampled at 12 kHz under
four load levels, i.e., 0, 1, 2, and 3 HP. The experiments
diagnose ten fault categories, as listed in Table I.

Ten fault categories are shown in Table I. The mechanical
period is approximately 0.0345 s with a motor speed varying
from 1797 to 1730 r/min. Each experimental sample spans
412–1024 time steps, i.e., from 0.0345 to 0.0837 s.

Fig. 3. Data acquisition platform for the CWRU dataset.

TABLE I
TEN FAULT CATEGORIES IN THE CWRU DATASET

B. Noise-Injection Preprocessing

In industrial environments, bearing vibration signals are
often contaminated by strong mechanical and acoustic interfer-
ence. Such interference weakens or masks the weak impulsive
components generated by bearing defects, causing severe
distortion of both temporal and spectral features. When the
SNR decreases, these fault-related impulses become indistin-
guishable from the surrounding noise, blurring the feature
boundaries between different fault categories and reducing the
stability of model training and classification. This phenomenon
fundamentally explains why intelligent fault diagnosis in high-
noise environments is much more difficult than in traditional,
clean-signal conditions.

To quantitatively evaluate the noise robustness of the pro-
posed DAMMF-FD, additive Gaussian white noise is injected
into each signal segment. The SNR is defined as

SNR = 10 · log10

 P
i |xi|

2P
i |Ni|

2

!
(33)

where the original signal is xi ∈ x(t) = {x1, x2, . . . , xT } and
the noise term Ni ∼ N (0, σ2) is sampled from a zero-mean
Gaussian distribution. After injection, each dataset sample
becomes {x1i + N1i , x2i + N2i , . . . , xTi + NTi }.

Three noise levels, SNR = {0,−2,−6 dB}, are imposed
on the original signals. Fig. 4 illustrates the time-domain
waveforms of a faulty sample under the 0 HP load before and
after Gaussian white-noise superposition. The additive model
is expressed as Xnoisy(t) = Xclean(t) + Noisy(t), where Noisy(t)
follows (33). A comparison among the three SNR levels shows
that as the noise intensity increases, the distinctive periodic
impulses caused by bearing defects gradually disappear, and
at -6 dB they are almost completely buried in noise, making
visual or statistical separation among fault types infeasible.
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Fig. 4. Time-domain waveforms of the original vibration signal (0 HP load)
and its noisy counterparts at different SNR levels.

This observation highlights the intrinsic difficulty of bearing
fault diagnosis under strong noise and the necessity of noise-
resilient diagnostic algorithms.

From a signal detection perspective, Gaussian white noise
represents the maximum-entropy disturbance under equal
power constraints and thus constitutes the most challenging
random interference model [36], [37]. If a model maintains
high diagnostic accuracy under –6 dB Gaussian noise, its
robustness boundary against any stationary noise can be
reasonably inferred. Moreover, colored noises arising from
structural harmonics or non-Gaussian impulsive interferences
are either periodic and learnable by spectral-domain models
or correspond to abnormal mechanical states that are not rep-
resentative of routine diagnostic conditions. Consequently, the
additive Gaussian noise assumption has been widely adopted
in benchmark studies for bearing fault diagnosis, such as
[31], [38], [39], [40], and [41], ensuring both methodological
consistency and experimental comparability in the community.

C. Experimental Settings

The experiments run on an Xeon1 Platinum 8255C CPU
with an NVIDIA RTX V100 16 GB GPU on the Ubuntu

1Registered trademark.

TABLE II
MAIN HYPERPARAMETER SETTINGS OF THE DAMMF-FD MODEL

Fig. 5. MSRPs of vibration signals at SNR = −6 dB.

operating system. The code is written in Python 3.8 with
PyTorch 1.9.0 and Torch-Vision 0.10.0. We use CUDA 11.0
to accelerate the training. The main hyperparameter settings
of the DAMMF-FD model are shown in Table II.

D. Evaluation Metrics

The model performance is evaluated by accuracy (ACC) and
F1-score

ACC =
TP + TN

TP + TN + FP + FN
(34)

F1-Score = 2
Precision× Recall
Precision + Recall

(35)

where TP and TN denote the correctly predicted positive and
negative samples, respectively. FP and FN are the correspond-
ing mis-classifications. The F1-score is the harmonic mean of
precision and recall, reflecting both accuracy and coverage of
the predictions.

E. Results and Analysis

During DAMMF-FD diagnosis, the outlier-corrected
sequences obtained by the DWT are further processed by two
feature-enhancement schemes shown in Algorithms 1 and 2.
Algorithm 1, MSRPGeneration(x(t)), builds multiscale 2-D
recurrence plots. Algorithm 2, GAFGeneration(x(t)),
constructs GAF maps. Figs. 5 and 6 illustrate the
corresponding outputs for samples corrupted to SNR = −6dB.

1) Results on Noisy CWRU Benchmark: The CWRU
dataset, contaminated with SNR = {0,−6 dB}, is evaluated
under four load levels, i.e., 0, 1, 2, and 3 HP. For the ten fault
categories listed in Table I, about 1000 samples are retained
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Fig. 6. GAF representations of vibration signals at SNR = −6 dB.

Fig. 7. Confusion matrices of DAMMF-FD on the test sets at SNR = −6 dB
under four load levels.

per class. Each class is then split into training and test sets
with an 8:2 ratio. The DAMMF-FD model is trained on these
partitions and tested on every load-noise pair. The following
analysis focuses on this case, since SNR = −6 dB introduces
the strongest disturbance.

Fig. 7 reports the confusion matrices obtained at SNR =

−6 dB for the four loads. In the 0 HP subset the overall
accuracy (ACC) reaches 99.24%. Eight classes achieve a recall
of ≥ 99%; the remaining two, B007 and B014, obtain 95.33%
and 95.67%, respectively. Specifically, 4.67% of B007 samples
are misclassified as B021, and 4.33% of B014 samples are
likewise confused with B021. The three ball-fault classes
(B007/B014/B021) thus exhibit the greatest feature overlap
under no load, accounting for most errors.

The other subplots in Fig. 7 correspond to 1–3 HP, where
the accuracies are 99.57%, 99.68%, and 99.54%, respectively.

Overall, even in the most challenging -6 dB scenario of
the 0 HP condition, yielding the lowest accuracy, it still
maintains ACC = 99.24%. This result underlines the model’s
strong noise immunity. As the load rises from 0 to 3 HP,
the recognition rates for the normal class and for all inner-
race (IR) and outer-race (OR) faults remain close to 99%,
demonstrating the robustness of the DAMMF-FD to load
variation.

2) t-SNE Visualization: For each dataset, the t-SNE plots
generated by DAMMF-FD are shown in Figs. 8–11.

Fig. 8. t-SNE of the testing set at 0 HP, SNR = −6 dB, before/after
classification.

Fig. 9. t-SNE of the testing set at 1 HP, SNR = −6 dB, before/after
classification.

Fig. 10. t-SNE of the testing set at 2 HP, SNR = −6 dB, before/after
classification.

Fig. 11. t-SNE of the testing set at 3 HP, SNR = −6 dB, before/after
classification.

Figs. 8–11 present the four-load datasets processed by
DAMMF-FD. The model separates the fault classes effectively,
comparing the raw distributions with the postclassification
clusters. Greater intercluster distance signifies better separa-
bility, whereas a smaller distance implies potential confusion.
To quantify this property, the Euclidean distances between
class centroids are computed and logged. The resulting
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Fig. 12. Heat-maps of centroid Euclidean distances for the four loads at
SNR = −6 dB.

centroid-distance heat-maps for the four loads at SNR = −6 dB
are plotted in Fig. 12.

Fig. 12 reports the maximal and minimal Euclidean dis-
tances between the t-SNE centroids under the following four
load levels.

1) 0 HP: max(IR021 ↔ OR014) = 113.13, min(B014 ↔
B021) = 21.84.

2) 1 HP: max(IR021 ↔ OR014) = 109.64, min(B014 ↔
IR014) = 25.88.

3) 2 HP: max(OR014 ↔ B007) = 103.49, min(B014 ↔
B021) = 24.00.

4) 3 HP: max(IR007 ↔ B021) = 107.55, min(B014 ↔
B021) = 20.52.

The distances delineate a three-tier structure as follows.
1) Normal versus all fault classes (d > 30).
2) The three major fault families—Ball, IR, and

OR—(d > 50).
3) Different severities within the same family (d < 30, most

pronounced for the Ball group).
At SNR = −6 dB every load setting still yields ACC > 99%,

confirming the model’s high noise tolerance and load invari-
ance. The 1 HP heat-map, for example, shows a noticeably
reduced separation between the normal class and the two faults
IR007 and B021, yet the accuracy remains 99.57%. Hence,
DAMMF-FD does not rely solely on centroid spacing; it
also leverages finer time–frequency cues and deeper nonlinear
decision boundaries, strengthening its robustness.

Finally, the result by the DAMMF-FD is compared with
recent diagnosis networks, i.e., CNN-L, CNN-T, FSCL, DCA-
BiGRU, QCNN, and QNN-Bi-LSTM. The quantitative results
across the four load conditions are summarized in Table III.

From Table III, it is clear that our DAMMF-FD outperforms
all baselines. The ACC on all load-noise combinations exceeds
99.5%. Boldface in the table marks column maxima.

To quantify the margin over the baselines, we compute the
relative improvement (%) of the DAMMF-FD against each

TABLE III
ACC (%) OF COMPETING FAULT-DIAGNOSIS MODELS ON

NOISY CWRU SIGNALS

Fig. 13. Performance-improvement analysis of DAMMF-FD. (a) 0 dB SNR
condition. (b) –6 dB SNR condition. (c) Average SNR condition. (d) Overall
performance improvement.

model. The distribution is summarized by the box plots in
Fig. 13.

The descriptive statistics of the four subplots in Fig. 13
reveal a hierarchical advantage as follows.

1) At SNR = 0 dB, the conventional machine-learning
method SVM shows the greatest room for improvement with a
mean of 53.1%. The LSTM gains are moderate (about 20%).
The CNN variants improve by 5%–8%. The QCNN and the
QNN-Bi-LSTM improve by less than 1%.
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Fig. 14. DAMMF-FD performance improvement over other models (T1 task).

2) At SNR = −6 dB, the improvements are most
pronounced, and all eight baselines reach their highest
improvement. The SVM rises to 65.9%, underscoring the
superior noise robustness of the DAMMF-FD.

3) The average statistics confirm the consistency of these
improvements.

Across the four datasets, the improvement ranges from a
significant increase of 59.3% over conventional SVM to a
consistent and modest improvement over the latest QCNN.
Thus, the DAMMF-FD achieves uniform improvements under
all test conditions. Especially in low-SNR scenarios, its out-
standing noise robustness and cross-architecture adaptability
demonstrate comprehensive superiority and practical value.

F. Expanded Experimental

To evaluate the proposed DAMMF-FD in terms of gen-
eralization capability, robustness, and multiscale adaptability
under varying temporal resolutions and cross-working condi-
tions, three experimental tasks (T1–T3) were designed. These
tasks encompass three levels of evaluation: single-domain fault
diagnosis (SFD), fault type diagnosis (FTD), and cross-domain
recognition with fault degree diagnosis (FDD). Together,
they establish a comprehensive framework for validating the
diagnostic performance and assessing whether the dataset
introduces overfitting.

1) T1 (Single-Domain Fault Diagnosis): This task aims
to perform fundamental fault identification using time-series
samples of length 2048. Under individual operating conditions
with varying rotational speeds and loads, four health states are
classified: normal condition (NC), inner race fault (IF), outer
race fault (OF), and ball fault (BF).

T1 is designed to evaluate the model’s feature extraction and
stable classification capability at a longer temporal resolution.
It serves as the baseline for evaluating the framework’s core
diagnostic performance and provides a reference for subse-
quent cross-domain validation. The result of Task T1 is shown
in Table IV. The improvement compared with other models is
shown in Fig. 14.

From Table IV and Fig. 14, it shows that DAMMF-FD
achieves the highest diagnostic accuracy across all fault types
under noisy (−6 dB SNR) and variable load conditions,

TABLE IV

AVERAGE DIAGNOSTIC ACCURACY (%) FOR EACH FAULT TYPE UNDER
−6 DB SNR ACROSS 0–3 HP LOAD CONDITIONS

Fig. 15. DAMMF-FD performance improvement across SNR levels and
diagnosis tasks (T2 and T3).

outperforming all benchmark models. Compared with
advanced baselines such as QNN-Bi-LSTM and QCNN,
DAMMF-FD exhibits a further 2%–25% improvement,
demonstrating superior robustness and generalization in the
T1 task.

2) T2 (Fault Type Diagnosis): Task T2 also focuses on
classifying the same four fault categories (NC, IF, OF, and
BF) but utilizes the C1−C3 cross-domain dataset configuration
shown in Table V. Here, different speed–load combinations
(1797–1730 rpm, 0–3 HP) are defined as source and target
domains to assess cross-condition recognition stability.

3) T3 (Fault Degree Diagnosis): Task T3 adopts the same
C1−C3 structure shown in Table V, but focuses on distinguish-
ing fault severities represented by three crack sizes (0.007,
0.014, and 0.021 inch). By defining source and target domains
under different speeds and loads, the experiment simulates
realistic multiscale damage patterns and working condition
variations.

The experimental results for tasks T2 and T3 are presented
in Tables VI and VII, respectively.

The overall performance improvements of tasks T2 and T3
over other models under different noise levels are illustrated
in Fig. 15.

According to the results in Fig. 15 and Table VI, the
proposed DAMMF-FD demonstrates remarkable robustness
and cross-domain generalization under noisy conditions. For
task T2 (FTD) and task T3 (FDD), DAMMF-FD achieves
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TABLE V

DESCRIPTION OF DIAGNOSIS TASKS AND DOMAIN SETTINGS IN THE CWRU DATASET

TABLE VI

AVERAGE ACC (%) OF MODELS FOR T2 AND T3 UNDER
DIFFERENT SNRS

TABLE VII

FAULT DIAGNOSIS MODEL ACC RESULTS (%) FOR DIFFERENT DATASETS
UNDER VARIOUS SNR CONDITIONS IN T2 AND T3

significant improvements over MT-ConvFormer, yielding gains
of 2.5% and 2.5% at −3 dB SNR, and 4.3% and 4.6%
at −5 dB SNR, respectively. The corresponding average
accuracies reach 97.36%/94.43% (FTD/FDD), surpassing all
compared models. In contrast to CLFormer and MT-1DCNN,
whose performances degrade sharply under high noise levels,
DAMMF-FD attains improvements of up to 54.2%–90.6%,
confirming its superior robustness, feature transferability, and
multiscale fault sensitivity across varying working conditions.

Fig. 16 presents a heatmap illustrating the performance
improvement of DAMMF-FD over other models for tasks T2
and T3, across different datasets (C1,C2, and C3) and noise
levels.

From Fig. 16 and Table VII, in Tasks T2 and T3,
the proposed DAMMF-FD consistently achieves the highest

Fig. 16. DAMMF-FD performance improvement across datasets, noise, and
tasks (T2 and T3).

accuracy and stability across all three cross-domain config-
urations (C1,C2, and C3) and noise levels (−3 and −5 dB).
Compared with other baseline models, DAMMF-FD exhibits
substantial improvements, maintaining an accuracy above 90%
even under severe noise degradation, which demonstrates its
superior robustness and domain generalization capability.

Under the C1 configuration, DAMMF-FD outperforms the
second-best model by approximately 2%–5.95% in both
FTD and FDD tasks, while achieving the lowest standard
deviations, indicating enhanced stability in noisy industrial
environments. For C2 and C3, the accuracy gains become
more prominent, especially in FDD tasks, where DAMMF-FD
outperforms conventional models by 10%–20% under both −3
and −5 dB conditions, confirming its effective feature transfer
and domain-invariant representation. The improvement visu-
alization further reveals that performance gains in FDD tasks
are consistently greater than in FTD, highlighting the model’s
superior capability for multiscale feature adaptation and fine-
grained damage discrimination.

Based on the results summarized in Tables VI and VII,
DAMMF-FD demonstrates outstanding performance consis-
tency and reliability across different SNRs (−3 and −5 dB),
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TABLE VIII

ACC/F1 (%) OF THE ABLATION VARIANTS ON CWRU SIGNALS. THE
BEST VALUE IN EACH COLUMN IS BOLD AND SHADED

cross-domain datasets (C1,C2, and C3), and two diagnostic
tasks T2 (FTD), and T3 (FDD).

In the overall averages, DAMMF-FD achieves 97.36% and
94.43% accuracy for FTD and FDD under −3 dB conditions
and maintains 92.17% and 90.52% under −5 dB. Com-
pared with the second-best model (MT-ConvFormer), it shows
an average improvement of 2%–4% with minimal fluctua-
tion (±1%), indicating excellent model stability under noisy
conditions.

The three tasks (T1–T3) are systematically structured to
evaluate the model’s single-condition baseline accuracy, its
domain generalization ability (C1,C2, and C3), and its mul-
tiscale adaptability to fault evolution. This hierarchical design
rigorously mitigates concerns of overfitting on the CWRU
dataset and extends the experimental validity to varied domain
scenarios.

G. Ablation Study

1) Ablation Study of DWT and 2-D Branches: To evaluate
the necessity of the DWT and the two image-conversion
branches in DAMMF-FD, we conduct an ablation study on
the 0 and 1 HP datasets under SNR = 0 and -6 dB. The
following variants are compared.

1) RP: The plain recurrence-plot branch only.
2) MSRP: The multiscale recurrence-plot branch only.
3) GAF: The GAF branch only.
4) −DWT: The DWT module removed.
5) +DWT: The DWT is retained, but both image branches

are removed.
The averaged ACC and F1-scores are listed in Table VIII.

From Table VIII, we have the following observations.
1) The single RP branch maintains about 96% and 93%

ACC at 0 and −6 dB, respectively, about 3–5 pp below the
full model.

2) When only MSRP or GAF is used, ACC drops to
89%–92% at 0 dB and to 83%–84% at −6 dB, confirming
that neither a single scale nor a single encoding can cover the
diverse spatiotemporal patterns of bearing faults.

3) −DWT causes the steepest decline. ACC falls to 86.9%
at 0 dB and to 79.8% at −6 dB, a loss of 13–20 pp, the

TABLE IX
AVERAGE ACC/F1 (%) UNDER DIFFERENT

HYPER-PARAMETER SETTINGS

largest among all settings. This highlights that multiresolution
analysis in the joint time–frequency domain is crucial for
discriminative feature extraction.

4) +DWT restores accuracy to only about 90%, still nearly
10 pp lower than the full model. Only time–frequency spectra
are therefore insufficient. Multiscale RP and GAF must cap-
ture global geometric relations in the 2-D space to provide
complementary cues.

5) Comparing 0 with −6 dB shows that the performance gap
between each reduced model and the complete network widens
as noise increases (mean gap enlarges from 9.2 to 13.7 pp),
reaffirming the importance of the multibranch fusion for noise
suppression and robustness enhancement.

Table VIII shows that the complete DAMMF-FD reaches
near-perfect recognition at both operating conditions (0 dB:
ACC/F1 = 99.98%/99.98%; −6 dB: 99.24%/99.26%). Any
removal of a module or branch causes a marked decline,
which becomes more severe at −6 dB, indicating that every
subcomponent is crucial for noise robustness.

The ablation results confirm the necessity and com-
plementarity of the two-level design. The DWT supplies
high-/low-frequency decomposition along the temporal axis,
highlighting impulse features and serving as the backbone
of the framework. The recurrence-plot branches (including
the multiscale extension) and the GAF branch project the
1-D vibration signal into 2-D topological and phase spaces,
greatly enhancing perception of dynamic patterns and global
dependencies.

Overall, the superiority of DAMMF-FD does not stem
from any single block. It arises from the synergistic pipeline
of “frequency-domain decomposition → 2-D re-encoding →
feature-level fusion.”

2) Hyperparameter Tuning: To identify a suitable configu-
ration for fault diagnosis, we investigate two key settings, the
convolutional kernel size Kh × Kw and the number of self-
attention heads HL. We perform five independent runs on the
0 and 1 HP subsets under SNR = −6 dB. The averages are
reported in Table IX. We have the following three findings.

1) Replacing the baseline 3 × 3 kernel with 1 × 1 or 5 × 5
significantly degrades performance. The 1 × 1 kernel lowers
ACC by 5.66 and 5.32 pp on 0 and 1 HP, respectively. The
5 × 5 kernel performs even worse. A large receptive field
dilutes fine-grained fault cues, whereas an overly small one
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Fig. 17. Branch-weight evolution and ACC/F1 variation during training.

weakens contextual linkage. Thus, a moderate 3 × 3 kernel,
combined with multiscale frequency fusion, is preferable for
extracting local time–frequency motifs.

2) Adequate parallel subspaces help recover correlations
buried by noise. Reducing HL to 8 yields only a slight loss,
but HL = 4 introduces a clear bottleneck, confirming that
insufficient heads hamper channel complementarity.

3) All hyper-parameter changes exhibit almost identical
relative trends on 0 and 1 HP, indicating stable generalization.
Close ACC-F1 agreement further suggests balanced class
distributions and minimal prediction bias.

In summary, the DAMMF-FD attains its robustness and
precision by maintaining a moderate receptive field and a
sufficient number of attention heads, thereby realizing the
synergy among kernel size, attention parallelism, and dynamic
frequency-domain fusion.

3) Branch-Weight Analysis: Fig. 17 illustrates the evolu-
tion of the three branch weights of the DAMMF-FD during
one complete training run together with the corresponding
ACC/F1 curves for the 1 HP subset under SNR = −6 dB. The
upper panel in Fig. 17 is the 3-D training trajectory of the
DAMMF-FD weight evolution in 3-D space. The lower panel
plots the branch weights against the ACC and F1-scores.

In the 3-D trajectory, the axes correspond to the weights
of the LRNet, MSRP, and GAF branches, respectively. The
path moves monotonically from an almost balanced start point
(0.41, 0.33, 0.26) to an endpoint that is strongly biased toward
the CNN-T branch (≈ 0.79, 0.15, 0.06). Point color and size
encode instantaneous ACC and F1. Both increase steadily
along the path, indicating a strong positive correlation between
performance improvement and the rising LRNet weight. Mile-
stones (E10, E20, E40, E60, and E80) reveal three dynamic
stages. 1) The CNN-T weight rises sharply from epochs 1 to
15. 2) MSRP declines slowly and GAF decays markedly from
epochs 16 to 60. 3) All three weights oscillate slightly and
converge after epoch 60.

The lower panel quantifies these trends. The LRNet weight
grows by about 93%. The GAF weight declines by roughly
77%, and the MSRP weight stabilizes near 0.15, further
confirming the stage-wise roles of the branches.

Combining spatial and temporal visualization, the LRNet
branch contributes most to the final discriminative power and
is the main driver of performance gain. The MSRP keeps a
moderate weight in the middle and late phases, providing aux-
iliary robustness. The GAF contribution gradually weakens,
yet the ablation study shows that this branch still exerts a
significant supportive influence.

In practice, the model runs at the edge: sensors
acquire vibration/acoustic signals, and on-node multiresolution
enhancement and tri-branch fusion produce fault labels and
confidence scores with low overhead. When needed, compact
features or summaries are uploaded to a gateway/cloud for
batch diagnosis and fleet-level supervision, reducing band-
width while enabling centralized updates.

V. CONCLUSION

This work presents a two-stage framework (DAMMF-FD)
for robust bearing fault diagnosis in high-noise industrial IoT
(IIoT) environments. The method targets three core challenges
in vibration-based diagnosis: 1) noise suppression via sub-
band decomposition, selective reconstruction, and adaptive
enhancement; 2) comprehensive representation using MSRPs
and GAFs to capture temporal and spectral patterns; and
3) adaptive cross-modal fusion through a tri-branch attention
architecture.

On the CWRU benchmark, DAMMF-FD attains a mean
accuracy of 99.61% from 0 to −6 dB and under vary-
ing loads, outperforming eight state-of-the-art baselines by
3.2–15.7 percentage points. Ablation results verify the con-
tribution of each component. t-SNE visualizations show clear
class separation in the latent space at −6 dB, supporting the
model’s discriminative capacity. Unlike prior single-condition
or single-scale evaluations, the multidomain and multiscale
configuration (T1–T3) explicitly assesses domain shift and
noise perturbation. The results provide concrete evidence
of cross-condition robustness and enhanced generalizability.
The lightweight design and strong noise immunity indicate
suitability for IIoT sensing nodes and edge deployment.

Future work will focus on: 1) on-device optimization
and quantization-aware training for stricter resource budgets;
2) self-supervised pretraining to reduce labeled data demands;
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and 3) reliability assessment under sensor aging and nonsta-
tionary noise.
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