
Concurrency and Computation: Practice and Experience

RESEARCH ARTICLE

Innovative Bloom Filter-Based Multilevel Block
Classification: A Practical Approach to Enhancing SSD
Performance and Endurance
Keyu Wang1 | Huailiang Tan1 | Zaihong He1 | Jinyou Li1 | Keqin Li2

1College of Computer Science and Electronic Engineering, Hunan University, Changsha, China | 2Department of Computer Science, State University of New
York, New Paltz, NY, USA

Correspondence: Zaihong He (hezaihong88@hnu.edu.cn)

Received: 16 January 2025 | Revised: 16 April 2025 | Accepted: 21 May 2025

Funding: The authors received no specific funding for this work.

Keywords: bloom filter | cold and hot data division | flash translation layer | garbage collection | solid-state drive

ABSTRACT
In modern solid-state drives (SSDs), managing hot and cold data is key to improving performance and extending lifespan. However,
previous Bloom filter-based methods were often complex and lacked solid empirical validation under high-performance condi-
tions. To address this, we propose a more efficient multilevel Bloom filter classification strategy tailored to SSDs. Our approach
optimizes classification accuracy while reducing computational and storage overhead through careful parameter tuning. By utiliz-
ing SSD block-level parallelism to group similar data access patterns, we enhance garbage collection efficiency and extend block
life. Unlike previous studies relying on simulations, we validate our method on real SSD hardware. Experimental results show
that our strategy improves SSD performance and endurance, offering valuable insights for future firmware optimization.

1 | Introduction

NAND flash memory, renowned for its high performance, strong
shock resistance, and ease of use, has established a domi-
nant position in numerous storage devices [1–3]. Its nonvolatile
nature, compact size, and low power consumption have made
it the storage medium of choice across a wide range of appli-
cations. As the cost of flash technology continues to decrease,
flash-based Solid-State Drives (SSDs) are gradually replacing
traditional mechanical hard drives. This shift not only revo-
lutionizes storage in personal electronics such as laptops and
desktop computers but also plays an increasingly pivotal role
in data centers and high-performance computing environments
[4–6].

Abbreviations: ABC, a black cat; DEF, doesn’t ever fret; GHI, goes home immediately.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

© 2025 John Wiley & Sons Ltd.

However, this trend introduces challenges inherent to the NAND
flash architecture, particularly in terms of data management and
maintenance. Garbage Collection (GC) emerges as a key process
in this regard [7–9]. Because NAND flash memory can only be
erased at the block level, the update or deletion of data generates
a substantial amount of invalid data fragments. To maintain opti-
mal SSD performance and prolong its lifespan, these fragments
must be periodically cleaned through the GC process.

Yet, GC often entails additional write operations, thereby causing
performance degradation. This underscores the importance of
efficient GC algorithms, as their effectiveness directly influences
the overall performance and durability of SSDs. In response,
researchers have proposed various advanced GC strategies to
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minimize performance overhead and fully harness the potential
of NAND flash memory in diverse application scenarios [10–15].

Relying solely on general strategies is insufficient for fur-
ther optimizing GC performance and extending SSD lifespan.
Distinguishing between hot data (frequently accessed) and cold
data (infrequently accessed) is a critical approach to improving
GC [16–18]. Inefficient handling of cold data can significantly
compromise SSD endurance and efficiency.

Accurately identifying and segregating hot and cold data has thus
become a key research direction for enhancing GC efficiency [19,
20]. Traditional methods, such as linked lists, have been used
[21], but their computational and storage overhead is substantial,
making them unsuitable for high-speed, large-scale parallel SSD
environments. Bloom filters provide a probabilistic, lightweight,
and efficient solution for data classification. Although previous
works such as MHF [19] and MBF [20] used Bloom filters to
improve GC efficiency, they relied on outdated block-level map-
ping techniques and did not fully exploit the block-level paral-
lelism of NAND flash. Moreover, these strategies were not verified
on real SSD devices.

To address these issues, we propose a multiblock partitioning
strategy based on Bloom filters, called BF-GC. This approach
thoroughly considers the architectural characteristics of SSDs.
Compared to conventional, overly complex implementations, our
Bloom filter module is more streamlined and efficient, and its
parameters and structure are optimized to meet the demands
of high-performance SSDs. By classifying data according to the
access counts of logical page addresses, and storing data with sim-
ilar access frequencies in the same flash block, we significantly
enhance GC efficiency and improve block endurance. Unlike
studies relying solely on simulations, we validate BF-GC on real
SSD hardware. The results demonstrate that this strategy effec-
tively boosts SSD performance and longevity in actual scenarios,
providing a scalable and practical solution to the challenges of
modern SSD data management.

The main contributions of this paper are as follows:

1. By thoroughly analyzing NAND flash and the GC process,
we identified key shortcomings in existing approaches, par-
ticularly in distinguishing hot and cold data and utilizing

block-level parallelism. These insights guided the develop-
ment of our more efficient BF-GC strategy.

2. We propose the BF-GC strategy, based on Bloom filters, with
parameters and structure optimized for high-speed, paral-
lel SSD environments. By leveraging block-level parallelism
to store data with similar access characteristics together,
we substantially improve GC efficiency and extend SSD
lifespan.

3. Unlike previous research limited to simulation, we vali-
date our approach on actual SSD devices. The experimen-
tal results confirm the practical effectiveness and high effi-
ciency of our strategy, providing valuable guidance for the
design and optimization of SSD firmware.

The remainder of this paper is organized as follows. Section 2
introduces the background and motivation. Section 3 details the
BF-GC scheme. Section 4 presents the performance evaluation
results. Section 5 reviews related work. Finally, Section 6 con-
cludes the paper.

2 | Background and Motivation

2.1 | Background

In this section, we introduce the key features of SSDs related to
this research.

Solid-state drives offer core advantages such as fast data access
speeds and excellent shock resistance, making them the preferred
storage solution for modern electronic devices and data centers.
As shown in Figure 1, a typical architecture of these drives con-
sists of a microprocessor, cache buffer, and multiple flash memory
chips. Each component plays a crucial role in the process of data
handling and storage.

The host interface connects the host system to the SSD, facilitat-
ing the transmission of commands and data for quick and reliable
transfer. The processor, acting as the command center, executes
firmware operations, manages the flash translation layer (FTL),
and handles various data management protocols, directly influ-
encing the drive’s responsiveness and processing capacity. The
cache buffer temporarily stores data, such as mapping tables, to

FIGURE 1 | Solid-state storage system architecture overview.
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enable fast access and writing. The flash controller coordinates
the operations of flash memory chips across multiple channels,
optimizing parallel processing and data flow. Flash memory chips
store user data, organized into multiple blocks, with each block
containing several pages. By connecting several chips to the flash
controller across different channels, SSDs can process data in par-
allel, significantly boosting performance.

As technology advances, the performance improvements of
solid-state drives largely depend on enhancements to their hard-
ware components, such as the adoption of faster buses, increased
processor frequencies, and the parallelism of flash memory chips.
However, beyond hardware upgrades, the optimization of data
management strategies is also a key to enhancing SSD perfor-
mance. In particular, intelligent categorization of data into hot
and cold is crucial for improving cache efficiency, reducing write
amplification, and optimizing the garbage collection process.

Existing research has proposed various data classification-based
optimization methods to improve the efficiency of GC in SSDs.
For example, MHF uses multiple hash functions to map data
blocks into different access frequency categories, reducing mis-
judgments associated with a single hash approach. Similarly,
MBF utilizes multiple Bloom filters with varying thresholds to
more accurately distinguish between hot data and cold data.
These methods optimize the GC process by minimizing unnec-
essary data movement and perform well in low-load scenarios.
However, their limitations become evident in high-load envi-
ronments. MHF and MBF rely on a single-level classification
mechanism, which fails to dynamically adapt to rapidly changing
access patterns. This leads to confusion between hot and cold data
during the partitioning process, increasing write amplification
and consequently reducing SSD performance and lifespan. Fur-
thermore, both MHF and MBF are designed based on outdated
block-level mapping mechanisms, meaning their data degrada-
tion approaches do not account for the computational overhead
of handling large volumes of data in high-load conditions.

2.2 | Motivation

In large-capacity, high-performance SSD applications, effective
segmentation of hot and cold data is the core of optimizing SSD
data management strategies. The traditional linked-list method
distinguishes hot and cold data through precise tracking, but
when handling large amounts of data, the storage overhead and
performance bottlenecks of the linked-list method become par-
ticularly significant, making it difficult to meet the demands
of high-speed parallel processing. On the other hand, Bloom
filter-based methods, due to their high space efficiency and query
speed, have become a common solution. Bloom filters signifi-
cantly reduce storage overhead and accelerate data queries, par-
ticularly in SSDs with multichannel architectures, where they
can take advantage of parallel processing. However, existing
Bloom filter-based solutions still have certain limitations. For
instance, many methods still rely on outdated block-level map-
ping techniques, failing to fully utilize the block-level paral-
lelism of SSDs. Moreover, some schemes introduce complex com-
putations (such as exponential decay), which increase the sys-
tem’s computational overhead and impact scalability in practical
applications.

To address these issues, we propose an entirely new data
management strategy specifically designed for large-capacity,
high-performance SSD environments. Our solution optimizes the
parameters of Bloom filters to make them more suitable for the
characteristics of SSDs and simplifies the complex computational
steps found in traditional methods. Specifically, we use a direct
counting reset approach to reset the state, avoiding the complex-
ity of exponential decay calculations, thereby significantly reduc-
ing computational overhead. Additionally, by fully leveraging the
block-level parallelism of SSDs, we group data with similar access
frequencies into the same flash block. This not only enhances the
efficiency of garbage collection but also effectively extends the
lifespan of flash blocks, further improving overall performance.

The innovation of this research lies in simplifying and optimizing
the existing Bloom filter methods, addressing the bottlenecks in
high-performance SSD applications, and validating the strategy’s
effectiveness and efficiency through real hardware experiments.
Our approach not only reduces system complexity but also fully
utilizes SSD’s parallel processing capabilities, offering a scalable
and efficient solution for future SSD data management strategies.

3 | BF-GC

In this section, we describe the details of the BF-GC scheme. First,
we present a system overview of BF-GC. Then, we will describe
the bloom Classifier and block storage optimizer of BF-GC.

3.1 | System Overview

The BF-GC scheme represents an integration of advanced data
classification and storage optimization techniques within the
SSD management framework. Its purpose is to tackle the chal-
lenges related to data volume, access patterns, and storage effi-
ciency in SSDs. This scheme operates on two distinct levels: data
classification using the bloom Classifier and data storage opti-
mization facilitated by the block storage optimizer.

Through the bloom Classifier, data is categorized based on access
frequency, enabling efficient identification of hot and cold data.
Meanwhile, the block storage optimizer focuses on optimizing
the placement of data within the SSD’s memory blocks and
streamlining garbage collection processes. By strategically orga-
nizing data and minimizing unnecessary write and erase cycles,
BF-GC significantly extends the SSD’s lifespan and enhances its
overall performance.

In Figure 2, we present the system overview of an SSD-based
storage system implementing the BF-GC scheme. The host side
comprises three layers: the application layer, file system layer,
and block device layer. Connectivity between the host and SSD is
established through the PCIe interface, leveraging the NVMe pro-
tocol. When the host generates I/O requests, they are transmitted
to the SSD via this interface. Subsequently, the BF-GC within the
SSD processes these requests and coordinates data storage oper-
ations within the flash memory.

BF-GC comprises two components: the bloom Classifier and the
block storage optimizer. In Figure 2, when the SSD receives a
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FIGURE 2 | Exploring the architecture of solid-state drives with BF-GC enhanced storage system.

write request from the host, the bloom Classifier determines the
logical address corresponding to the request using the Bloom fil-
ter. It then records the number of hits for the logical address in
a piece of metadata. Based on the number of hits for the logical
address, the block storage optimizer determines the hotness or
coldness of the data. Subsequently, the block storage optimizer
parallelly transmits the data, divided by the bloom Classifier, to
the appropriate hot and cold flash memory blocks at the block
level. By distinguishing and segregating hot and cold data, BF-GC
can effectively enhance the efficiency of data migration during
garbage collection, thereby improving the performance and dura-
bility of the SSD. In the subsequent sections, we will delve into the
specifics of the bloom Classifier and the block storage optimizer.

3.2 | Bloom Classifier

To efficiently manage data access patterns in SSDs and reduce
unnecessary data migration during garbage collection, we pro-
pose a data classification mechanism based on Bloom filters. A
Bloom filter is a space-efficient, fast querying probabilistic data
structure that can quickly determine whether an element is a
member of a specific set. In large-scale data environments, accu-
rately classifying hot and cold data is crucial. Proper data classifi-
cation not only optimizes storage layout and the GC process but
also enhances SSD performance and extends its lifespan.

In this approach, we use 8 independent hash functions to cap-
ture the logical page address (LSA) hit information. As illustrated
in Figure 3, each LSA is processed through eight independent
hash functions, and the resulting outputs set the corresponding
bits in the Bloom filter bitmap, where relevant bits are set to 1
for new LSA requests, while bits remain 0 for LSAs that are not

hits. Compared to traditional 4-hash function architecture, mod-
ern SSDs, with their larger address spaces, benefit from 8 inde-
pendent hash functions that provide more precise mapping of
logical addresses, effectively reducing conflict and collision rates.
The output of each hash function is mapped to the Bloom filter’s
bitmap, where relevant bits are set to 1 for new LSA requests,
while bits remain 0 for LSAs that are not hits.

To balance the false positive rate and memory usage, we con-
figure 8 hash functions and limit the bitmap size to 5% of the
cache space, resulting in a false positive rate of approximately 5%.
Studies show that this design is reasonable within the memory
resources available in modern SSD controllers and can signifi-
cantly improve query accuracy and performance.

By optimizing the number of hash functions and bitmap con-
figuration, the proposed Bloom filter design effectively balances
query accuracy and memory overhead in large-capacity SSDs.
This design, by more precisely capturing data access patterns,
helps optimize data storage layout and the garbage collection
process, thereby improving SSD performance and extending its
lifespan.

Frequency. To track hit frequency information, unlike the 4-bit
strategy in the multihash function framework [19], we introduce
a data variable named state in the logical page address to record
the number of hits, as we need to classify each hit in a more
fine-grained manner. In other words, the number of hits is not
recorded in the Bloom filter, but in the state variable of the LSA.
When a write request arrives, we first check the hit status in the
Bloom filter. If the write request does not hit, it indicates that the
LSA is a new write data, and we set the corresponding bit of the
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FIGURE 3 | The Bloom filter framework.

Bloom filter to 1. For the state variable in the LSA, since the initial
value is zero, we do not perform any operations on it, meaning
that the write request is for new data. For data that has already
been hit, when the value of the LSA in the Bloom filter corre-
sponding to the new write request is 1, it indicates that the LSA
has been hit at least once. The value in the Bloom filter remains
1, and the state in the LSA is incremented by 1 to record the num-
ber of LSA hits. Compared to the simple 0 and 1 recording in the
multihash architecture, our scheme can record the information
of each hit in a more fine-grained manner, allowing the data to
be divided into multiple states, rather than just simple cold and
hot states.

How to Alleviate the Computational Burden of Zeroing
Operations?. In modern SSD systems, as storage capacities con-
tinue to increase, efficiently managing large-scale data, especially
during data zeroing operations, has become a critical challenge.
Traditional zeroing methods, such as record-by-record or bitwise
operations, are effective for small datasets but lead to signifi-
cant computational overhead as the data size grows, resulting in
reduced processing efficiency. This issue is particularly promi-
nent in modern SSDs, which utilize page-level mapping in the
FTL architecture, handling much larger data volumes than those
accommodated by traditional LBA (Logical Block Addressing)
methods. To address this challenge, we propose a direct zero-
ing mechanism. This approach monitors the SSD’s runtime and
sets a threshold value. When the SSD reaches this threshold,
the memset function is used to immediately reset the state of

ALGORITHM 1 | Description of Bloom Classifier.

Require: The logicalSliceAddr requests Lsa_1, Lsa_2, …, Lsa_i.
Ensure: Bloom Classifier (Lsa_i)

1: if Bloom_filter_contains(Lsa_i) then
2: LSA.state = LSA.state + 1
3: else
4: Bloom_filter_add(Lsa_i)
5: LSA.state = LSA.state
6: end if
7: if time_to_reset_Bloom_filter() then
8: Reset Bloom filter using memset()
9: end if

10: End Procedure

all entries in the Bloom filter to zero. This method performs
a bulk reset of data states, avoiding the computational burden
typically associated with zeroing large amounts of data individ-
ually. By reducing the computational load, the direct zeroing
mechanism not only enhances SSD performance but also main-
tains data integrity and the efficiency of the garbage collection
process. Therefore, this method offers an efficient and scalable
solution for high-performance SSDs, meeting the data manage-
ment demands of large-capacity storage while ensuring optimal
performance.

The algorithm 1 of the Bloom Classifier is as described in the
pseudocode.

In Algorithm 1, the process begins by assessing if the newly
arrived LSA is present in the Bloom filter. Upon a hit in the Bloom
filter, the corresponding state within the LSA is incremented by
1. Conversely, if there is no hit, the program adds the LSA to the
Bloom filter and keeps the state of the LSA unchanged. When the
program reaches the predefined time threshold, the Bloom filter
undergoes a reset via the Memset function, effectively clearing its
contents. This mechanism ensures dynamic data management,
enabling efficient tracking of data access patterns, and maintain-
ing the Bloom filter’s effectiveness through periodic resetting.

3.3 | Block Storage Optimizer

After the Bloom Classifier has executed data partitioning, the
Block Storage Optimizer undertakes the critical task of efficiently
allocating these categorized data to flash storage. During this pro-
cess, the Block Storage Optimizer relies on the temperature of
the data—a measure indicating the frequency of data access—to
determine and write the data to flash blocks that match its tem-
perature. The strategy is designed with the intent to optimize data
access efficiency as well as to extend the lifespan of flash storage.
To illustrate the characteristics of our scenario in detail, we use
Figure 4 as a typical example.

Figure 4 illustrates the difference in data transmission between
the BF-GC system and traditional high-performance systems.
The flash memory architecture is configured with 8 channels
and 8 ways, where the intersection of each channel and way
forms a die. Data is ultimately stored in the blocks of these dies.
Specifically focusing on Die 0, the data queue contains various
data categorized by their access frequency or temperature. In
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FIGURE 4 | The differences in the data transmission process between BF-GC and traditional scheme.

this context, data labeled 1, 6, and 9 are classified as hot data,
indicating a very high access frequency. Data 2, 7, and 8 are
categorized as warm data, showing a medium access frequency.
Lastly, 3, 4, and 5 are classified as cold data, indicating the lowest
access frequency.

In Figure 4a, the data queue for Die 0 is arranged in order from
data 1 to data 9, demonstrating a strategic method of data storage
based on temperature or access frequency. Initially, when data 1
is written, it occupies the first empty block, block 0, due to its
unique temperature classification. Subsequently, data 2, having a
different temperature than data 1, is allocated to the next avail-
able block, block 1, illustrating the system’s approach to segregat-
ing data based on temperature. As the process continues, data 3,
exhibiting a temperature distinct from both data 1 and data 2, is
placed in block 2. However, when data 4 is up for writing, since
it shares the same temperature as data 3, it is stored in block 2
alongside data 3, showcasing an efficient use of space by group-
ing together data of similar temperatures. Similarly, data 5, 6, 7, 8,
and 9 are written into different blocks corresponding to their own
temperatures. This meticulous organization ensures that data of
varying temperatures are isolated within different flash blocks,
effectively preventing the mixing of different data types. Such a
structured approach not only optimizes data retrieval by closely
aligning data storage with access frequencies but also enhances
the overall efficiency and lifespan of the flash memory by mini-
mizing unnecessary read/write cycles among different data types.
By categorizing data according to temperature and storing them
in appropriate flash blocks, the BF-GC system is able to optimize
data access efficiency and extend the lifespan of flash memory.
This is because it reduces the wear on flash memory that could
occur due to frequent access to hot data. This method not only
improves the overall performance of the storage system but also
extends the device’s lifespan by effectively managing the storage
location of data.

Compared to the BF-GC method shown in Figure 4a,b presents
a more basic data storage strategy adopted by traditional
high-performance flash memory systems. Under this strategy,
once data 1 is written, it initially occupies the empty space in
block 0. This practice contrasts with the previous approach of
allocating different types of data to specific blocks based on their
“temperature.” In this mode, as long as block 0 is not full, subse-
quent data items continue to be sequentially written to the same

block. Thus, when data 2 arrives, it is stored in block 0 right after
data 1, given that there is still space available. This sequential
writing process also applies to the following data items 3, 4, 5, 6,
7, 8, and 9, which are successively accumulated in block 0 until
its capacity is saturated. This strategy does not fully utilize the
block-level parallelism of flash memory but instead opts for sim-
ple, continuous writing operations to a single block. Only when
block 0 is completely filled does the system start to write new data
to the next free block, which is block 1. Although this linear or
sequential data storage method simplifies the data management
process to some extent, it shows certain shortcomings in enhanc-
ing data migration efficiency and extending the lifespan of flash
memory compared to the temperature-based isolation storage
strategy described in Figure 4a. Because it does not optimize the
placement of data based on access frequency, frequently accessed
data may be dispersed across multiple blocks, potentially increas-
ing the number of read/write operations and thereby affecting the
overall performance and lifespan of the flash memory.

4 | Performance Evaluation

In this section, we first describe the experimental setup and test
benchmarks. Then we use the benchmarks of FIO to evaluate the
performance of BF-GC.

4.1 | Experimental Setup

The Cosmos+ FPGA OpenSSD [22] development platform is
equipped with HYNIX H27Q1T8YEB9R flash memory chips,
which are of the MLC NAND type with 16KB pages and 128
pages per block. Each die contains 8192 effective blocks, and
there are a total of 64 dies, organized into 8 channels and 8 ways
for efficient data processing. The microcontroller utilizes Xilinx’s
ZYNQ-7000 series chip, featuring two ARM Cortex-A9 embed-
ded CPUs. Additionally, the controller includes 1 GB DRAM for
storing metadata such as the FTL mapping table and buffer
cache data. Connectivity with the host is established through
the PCIe interface with NVMe protocol. The NVMe protocol ver-
sion is 1.2, and the PCIe interface utilizes Xilinx 7 series IP cores
(PCIe 2.0 version), ensuring efficient command queuing and
data transfer mechanisms. These specifications collectively con-
tribute to the robust performance and reliability of the Cosmos+

6 of 12 Concurrency and Computation: Practice and Experience, 2025

 15320634, 2025, 15-17, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpe.70148 by B

eijing N
orm

al U
niversity, W

iley O
nline L

ibrary on [04/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



FPGA OpenSSD, making it suitable for high-speed data process-
ing requirements in storage systems.

The host machine features an Intel Core i7-4790K processor run-
ning at 4.4 GHz, complemented by 16 GB DDR3 DRAM and a WD
SN750 Black 500 GB SSD. The operating system used is Ubuntu
16.04, built on the Linux kernel version 4.15, utilizing the ext4 file
system. This configuration provides a robust foundation for sup-
porting various computational tasks and storage operations. The
combination of a high-performance processor, ample memory
capacity, and solid-state storage ensures efficient data processing
and rapid access to files and applications under the Ubuntu 16.04
environment.

4.2 | Benchmark and Comparison

FIO (Flexible I/O tester), cited as [23], is a versatile tool tailored to
generate multiple threads or processes, executing predefined I/O
operations as directed by users. Typically, FIO benchmark tests
are used to gauge the efficiency of files and storage systems. In
our investigation, we leverage FIO to evaluate the influence of
each strategy on the random read and write performance of the
file system across different proportions. The FIO parameters are
set to: use the libaio engine, random read-write mode, 4KB block
size, 10 concurrent jobs, and test 100 GB of data.

In our comparative analysis of the Cosmos+ FPGA OpenSSD
development platform, we use Cosmos+ as the baseline for com-
parison. As a leading open-source SSD device, Cosmos+ uses
an FTL strategy that is also adopted by many mainstream com-
mercial high-performance SSDs. To conduct a more in-depth
analysis, besides our proposed BF-GC scheme, we have also
implemented an improved version of the Multiple Hash Func-
tions (MHF) scheme on the Cosmos+ platform as another com-
parative approach. Considering that the original MHF scheme
was designed for an older emulation environment, many of its
design concepts no longer meet the requirements of modern
high-performance SSDs. Therefore, while maintaining the core
idea of using multiple hash functions along with a single Bloom
filter in the MHF scheme, we updated other outdated design con-
cepts to ensure its seamless operation on the Cosmos+ OpenSSD.
This revised version is named the MHF-Optimized version. By
selecting the MHF scheme as a point of comparison, we effec-
tively showcase a mainstream SSD optimization strategy based
on Bloom filters, providing a reliable basis for our analysis.

4.3 | Performance

To rigorously evaluate SSD performance under real-world con-
ditions, we developed a comprehensive testing framework. The
process begins with writing and erasing 1TB of data to replicate
usage after an initial period. This step transitions the SSD to a
“steady state”, ensuring full activation of management protocols,
including garbage collection.

After the warm-up phase, performance testing continues with
300 GB of data to evaluate the SSD in its steady state. This
phase assesses performance after the SSD has adapted to reg-
ular read-write operations, ensuring a precise and realistic

measurement of its capabilities. This approach reveals how
SSDs evolve with prolonged use, providing critical insights for
informed decision-making. By simulating real usage patterns,
it enables a thorough evaluation of SSD resilience and effi-
ciency under heavy workloads, helping consumers and busi-
nesses choose reliable storage solutions.

To thoroughly evaluate SSD performance in different read/write
scenarios, we performed tests using five specific ratios: 1%, 25%,
50%, 75%, and 99%. These ratios represent a wide spectrum of
workload intensities, allowing us to analyze SSD behavior under
various conditions. Our evaluation focused on two key perfor-
mance metrics. IOPS and bandwidth directly indicate the SSDs’
data processing capabilities. In addition to throughput, we exam-
ined block erase counts and garbage collection page moves to
assess block usage efficiency and the effectiveness of page migra-
tion during garbage collection. By integrating these aspects, our
analysis provides a comprehensive view of SSD performance,
shedding light on their operational efficiency, durability, and
adaptability to different workload demands.

In Figure 5, we observe the SSD’s performance metrics under an
FIO write ratio of 1%. Despite the increment from zero in block
erase counts and GC page move counts, as detailed in Figure 5e,f,
the Input/Output Operations Per Second (IOPS) and bandwidth
(BW) depicted in Figure 5a–c, and d exhibit negligible variance.
This minimal variation can be attributed to the predominance of
read operations over write activities due to the low write ratio. As
a result, the performance distinctions across different scenarios
become inconsequential.

This observation suggests that at a 1% write ratio, the SSDs’ per-
formance is largely unaffected by variations in FTL strategies or
GC activities. Since the majority of operations are read-centric in
this context, the potential impacts of differing FTL mechanisms
or the efficiency of GC processes on overall performance are min-
imized. Hence, in scenarios where read operations significantly
outweigh write actions, the choice of FTL strategy or the nuances
of GC mechanisms are less likely to influence the SSD’s perfor-
mance outcomes.

In Figure 6, we observe the performance of SSDs under a
25% FIO write ratio condition. Throughout the 300 GB testing
sequence, the BF-GC scheme, which uses a multiblock strategy,
surpasses the performance of the other two schemes. Notably, at
the 100 GB data checkpoint, Cosmos+ demonstrates slightly bet-
ter performance compared to MHF-Optimized. However, as the
data volume increases to 200 GB, the performances of Cosmos+
and MHF-Optimized begin to converge. When the test data
volume reaches 300 GB, MHF-Optimized starts to outperform
Cosmos+, indicating that the efficacy of these schemes changes
with increasing data loads.

The data reveal that the BF-GC scheme not only provides supe-
rior and more stable performance but also outperforms the sin-
gle hot and cold block strategy used by MHF-Optimized. Com-
pared to the existing architecture of Cosmos+, the block-level
parallelism used by BF-GC effectively reduces the overhead of
GC operations. In testing scenarios like the 300 GB test, BF-GC
proves to offer better performance over the other two schemes,
thereby highlighting the importance of block-level strategies and
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FIGURE 5 | FIO: 300 GB data with 1% write ratio. (a) IOPS Read, (b) IOPS Write, (c) BW Read, (d) BW Write, (e) Erase Count, and (f) GC Page.

FIGURE 6 | FIO: 300 GB data with 25% write ratio. (a) IOPS Read, (b) IOPS Write, (c) BW Read, (d) BW Write, (e) Erase Count, and (f) GC Page.
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FIGURE 7 | FIO: 300 GB data with 50% write ratio. (a) IOPS Read, (b) IOPS Write, (c) BW Read, (d) BW Write, (e) Erase Count, and (f) GC Page.

their impact on enhancing GC efficiency in SSDs. These insights
suggest that for tasks with moderate to low write loads, the
BF-GC architecture may offer significant advantages in maintain-
ing high-performance levels.

In Figure 7, we analyze SSD performance under a 50% FIO write
ratio, where the advantages of BF-GC become significantly more
pronounced. Throughout the 300 GB testing phase, BF-GC con-
sistently outperforms the other two schemes in all performance
metrics. Compared to the 25% write ratio scenario in Figure 6,
this performance gap becomes even more evident, demonstrat-
ing how more frequent GC triggers at a 50% write ratio further
enhance BF-GC’s efficiency.

Figure 7 presents a comprehensive analysis of SSD performance
under a 50% FIO write ratio, highlighting the significant advan-
tages of BF-GC over Cosmos+ and MHF-Optimized across all
key performance metrics. In terms of IOPS, BF-GC consistently
outperforms the other two schemes, as illustrated in Figure 7a
and b. Notably, in write IOPS, BF-GC demonstrates a consider-
able lead, indicating its ability to efficiently handle data migra-
tion and garbage collection processes under a high write ratio.
This efficiency reduces write amplification while improving over-
all throughput. Similarly, bandwidth performance, as shown in
Figure 7c and d, further corroborates this advantage. Specifically,
in write bandwidth, BF-GC achieves improvements of 23.5% and
10.4% over Cosmos+ and MHF-Optimized, respectively, demon-
strating its ability to maintain high data throughput even under
frequent GC triggers. This stable bandwidth performance mini-
mizes performance fluctuations caused by GC operations, mak-
ing BF-GC particularly suitable for write-intensive workloads.

Moreover, BF-GC exhibits clear optimizations in GC-related met-
rics. As shown in Figure 7e, BF-GC records significantly lower
erase counts compared to Cosmos+ and MHF-Optimized, indi-
cating a more efficient GC mechanism that reduces unneces-
sary erase operations, thereby mitigating write amplification
and extending SSD lifespan. Additionally, Figure 7f depicts the
number of pages involved per GC event, where BF-GC sig-
nificantly reduces GC Page through optimized data migration
strategies, further minimizing the overhead caused by garbage
collection. Overall, Figure 7 provides a comprehensive illustra-
tion of BF-GC’s advantages under a 50% write ratio scenario,
demonstrating its superior performance in IOPS and bandwidth
while also achieving lower erase counts and reduced GC over-
head. These findings confirm BF-GC’s exceptional adaptability to
write-intensive environments, making it a highly efficient choice
for demanding workloads.

In Figure 8, we examine SSD performance under a 75% FIO
write ratio, highlighting the dynamics under higher write
loads. Initially, at 100 GB, BF-GC surpasses both Cosmos+ and
MHF-Optimized, with MHF-Optimized slightly lagging behind
Cosmos+. As the data volume increases to 200 GB and 300 GB,
BF-GC maintains its lead, showcasing superior performance over
MHF-Optimized, which in turn outperforms Cosmos+. This per-
formance pattern aligns with observations from the 25% and 50%
write ratio scenarios, emphasizing the growing performance edge
of the BF-GC as the write ratio escalates.

Figure 8 presents a comparative analysis of SSD performance
under a 75% write ratio, highlighting the distinct performance
trajectories of BF-GC, Cosmos+, and MHF-Optimized. BF-GC
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FIGURE 8 | FIO: 300 GB data with 75% write ratio. (a) IOPS Read, (b) IOPS Write, (c) BW Read, (d) BW Write, (e) Erase Count, and (f) GC Page.

demonstrates a consistent and robust performance across vari-
ous metrics, particularly as write demands intensify. As shown in
Figure 8, BF-GC maintains a significant advantage in IOPS and
bandwidth, consistently outperforming the other two schemes.
The consistency in BF-GC’s performance can be attributed to
its granular data partitioning strategy and the direct count reset
mechanism, both of which enable more effective data man-
agement while minimizing computational overhead. In con-
trast, MHF-Optimized exhibits performance fluctuations, ini-
tially trailing Cosmos+ but eventually surpassing it, only to
experience performance declines as data volumes increase. This
volatility, particularly under heavy write operations, underscores
MHF-Optimized’s instability in such scenarios.

Specifically, under the most favorable conditions, BF-GC
achieves a performance uplift of 34% over Cosmos+ and 16%
over MHF-Optimized, as depicted in Figure 8. This advantage
is most pronounced in write IOPS and write bandwidth, where
BF-GC shows superior handling of high write loads and remains
resilient despite the frequent GC triggers inherent to such envi-
ronments. In terms of erase count and GC page involvement,
BF-GC again leads, demonstrating its efficiency in managing
write amplification and minimizing the overhead associated
with garbage collection.

Overall, Figure 8 underscores BF-GC’s exceptional ability to
maintain high performance, even as write demands increase. Its
superior efficiency and stability, coupled with its resilience to fre-
quent GC triggers, make it an ideal choice for applications requir-
ing high endurance and consistent performance under substan-
tial write workloads.

Figure 9 illustrates the performance of SSDs under a 99% FIO
write ratio, indicating that such a high write proportion signifi-
cantly increases the burden on the GC mechanism. Under these
extreme write conditions, BF-GC demonstrates significant per-
formance advantages, validating the effectiveness of its methods
in optimizing write operations and GC, especially under high
write load scenarios. Similarly, in tests with data volumes of
200 GB and 300 GB, BF-GC outperforms the MHF optimization
approach. This advantage can primarily be attributed to BF-GC’s
adoption of a more fine-grained partitioning strategy, coupled
with a direct counting zeroing mechanism, which effectively
reduces computational overhead, thereby achieving superior per-
formance in high-load environments.

Figure 9 further illustrates the effectiveness of BF-GC in mitigat-
ing GC-related performance overhead and reducing block era-
sures, particularly when compared to the traditional Cosmos+
architecture. As shown in Figure 9a,b, BF-GC consistently out-
performs both Cosmos+ and MHF-Optimized in read and write
IOPS, demonstrating its ability to sustain high-speed operations
even under extreme write conditions. Similarly, in bandwidth
performance, BF-GC maintains a significant advantage, particu-
larly in write bandwidth, where it ensures stable data throughput,
despite the high write ratio. This highlights BF-GC’s efficiency in
managing high write loads while minimizing performance degra-
dation caused by frequent GC triggers.

Additionally, BF-GC exhibits a clear advantage in GC-related
metrics, as shown in Figure 9e,f. The erase count in Figure 9e
is substantially lower for BF-GC compared to Cosmos+ and
MHF-Optimized, indicating a more efficient GC mechanism that
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FIGURE 9 | FIO: 300 GB data with 99% write ratio. (a) IOPS Read, (b) IOPS Write, (c) BW Read, (d) BW Write, (e) Erase Count, and (f) GC Page.

minimizes unnecessary erase operations, thereby reducing write
amplification and prolonging SSD lifespan. Moreover, Figure 9f
shows that BF-GC involves fewer pages per GC event, further
underscoring its efficiency in managing garbage collection over-
head. In contrast, while MHF-Optimized achieves competitive
results in specific scenarios through simple hot and cold data par-
titioning, its overall stability and performance remain inferior to
BF-GC, especially under sustained high write workloads.

Overall, compared to the mainstream Cosmos+ architecture,
BF-GC effectively mitigates the impact of GC on SSD perfor-
mance while significantly reducing block erasures, ultimately
enhancing SSD durability. Unlike MHF-Optimized, which relies
solely on a basic data partitioning scheme, BF-GC demonstrates
superior stability and performance across a wide range of work-
loads. These findings reinforce BF-GC’s suitability for appli-
cations that require sustained high write endurance, ensuring
long-term reliability and efficiency.

5 | Related Work

In the research focused on optimizing garbage collection for
SSD, victim block selection and hot data identification emerge as
pivotal aspects. The greedy algorithm [24, 25], by selecting blocks
with the fewest valid pages for GC, offers a method to minimize
data movement and thereby enhance overall SSD performance.
The D-choice algorithm [26], inspired by the greedy approach,
selects a victim block from multiple candidates, aiming to expe-
dite the selection process while balancing efficiency and wear

leveling. Furthermore, advancements in hot data identification
techniques play a vital role in improving GC efficiency. Chang
et al. [21]. used a two-level LRU list structure to identify impend-
ing hot write requests, whereas Park et al.’s multiple Bloom
filter scheme [19] focuses on identifying hot data within flash
memory. These methods, by accurately pinpointing frequently
accessed data, contribute to optimized data storage strategies
and improved access efficiency. The MBF [20] scheme, utilizing
multitiered Bloom filters, further enhances the rationale and
efficiency of hot data identification, targeting optimized GC
processes and elevated SSD performance through improved han-
dling of hot data. These studies illustrate the potential of inno-
vative algorithms and techniques in addressing the challenges of
SSD GC and data management, with each approach contributing
toward enhanced storage efficiency and extended device lifespan.

Building on these foundational approaches, our proposed BF-GC
scheme introduces a novel application of Bloom filters for data
partitioning, with a focus on refined granularity and enhanced
block-level parallelism. Unlike previous schemes that primarily
utilize simulators for design and validation, our approach lever-
ages real-world devices to authenticate and refine our design.
This practical validation underscores the efficacy of the BF-GC
scheme in real-world applications, demonstrating significant
improvements in GC efficiency and SSD performance. By meticu-
lously crafting data partition strategies and harnessing the power
of block-level parallel processing, the BF-GC scheme effectively
minimizes unnecessary data movements and optimizes the over-
all GC process. Our research not only validates the benefits
of incorporating advanced data identification and partitioning
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techniques but also highlights the importance of real-device test-
ing in developing practical solutions for SSD optimization.

6 | Conclusion

This study proposes a multilevel classification strategy based on
Bloom filters, specifically designed for modern SSDs. The method
efficiently distinguishes between hot and cold data while signifi-
cantly reducing computational and storage overhead. By leverag-
ing SSD block-level parallelism, our approach enhances garbage
collection efficiency and extends block lifespan. Experimental
results demonstrate that, compared to traditional Bloom filter
methods, our strategy achieves a better balance between compu-
tational efficiency and storage overhead, while proving its effec-
tiveness and reliability on real SSD hardware. Nevertheless, the
generalizability of this method across different types of SSDs still
requires further validation. Therefore, in future work, we plan
to expand the scope of our experiments by testing BF-GC on a
wider range of SSD devices. We will also explore further optimiza-
tion strategies to enhance its adaptability and robustness across
diverse storage architectures.

Data Availability Statement

The data that support the findings of this study are available on request
from the corresponding author. The data are not publicly available due to
privacy or ethical restrictions.
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