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Abstract—Multi-view bipartite graph clustering (MVBGC) is
an active pipeline in unsupervised learning to tackle the limited
scalability issue of traditional graph clustering. Despite improved
performance, numerous variants still fall under conventional mod-
eling that plugs additional modules, which however induces in-
creasingly intricate models and fails to reveal the inherent variable
relationship. We make the first attempt to introduce probabilistic
graphical models for modeling the multi-view bipartite graph clus-
tering task, reformulating it as a maximum likelihood estimation
(MLE) problem. Such a setting uncovers the underlying probabilis-
tic correlations among the commonality, view-specific variables,
and noisy components. By pruning redundancy and disturbance
collectively referred to as noise, we prove that minimizing the
total noise is an approximation of the lower bound of MLE for
multi-view data observations. We further generalize the MLE
setting with clustering-suited constraints, deriving a Generalized
Probabilistic Graphical Modeling framework (GProM), achieving
an interpretable, concise, and flexible MVBGC framework. Exten-
sive experiments verify the effectiveness of our framework. Fur-
thermore, statistical significance analysis reveals the effectiveness
of different distribution assumptions, providing valuable insights
for model design.
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I. INTRODUCTION

W ITH dramatically growing data from diverse sources,
such as in self-driving scenarios, cars sense the sur-

roundings through cameras, lidar, and radar, annotating massive
data is cost- and labor-intensive, which is an urgent need to
develop unsupervised learning [1], [2], [3], [4]. Typically, graph
clustering [5], [6], [7] has emerged as a fast-growing pipeline
in multi-view clustering (MVC) [8], [9], [10], widely employed
in social networks, bioinformatics, and recommendation [11],
[12], [13].

Early multi-view graph clustering (MVGC) [14], [15], [16]
required building pairwise memberships, resulting in quadratic
space complexity and cubic time complexity w.r.t. instances, de-
grading scalability for large-scale applications. To alleviate this
limitation, multi-view bipartite graph clustering (MVBGC) [17],
[18], [19], [20], [21] was proposed by constructing memberships
of prototype-instance pairs, showing promising scalability with
linear complexity.

A typical MVBGC model includes three procedures: pro-
totype selection, bipartite graph construction, and multi-graph
fusion. Numerous variants [20], [22], [23], [24] have been
proposed to enhance these components by coupling various
techniques. For example, prototype enhancement strategy [25]
augments the discrimination of pre-sampled prototypes from
k-means; graph filtering [26] refines the bipartite graph con-
struction by smoothing graph signals; tensor-based [27] or
diversity-induced [28] concatenation strengthens multi-graph
fusion by concatenating bipartite graphs. Despite the pleasing
performance, these methods still fall under conventional design,
wherein plugging more and more modules directly results in
increasingly intricate models. More critically, these manners are
unable to uncover the underlying variable relationship.

Orthogonal to the conventional MVBGC routine, this pa-
per introduces probabilistic graphical models [29] to explore
the probabilistic correlations among variables, reformulating
MVBGC as a maximum likelihood estimation (MLE) problem.
Specifically, we revisit the classical linear reconstruction back-
bone [18] from the perspective of probabilistic graphical model
and find that it overlooks the impact of redundancy and distur-
bance within the data observations and latent variable, thereby
hindering the discovery of inherent structural information. By
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uncoupling these undesired components, identified as noise,
we derive a generalized linear reconstruction model. Using
Gaussian and rotational invariant Laplacian distribution [30] as
examples for likelihood instantiation, we reveal the connection
between the MLE of multi-view data and the minimization of
noise under distribution-related penalties. We further general-
ize the MLE problem with appropriate constraints, deriving a
generalized probabilistic graphical modeling framework, termed
GProM, which is well-suited for clustering tasks.

Our contributions are summarized as follows:
1) We pioneer the use of probabilistic graphical models to

formalize the multi-view bipartite graph clustering task
and reformulate it as a MLE problem, which reveals
the probabilistic dependencies among commonality, view-
specific variables, and noisy components, distinguishing
our work from conventional designs.

2) We theoretically verify that minimizing the sum of feature-
and structure-level noise approximates the lower bound
of MLE for multi-view data observations. We further
generalize the MLE setting with appropriate constraints,
enabling compatibility with clustering tasks and formu-
lating a generalized probabilistic modeling framework for
MVBGC.

3) Extensive experiments verify the effectiveness of our
model. The empirical results indicate that the penalty
derived from the rotational invariant Laplacian distribu-
tion outperforms Gaussian distribution-based counterpart
for modeling feature-level noise, while both distributions
exhibit comparable significance for structural-level noise.

II. RELATED RESEARCH

This section briefly outlines typical techniques of MVBGC,
including (1) prototype selection, (2) bipartite graph construc-
tion, (3) multi-graph fusion.

Prototype Selection: Early research typically samples pro-
totypes from all instances. Random sampling is intuitive and
the representative is Nyström [31]. k-means is a widely used
method, but it is sensitive to initialization [18], [32]. DPP sam-
pling [33] is another popular method, particularly in recommen-
dation. However, it needs to build a Gram matrix with enormous
complexity. Some hybrid methods seek a trade-off between the
above methods [34], [35]. Recently, DAS [17] alternately gener-
ated prototypes to cover the entire point cloud, and BKHK [36]
introduced binary tree to improve efficiency. A recent popular
strategy is to learn prototypes. Pioneering works [37], [38], [39]
incorporated prototypes into the optimization, which enhances
flexibility and avoids the one-shot approximation problem of
sampling methods.

Bipartite Graph Construction: Linear and locally linear re-
constructions [17], [18] are two commonly employed back-
bones. The former assumes that input features can be linearly
reconstructed from prototypes via similarity coefficient [40],
whereas the latter assumes that high-dimensional features lie
on a mixture of low-dimensional submanifolds [41]. Most vari-
ants [28], [42] are based on them.

Multi-graph Fusion: Stage-wise fusion ensembles pre-
generated candidate bipartite graphs. Two typical strategies

TABLE I
NOTATIONS

are linear-combination [17] and concatenation [18]. However,
such manners may yield suboptimal solutions. Conversely, col-
laborative fusion unifies graph construction and commonality
fusion, considering dependencies among variables. Pioneering
work [38] projected multiple views into a latent space through
orthogonal mapping, directly building consensus information,
which avoids separate optimization. However, as pointed out
in [43], mapping all features into low-dimensional space via
orthogonal projection easily induces information loss with
degraded performance.

Numerous variants have been developed. For instance, pro-
totype enhancement [25] augments the diversity of prototypes
initially generated by k-means; graph filtering [26], manifold
learning [44], sparse [45] and low-rank [46] regularizations
refine the bipartite graph construction; diversity-induced [28],
multi-scale [47], contrastive learning [48], or tensor-based con-
catenation [49], [50] enhance multi-graph fusion. These tech-
niques have also been extended to tackle incomplete data [51],
[52], [53]. Despite pleasing results, these variants increasingly
introduce extra modules, inducing intricate models, limiting
their practical deployment.

III. METHODOLOGY

This section presents the technical roadmap for modeling the
MVBGC problem using probabilistic graphical models. Table I
lists the notations used throughout this work.

A. Interpretable Multi-View Linear Reconstruction Model
From a Probability Perspective

Let us consider multiple view raw features {Xl}vl=1 =
{[xl[1],xl[2], . . . ,xl[n]]}vl=1 and view-specific prototypes
{Ol}vl=1 = {[ol[1],ol[2], . . . ,ol[m]]}vl=1, where v, n, m denote
number of views, instances, and prototypes, respectively. The
classical linear reconstruction backbone [18] assumes that each
input instance xl[j] can be reconstructed linearly by prototypes
Ol via coefficient hl[j], which is expressed by:

xl[j] = Olhl[j]. (1)

For the lth view,hl[j] = [hl[1j], hl[2j], . . . , hl[mj]]
� represents

the transition probability from the jth instance to m prototypes
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Fig. 1. Diagram for the generalized linear reconstruction model from a
probabilistic graphical perspective. xl[j] is the data observation, hl[j] is the
latent variable, u[j] is an instance-specific parameter, and Ol is a view-specific
parameter. θF and θG are remaining parameters.

in a one-step stationary Markov random-walk [52]. The nor-
malized probability is given by p(xl[j] �→ ol[r]) =

hl[rj]∑m
r=1 hl[rj]

[54], where �→ denotes the transitioning. If we relax the re-
quirement that the sum of probabilities

∑m
r=1 hl[rj] = 1, (1)

actually describes a basic probabilistic graphical model [29],
where {xl[j]}nj=1 denote independent and identically distributed
(i.i.d) multi-view data observations, hl[j] is the latent variable,
and Ol is the parameter.

However, the deployment of classical linear reconstruction
model in real-world scenarios often deviates from the ideal
conditions in (1) due to the presence of internal or external
noisy information. For instance, observationsxl[j] are inevitably
contaminated by sensor errors or resolution limitations, and
these adverse factors further degrade the quality and reliability
of the latent variable hl[j]. For simplicity, these redundancy and
disturbance are referred to as noise and should be disentangled.

Definition 1: Feature Noise eFl[j]. It refers to disturbances and
errors inherent in the data observations, which should be pruned
at the feature level, i.e., xl[j] = Olhl[j] + eFl[j].

Definition 2: Structure Noise eGl[j]. It refers to the deviation
of the view-specific latent variable hl[j] from the consensus
parameter u[j], which should be pruned at the structure level,
i.e., hl[j] = u[j] + eGl[j].

Based on above definitions, a general multi-view linear re-
construction model is derived as follows:

xl[j] = Ol

(
u[j] + eGl[j]

)
+ eFl[j]. (2)

Fig. 1 depicts the probabilistic relationship of (2) based on the
probabilistic graph model. Further, Theorem 1 gives the lower
bound of the log-likelihood of the multi-view data observations.
For simplicity, we assume that multiple views share the same
parameters θF and θG .

Theorem 1: Given i.i.d instances {xl[j]}nj=1, the lower bound
of the log-likelihood of observations within the general linear
reconstruction model can be derived as follows:

log
v∏

l=1

n∏
j=1

p(xl[j]; Θ)

(i)
=

v∑
l=1

n∑
j=1

logEq(hl[j])

[
p(xl[j],hl[j]; Θ)

q(hl[j])

]

=

v∑
l=1

n∑
j=1

logEq(hl[j])

[
p(xl[j]|hl[j];Ol, θF )p(hl[j];u[j], θG)

q(hl[j])

]
(ii)

≥
v∑

l=1

n∑
j=1

Eq(hl[j])

[
log p(xl[j]|hl[j];Ol, θF )

+ log p
(
hl[j];u[j], θG

)]
+H(q(hl[j]))

(iii)
=

v∑
l=1

n∑
j=1

Eq(eG
l[j]

)

[
log p(xl[j]|hl[j];Ol, θF )

+ log p
(
hl[j];u[j], θG

)]
+H(q(eGl[j]))︸ ︷︷ ︸

Φ(·)

(3)

where Θ denotes all model parameters; the conditional like-
lihood p(xl[j]|hl[j];Ol, θF ) parameterized by Ol and θF , de-
scribes how the latent variable generates data observations;
p(hl[j];u[j], θG) parameterized by u[j] and θG , defines the dis-
tribution of the latent variable; θF and θG denote the parameters
controlling the distributions of eFl[j] and eGl[j], respectively, and
these parameters are endowed with physical meanings in instan-
tiation, as illustrated in Section III-B1.

Equality (i) is straightforward that introduces the approxi-
mate posterior q(hl[j]) to both the numerator and denominator.
Inequality (ii) holds because of Jensen’s inequality. Equality
(iii) is valid by substituting the expectation of hl[j] with that of
eGl[j], based on the linear assumption about the latent variable in

Definition 2, i.e., hl[j] = u[j] + eGl[j].
Equality (iii) includes an expectation term E(·) and an en-

tropy termH(·). Note thatH(·) is associated witheGl[j]. Actually,
this term can be generalized into a broader regularization term
Φ(·) with respect to the model parameters Θ, i.e., Φ(Θ). This
generalization enables a more flexible configuration tailored to
specific practical problems, rather than being limited to eGl[j].

Remark 1: No specific assumptions are imposed on
p(xl[j]|hl[j];Ol, θF ) or p(hl[j];u[j], θG). Therefore, (3) depicts
a general probabilistic graphical model that encodes probabilis-
tic dependencies of observations xl[j], latent variables hl[j], and
parameters Ol and u[j].

B. Probabilistic Graphical Modeling for MVBGC Task

This section instantiates the expectation term E(·) and the
regularization term Φ(·) within the lower bound in (3).

1) Instantiation of the Expectation Term E(·): This section
instantiates the first term E(·) in (3). Considering the challenges
of solving expectations analytically, we first employ Monte
Carlo approximation to reformulate E(·) as a statistical esti-
mation problem, i.e.,

E(·) ⇒
v∑

l=1

n∑
j=1

T∑
t=1

1

T

[
log p

(
xl[j]|ht

l[j];Ol, θF
)

+ log p
(
ht
l[j];u[j], θG

)]
, (4)
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where T is set to 1 for simplicity. It allows us to focus on
instantiating p(xl[j]|hl[j];Ol, θF ) and p(hl[j];u[j], θG) more ef-
fectively, where we omit the superscripts for the sampling index.

Based on (4), we derive two specific instantiations under
different distribution assumptions.

The first assumption is Gaussian distribution, where the sam-
ple mean is an unbiased estimator of the population mean. Gaus-
sian mixture model [55] is a typical density-based clustering
method developed on it. Inspired by this, Proposition 1 gives
the instantiated (4) by Gaussian distribution. For simplicity,
we define O = {Ol}vl=1 ∪ {u[j]}nj=1, EF = {eFl[j]}v,nl,j=1, EG =

{eGl[j]}v,nl,j=1, where l denotes the view index and j denotes the
instance index.

Proposition 1: When we instantiate p(xl[j]|hl[j];Ol, θF ) and
p(hl[j];u[j], θG)by Gaussian distributionN (xl[j];µF , σ2

FI) and
N (hl[j];µG , σ2

GI), respectively, the mean and variance are en-
dowed with physical meanings, i.e., µF = Olhl[j], µG = u[j],
σ2
FI = θF , σ2

GI = θG . It is equivalent to eFl[j] and eGl[j] following

zero-mean N (eFl[j];0, θF ) and N (eGl[j];0, θG), respectively. (4)
is converted into:

max
O

v∑
l=1

n∑
j=1

(
−
∥∥xl[j] −Olhl[j]

∥∥2
2

2σ2
F

−
∥∥hl[j] − u[j]

∥∥2
2

2σ2
G

)

⇒ min
EF , EG

v∑
l=1

n∑
j=1

(∥∥∥eFl[j]∥∥∥2
2
+ η

∥∥∥eGl[j]∥∥∥22
)
, (5)

where η =
σ2
F

σ2
G

.

Note that two levels of noise are measured by the squared �2-
norm in (5), making the objective sensitive to outliers that may be
caused by sensor errors. To alleviate this, we introduce another
rotational invariant Laplacian distribution [30] to instantiate (4).

Proposition 2: When we instantiate p(xl[j]|hl[j];Ol, θF ) and
p(hl[j];u[j], θG) by rotational invariant Laplacian distribution
L(xl[j];µF , bFI) and L(hl[j];µG , bGI), respectively, the loca-
tion parameter and scale parameter are endowed with physical
meanings, i.e., µF = Olhl[j], µG = u[j], bFI = θF , bGI = θG .
It is equivalent to eFl[j] and eGl[j] following L(eFl[j];0, θF ) and

L(eGl[j];0, θG), respectively. Eq. (4) is converted into:

max
O

v∑
l=1

n∑
j=1

(
−
∥∥xl[j] −Olhl[j]

∥∥
2

2bF
−
∥∥hl[j] − u[j]

∥∥
2

2bG

)

⇒ min
EF , EG

v∑
l=1

n∑
j=1

(∥∥∥eFl[j]∥∥∥
2
+ η

∥∥∥eGl[j]∥∥∥2) , (6)

where η = bF
bG

.
In (6), two levels of noise are measured by �2-norm, thereby

enhancing robustness against outliers. Details of Propositions
1–2 are provided in supplementary materials (Section 1-2).

Remark 2: We use N (·) and L(·) to instantiate the log-
likelihoods to (4), which reveals that minimizing the sum of two
levels of noise (i.e., (5) and (6)) approximates the lower bound
of MLE of multi-view data observations. Importantly, (4) is a

flexible framework that is compatible with different distribution
combinations and assumptions.

2) Instantiation of the Regularization Term Φ(Θ): This sec-
tion instantiates the second termΦ(Θ) in (3). Given that practical
clustering tasks often incorporate domain-specific knowledge
to reduce the search space [17], we impose task-oriented con-
straints on the model parameters.

Constraint onOl: The prototypes play a crucial role in captur-
ing the underlying data distribution. To promote diversity, we im-
pose a Stiefel manifold constraint φ(Ol) = {Ol|O�

l Ol = Im},
which encourages the prototypes to span the entire point cloud,
thereby enhancing variety.

Constraint on {hl[j],u[j], e
G
l[j]}: To normalize the instance-

prototype transition probability, the view-specific hl and the
consistent u should hold {hl|h�

l 1m = 1, hl ≥ 0} and φ(u) =
{u|u�1m = 1, u ≥ 0}, respectively. Naturally, eGl should also
adhere to such a constraint. However, the above constraints
are inconsistent with Definition 2. To address this issue, we
introduce hyperparameters 0 < ξ, β < 1 to balance their rela-
tionship, such that the Definition 2 is relaxed to hl = ξu+ βeGl
with ξ + β = 1. Note that ξ and β cannot be modeled by prob-
abilistic graphical models but are instead manually specified. It
is straightforward to derive their matrix form φ(U) and φ(EG

l )
with U = [u[1],u[2], . . . ,u[n]] and EG

l = [eGl[1], e
G
l[2], . . . , e

G
l[n]].

The details are omitted for brevity.
Besides, a discriminative U comprises disjoint k-connected

components, with each one corresponding to a distinct clus-
ter. Drawing inspiration from [17], we incorporate a connec-
tivity constraint φ(L̃) = {L̃|rank(L̃) = n+m− k}, where
L̃ = I−Π− 1

2SΠ− 1
2 is the normalized Laplacian matrix,

S =

[
0 U�

U 0

]
, Π =

[
Ωn 0

0 Ωm

]
, Ωn = diag(U�1), and

Ωm = diag(U1).
Constraint on eFl[j]: As stated in Definition 1, eFl[j] is

the disturbances detached from the unconstrained observa-
tions. Therefore, φ(EF

l ) = {EF
l | EF

l ∈ R
dl×n} with EF

l =
[eFl[1], e

F
l[2], . . . , e

F
l[n]] remains unconstrained.

3) The Proposed GProM Framework: Consequently,
GProM is formulated as:

min
Θ

v∑
l=1

n∑
j=1

(∥∥EF
l

∥∥
X + η

∥∥EG
l

∥∥
X
)
+Φ(Θ), (7)

where Θ includes {Ol,U, L̃,EG
l ,E

F
l }, ‖ · ‖X denotes the

penalty term corresponding to the distribution assumptions of
either N (·) or L(·).

We summarize the superiority of the GProM framework:
1) Interpretable: From the perspective of probabilistic graph-

ical models, it elucidates the dependencies among view-
related variables, commonality, and two levels of noises
separated from observations and latent variables.

2) Concise: It directly models cross-view consistency by
relying solely on latent variables associated with multiple
views, without requiring additional components.
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3) Flexible: It accommodates various distribution assump-
tions and combinations, enabling flexible transformation
into a data-driven noise pruning mechanism.

Remark 3: Our GProM offers four options, 1) GProM-GG:
both eFl and eGl follow N (·). 2) GProM-LG: eFl follows L(·)
while eGl follows N (·). 3) GProM-GL: eFl follows N (·) while
eGl follows L(·). 4) GProM-LL: both eFl and eGl follow L(·).

IV. TAILOR-MADE ADMM OPTIMIZATION

For the first expectation term of (7), existing gradient-based
solutions, such as Stochastic Gradient Descent (SGD) can solve
it. What makes our problem difficult or even intractable lies
in the second regularization term Φ(Θ). Conventional MLE
solutions will suffer failures as they may cause variables beyond
the constraint boundaries. These difficulties prompt us to design
a tailor-made but efficient solution. Considering the coupling
relationship of variables and constraints, we adopt Alternating
Direction Method of Multipliers (ADMM) [56] to optimize our
problem. Without loss of generality, we take GProM-LL as an
example, where the penalty ‖ · ‖χ is specified as the ‖ · ‖2,1
norm. The solutions for the remaining variants follow a similar
procedure.

In the ADMM setting, we introduce auxiliary ẼG
l for EG

l to
decouple its constraint and distribution assumptions. For φ(L̃),
Ky Fan’s Theorem [57] implies that the solution is to enforce
the rank-k smallest σ�(L̃) equal to zero, namely

∑k
�=1 σ�(L̃) =

minR�R=Ik Tr(R
�L̃R), where R is the graph embedding.

Therefore, (7) is transformed into:

min
{EF

l ,E
G
l ,Ẽ

G
l ,Ol}vl=1,

U,R

v∑
l=1

(∥∥EF
l

∥∥
2,1

+ η
∥∥∥ẼG

l

∥∥∥
2,1

)

+
γ

2

v∑
l=1

∥∥∥∥EG
l − ẼG

l +
1

γ
Υl

∥∥∥∥2
F

+ ϑTr
(
R�L̃R

)

+
λ

2

v∑
l=1

∥∥∥∥Xl −Ol(ξU+ βEG
l )−EF

l +
1

λ
Λl

∥∥∥∥2
F

,

s.t.

⎧⎪⎨⎪⎩
O�

l Ol = Im; R�R = Ik,

EG
l

�
1m = 1n, E

G
l ≥ 0,

U�1m = 1n, U ≥ 0,

(8)

where Λl and Υl are Augmented Lagrangian Method (ALM)
multipliers to penalize the discrepancy between the auxiliary
variables and original objective, λ and γ are ALM parameters,
the distribution-related parameter is set to η = 1 for simplicity,
ϑ is a penalty parameter that iteratively increases to enforce the
rank-k smallest σ�(L̃) infinitely approach 0.

Eq. (8) can be optimized by a block-coordinate descent strat-
egy [58]. Algorithm 1 outlines the overall workflow.

Update EF
l : Each EF

l is independently solved by:

min
EF

l

1

λ

∥∥EF
l

∥∥
2,1

+
1

2

∥∥Ql −EF
l

∥∥2
F
, (9)

where Ql = Xl −Ol(ξU+ βEG
l ) +

1
λ
Λl. The solution [59] is

EF
l[:,j] = {

(
1− 1

λ‖Ql[:,j]‖2

)
Ql[:,j], if ‖Q

l
[
:,j
]‖2 > 1

λ
,

0, otherwise.

Update ẼG
l : Each ẼG

l is separately optimized by:

min
ẼG

l

η

γ

∥∥∥ẼG
l

∥∥∥
2,1

+
1

2

∥∥∥Nl − ẼG
l

∥∥∥2
F
, (10)

where Nl = EG
l + 1

γΥl. Similarly, we can obtain the solution:

ẼG
l = {(1−

η
γ‖Nl[:,j]‖2 )Nl[:,j], if ‖Nl[:,j]‖2 > η

γ ,

0, otherwise.

Update Ol: The problem w.r.t. Ol is: maxOl
Tr(O�

l Al),
s.t. O�

l Ol = Im, where Al = (Xl −EF
l + 1

λ
Λl)(ξU+

βEG
l )

�. This problem can be solved by SVD [42].
Update EG

l : Each EG
l[:,j] is individually updated via:

minEG
l[:,j]

1
2‖EG

l[:,j] − ÊG
l[:,j]‖22, s.t. EG

l[:,j]

�
1 = 1,EG

l[:,j] ≥ 0,

where ÊG
l[:,j] = − f�

2(λβ2+γ) , f = −2(λβΩ�
l Ol + γM�

l )[j,:],

Ωl = Xl − ξOlU−EF
l + 1

λ
Λl, and Ml = ẼG

l − 1
γΥl. The

analytical solution is in supplementary materials (Section 3).
Update U and R: With others being fixed, we have:

min
U,R

Tr

(
U�

(
v∑

l=1

λ

2
ξ2I

)
U−

(
ξλ

v∑
l=1

G�
l Ol

)
U

)

+ ϑTr
(
R�L̃R

)
, s.t. U�1m = 1n, U ≥ 0; R�R = Ik,

(11)

where Gl = Xl − βOlE
G
l −EF

l + 1
λ
Λl. Details are in supple-

mentary materials (Section 4).
While fixing U, R = [R�

n R�
m]� can be updated via:

max
Rn,Rm

Tr
(
R�

nΩ
− 1

2
n U�Ω− 1

2
m Rm

)
,

s.t. R�
nRn +R�

mRm = Ik. (12)

The optimal solutions are Rn =
√
2
2 Σ and Rm =

√
2
2 Γ,

where Σ and Γ are the rank-k left and right singular matrices of

Ω
− 1

2
n U�Ω− 1

2
m .

While fixing R, each U[:,j] is solved by:

min
U[:,j]

1

2

∥∥∥U[:,j] − Ũ[:,j]

∥∥∥2
2
, s.t. U�

[:,j]1 = 1, U[:,j] ≥ 0, (13)

where Ũ[:,j] = − r�
vλξ2 , r = −(J− ϑT)[j,:], J =

∑v
l=1 ξλ

G�
l Ol, tij = ‖ rin√

Ωn[i,i]

− rjm√
Ωm[j,j]

‖22.

Update ALM multipliers:

Λl = Λl + λ
(
Xl −Ol(ξU+ βEG

l )−EF
l

)
,

Υl = Υl + γ
(
EG

l − ẼG
l

)
,

λ = ρλ, γ = ργ, (14)

where ρ is a scaling parameter.
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Algorithm 1: Workflow for GProM With L(·) Distribution.

1: Input: {Xl}vl=1.
2: InitializeOl, E

G
l , ẼG

l , Λl, Υl, U, λ, γ, ρ.
3: while not converged do
4: Update unconstrained EF

l and ẼG
l , respectively.

5: Update constrained Ol, E
G
l , and U, respectively.

6: Update ALM multipliers Λl, Υl, λ, γ.
8: end while
8: Output: The predicted clustering labels.

A. Parameter Initialization and Convergence Criterion

1) Parameter Initialization: (1) Ol is initialized as the cen-
troids obtained from applying k-means to the left singular
vectors of the lth view data. (2) U is initialized by applying
truncated SVD to the concatenated multi-view data to obtain a
low-dimensional embedding, followed by k-means and one-hot
encoding, and scaling transformation to the resulting matrix. (3)
EG

l and auxiliary variable ẼG
l are initialized to U. (4) The ALM

multipliers Λl and Υl are initialized to zero. (5) The penalty
parameters λ and γ are initialized to 1, the scaling parameterρ
is initialized to 1.5. (6) The balanced parameter η is set to 1.

2) Convergence Criterion: The convergence of exact ALM
methods for smooth objective function has been extensively
studied [60], and the convergence of inexact ALM methods
has also been explored [61]. Empirically, ADMM converges
to a local optimum under general conditions [62]. However,
establishing rigorous mathematical guarantees for ADMM con-
vergence remains a challenging problem [56].

Based on the ADMM framework, the optimization of GProM
is decomposed into several subproblems, each of which has a
closed-form solution. According to [56], [59], [61], [63], the
ALM parameters λ and γ control the convergence speed and
generally have little impact on the final solution. Typically, larger
λ and γ correspond to faster convergence, although they may
incur precision loss in the objective. ρ is a scaling parameter
that controls the update of λ and γ. With increasing iterations,
the penalty terms in (8) gradually approach zero, and the ALM
objective asymptotically converges to the original objective,
which converges to a local optimum and is lower-bounded by 0.
In experiments, the convergence criterion is set as follows:

if (t > 9) and

( |obj(t− 1)− obj(t)|
obj(t− 1)

< 10−5 or t > 30

or obj(t) < 10−10

)
, (15)

where t is the iteration step, and obj(t) is the corresponding
objective value.

B. Theoretical Property

Probability Perspective for Bipartite Graph: Theorem 2 pro-
vides a probability perspective for recovering instance-instance
memberships wij = p(xl[i] �→ xl[j]) with instance-prototype
memberships zri = p(xl[i] �→ ol[r]) and zrj = p(ol[r] �→ xl[j])

TABLE II
13 REAL-WORLD DATASETS

[64]. Details are available in supplementary materials (Section
5).

Theorem 2: With the one-step transition probability matrix
P = Π−1S, the graph embedding of the normalized Laplacian
matrix L̃ is equivalent to the graph embedding of the full graph
W that are derived from the double-step transition probability.

Complexity Analysis: For simplicity, we set δ =
∑v

l=1 dl,
where dl denotes the feature dimension of the lth view.

Time Complexity: The time complexity comes from ADMM
optimization, as shown in Algorithm 1. Each option within our
GProM shares the comparable time complexity O(n(m(δ +
m+ v) + k) + δm2 +mk).

Space Complexity: The space complexity primar-
ily arises from storing large matrices, including
{Xl,Ol,E

F
l ,E

G
l , Ẽ

G
l ,Λl,Υl}vl=1, U, and R, leading to a

total memory requirement O(n(δ +mv + k) +m(δ + k)).
Commonly, n � m, n � k. δ, v, and k are dataset-related

information, which are constants in optimization. Therefore,
both the time and space complexity of GProM are linear w.r.t.
n, i.e., O(n), making it feasible to scale to large-scale datasets
with n ≥ 100, 000.

V. EXPERIMENTS AND ANALYSIS

A. Benchmark Datasets and Compared Baselines

Table II records the 13 public real-world datasets: (1) 5
small-scale datasets: Dermatology, Mfeat, VGGF2_50, Cal-
tech256, VGGF2_100; (2) 6 medium-scale datasets: CIFAR100-
T, CIFAR10-T, CIFAR100, CIFAR10, YTF20, VGGF2_200;
(3) 2 large-scale datasets: T-ImageNet, EMNIST-D. All these
datasets are from the public websites.

We collected 18 baselines: (1) 4 MVC baselines: RMKM [65],
AMGL [66], FMR [67], PMSC [68]; (2) 5 pioneering MVBGC
baselines: BMVC [69], LMVSC [18], SMVSC [37], SFMC [17],
FPMVS [38]; (3) 6 recent MVBGC methods: FMCNOF [70],
SDAFG [28], UDBGL [71], FastMICE [35], FSMSC [43],
PPTL [72]; (4) 3 deep learning-based methods: MVCAN [73],
MFLVC [74], DSMVC [75].

B. Implementation Details

For GProM, m varies in {k, 2k, 3k, 4k}, ξ varies in
{0.1, 0.2, . . . , 0.9}, and m ≤ min{dl}vl=1.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on February 02,2026 at 13:52:42 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: GENERALIZED PROBABILISTIC GRAPHICAL MODELING FOR MULTI-VIEW BIPARTITE GRAPH CLUSTERING 11193

TABLE III
COMPARISON OF CLUSTERING METRICS (MEAN ± STD) W.R.T. ACC AND NMI ON SMALL- AND MEDIUM-SCALE DATASETS

The codes for the compared baselines are collected from
public websites. Their hyperparameters are tuned according to
the original settings, and we report the best metrics. For baselines
requiring k-means, we randomly initialize clustering centroids
30 times and report the average results (mean ± std) to alleviate
randomness [76], [77]. The cluster number k is assumed to be
pre-determined following existing research [78], [79], [80].

Four widely used clustering metrics, including ACC (ac-
curacy), NMI (normalized mutual information), Purity, and
F-score [81], [82], [83], [84], are used to evaluate clustering
performance.

Experimental results for the 3 deep learning baselines are
obtained using a server with one NVIDIA A100 GPU (80G)
and the PyTorch platform. While for the rest 15 baselines,
experiments were performed on a server with 6 core In-
tel(R) i9-9900 K CPUs @3.6 GHZ, 64 GB RAM, and Matlab
2020b.

C. Comparison of Clustering Metrics

Table III presents the clustering metrics in terms of ACC
and NMI on small- and medium-scale datasets, with additional
metrics provided in supplementary materials (Section 7).
Table IV summarizes the results on large-scale datasets. We

also calculate the average ranking (Avg Rank) for a clearer
comparison. From these results, we observe that:

1) The four MVC baselines encounter severe out-of-memory
(OOM) issues, particularly FMR and PMSC, which can
only handle small-scale datasets. This limitation arises
from their quadratic space complexity, O(n2).

2) The eleven MVBGC baselines are theoretically capable of
handling large-scale datasets, given their linear complex-
ity O(n). However, pioneering methods like SMVSC and
SFMC still yield unavailable results (“N/A”), which is due
to excessively long running time. Specifically, SMVSC
fails to tackle EMNIST-D dataset because of the com-
putationally expensive quadratic programming in solving
the U sub-optimization. While for SFMC, the unavailable
results are caused by slow convergence in solving the R
sub-optimization.

3) Compared to the three recent deep learning base-
lines designed to address noise-related issues, GProM
achieves competitive performance. Moreover, its explicit
formulation and optimization make it inherently more
interpretable than deep learning counterparts. Unlike
these methods, which are sensitive to seed selection,
GProM achieves stable performance without performance
variance.
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TABLE IV
COMPARISON OF CLUSTERING METRICS ON LARGE-SCALE DATASETS (MEAN ± STD)

Fig. 2. Friedman-Nemenyi test comparing different noise distribution assumptions at a significance level of α = 0.05. The x-axis shows the average rankings
of the four GProM variants, and the y-axis corresponds to their IDs.

4) GProM-LG and GProM-LL achieve competitive overall
ranking, outperforming both the other two GProM options
and the compared baselines. In particular, GProM-LG
(ACC: 1.15) attains the top rank in all metrics, demonstrat-
ing its superior overall performance. Among the baselines,
FastMICE (ACC: 6.62) and LMVSC (ACC: 7.31) emerge
as the strongest competitors, while SFMC (ACC: 19.77)
and PMSC (ACC: 20.08) show the weakest performance
on this metric.

In summary, our GProM exhibits highly competitive per-
formance compared to eighteen baselines, along with strong
scalability and stability.

D. Statistical Significance Analysis Under Different
Distribution Assumptions

We utilize the Friedman-Nemenyi test [85] to evaluate the
significance of different distribution assumptions. The Friedman
test assesses whether there are statistical significance among the
candidates, while the Nemenyi post-hoc test identifies which

specific pairs differ significantly. Note that this test does not
impose specific requirements on the data distribution. Fur-
ther technical details are provided in supplementary materials
(Section 8.1).

In our case, the null hypothesis assumes that there is no
significant difference among the four options. The calculated
Friedman test statistics (τF ) are 64.24, 18.87, 39.87, and 7.48 for
ACC, NMI, Purity, and F-score, respectively. Since all of these
values exceed the threshold of 2.866 at the 0.05 significance
level (α = 0.05), we reject the null hypothesis. This result indi-
cates that the performance among the four options statistically
significant.

Fig. 2 presents the results of the Friedman–Nemenyi test,
based on a critical distance (CD) of 2.569 at the 0.05 significance
level (α = 0.05). We note that:

1) GProM-LG achieves the top-1 average rank, followed by
GProM-LL, GProM-GL, and GProM-GG.

2) Significant differences are observed between the GProM-
LG/GG and GProM-LL/GL pairs, with GProM-LG and
GProM-LL consistently outperforming their counterparts.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on February 02,2026 at 13:52:42 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: GENERALIZED PROBABILISTIC GRAPHICAL MODELING FOR MULTI-VIEW BIPARTITE GRAPH CLUSTERING 11195

Fig. 3. Visualizing the significance of pruning feature-level EF
l on Dermatology dataset. The second view is corrupted with random noise sampled from either

N (·) distribution (denoted as w/ GN) or L(·) distribution (denoted as w/ LN). The top row displays the performance of our GProM alongside four baselines, while
the subsequent rows depict the performance drop Δ(ACC). The notation ∼: −2 < Δ ≤ 0 indicates a slight decline, whereas more ↓ represent greater performance
degradation.

This suggests that theL(·)-based penalty is more effective
than theN (·)-based one in regularizingEF

l . A possible ex-
planation is that raw features may contain large-magnitude
noise or redundancies, and L(·)-based penalty is more
effective in mitigating their adverse impact compared to
the N (·)-based penalty.

3) Conversely, GProM-LG/LL pair overlaps with each other,
as well as GProM-GG/GL pair, suggesting there is no
significant differences between L(·) or N (·) distributions
for EG

l . This may be attributed to the candidate graphs
{Hl}vl=1 are constructed from refined features, resulting
in EG

l are with small magnitudes. As a consequence, these
distributions exhibit comparable significance.

Remark 4: The statistical significance analysis provides
suggestions for selecting appropriate distribution assumptions.
In summary, the L(·) distribution is preferred for penalizing
EF

l , whereas both G(·) and L(·) distributions yield comparable
performance for penalizing EG

l . More exploration on designing
data-driven distributions is meaningful. Unless otherwise
specified, the following results are based on the strongest
GProM-LG option.

Additional results under a significance level of α = 0.1 are
provided in supplementary materials (Section 8.2), and a visual
comparison of the four GProM options is presented in supple-
mentary materials (Section 9).

E. Significance of Pruning Feature-Level Noise

This section evaluates the significance of pruning feature-
level noise EF

l . We introduce random noise sampled from

either N (·) or L(·) distributions to contaminate the second view
of the Dermatology dataset. Specifically, each instance x[j] is
perturbed by additive noise. The Gaussian noise is drawn from a
distribution with zero meanµ = 0 and isotropic covariance σ2I,
where σ2 = 0.3, that is, N (0, 0.3I). The rotational invariant
Laplacian noise is generated with a location parameter µ = 0
and a scale parameter b = 2.5, i.e., L(0, 2.5I). GProM is com-
pared against two pioneering models (LMVSC and SFMC) and
two recent methods (FastMICE and FSMSC).

Fig. 3 reports baseline performance and the degraded am-
plitude Δ(ACC). The results show that the four competitors
suffer substantial performance drops, with declines ranging from
−18.72% to −10.99%, indicating they are struggle to withstand
the effects of feature noise. Conversely, our GProM model
exhibits promising robustness, with a maximum drop amplitude
of only −1.95%, which is substantially lower than those of
the competitors. These findings provide compelling evidence to
support the necessity and effectiveness of pruning feature-level
noise.

F. Significance of Pruning Structure-Level Noise

This section evaluates the significance of pruning structure-
level noise EG

l .
Fig. 4 visualizes the view-specific affinity matrix derived

from three parts: the unfiltered bipartite graph U+EG
l , the

view-specific structural noise EG
l , and the consensus refined

bipartite graph U. As shown, different views exhibit varying
levels of structural noise, which destroy the graph structure.
By pruning these noise, the resulting bipartite graph exhibit
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Fig. 4. Visualization on Dermatology dataset demonstrating the necessity of pruning structure-level noise EG
l

. (a)-(b) display the affinity matrix derived from
the unfiltered bipartite graph, (c)-(d) plot view-related structural noise, and (e) presents the affinity matrix from the refined bipartite graph after noise pruning.

Fig. 5. Quantitative evaluation of the importance of pruning structure-level EG
l

. The refined bipartite graph U achieves higher performance over the unfiltered
one.

Fig. 6. Summary of the relative logarithm runtime, using PPTL as the baseline for scaling.

clearer and more distinct diagonal block structures. Furthermore,
Fig. 5 quantifies the performance improvements achieved by the
refined bipartite graph, compared to its degraded counterparts in
which structural noise is not pruned. These results further high-
light the importance and effectiveness of pruning structure-level
noise.

G. Efficiency

Fig. 6 reports the relative logarithm runtime, which enables
a comparison that is independent of runtime scale differences
caused by varying algorithm types and dataset sizes. Specifically,
we apply a logarithmic transformation to the absolute runtime
and set the log-transformed time of PPTL to 1 as the baseline.
The runtime of the other methods are scaled accordingly. We
have the following observations:

1) The four MVC baselines, namely RMKM, AMGL, FMR,
and PMSC, require significantly more runtime over

MVBGC models and are prone to “OOM” errors on
medium-scale datasets (n ≥ 72, 283). This is primarily
due to their O(n2) space complexity.

2) As a pioneering method in addressing scalability issue,
BMVC costs the least runtime among MVBGC base-
lines due to its binary code modeling. However, it relies
on random sampling for prototype selection, making its
performance sensitive to sampling. Similarly, FMCNOF
and FastMICE also use random sampling. Despite their
efficient optimization, they are hindered by inflexible pro-
totypes and unstable performance.

3) Four pioneering MVBGC baselines, including LMVSC,
SMVSC, SFMC, and FPMVS, and three recent MVBGC
baselines, UDBGL, FSMSC, and PPTL, share a com-
parable linear time complexity O(n). However, these
models typically require more runtime than our GProM,
particularly on large-scale datasets, highlighting our
efficiency.
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Fig. 7. Results on Dermatology dataset. (a) Ablation study for prototype selection (Inflexible versus Ours). (b) Ablation study for label inference (Postprocessing
versus Ours). (c) Parameter sensitivity w.r.t. m and ξ. (d) Convergence.

4) For GProM, the four options exhibit comparable run-
time. While our model requires more execution time than
BMVC, FMCNOF, SDAFG, and FastMICE due to our
complex ADMM optimization, we believe the additional
computation is worthwhile for competitive performance.

For reference, the absolute runtime results are provided in
supplementary materials (Section 13).

H. Ablation Study

Fig. 7(a) compares prototype selection strategies: Inflexible
versus Ours. “Inflexible” refers to the use ofk-means sampling to
generate prototypes, which is a popular method. “Ours” denotes
a learnable prototype selection strategy that adaptively optimizes
prototypes.

The results indicate that our flexible prototype learning strat-
egy significantly outperforms the “Inflexible” method, verifying
the importance of updating prototypes. The inferior performance
of “Inflexible” prototypes can be attributed to their lack of up-
dates to the pre-generated prototypes from k-means. Conversely,
the learnable prototype method adaptively updates the prototype
distribution, facilitating the exploration of inherent topological
structures. Additional results are provided in supplementary
materials (Section 10.1).

Fig. 7(b) compares label inference strategies: Postprocessing
versus Ours. “Postprocessing” refers to a two-stage manner that
first generates spectral embedding and then performs clustering
partition to output labels, while “Ours” represents a one-stage
discrete label inference strategy.

We observe that the “Postprocessing” demonstrates signifi-
cant instability, as evidenced by notable performance variance,
whereas “Ours” achieves zero variance and superior perfor-
mance metrics. These results validate our stability and effec-
tiveness. Further details are provided in supplementary materials
(Section 10.2).

I. Parameter Sensitivity

Fig. 7(c) reports experimental results on Dermatology across
varying m ∈ {k, 2k, 3k, 4k} and ξ ∈ {0.1, 0.2, . . . , 0.9}. For
clarity, parameter ξ is scaled by a factor of 10 (10x). More
results are provided in supplementary materials (Section 11.1).
To satisfy the constraint m ≤ min{dl}vl=1, the parameter m is

adaptively set tom ∈ {k, 2k} for Dermatology, VGGF2_200, T-
ImageNet, while it is fixed atm = k for Caltech256. We observe
dataset-related parameter sensitivity, with slight performance
fluctuations concerning m and ξ on Dermatology. While, for
the other datasets, optimal performance is generally achieved
with smaller m and ξ, typically at m = 1k and ξ = 0.1.

In addition, a sensitivity analysis with respect to the ADMM
scaling parameter ρ is provided in supplementary materials
(Section 11.2).

J. Convergence

As discussed in Section IV-A2, the ALM terms in (8) grad-
ually approach zero as the parameters λ and γ are iteratively
increased. Consequently, the ALM objective converges asymp-
totically to the original objective, with the gap between them
approaching 0. From Fig. 7(d), the objective value decreases
monotonically and stabilizes at a converged value. Further re-
sults are provided in supplementary materials (Section 11).

VI. CONCLUSION

This paper pioneers introducing probabilistic graphical mod-
els for modeling multi-view bipartite graph clustering, providing
a novel perspective on the probabilistic relationships among
variables. We demonstrate that multi-view data can be explicitly
decomposed into view-related and view-shared components,
each with level-specific noise, within the framework of a MLE
problem. Using Gaussian and rotational invariant Laplacian dis-
tributions as examples, we instantiate the likelihood function and
prove that minimizing feature- and structure-level noise actually
approximates the lower bound of the MLE for data observations.
We further extend the MLE setting by incorporating tailored
constraints specifically designed for clustering tasks, providing
insightful suggestions for MVBGC modeling. Future work can
explore more distribution assumptions to develop data-driven
probabilistic graphical modeling for MVBGC tasks.
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