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Throughput-Aware Cooperative Task Offloading in
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Abstract—With the commercialization of fifth-generation (5G)
mobile communication technology and the rapid proliferation of
mobile devices (MDs), demand for data computation is surging.
This growth increases the reliance of MDs on low latency and
high throughput. For this purpose, Mobile Edge Computing (MEC)
enhances the user’s data processing capability by offloading com-
putation tasks to servers at the network edge. However, achieving
high efficiency in task offloading is challenging due to factors
such as decision complexity, network dynamics, and user data
privacy protection. Additionally, energy causal constraints and the
coupling between offloading proportions and resource distribution
cannot be ignored. In this paper, we first establish a dynamic task
offloading problem to optimize the long-term throughput of the
system. Using perturbed Lyapunov optimization, we transform MD
delay and energy threshold constraints into the stability control of
corresponding virtual queues. Then, we propose the Lyapunov-
guided federated deep reinforcement learning (DRL) online task
offloading algorithm called LyFOTO, which combines a federated
learning (FL) framework and an Actor-Critic (AC) model. Un-
der favorable communication conditions, the LyFOTO algorithm
adaptively boosts system throughput; under poorer conditions, it
properly delays task offloading, without violating queue backlog
constraints. Through mathematical analysis, we discuss the perfor-
mance of the LyFOTO algorithm. Simulation experiments validate
that LyFOTO effectively balances system throughput and device
battery energy. Finally, Comparative results show that LyFOTO
outperforms other benchmark algorithms in maximizing system
throughput while ensuring task backlog and energy threshold
constraints.

Index Terms—Deep reinforcement learning, federated learning
(FL), Lyapunov optimization, mobile edge computing (MEC), task
offloading.

I. INTRODUCTION

W ITH the commercial deployment of fifth-generation
(5G) mobile communication technology and the expo-

nential growth of mobile devices (MDs), an era of ubiquitous
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connectivity is emerging [1], [2]. It is estimated that by 2028,
over 32.2 billion MDs will be connected to the internet world-
wide, and generate vast amounts of interactive data [3]. This
exponential growth has revealed several issues, including high
latency, network congestion, and data privacy risks [4], [5]. Mo-
bile Edge Computing (MEC) is regarded as a promising solution
that enhances user data processing capabilities by deploying
computational resources near base stations (BS) at the network
edge [6]. This approach significantly reduces the transmission
delay of data, enabling real-time applications to run more ef-
ficiently on MDs. In this context, the design of appropriate
task offloading strategies helps to optimize resource utilization
and boost network performance [7], [8]. However, in multi-BS
collaborative offloading scenarios, MEC faces a series of bot-
tlenecks when maintaining dynamic system performance [9].
Specifically, how to optimize the long-term performance of one
or more metrics under system constraints is a key problem.

Many researchers have carried out extensive studies on the
above problems. The authors in [10], [11], [12], [13] have
adopted convex optimization methods to optimize task offload-
ing decisions. Since the offloading strategy is typically gener-
ated iteratively, these methods often involve high computational
complexity. This makes their deployment in large-scale net-
works practically infeasible. To improve real-time offloading ef-
ficiency, some researchers [14], [15], [16], [17] have introduced
Lyapunov optimization methods. In real-world scenarios, opti-
mization models are often formulated as continuous stochastic
problems, which restricts the applicability of Lyapunov opti-
mization techniques designed primarily for discrete convex op-
timization. In recent years, Deep reinforcement learning (DRL)
has gained widespread application for its adaptability to dynamic
and uncertain conditions [18], [19], [20], [21]. It optimizes task
offloading decisions by continuously learning from interactions
with the environment. Despite their inspiring results, existing
works struggle to maintain high system throughput in dynamic
environments due to frequent network fluctuations and device
heterogeneity. Without ensuring high throughput, the system
may fail to meet the growing computational demands of users,
leading to degraded overall performance.

There is a critical imperative to optimize system throughput
in multi-BS collaborative offloading scenarios. The problems
caused by network fluctuation and device heterogeneity in dy-
namic systems still need to be solved [22]. Specifically, we face
the following challenges. First, how can resource distribution
among BS be balanced with limited global information? The
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MDs served and the task demands across different BS vary
significantly, leading to resource competition and scheduling
conflicts. During multi-BS collaborative load balancing, the
lack of global information sharing makes it difficult to maintain
balanced resource allocation, thereby increasing the complexity
of throughput optimization. Second, how can queue delays be
stabilized and minimum battery levels be maintained to max-
imize throughput? Frequent task offloading and computation
increase the MD’s energy consumption and make task queue
delays uncontrollable. Ensuring that the battery level of MDs
remains above the minimum threshold while stabilizing queue
delays to maximize throughput remains a critical challenge.
Third, how can resources be allocated among MDs under dy-
namic conditions? Task offloading requires careful considera-
tion of dynamic changes in MD locations, server workloads, and
network conditions, which increases the complexity of resource
allocation schemes. Inappropriate decisions not only reduce
throughput but also violate system constraints [23].

To address the aforementioned challenges, this paper pro-
poses a novel task offloading approach in multi-BS collaborative
offloading scenarios, aiming to jointly optimize task queue
delays and energy level constraints while enhancing system
throughput. For the first challenge, we construct a distributed
training scenario that leverages the federated learning (FL)
framework to achieve collaborative optimization among multi-
BS while preserving data privacy. For the second challenge, we
designed two virtual queues to transform the task queue delay
and battery energy constraints into the stability constraints of
the virtual queues. For the third challenge, we employ Lyapunov
optimization to derive an upper bound for the drift-plus-penalty
function, decomposing the long-term optimization problem into
per time slot sub-problems. To handle the complex decision-
making process in dynamic environments, we utilize DRL meth-
ods to continuously adjust the offloading strategy. Based on
this framework, we propose a fast optimal resource distribution
algorithm to optimize system throughput in real-time while
satisfying the associated constraints. The following are the main
contributions of this article.
� Optimization target based on perturbation Lyapunov tech-

nique: We construct a multi-BS collaborative MEC sce-
nario model with heterogeneous computing capabilities.
Using perturbed Lyapunov techniques, the long-term sys-
tem throughput optimization problem is converted into a
non-convex problem relying solely on the current system
state.

� Task offloading decision employing FL and the AC model:
We utilize FL to share training parameters among base
stations and aggregate and distribute these parameters
through a global server. Based on this framework, the
Actor-Critic (AC) model in DRL is introduced to determine
task offloading decisions for each time slot.

� Simulation verification from benchmark algorithms: We
conducted a comparative analysis with three benchmark
algorithms to demonstrate the superiority of the proposed
algorithm. It is shown that the algorithm not only enhances
system throughput but also effectively stabilizes device
task queues and battery energy levels near the threshold.

This method is applicable in the field of smart cities, offering
a solution specifically tailored to meet the demands of efficient
computing and real-time decision-making. In a smart city envi-
ronment, Internet of Things (IoT) devices continuously generate
a large volume of latency-sensitive computational tasks, such as
traffic flow monitoring, public safety management, and envi-
ronmental data collection. The real-time processing capability
of these tasks directly impacts the efficiency and safety of urban
operations. The LyFOTO algorithm enhances data processing
timeliness through dynamic task offloading and energy effi-
ciency optimization, while effectively reducing device energy
consumption and network load. This ensures system efficiency
and sustainable operation, providing robust technological sup-
port for the stable development of smart cities.

The rest of this paper is organized as follows. Section II
reviews the related work in MEC. Section III describes the
system model utilized in this study, and provides a rigorous
definition of the offloading optimization problem. In Section IV,
we provide a detailed explanation of how to leverage the per-
turbation Lyapunov optimization method to transform the opti-
mization problem into a non-convex problem reliant solely on
current system information and present an upper bound for the
drift-plus-penalty function. Section V integrates FL frame with
the Actor-Critic model to address the non-convex problem and
presents an algorithm called LyFOTO. Section VI we discuss
the asymptotic optimality of the proposed algorithm by math-
ematical analysis. Section VII conducts a series of simulation
experiments to validate the performance of the proposed algo-
rithm. In Section VIII, we summarize this paper.

II. RELATED WORK

In the MEC system, task offloading scheme include partial
task offloading scheme and binary task offloading scheme [24].
The former allows task data to be executed in parallel on both
MDs and MEC servers, while the latter requires the entire task
data to be executed as a whole either on MD or MEC server.
This paper adopts the binary task offloading scheme, which is
widely used in MEC scenarios.

Before the widespread application of machine learning (ML),
convex optimization methods dominated resource allocation
and management problems in MEC systems. Ei et al. [10]
proposed a multiple uncrewed aerial vehicles (UAV) assisted
MEC scenario, where they modeled the task offloading problem
as a non-convex problem and used the Block Successive Upper
Bound Minimization (BSUM) method to find an asymptotically
optimal solution to the objective function. Li et al. [12] proposed
a statistical computation and transmission model to quantify
the correlation between task offloading and Quality of Service
(QoS), and used convex optimization methods to solve for the
optimal task offloading strategy. Dai et al. [13] modeled the
UAV-assisted vehicle task offloading problem as a Markov chain
and employed convex optimization methods to iteratively solve
for the optimal task offloading strategy. However, relying solely
on convex optimization methods for iterative optimization typ-
ically results in high computational complexity. Consequently,
while the aforementioned algorithms can quickly find optimal
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offloading solutions in small-scale scenarios, they struggle to
adapt to environments with rapidly increasing numbers of
devices.

To reduce the computational complexity of offloading algo-
rithms, some researchers have adopted stochastic optimization
strategies to improve task offloading efficiency, among which
Lyapunov theory is a commonly used approach [14], [15], [16],
[17], [25]. Li et al. [14] considered a mobile cloud computing
(MCC) scenario. They proposed a queue backlog model and
leveraged the Lyapunov optimization framework to balance de-
vice load backlog with system utility. In an edge cloud scenario,
Liet al. [16] established an online learning-assisted cooper-
ative offloading mechanism, using Lyapunov optimization to
explore the spatiotemporal optimality of system cost. To meet
low-latency requirements, they designed a delay-aware online
learning method to predict task completion times. Abbas et
al. [25] considered a user-centered real-time task offloading
framework, utilizing Lyapunov drift-plus-penalty techniques
to design a dynamic task offloading scheme oriented toward
support vector machines (SVM). However, the algorithm in this
study applies only to SVM-based tasks and cannot be extended
to environments with heterogeneous computing requirements.
Although the aforementioned studies introduced Lyapunov op-
timization techniques to effectively reduce algorithm complex-
ity, this approach is limited to discrete convex optimization
problems. In real scenarios, optimization problems are often
continuous and non-convex, which restricts the applicability of
Lyapunov optimization. Additionally, Lyapunov optimization
requires frequent updates to system states and constraints, which
may introduce extra computational overhead, making it chal-
lenging to operate effectively in scenarios with strict real-time
requirements.

In recent years, deep reinforcement learning (DRL) methods
have gradually emerged as a highly promising solution for MEC
task offloading problems [26]. Cheng et al. [18] employed a DRL
approach to design a task offloading algorithm, aiming to mini-
mize server energy consumption in a space-air-ground integrated
scenario. Additionally, combining deep reinforcement learning
(DRL) methods with the Lyapunov optimization framework
is considered an effective and innovative strategy, capable of
enhancing task processing efficiency while meeting multiple
system requirements. Tang et al. [19] modeled the stochastic task
offloading problem in MEC as a continuous non-convex prob-
lem. They used an Actor-Critic framework combined with Lya-
punov optimization techniques to solve for the optimal power
cost of both devices and satellites in a multi-ground-device envi-
ronment. Dai et al. [20] considered a stochastic task environment
within digital twin networks and used an asynchronous learning
algorithm to determine the optimal resource allocation scheme.
Zhang et al. [21] proposed a mobility management framework
and joint optimization of service migration decisions between
base stations. However, references [18], [19], [20], [21] only
focus on the offload decision of a single agent and fail to make
full use of global information in large-scale networks. In addi-
tion, the above studies adopt a centralized approach where data
is processed on servers, posing potential risks of data leakage
and privacy exposure during data transmission. Hence, there is

Fig. 1. The system architecture.

an urgent need to establish an efficient multi-agent collaboration
mechanism.

This paper proposes an online task-aware offloading algo-
rithm based on a federated DRL framework for heterogeneous
MEC scenarios comprising multiple MDs and BS. The algo-
rithm reduces privacy leakage risks by employing distributed
training of local agents and a centralized DRL aggregation
model. Additionally, a perturbed Lyapunov optimization method
is applied to ensure that task backlogs and battery energy levels
of devices remain near perturbation thresholds while maximiz-
ing system task throughput.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section discusses a multi-network federated offloading
environment within an MEC-enabled IoT scenario, as illustrated
in Fig. 1. M BS are connected to M MEC servers, serving
multiple MDs with limited computing capacity. The sets of MEC
servers and MDs are denoted by M = {1, 2, . . . ,m, . . . ,M}
and N = {1, 2, . . . , n, . . . , N}, respectively. Each MD com-
municates with nearby BS via wireless network. Considering
the dynamic nature of the IoT environment, the system op-
erates in discrete time slots S = 0, 1, . . . , s, . . . , S [27], [28].
Assuming each time slot has an equal duration τ , the system
can be considered static within each slot [29]. In each time slot,
local computing or remote offloading are two approaches for
MDs to process tasks. Let a binary variable xs

ij indicate the
offloading decision, xs

ij = 1 for remote offloading, xs
ij = 0 for

local computing. Key notations used throughout this paper are
summarized in Table I.

A. Task and Queuing Model

At the start of each time frame s, the MD j in edge network
(EN) i generates computational tasks asij (in Mbits). The arrival
asij is assumed to follow a general independent and identi-
cally distributed (i.i.d.) distribution with bounded second order

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on December 02,2025 at 08:13:39 UTC from IEEE Xplore.  Restrictions apply. 



DAI et al.: THROUGHPUT-AWARE COOPERATIVE TASK OFFLOADING 13279

TABLE I
DEFINITIONS OF MATHEMATICAL NOTATIONS

moment, i.e., E[(asij)
2] = ηij < ∞. We treat the value of ηij

as known, which can be derived from historical information.
As noted in [30], the tasks generated by devices are bit-wise
independent, allowing the tasks to be decomposed and processed
bit by bit. After the tasks arrive, they are not processed im-
mediately but stored in a task queue buffer tij(s) that satisfies
first-come-first-served (FCFS) basis. To avoid resource under
utilization during low load and ensure system stability and
efficiency under high load, each device doesn’t process all of
the incoming tasks at each time slot s. For each MD, dsij denotes
the amount of tasks processed in the end of current time slot.
Hence, the task buffer backlog in next time slot is

tij(s+ 1) = tij(s)− dsij + asij . (1)

Notice that the amount of tasks processed in the end of current
time slot don’t exceed the queue backlog, i.e., dsij ≤ tij(s).

Since tasks are queued before processing, the MD’s queue
backlog directly influences task waiting times [31]. Thus, it
is essential to impose strict limits on the task queue length of
each MD to ensure that task processing is completed within a
manageable time frame, i.e.,

lim
S→∞

1

S

S−1∑
s=0

E {tij(s)} < εij , ∀i ∈ M, ∀j ∈ N , (2)

where εij is the queue perturbation parameter.

B. Computation and Energy Models

1) Local Computing: Recall that xij = 0 indicates the MD
process tasks locally. For the j-th MD in the i-th EN, we use
fs
ij (in MHz) to denote the local computation frequency, with

an upper bound of fmax
ij . φ to represent the number of cycles

required to compute 1 bit. Thus, in time slot s, the tasks processed
locally and the energy consumption generated are

dl,sij = (1− xij)×
fs
ijτ

φ
, (3)

el,sij = (1− xij)× ξfs
ij

3τ, (4)

where ξ is the effective capacitance co-efficient of CPU.
2) Remote Offloading: Recall thatxij = 1 indicates the MDs

generated tasks is offloaded for edge execution. Assume each
device employs Time Division Multiple Access (TDMA) to send
tasks to the MEC server. For the j-th MD in the i-th EN, we use
τsijτ to denote its offloading time with a constraint of τsij ∈ [0, 1],
P s
ij to represent the transmit power with an upper bound ofPmax

ij ,
and hs

ij to indicate the channel gain between the MD and the
MEC server. In the block fading model, hs

ij remains fixed within
a time frame but changes independently from one frame to the
next [32]. Thus, during time frame s, the tasks processed at the
MEC server is

do,sij = xij × τ sijτW log2

(
1 +

hs
ije

o,s
ij

N0τsijτ

)
, (5)

where W is the system bandwidth, and eo,sij = P s
ijτ

s
ijτ is the

transmission energy consumption. To simplify the discussion,
the following derivations assume τ = 1, without loss of gener-
ality.

In this study, we denote dsij = (1− xij)× do,sij + xij × do,sij

and esij = (1− xij)× el,sij + xij × eo,sij as the tasks computed
and energy consumed in time slot s. Additionally, we define
computation rate rsij and power consumption esij in time slot s
as

rsij = (1− xij)
fs
ij

φ
+ xijτ

s
ijW log2

(
1 +

eo,sij hs
ij

τsijN0

)
, (6)

esij = (1− xij)ξf
s
ij

3 + xije
o,s
ij . (7)

We denote by ro,sij the remote offloading rate, and then we
have rsij = (1− xij)f

s
ij/φ+ xijτ

s
ijr

o,s
ij .

C. Battery and Energy Harvesting Model

Similar to the arrival tasks, the energy arrival process for
MDs is i.i.d. over different time slots. We denote by P s the
average energy harvesting power in this scenario, which can be
determined via offline measurements [33]. For the j-th MD in
the i-th EN, we use Hs

ij (in mJ) to denote the harvested energy,
with an upper bound of Hmax

ij . In this study, we presume that
the energy used by MDs for offloading tasks only comes from
the battery and the harvested energy Hs

ij in the current time slot
can only be used in the next time slot, i.e., harvest-use-storage
strategy [34]. Let bij(s) denote the residual battery energy in
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time slot s. Hence, it is evident that bij(s+ 1) is

bij(s+ 1) = bij(s)− esij +Hs
ij . (8)

Notice that the energy consumed in the end of current time
slot don’t exceed the residual battery energy, i.e., esij ≤ bij(s).
To extend the battery life, its remaining energy should be kept
above the minimum level, i.e.,

lim
S→∞

1

S

S−1∑
s=0

E {bij(s)} > εij , ∀i ∈ M, ∀j ∈ N , (9)

where εij is the energy level perturbation parameter.

D. Computation Rate Maximization Problem

In this study, our objective is to develop an online task
offloading algorithm (called LyFOTO) to optimize the
long-term average throughput of system, while ensuring
tasks queue and battery energy constraints. Here, system
throughput generally refers to the weighted computation rate
of all MDs. Specifically, we find online decision-making by
optimizing task offloading decision and resource allocation
scheme in each time frame. This is done without assuming
knowledge of future occurrences of random system information.
Denote xs = {xs

i}Ni=1 = {[xs
ij ]

M
j=1}Ni=1, f t = {fs

i}Ni=1 =

{[fs
ij ]

M
j=1}Ni=1, τ s = {τ s

i}Ni=1 = {[τsij ]Mj=1}Ni=1, and es =

{esoi}Ni=1 = {[eo,sij ]Mj=1}Ni=1, the problem can be expressed as a
multi-stage stochastic optimization problem:

P1 : maximize
xs,fs,τs,es

lim
S→∞

1

S

S−1∑
s=0

E
{
cijr

s
ij

}
(10)

subject to C1 : xs
ij ∈ {0, 1}; (10a)

C2 : 0 ≤ dsij ≤ tij(s); (10b)

C3 : 0 ≤ esij ≤ bij(s); (10c)

C4 : 0 ≤ fs
ij ≤ fmax

ij ; (10d)

C5 : 0 ≤ eo,sij ≤ Pmax
ij τsij ; (10e)

C6 :

M∑
j=1

τsij ≤ 1, τsij ≥ 0; (10f)

C7 : lim
S→∞

1

S

S−1∑
s=0

E {tij(s)} < εij ; (10g)

C8 : lim
S→∞

1

S

S−1∑
s=0

E {bij(s)} > εij ; (10h)

C1−C8 satisfy i ∈ N , j ∈ M and s ∈ S.
Here, cij is the weight of the j-th MD in the i-th EN. C1

denotes the offloading decision. C2 and C3 denote the tasks
computed and energy consumed constraint. C4 and C5 corre-
spond to the boundary constraints. C6 denotes the offloading
time constraint. C7 and C8 are the long-term stability constraints
of the queue and battery.

When offloading schemes are taken within each specific time
slot without insight into upcoming random changes, it poses
challenges to satisfy long-term constraints. This is particularly
true in environments where channels and data arrivals are in-
herently unpredictable. In addition, the rapidly changing nature
of channel conditions necessitates immediate decision-making
within very brief time slots. In subsequent sections, we introduce
an innovative LyFOTO framework designed to address P1,
ensuring both high levels of robustness and efficiency.

IV. LYAPUNOV-BASED PROBLEM TRANSFORMATION

In this section, we utilize the perturbation Lyapunov optimiza-
tion to eliminate queue backlog and battery energy constraints
(C7 and C8). The Lyapunov optimization theory introduces the
concept of queues and regards pending tasks as queue backlogs.
Once the task offloading decision is determined, tasks are queued
and processed by the system following FCFS principle. For
this purpose, the virtual task and energy queues are introduced,
which are defined as

Tij(s) = tij(s)− εij , (11)

Bij(s) = εij − bij(s), (12)

and

Tij(s+ 1) = Tij(s)− dsij + asij , (13)

Bij(s+ 1) = Bij(s)−Hs
ij + esij , (14)

for i ∈ N , j ∈ M, and s ∈ S . Intuitively, when T → 0 and
B → 0 of each time slot, the constraints (C7 and C8) are
satisfied.

To jointly control the virtual queues, we define Qs
i =

{T s
i ,B

s
i} as the Joint queue backlog for each EN, where

T s
i = {Tij(s)}Mj=1 and Bs

i = {Bij(s)}Mj=1. Then, we apply the
Lyapunov function L(Qs

i ) and Lyapunov drift ΔL(Qs
i ) as

L(Qs
i ) = 0.5

M∑
j=1

w0T
2
ij(s) + 0.5

∑M
j=1 w1B

2
ij(s), (15)

ΔL(Qs
i ) = E{L (Qs+1

i

)− L(Qs
i ))|Qs

i}. (16)

To optimize the long-term average computation rate while
keeping the queue Qs

i stable, we employ the drift-plus-penalty
function ΔV minimization method. The detailed transformation
process is illustrated in Fig. 2.

In particular, our goal is to minimize an upper limit of ΔV for
each time slot s

ΔV (L(Q
s
i )) = ΔL(Qs

i )− V E
{
cijr

s
ij |Qs

i

}
(17)

where V > 0 is the penalty weight to balance between the queue
length and the value of optimization problem. To derive an upper
limit of ΔV in each EN, we have

T 2
ij(s+ 1) = T 2

ij(s) + 2Tij(s)
(
asij − dsij

)
+
(
asij − dsij

)2
,

B2
ij(s+ 1) = B2

ij(s) + 2Bij(s)
(
esij −Hs

ij

)
+
(
esij −Hs

ij

)2
.
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Fig. 2. Transformation process of virtual queue Qs
i .

Accordingly, we can obtain

w0

2

M∑
j=1

T 2
ij(s+ 1)− w0

2

M∑
j=1

T 2
ij(s)

=
w0

2

M∑
j=1

(
asij − dsij

)2
+w0

M∑
j=1

Tij(s)
(
asij − dsij

)
, (18)

w1

2

M∑
j=1

B2
ij(s+ 1)− w1

2

M∑
j=1

B2
ij(s)

=
w1

2

M∑
j=1

(
esij −Hs

ij

)2
+w1

M∑
j=1

Bij(s)
(
esij −Hs

ij

)
. (19)

Applying the conditional expectation to both sides of (18)
and (19), we can obtain

C1 + w0

M∑
j=1

Tij(s)E
[(
asij − dsij

) |Qs
i

]
, (20)

and

C2 + w1

M∑
j=1

Bij(s)E
[(
esij −Hs

ij

) |Qs
i

]
. (21)

Here, C1 and C2 are the fixed values derived as follows

w0

2

M∑
j=1

E
[
(asij − dsij)

2
] ≤ w0

2

M∑
j=1

E
[
(asij)

2 + (dsij)
2
]

≤ w0

2

M∑
j=1

(
ηij +

[
τ max{fs

ijτ/φ, r
max
ij }]2) � C1,

w1

2

M∑
j=1

E
[
(esij −Hs

ij)
2
] ≤ w1

2

M∑
j=1

E
[
(esij)

2 + (Hs
ij)

2
]

≤ w1

2

M∑
j=1

([
τ max

{
ξ(fmax

ij )3,Pmax
ij

}]2
+
(
Hmax

ij

)2)�C2,

where rmax
ij � E

[
W log2

(
1 +

Pmax
ij hs

ij

N0

)]
. Adding the inequali-

ties presented in (20) and (21) together, we have

ΔL(Qs
i ) ≤ C +w0

M∑
j=1

Tij(s)E
[(
asij − dsij

) |Qs
i

]

+w1

M∑
j=1

Bij(s)E
[(
esij −Hs

ij

) |Qs
i

]
, (22)

where C = C1 + C2. Hence, ΔV (L(Q
s
i )) is expression in

C +w0

M∑
j=1

Tij(s)E
[
(asij − dsij)|Qs

i

]

+w1

M∑
j=1

Bij(s)E
[
(esij−Hs

ij)|Qs
i

]−V E
{
cijr

s
ij |Qs

i

}
.

(23)

During time slot s, we employ the opportunistic expectation
minimization technique as proposed in [35]. Specifically, we
monitor the queue backlogs Qs

i and determine the joint of-
floading and resource allocation control strategy based on these
observations, aiming to minimize the upper bound specified
in (23). After excluding the constant terms from the observation
made at the start of the s-th time slot, the algorithm determines
the optimal actions by maximizing the following expression,

N∑
i=1

M∑
j=1

(w0Tij(s) + V cij)r
s
ij−

N∑
i=1

M∑
j=1

w1Bije
s
ij .

Intuitively, the above equation aims to enhance the com-
putation rate for tasks with significant backlogs beyond the
disturbance queue parameter or for devices with high weight.
Meanwhile, it penalizes devices whose battery energy lev-
els fall below the disturbance energy threshold. Let rs =
{rsoi}Ni=1 = {[ro,sij ]Mj=1}Ni=1. Utilizing the Lyapunov drift plus
penalty method, problemP1 is reformulated into a deterministic
sub-problem P2 for each time slot.

P2 : maximize
xs,fs,τs,es,rs

N∑
i=1

M∑
j=1

(w0Tij(s) + V cij)r
s
ij

−
N∑
i=1

M∑
j=1

w1Bije
s
ij

subject to C1− C6. (24)

Next, the main challenge that remains is solving the prob-
lem P2 within each time slot. To tackle this, the next section
introduces a FL-based algorithm designed to efficiently solve it.

V. THE LYFOTO ALGORITHM DETAILS

In this section, we design a novel Lyapunov-guided federated
DRL online task offloading algorithm to address P2.
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Algorithm 1: The Proposed LyFOTO Algorithm for
Solving P2.

A. Markov Decision Process Model

In the i-th EN, the system information includes the queue
states Qs

i = {Tij(s), Bij(s)}Mj=1 and the channel gains {hs
ij}si .

Let ζs
i � {hs

ij , Tij(s), Bij(s)}Mj=1 and determine the control
strategies {xs

i ,y
s
i} based on ζs

i , where ys
i = {fs

i , τ
s
i , e

s
oi, r

s
oi}.

The task offloading and resource allocation problem can be
modeled as Markov Decision Process (MDP) [36]. The main
components of the i-th EN are outlined below.
� State Space: In time slot s, the sate space Si is represented

as the system information, i.e., Si = ζs
i .

� Action Space: In time slot s, the action space Ai is
represented as the offloading strategies xs

i . After the of-
floading strategies xs

i is obtained, we apply the noisy
order-preserving (NOP) quantization method to generate
gsi ≤ 2M groups of candidate strategies [37].

� Immediate Reward: Since Problem P2 is a maximiza-
tion problem, the reward function Ri = (w0Tij(s) +
V cij)r

s
ij − w1Bije

s
ij .

B. FL-Based Training Framework

Fig. 3 illustrates the framework of the proposed LyFOTO
algorithm. A full global iteration consists of the following steps.
First, the server distributes the global model to each MEC
server for edge training. Next, the MEC servers handle model
training using the local data within their respective cells and
subsequently upload the updated models to the global server for
global aggregation, which leads to the formation of the updated
global model.

1) Edge Training: Each MEC server is responsible for edge
training within its respective cell and functions as an agent,
which depicted in Fig. 3. This agent consists of two key modules:
the actor module, which includes two networks θ and θ′, and the
critic module, which utilizes a function. Notice that the use of
two actor networks is intended to address the overfitting issue.
The actor module selects offloading actions based on the current
state, applying the NOP quantization method to generate up to
gsi ≤ 2M groups of candidate actions [37]. The critic module
evaluates these actions and identifies the optimal one, which is
described as follows:

P3 : (xs
i )

∗ = argmaximize
xs

i∈{0,1}M
F (xs

i , ζ
s
i ) ,

where F (xs
i , ζ

s
i ) is the optimal value of P2 by optimizing ys

i

given the actions and the current state.
The LyFOTO algorithm utilizes (xs

i , ζ
s
i ) as a labeled I/O

sample for the update of θ′. Specifically, we set up an experience
replay buffer to store recent q data samples. In practice, training
of θ′ begins once more than q/2 samples have been collected
in the initially empty experience replay buffer. θ′ is then up-
dated periodically for every γs time slot to prevent over-fitting
problem of the model. Furthermore, soft target updating (25) is
employed to ensure gradual adjustments to the network’s weight
parameters, thereby improving the stability of the learning
process.

θ = αθ + (1− α)θ′. (25)

Every δs time slot, LyFOTO randomly selects a batch of data
samples {(xt

i, ζ
t
i), t ∈ Q} and uses the Adam algorithm [38] to

minimize its binary cross entropy (BCE) loss function Li(s, θ
′)

on the data samples to update θ′.

Li(s, θ
′) = − 1

|Qs| ·
∑
t∈Qs

[
(xt)ᵀ log Πθ′(ζt

i)

+(1− xt)ᵀ log
(
1−Πθ′(ζt

i)
)]

. (26)

When the training completes, we update the parameter of the
actor network θ according to (25) at the beginning of the next
slot.

2) Global Aggregation: Each MEC server trains the edge
model utilizing its local data and then uploads the revised model
parameters to the global server, where they are aggregated to
form the global model. Repeat this process every Γs time slot.
Specifically, the global model is obtained through (27).

θ =
1∑N

i=1 di

N∑
i=1

di · θi, (27)
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Fig. 3. The framework of the proposed LyFOTO algorithm.

where θ represents the global model parameters aggregated by
the global server, and di refers to the number of training samples
from MEC server i. Algorithm 1 outlines the operational process
of the proposed LyFOTO algorithm.

C. Fast Near-Optimal Resource Distribution Algorithm

With the value of xs
i in P2, let Ms

1 represent the index set of
MDs where xs

ij = 1, and Ms
0 represent the index set of MDs

wherexs
ij = 0. For simplicity, the superscript s and the subscript

i are omitted. Thus, F (xs
i , ζ

s
i ) is expressed as follows

P4 : maximize
fs,τs,es,rs

∑
j∈Ms

0

{
(w0Tj(s)+V ci)

fj
φ
−w1Bj(s)ξf

3
j

}

+
∑
j∈Ms

1

{
(w0Tj(s) + V ci)r

o
j − w1Bj(s)e

o
j

}
subject to C2− C6.

Be aware that P4 can be optimized independently for MDs in
both Ms

0 and Ms
1. Specifically, each MD j ∈ Ms

0 addresses its
parallel sub-problem

P5 : maximize
fj

(w0Tj(s) + V ci)
fj
φ

− w1Bj(s)ξf
3
j

subject to 0 ≤ fj ≤ min
{
φtj(s),

3
√

bi(s)/ξ, f
max
j

}
;

Its optimal strategy is given by (28) shown at the bottom of
this page, where w2 = w0Tj(s) + V cj , and

f=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
w0Tj(s)+V ci

w1ξBj(s)
,

if min
{
φtj(s),

3
√

bi(s)/ξ, f
max
j

}
<
√

w0Tj(s)+V ci
w1ξBj(s)

;

0,
otherwise;

Clearly, the computation rate of the MD j depends on the state
of virtual queues T and B.

Next, it is necessary to address the following problem for the
WD j ∈ Ms

1,

maximize
τs

o,e
s
o,r

s
o

∑
j∈Ms

1

{
(w0Tj(s) + V ci)r

o
j − w1Bj(s)e

o
j

}
(29)

subject to
∑
j∈Ms

1

τj ≤ 1, τj ≥ 0; (29a)

roj ≤ tj(s), e
o
j ≤ bj(s), e

o
j ≤ Pmax

j τsj , ∀j ∈ Ms
1; (29b)

roj , e
o
j ≥ 0, ∀j ∈ Ms

1; (29c)

where τ = {τj , ∀j ∈ Ms
1}, eo = {eoj , ∀j ∈ Ms

1}, and ro =
{roj , ∀j ∈ Ms

1}.
To solve this problem, we introduce a partial Lagrangian

function, which is

L(τ , eo, ro;μ) =
∑
j∈Ms

1

{
(w0Tj(s) + V ci) r

o
j − w1Bj(s)e

o
j

}

+ μ

⎛⎝1−
∑
j∈Ms

1

τj

⎞⎠ ,

f ∗
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

{√
w0Tj(s)+V ci
3w1φξBj(s)

, φtj(s),
3
√

bj(s)/ξ, f
max
j

}
, {Tj(s) ≥ 0 and Bj(s) ≥ 0} or {Tj(s) < 0, Bj(s) ≥ 0 and w2≥0} ;

min
{
φtj(s),

3
√

bj(s)/ξ, f
max
j

}
, {Tj(s) ≥ 0 and Bj(s) < 0} or {Tj(s) < 0, Bj(s) < 0 and w2≥0} ;

0, Tj(s) < 0, Bj(s) ≥ 0 and w2 < 0;

f j , Tj(s) < 0, Bj(s) < 0 and w2 < 0;
(28)
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where μ indicates the dual variable, and the dual problem is

minimize
μ≥0

D(μ)

Here, the dual function is

D(μ) = maximize
τ ,eo,ro

L(τ , eo, ro;μ)

subject to roj ≤ tj(s), ∀j ∈ Ms
1;

eoj ≤ bj(s), e
o
j ≤ Pmax

j τsj , ∀j ∈ Ms
1;

τj , r
o
j , e

o
j ≥ 0, ∀j ∈ Ms

1.

Observe that D(μ) can be broken down into independent sub-
problems. Specifically, each MD j ∈ Ms

1 solves

P6 : maximize
τj ,eoj ,r

o
j

w2r
o
j − w1Bj(s)e

o
j − μτj

subject to 0 ≤ roj ≤ tj(s), τj ≥ 0;

0 ≤ eoj ≤ min{bj(s), Pmax
j τsj };

Recall that

roj
τj

= W log2

(
1 +

eojhj

τjN0

)
= W log2

(
1 +

Pjhj

N0

)
, (30)

with an upper bound of

W log2

(
1 + min

{
bj(s), P

max
j

}× hj

N0

)
� rmax

j .

Here, rmax
j represents the maximum offloading rate. Notice

that bj(s)/τj is simplified to bj(s) in the min function, because
in most cases, bj(s)/τj > Pmax

j , making the ratio irrelevant in
the minimization.

According to (30), eoj as a function of roj and τj , i.e.,

eoj

(
roj
τj

)
� N0τj

hj

(
exp

(
ln 2

W
· r

o
j

τj

)
− 1

)
, (31)

Thus, P6 is equivalent to P6a

P6a : maximize
roj

{
Gi(r

o
j )|0 ≤ roj ≤ tj(s)

}
where

P6b : Gi(r
o
j ) � max

τj
w2r

o
j−μτj−w1Bj(s)e

o
j

(
roj
τj

)
subject to τj ≥ r

o/
j rmax

j . (32)

By taking the second derivative of (32), we can determine
that P6b is a convex optimization problem. Its optimal strategy
is given by Proposition 1.

Proof: Given roj , we denote by χ(τj) = w2r
o
j − μτj −

w1Bj(s)e
o
j

(
roj
τj

)
. Within the feasible set τj ≥ roj/r

max
j , we can

see χ(τj) is a concave function. The minimum value is obtained
either at the boundary point roj/r

max
j or at the point x0 that

satisfies χ′(x0) = 0.

By taking the derivative of χ(x0), we have

χ′(τj) = −μ

− w1Bj(s)N0

hj

(
e

ln2
W ·

ro
j

τj − 1− e
ln2
W ·

ro
j

τj
ln 2

W
· r

o
j

τj

)

= −w1Bj(s)N0

hj

×
[
e

ln2
W ·

ro
j

τj

(
1− ln 2

W
· r

o
j

τj

)
− 1 +

μhj

w1Bj(s)N0

]

= −w1Bj(s)N0e

hj

×
[

μhje
−1

w1Bj(s)N0
− e−1 − e

ln2
W ·

ro
j

τj
−1
(
ln 2

W
· r

o
j

τj
− 1

)]
.

(33)

To find x0, we set χ′(τj) = 0, i.e.,

e
ln2
W ·

ro
j

τj
−1
(
ln 2

W
· r

o
j

τj
− 1

)
= e−1

(
μhj

w1Bj(s)N0
− 1

)
(34)

Due to e−1
(

μhj

w1Bj(s)N0
− 1

)
≥ −1, we can get the value of

x0, which is,

x0 =
ln 2 · roj

W ·
[
W

(
e−1

[
μhj

w1Bj(s)N0
− 1

])
+ 1

] . (35)

Notice that W(·) is the Lambert-W function.
If x0 < roj/r

max
j or χ′(τj) = 0 is unattainable within the

feasible set, we have τ ∗j = roj/r
max
j according to the concave

function definition. Given χ′(τj) = 0, x0 < roj/r
max
j is equal

to χ′(τj) < 0. By replacing τj with roj/r
max
j in (34), we have

x0 < roj/r
max
j when

μ+w1Bj(s)min
{
bj(s), P

max
j

}
×
[
1− ln (1 + uj)

(
1 +

1

uj

)]
> 0

⇒ ln (1 + uj) ≤
(
1 +

μ

w1Bj(s)min
{
bj(s), Pmax

j

})

×
(
1− 1

1 + uj

)
⇒ ln

(
1

1 + uj

)
≥ −lj +

lj
1 + uj

⇒ exp

(
− lj
1 + uj

)(
− lj
1 + uj

)
≤ −lj exp (−lj) , (36)

where

uj �
hj min

{
bj(s), P

max
j

}
N0

,
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lj � 1 +
μ

w1Bj(s)min
{
bj(s), Pmax

j

} .
Since −e−1 ≤ −lj exp(−lj) ≤ 0, the inequality above is

equal to(
− lj
1 + uj

)
≤ W (−lj exp (−lj)) ∈ [−1, 0] . (37)

The equivalence holds since W(x) is a monotonically in-
creasing function of x when x ≥ −e−1. Therefore, we can
obtain the optimal solution τ ∗j = roj/r

max
j from (37) when hi ≤

N0
min{bj(s),Pmax

j } (
lj

−W(−lj exp(−lj))
− 1). Otherwise, we can obtain

that τ ∗j = x0 ≥ roj/r
max
j and χ′(τj) = 0. �

Proposition 1: The optimal solution of P6b is (38) shown at
the bottom of this page, where lj = 1 + μ

w1Bj(s)min{bj(s),Pmax
j } .

Hence, P6b can be rewritten as

P6c : maximize
roj

{
w2 − w1Bj(s)

eoj [Ji(μ)]

Ji(μ)
− μ

Ji(μ)

}
roj

subject to 0 ≤ roj ≤ tj(s),

where the optimal policy is

r∗j =

{
tj(s), if w2 − w1Bj(s)

eoj [Ji(μ)]

Ji(μ)
− μ

Ji(μ)
≥ 0;

0, otherwise;
(39)

After calculating r∗j , we can obtain τ ∗j = r∗j/Ji(μ), and then
compute the value of μ according to 1−∑

j∈Ms
1
τ ∗j . To com-

pute the optimal dual variable μ∗, we use the bi-section search
method to solve the approximation until the specified accuracy
is satisfied.

Next,the primal problem (29) is simplified as a linear pro-
gramming, which is

maximize
roj

∑
j∈Ms

1

{
w2 − w1Bj(s)

eoj [Ji(μ
∗)]

Ji(μ∗)

}
roj

subject to
∑
j∈Ms

1

roj
Ji(μ∗)

≤ 1; roj ≤ tj(s), ∀j ∈ Ms
1 (40)

We find its optimal solution r∗j easily using convex optimiza-
tion tools. Hence, the solution of τj and eoj in (29) is

τ ∗j = r∗j/Ji(μ
∗), eo∗j = τ ∗j

eoj [Ji(μ
∗)]

Ji(μ∗)
, ∀j ∈ Ms

1. (41)

The pseudo-code of the algorithm to solve P4 is outlined in
Algorithm 2.

VI. PERFORMANCE ANALYSIS FOR LYFOTO

In this section, we first analyze the computational complexity
of the proposed algorithm, and then analyze the convergence
performance of the proposed algorithm in solving P1.

Algorithm 2: Fast Optimal Resource Distribution Algo-
rithm for Solving P4.

A. Computational Complexity

The execution of the LyFOTO algorithm consists of two
main components: edge training and federated aggregation.
Federated aggregation is performed after a fixed number of
time slots, whereas edge training is carried out within each
individual time slot. The edge training process includes two
stages: the generation of offloading strategies and the updating
of these strategies. While strategy updates occur periodically
after several time slots, offloading operations are generated
within each time slot. Therefore, this paper primarily focuses
on analyzing the complexity of offloading strategy generation
within a single time slot. A careful examination reveals that the
resource allocation step in line 8 of Alg 1 is the primary source
of complexity.

The primary complexity of Alg 2 arises from two parts:
the binary search applied to μ and the solution of the linear
program (LP) in (40). For the first part, the complexity of the

binary search is O
(
M log2

(
Δ
μ0

))
where μ0 represents a small

positive precision parameter. In addition, the solution accuracy
mainly depends on the precision of the dual variable μ. Higher
precision values of μ generally provide more accurate solutions,
as they capture the impact of the constraints on the optimization
process more precisely. However, increasing the precision of μ
significantly raises the computational burden, especially during
the iterative process, where more computational resources and

τ ∗j = roj/Ji(μ) =

⎧⎪⎨⎪⎩
roj
rmax
j

, if hj ≤ N0

min{bj(s),Pmax
j }

(
lj

−W(−lj exp(−lj))
− 1

)
;

roj[
W

(
e−1

[
μhj

w1Bj(s)N0
−1

])
+1

]
·W/ ln 2

, otherwise;
(38)
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time are required to update and adjust the value of μ. The
strategy of gradually increasing the precision of μ is commonly
adopted to strike a balance between computational efficiency
and solution accuracy. For the second part, the LP in (40) is
solved using the interior-point method [39], with a complexity
of O(M3Ī), where Ī denotes the input length of the binary of-
floading strategy in problem (40). Compared to directly solving
the P4 with 4×M variables using the interior-point method,
Alg 2 only solves an LP with at most M variables, resulting in a
significantly lower computational complexity, especially when
M is large. Since the proposed algorithm executes Alg 2 gsi times
within each time slot s, the overall complexity of the algorithm

is O
([

M log2

(
Δ
μ0

)
+M3Ī

]
gsi

)
.

In contrast to conventional methods, which typically use
interior-point methods to directly solve general convex opti-
mization problems involving 4M variables, Alg 2 only requires
solving a linear programming problem involving M variables.
As the value of M increases, representing scenarios with a
large number of MD connections, the proposed algorithm sig-
nificantly reduces computational overhead, thereby improving
computational efficiency and system performance. Additionally,
to further enhance the scalability of the system, LyFOTO utilizes
FL, allowing multiple BS to collaborate in optimizing task
offloading decisions without sharing actual data. This decen-
tralized approach reduces computational overhead, enhances
privacy, and ensures the system can scale effectively with the
increasing number of BS.

In Section VII, simulation results demonstrate that the pro-
posed algorithm achieves significantly short computation times,
making it suitable for real-time implementation in dynamic
multi-BS collaborative offloading scenarios.

B. Convergence Performance

Before analyzing the asymptotic convergence performance
of the proposed algorithm for solving P1, we first introduce
some preliminary work on Lyapunov optimization. In the col-
laborative offloading scenario, the stochastic events in the opti-
mization problem are represented by an i.i.d. process ωs

i , which
includes task arrivals, energy harvesting, and fading channels,
i.e., ωs

i = {asij , Hs
ij , h

s
ij}Mj=1. We denote by Ropt the optimal

value of P1 obtained all available strategies. There is a set of
control decisions, independent of queue backlog Qs

i , referred to
as the ω-only strategy, which satisfies the following lemma.

Lemma 1. Given any β > 0, there is an ω-only strategy Ω
that makes control decision ΞΩ,s, which satisfy,

E
[Rs

(
ΞΩ,s

)] ≥ Ropt − β,

E
[
asij

] ≤ E
[
dsij

(
ΞΩ,s

)]
+ β,

E
[
Hs

ij

] ≥ E
[
esij

(
ΞΩ,s

)]− β, (42)

where Rs �
∑M

j=1 cijr
s
ij .

Proof: The proof is provided Theorem 4.5 of [35], which is
not described in detail here. �

Next, Theorem 1 proves the performance of the proposed
algorithm.

Theorem 1: Given any queue backlog Qs
i in time slot s, the

upper bound value (23) of drift plus penalty is not larger than
the constant B. When running the LyFOTO algorithm in each
time slot s, the time average computation rate satisfies

lim
S→∞

1

S

S−1∑
s=0

E {Rs} ≥ Ropt − (B + C) /V (43)

Proof: Sinceωi(t) is an i.i.d. process, We can apply Lemma 1
to (23), i.e.,

ΔV (L(Q
s
i )) = C +w0

M∑
j=1

Tij(s)E
[(
asij − dsij

) |Qs
i

]

+w1

M∑
j=1

Bij(s)E
[(
esij−Hs

ij

) |Qs
i

]−V E
{
cijr

s
ij |Qs

i

}

≤ B + C +

M∑
j=1

(
w0Tij(s)E

[(
asij − dsij

(
ΞΩ,s

)) |Qs
i

]
+w1Bij(s)E

[(
esij

(
ΞΩ,s

)−Hs
ij

) |Qs
i

]−V E
{Rs

(
ΞΩ,s

)})
≤ B + C +

M∑
j=1

(
w0Tij(s)E

[(
asij − dsij

(
ΞΩ,s

))]
+w1Bij(s)E[

(
esij

(
ΞΩ,s

)−Hs
ij

)
]−V E

{Rs
(
ΞΩ,s

)})
≤ +β

⎡⎣ M∑
j=1

(w0Tij(s) + w1Bij(s))

⎤⎦
− V

(Ropt − β
)

(44)

Let β → 0, we have,

ΔV (L(Q
s
i )) ≤ B + C − VRopt. (45)

Summing (45) from s = 0 to S − 1 and then dividing both
sides by SV , we obtain,

1

SV

(
E
[
L
(
QS

i

)]− E
[
L(Q0

i )
]− V

S−1∑
s=0

E {Rs}
)

≤ (B + C) /V −Ropt (46)

Since L(QS
i ) ≥ 0 and L(Q0

i ) = 0, by letting S → ∞ of (46),
we have

lim
S→∞

1

S

S−1∑
s=0

E {Rs} ≥ Ropt − (B + C) /V

This completes the proof. �

VII. RESULTS ANALYSIS FOR LYFOTO

This section conducts a series of experiments to simulate
the performance of the LyFOTO algorithm in practical MEC
scenarios, while varying key parameters to evaluate system
efficiency. The task arrival rate reflects the computation load,
usually measured by the amount of data on the task. This
corresponds to the amount of data collected for smart city
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Fig. 4. Impact on system performance with different values of V : (a) Impart of V on the computation rate and queue length; (b) Impart of V on task queue
backlog; (c) Impart of V on battery energy level.

scenes. The energy arrival rate reflects the energy harvested
by the device. The variation in distance between the device
and the base station reflects the user’s mobility characteristics,
which are typically measured using communication distance.
Furthermore, we analyze the system’s robustness by adjusting
different disturbance parameters.

A. Parameter Settings

In LyFOTO, the actor network is implemented as a five-layer
Fully Connected Neural Network (FCNN) with neuron sizes of
[5M, 256, 128, 64,M ]. The tanh activation function is applied
in the output layer, while the ReLU activation function is used
across all other layers.

For the scenario parameter setup, cij = 1 if i+ j is an even
number and cij = 1.5 otherwise. The task arrival rate for all
MDs follows an exponential distribution, i.e., asij ∼ E(λ) Mbit.
The channel gain hs

ij is modeled as an i.i.d. Rician distribution
with a line-of-sight link gain equal to h̄s

ij [40], which given by

h̄s
ij = 0.9×

(
3× 108

4π × 915MHz × dsij

)3

,

where dsij denotes the distance between BS i and MD j and
satisfies Unif [120, 240] m by default. Time slot duration is set
to τ = 1 second. The disturbance parameters are defined as

εij = Ṽt + (d̃max)−1 = V × 64 Mbit + (d̃max)−1;

εij = Ṽb + (H̃max)−1 = V × 50 mJ + (H̃max)−1.

The following experiments use the default parameter values
outlined in Table II, most of which are obtained from [27]
and [30].

B. Performance Evaluation and Comparative Schemes

1) Computation Rate & Delay Trade-Off: We select several
different values of V and compute the average queue backlog
and computation rate for each V . The results are illustrated
in Fig. 4(a) for comparison. Notice that the average queue
length is obtained by normalizing the task queue backlog and
battery energy level. Under the condition of a task arrival rate

TABLE II
EXPERIMENTAL PARAMETERS

of λ = 2.5 Mbits, as V increases from 1 to 10 in the step of
1, the average queue length rises from 0.42 to 1.37, while the
average computation rate decreases from 2.43 Mbit/s to 1.87
Mbit/s. In Fig. 4(a), the queue backlog increases linearly withV ,
while the computation rate decreases significantly. This occurs
because the trade-off parameter not only balances between drift
and penalty but also influences the queue disturbance parameter.
Additionally, Fig. 4(a) demonstrates a [O(1/V ), O(V )] trade-
off between the system’s computation rate and queue backlog.

Fig. 4(b) and (c) validate the LyFOTO algorithm’s stable
control over task queue backlog and battery energy level under
varying values of V . Fig. 4(b) illustrates the task queue backlog
for V = 2, 5, and 8. It can be observed that the task queue
backlog initially increases continuously until stabilizing near
the disturbance queue level. This stabilization occurs because,
as the backlog approaches the disturbance energy level, the
upper bound of the Lyapunov drift plus penalty function in
each time slot nears its minimum. Fig. 4(c) presents the battery
energy levels for V = 1, 5, and 9. Notice that the battery energy
level remains at its initial state initially, then drops sharply and
stabilizes around the disturbed energy level. This phenomenon
results from the total arrival of tasks being stored in the task
queue at the outset, with task processing commencing only when
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Fig. 5. Impact on system performance with different values of dsij . (a) Impart of dsij on task queue backlog. (b) Impart of dsij on battery energy level. (c) Impart
of dsij on the computation rate.

the queue approaches the disturbance queue level. As the energy
level nears this threshold, the upper bound of the Lyapunov drift
plus penalty function in each time slot reaches its minimum,
prompting the proposed algorithm to prioritize local processing
to deplete battery energy until it approaches the disturbance en-
ergy level. In Fig. 4, the device’s computation rate decreases and
the convergence speed of the queue is slower with V increased.
Therefore, it is essential to select an appropriate V value based
on different scenarios. In the subsequent experiments, we will
set V to 5.

2) Impact of Distances dsij: We evaluate the task offloading
performance of MDs within the effective coverage area of a
BS, analyzing the average queue backlog and computation rate
at different distances dsij . Fig. 5(a) demonstrates that the task
queue backlog quickly converges to the disturbance level. This
convergence occurs with a consistent speed when the distance
between the device and the BS is below 210 meters. However,
when the distance increases to 210-240 meters, the task queue
begins to diverge. This is because the effective communication
range of the BS is typically around 200 meters. As the distance
increases, the quality of the communication channel deteriorates.
This degradation hinders efficient task offloading, leading to
divergence in the task queue backlog. Fig. 5(b) shows the battery
energy levels of MDs at different distances. It can be observed
that the battery energy remains at a relatively high level when
the device is 30− 60 meters away from the BS. This is because
short-distance communication improves channel conditions, en-
abling the device to offload more tasks within the same time slot.
At this point, the number of tasks designated for local offloading
in the queue decreases, reducing offloading energy consumption
and increasing the battery’s remaining energy level. As the
distance increases, the communication conditions deteriorate,
requiring the device to consume more energy to handle the
same number of tasks. At a distance of 150− 180 meters, both
the battery energy and task backlog stabilize near the disturbance
level. This indicates that the device is nearing the boundary of the
effective coverage area of BS. Outside this range, the proposed
algorithm continues to strive for stable computation rates and
battery energy levels. However, the device’s computation rate
drops below the task arrival rate. This results in the task queue
backlog becoming uncontrollable.

3) Impact of Real-World Task Arrival asij: To improve the
performance insights of the proposed algorithm in real-world
scenarios, we incorporated task instances from the publicly
available “cluster-trace-v2017” dataset 1, which were originally
generated in a cluster environment. These task instances were
then adapted to mobile devices, simulating the task arrival
rates for each time slot according to practical conditions. The
experimental results are shown in Fig. 6(a)–(c), which illustrate
the impact of task arrival rates based on real data on the device’s
average queue backlog and computation rate under different time
slots. To validate the robustness of the proposed algorithm, we
multiplied the task arrival rate by a coefficient ι, where ι = 0.8,
1.0, 1.2, 1.5, and 1.8, respectively. As shown in Fig. 6(a), the
task queue backlog increases initially and then stabilizes near
the disturbance threshold. It is noteworthy that due to significant
fluctuations in the task arrival rate in the dataset, when ι = 1.8,
the task queue backlog exceeds the preset threshold constraint.
Fig. 6(b) illustrates the device’s battery energy levels at five
different task arrival rates. From Fig. 6(b), it can be observed that
the device’s battery energy remains above the threshold across
all task arrival rates. Fig. 6(c) presents the computation rates of
the device at various task arrival rates. The figure indicates that
when ι = 1.0, the average computation rate is approximately
1.5 Mbit/s. For comparison, when ι = 0.8, 1.2, 1.5, and 1.8,
the average computation rates are approximately 1.2, 1.8, 2.25,
and 2.7 Mbit/s, respectively. The experimental results are in
general agreement with the trends observed in the computation
rates, confirming the robustness and stability of the proposed
algorithm.

C. Comparison of Different Offloading Schemes

We conduct a comparison of the LyFOTO algorithm with
two additional algorithms to assess the algorithm’s practical
effectiveness.
� All Local Execution Algorithm (ALEA)

In time slot s, the tasks are all executed locally, and the
local main frequency is solved using (28).

� All Offloading Execution Algorithm (AOEA)

1https://github.com/alibaba/clusterdata/tree/v2018/cluster-trace-v2017
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Fig. 6. Impact on system performance with different values of ι. (a) Impart of ι on task queue backlog. (b) Impart of ι on battery energy level. (c) Impart of ι on
the computation rate.

Fig. 7. Impact on system performance with different offloading algorithms (a) Impart of different offloading schemes on task queue backlog; (b) Impart of
different offloading algorithms on computation rate; (c) Queue evolution across 10000 time slots with different algorithms.

In time slot s, all tasks are offloaded to the MEC server,
and the task offloading strategy is solved using Alg (2).

� Lyapunov-guided DRL for Online Computation Offloading
(LyDROO) [40]
In time slot s, the arriving tasks follow a binary offloading
method. By leveraging Lyapunov optimization techniques,
the task offloading strategy and resource allocation scheme
are determined in real-time, aiming to maximize the of-
floading rate while ensuring task queue stability. This
algorithm is similar to the proposed one, but our algorithm
emphasizes disturbance threshold constraints and employs
a federated offloading approach.

We selected multiple sets of task arrival rates and calculated
the average task queue backlog and computation rate for four
algorithms under each task arrival rate. The results are presented
in Fig. 7(a) and (b) for comparative analysis. It can be observed
that the ALEA algorithm can’t control the task queue backlog.
This is because ALEA relies solely on the local processing mode.
Compared to remote offloading, local processing consumes
more energy and can only handle a limited number of tasks per
time slot. Moreover, the energy harvested by the device in each
time slot is inadequate to sustain the local CPU at full capacity.
This limitation leads to an inability to process tasks efficiently,
causing the task queue backlog to become uncontrollable. As

shown in Fig. 7(b), the task computation rate of the ALEA
algorithm reaches a maximum of 1.5 Mbit/s.

For the AOEA algorithm, when the system operates under
a low task arrival rate (e.g., 1.6 or 1.8 Mbit/s), its average
task queue backlog remains at the same level as that of the
proposed algorithm. However, as the task arrival rate increases,
the AOEA algorithm’s task queue backlog rapidly increases
and significantly exceeds that of the proposed algorithm. This
is because the remote offloading mode reaches its maximum
computation capacity when the task arrival rate hits 2.4 Mbit/s.
Once the task arrival rate surpasses this threshold, the AOEA
algorithm struggles to handle the arrived tasks promptly, leading
to an unmanageable queue backlog and demonstrating weak
robustness. Similarly, the LyDROO algorithm exhibits near-zero
task queue backlog at low task arrival rates, but the backlog
increases significantly as the task arrival rate grows. This is
because the LyDROO algorithm does not account for the dis-
turbance level of the task queue and only controls its stability.
In contrast, the proposed algorithm shows better performance in
controlling the task queue backlog. When the task arrival rate is
within the system’s processing capacity, the proposed algorithm
can effectively control the task queue backlog near the distur-
bance level. When the task arrival rate increases and approaches
3.0 Mbit/s, the proposed algorithm gradually surpasses the
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disturbance level constraint. This is because of the constraints
of the device’s channel conditions and energy harvesting, which
impose an upper limit on the system’s computation capacity. As
the number of arrived tasks nears this limit, the system becomes
unable to offload the queued tasks promptly. Consequently, the
task queue backlog ultimately exceeds the disturbance level.
Unlike the comparative algorithms, the proposed algorithm can
effectively control the slow rise of queue backlogs under such
conditions, rather than losing control immediately.

To visually demonstrate the differences in queue stability
control between the proposed algorithm and the comparative
algorithms, we plot the variation trend of the task queue state
over 10000 time slots, as shown in Fig. 7(c). Notice that the task
queue backlog controlled by the ALEA algorithm has diverged
and is not presented. From Fig. 7(c), we can see that the task
queue variation trends of the AOEA and LyDROO algorithms
exhibit considerable fluctuations. While both algorithms stabi-
lize within a specific range, there are significant differences in
task queue backlog between consecutive time slots. According
to Little’s Law [16], the average queuing delay is proportional
to the queue backlog. When the queue backlog experiences
large fluctuations, the task response time becomes unstable.
In contrast, the proposed algorithm effectively stabilizes the
task queue backlog near the disturbance level over a longer
period, ensuring that the device maintains stable response times.
In practical applications, a stable response time for the device
reflects the reliability of the system, facilitating rational resource
allocation and enhancing overall system efficiency.

VIII. CONCLUSION

In this paper, the task offloading problem in resource-
constrained MEC systems is studied. It aims to optimize long-
term system throughput by constructing a dynamic task offload-
ing model, where task backlog and energy threshold constraints
are transformed into virtual queue constraints using the per-
turbed Lyapunov optimization method. By minimizing the upper
bound of drift-plus-penalty, the long-term optimization problem
dependent on future time slots is simplified into a non-convex
problem relying only on the current time slot. Based on this, we
propose the LyFOTO algorithm to derive the optimal offloading
strategy. When communication conditions are favorable, the
LyFOTO algorithm adapts to enhance system throughput, while
under poor conditions, it strategically delays task offloading to
maintain queue backlog constraints. Comparative experimental
results demonstrate that LyFOTO outperforms other benchmark
algorithms by ensuring device task backlog and energy threshold
constraints, achieving maximum system throughput.

Although the proposed method optimizes average perfor-
mance metrics, such as queue length and throughput, it does
not enforce strict hard constraints. As a result, instantaneous
parameters, such as queue length or energy levels, may tem-
porarily exceed their thresholds as long as the averages remain
controlled. While this flexibility is generally suitable for dy-
namic environments, it may be inadequate in systems that require
strict guarantees, particularly in safety-critical applications with
hard energy limitations or those that cannot tolerate task loss

due to buffer size constraints. Furthermore, since local models
are aggregated through averaging, adversarial actors can exploit
this mechanism by manipulating their local models, thereby
adversely affecting the global model. This could lead to degraded
overall model performance or biased outcomes, compromising
the integrity and security of the system.

To address the aforementioned problem, future research will
introduce more robust aggregation algorithms, such as weighted
averaging, robust aggregation methods, or differential privacy
techniques, to mitigate the impact of malicious participants on
the global model. Additionally, model validation mechanisms
and anomaly detection algorithms in federated learning will be
employed to identify and eliminate faulty data, enhancing the
system’s security and reliability. Moreover, future work will ex-
plore hybrid optimization frameworks that combine average and
hard constraints. Promising directions include the integration
of predictive algorithms or adaptive threshold mechanisms to
minimize the likelihood of threshold violations. Furthermore,
we aim to extend the optimization objectives within MEC
systems and explore federated learning optimization in large-
scale intelligent transportation scenarios, specifically improving
task queuing model accuracy by incorporating user mobility
features.
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