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Abstract—Unmanned aerial vehicles (UAVs)-assisted edge com-
puting has emerged as an effective solution for providing
contingency task offloading (TO) services when ground com-
puting infrastructures are insufficient. However, UAVs face
challenges in implementing efficient task offloading strategies due
to their limited capabilities and the complexity of the privacy
offloading problem. To address these challenges, this study
constructs a digital twin (DT)-enabled UAV swarm-assisted secure
computing model, which considers collaboration of devices, edges,
and cloud resources. The model is designed to represent the three-
tier computing environment as a DT virtual framework, allowing
for the monitoring of network changes and the exploration of
potential strategies. Furthermore, a joint optimization problem
that considers time delay and energy consumption within encryp-
tion and decryption costs is formulated. To solve this problem, an
entropy-enhanced proximal policy optimization-based multi-UAV
assisted security-aware task offloading (EP-MUSTO) algorithm is
proposed. In EP-MUSTO, the exploration capability is enhanced
by utilizing an actor network with policy entropy, and the
action cognition is improved through the parameterization of the
hybrid action space (HAS). Experimental results demonstrate
that compared with other advanced algorithms, EP-MUSTO
achieves a reduction in security system costs (SSCs) and magni-
tude of convergence oscillations by at least 9.43% and 54.62%,
respectively.

Index Terms—Collaborative edge computing, digital twin (DT),
security awareness, task offloading (TO), unmanned aerial vehi-
cles (UAV) swarm assistance.
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I. INTRODUCTION

OBILE-EDGEcomputing (MEC) has emerged as a
Mnovel computing architecture that places resources at
the edge of networks. In contrast to cloud computing, MEC
allows for the offloading of latency-sensitive tasks closer to
terminal users (TUs), thereby alleviating the computational
load on cellular networks. However, statically deployed servers
face challenges in real-world, particularly in urban industrial
clusters with high computational demands and in disaster-
stricken or remote areas lacking sufficient infrastructure [1].

Unmanned aerial vehicles (UAVs) have been recognized as
a promising technology within the MEC framework. UAV-
assisted MEC (UAV-MEC) leverages the high flexibility,
seamless deployment, and cost-effectiveness of UAVs to
deliver emergency services. By equipping UAVs with airborne
servers and utilizing wireless communication services, UAV-
MEC has the potential to extend the limited network coverage
of classical MEC and offer immediate services to users [2].
However, the capability of a single UAV to handle large-scale
tasks is constrained, posing a challenge in meeting the increas-
ing complexity of computation and coverage requirements.

In recent years, digital twin (DT) technology and deep
reinforcement learning (DRL) have emerged as cutting-edge
solutions to tackle these challenges. DT enables the creation
of a virtual representation that mirrors the physical world,
allowing for real-time system monitoring through this digital
counterpart. It models fundamental principles of physical
components, communication, and computation, collecting and
analyzing action data from UAV-MEC, managing unified
scheduling, and updating the DT model in response to state
changes [3]. In contrast to heuristic algorithms, DRL can
dynamically interact with intricate UAV environments, learn-
ing optimal solutions for sequential decision-making problems
through the use of Markov decision processes (MDP) with-
out the need for prior knowledge [4]. The collaboration
between DT and DRL provides comprehensive environmental
information and intelligent solutions for the computing plat-
form.

However, the openness of wireless channels expose
data sharing among devices to the risk of eavesdropping.
Implementing privacy-preserving techniques in UAV-MEC
and IoT is essential, yet it introduces extra encryption and
decryption overheads, leading to increased offloading costs [5].
Furthermore, collaborative offloading within UAV clusters
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involves substantial action and state interactions. The large
number of parameters and the overhead associated with pri-
vacy techniques considerably affect the learning performance
and effectiveness of DRL-based optimization algorithms [6].

To tackle the challenges outlined above, this study explores
the issue of security-aware task offloading (TO) in cooper-
ative computing systems using improved DRL. We develop
a DT-enabled UAV cluster-assisted TO system structured
around the device-edge-cloud (D-E-C) three-layer framework.
This UAV-assisted D-E-C (UAV-DEC) collaboration leverages
various computational resources within the system to deliver
complementary strengths for TO. Additionally, we explore
an optimization algorithm based on entropy-enhanced DRL,
which incorporates entropy optimization into the proximal
policy optimization (PPO) method to enhance the exploration
capabilities of policy generation. The primary contributions of
this study are summarized below.

1) It develops a DT-empowered D-E-C collaborative pri-
vacy TO system that integrates UAV clusters. D-E-C
collaboration provides computational services with com-
plementary strengths for the task. The DT creates an
effective mapping between UAV-DEC and the digital
system, allowing for comprehensive monitoring of UAV-
DEC parameters.

2) It devises a joint minimization problem that tackles
secure system costs, encompassing delay, energy con-
sumption, and privacy-preserving expenses, along with
UAV endurance. This problem is transformed into an
MDP that incorporates observation normalization and
hybrid action space (HAS).

3) It proposes an entropy-enhanced PPO-based multi-UAV-
assisted security-aware TO algorithm (EP-MUSTO).
EP-MUSTO designs a strategy generation mechanism
based on the maximum entropy (ME) mechanism and
dual-action output structure to enhance the randomness
of strategic actions and boost the representational capac-
ity of mixed actions. Experimental results show the
advantages of EP-MUSTO in terms of cost optimization
and training stability.

The structure of the study is as follows. Section II discusses
relevant work on TO schemes in MEC. Section III elaborates
the multi-UAV-assisted collaborative TO model in DT and
describes the optimization problem. Section IV presents the
HAS-based MDP and describes the process details of EP-
MUSTO. Section V evaluates the experimental performance
of EP-MUSTO. Finally, Section VI summarizes the study.

II. RELATED WORK

MEC has emerged as a key area of research for dynamic
cross-area services. Generally, the existing TO schemes can
be divided into two types of applications, i.e., classical MEC
and UAV-MEC structures.

The TO problem has been extensively studied within the
classical MEC. Zhang et al. [7] formulated the multiuser
distributed computation offloading problem as a game and
introduced a dynamic noncooperative game-based computa-
tional offloading algorithm focused on quality of experience.
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Zhang et al. [8] exploited a DT-enabled mirrored MEC
system that leverages DT to create a learning population of
agents from various vehicles dynamically. They proposed a
distributed multiagent DRL. (MADRL) scheme aimed at max-
imizing offloading efficiency. Xu et al. [9] discussed a secure
MEC system with reconfigurable intelligent surface assistance
to improve task offloading security. They introduced a joint
optimization algorithm utilizing deep deterministic policy
gradient (DDPG). Li et al. [10] developed a two-stage hybrid
multiobjective optimization evolutionary algorithm grounded
in competitive swarm optimization, aimed at minimizing delay
and energy consumption in a cloud-edge collaboration system.
Lin et al. [11] devised a TO scheme utilizing offline-to-online
DRL, which employs a heuristic algorithm to initialize the
DRL model during the offline phase.

The UAV effectively caters to the evolving demands of MEC
through their adaptable computational resources. Li et al. [12]
introduced a TO algorithm called maximized service efficiency
PPO, which assesses the service fairness of all users using
a fairness index to encourage UAVs to select service objects
equitably. Zhou et al. [13] developed a secure MEC system
supported by RIS-enabled UAVs and proposed low-complexity
iterative algorithms to optimize RIS phase shifts and resource
allocation jointly. Yan et al. [14] created a TO model for UAV-
assisted vehicular networks to manage global information,
along with a DRL-based algorithm for trajectory control and
TO allocation. Xu et al. [15] utilized block coordinate descent
and convex optimization techniques to explore the TO and
UAV trajectory optimization challenges in UAV-MEC systems
with task dependency constraints. Zhang et al. [16] explored
the TO problem in UAV-DEC collaborative computing under
task-dependent constraints and introduced a TO algorithm
utilizing a saturated training rule and soft actor-critic (SAC)
approach.

The MEC system equipped with multiple UAVs demon-
strates enhanced adaptability in handling intricate TO
environments. Shi et al. [17] established a DT-enabled multi-
UAV-assisted MEC system and introduced a model-free
DRL method grounded in federated learning with dual-delay
DDPG. Consul et al. [18] proposed a generalized federated
DRL approach utilizing meta-learning techniques to address
resource allocation and TO challenges in DT-enabled UAV-
MEC systems. Hao et al. [19] investigated UAV-MEC with the
aim of maximizing long-term system gain, introducing a DRL-
based priority-aware TO algorithm featuring enhanced hybrid
action processing through embedded tables with conditional
variational autoencoders. Yu et al. [20] presented a QMIX-
based method for delay minimization to facilitate efficient
collaboration among heterogeneous UAVs in an aeronautical
MEC system. Zhou et al. [21] examined a heterogeneous
collaborative MADRL algorithm that employs reward sharing
to maximize fair weighted throughput.

The aforementioned studies do not consider the impor-
tance of heterogeneous computation and privacy encryption
in open UAV-MEC. Furthermore, they do not address the
convergence challenges of the TO algorithm arising from
multiserver collaboration and the demand for mixed action
processing.
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III. SYSTEM MODEL AND PROBLEM DESCRIPTION

This section initially presents the system model of a DT-
enabled UAV-DEC cooperative security-aware TO system. On
this basis, it outlines a joint minimization problem involving
system delay and energy consumption.

A. System Model of DT Enablement

Fig. 1 depicts the DT-enabled multi-UAV-assisted three-
layer cooperative security-aware TO model, which comprises
a UAV-DEC physical system and a DT network (DTN).
The physical system features a formation of UAVs flying
independently within a designated square area to deliver
computational services via MEC onboard servers for TUs. The
UAV-DEC physical model is divided into the following three
components.

1) Terminal Layer: This layer is composed of TUs within

the region, with their number defined as i € 7 =

{1, 2, ..., I}. TUs generate task requests but have
limited computational power. The attributes of task,
mn € N = {1,2,...,N}) can be expressed as

task, = {TU,, t,, I, d,}, where each element includes
the generator, the maximum allowable deadline, the
data transfer size, and the data computational volume,
respectively.

2) Edge Layer: This layer comprises multiple UAVs
equipped with edge servers that act as processors or
deliverers of tasks, with their number defined asj € J =
{1, ..., J}.

3) Cloud Layer: This layer offers sufficient but costly
computing resources from cloud centers.

In the proposed scenario, all TUs move randomly. On the
basis of the current TO policy, the TUs can decide whether to
process data locally, at the UAV, or in the cloud to maximize
overall benefits. When a task necessitates data transmission
from the TU locally, AES technology is used to encrypt the
data, ensuring secure transmission. The costs associated with
encryption and decryption for the tasks are considered.

A corresponding DTN was developed in UAV-DEC to
characterize comprehensively the complex TO environment,
which encompasses random environmental variations, terminal
movement, and TO decision-making [22], [23]. As illustrated
in Fig. 1, the DTN performs three primary functions.

1) Recording physical models and parameters in real time
within the digital network space for predicting dynamic
changes in the UAV-DEC real model.

2) Creating precise models of physical entity states to
enhance policy accuracy in intricate scenarios.

3) Employing the DRL method to simulate task allocation
schemes and refine task offloading decisions in simula-
tions.

Through observation of the DTN, the model aims to identify

the most appropriate TU for each UAV and achieve a globally
optimal offloading path. The DTN is defined as

DTN = {DT;, DT}} Vi, j. (1)

The DTN utilizes the 1-D vector DT; = {p;lp, li, fis Pij}
to characterize the DT model of TU;, where each element is
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represented by the transmission power, computation frequency,
current location, and channel obstacle condition of TU; in turn.
The DTN utilizes DT, = {p}lp . ;, f, Ej, vj, 0} to represent
the DT model of UAV;, where each element is represented
by the transmission power, current position, computation
frequency, current power, flight speed, and flight angle of
UAV; in turn.

B. Movement Model

The physical model employs a 3-D Cartesian coordinate
system. During each time slot r € 7 = {1, 2, ..., T}, the
position of UAV; is denoted as L;(t) = [x;(¢), y;(?), Z], where
Z is the UAV’s constant altitude. The coordinates of TU; can
be expressed as L;(r) = [x;(¢), yi(¢), 0]. At the start of #, UAVs
receive an action command from the DTN. At this point, the
coordinates of UAV; are updated as follows:

xi(t+ 1) = x;(t) + cos (0j(1)) x dis;(7) (2)
yj(t +1) = y;(t) + sin (Oj([)) x dis; (1) 3)
where dis;j(f) = v;j(f) x A denotes the distance traveled by
UAV;j, and A indicates the time slot allocated for the flight. In

a multi-UAV system, the trajectories of any two UAVs must
adhere to the collision avoidance constraint, meaning that

I1Lj(#) — Lit1(D]] = dismin (1) “)

where dispiy () denotes the minimum distance between UAVs.
Given that UAV; and TU; are limited to a specific area, with
the constraint represented by the following:

L(1) € {x(1), y@) | x(2) € [0, L], y(1) € [0, W]} ¥z (5)

where L and W denote the length and width of the area,
respectively.

C. Communication Model

This system incorporates an air-to-ground path loss model
that considers both line-of-sight (LoS) and non-LoS (NLoS)
links among TUs, UAVs, and the cloud center.

The channel gain between TU; and UAYV; is represented as
gi,j(H) = go- dis;f(t), where go signifies the channel power
gain at a reference distance of one meter and dis; j(f) =
((Li(t) — Lj(t))2 +7Z%)1/2 denotes the 3-D distance between
TU; and UAV;. Given that obstacles frequently lead to NLoS
status in dynamic UAV-DEC, the channel transmission rate
between UAV; and TU; is defined as follows:

PP g0

i 8,

Vi,j(t) — B]0g2<l + 0_2 —}iP (tl) - Wh ) (6)
NLoS by koS

where B represents the channel bandwidth. GI%L()S indicates the
Gaussian white noise resulting from obstruction. P; ; denotes
whether an NLoS exists between TU; and UAV;. WnLos
denotes the transmission loss caused by NLoS.

Similarly, the channel gain g; .(#) and the transmission
rate rj .(t) between UAV; and the cloud can be determined.
Considering the limited service distance of the UAV, the max-
imum communication distance Rpax for UAV; is expressed by

dis; j() < Rmax Vi€l jelJ. @)
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During time slot #, tasks in the environment can opt
for one of three offloading methods: 1) local processing;
2) offloading to UAV processing; or 3) transferring to cloud
center processing.

When task;,, chooses to execute locally at TU;, the time delay
and energy consumption of task, depend solely on TU;. In
contrast to [24], the local time delay T;(n) is denoted as

dps
a

where s represents the CPU performance factor. Similar
to [25], the nonoffloading energy consumption E;(n) is
expressed as

Ti(n) = ®)

Ei(n) = kf?dys ©)

where k denotes the effective capacitance coefficient.

When task, chooses to offload to UAV; for execution,
the offloading cost for task, includes the transmission delay
T““(n) and energy consumption E“a(n) from TU; to UAV;.
Meanwhlle the computation cost 1ncludes the delay chal(n)
and the energy consumption Ej?al(n) from UAV;. The edge
delay T; j(n) and energy consumption E; j(n) are defined by

.. tra al ln @
T = TH 0 + T = =0+ 5 (10)
upy
Eqjo0 = Efj00 + N = Tk s (1)
Ti,j

When task,, is designated for execution at the cloud center,
the total completion delay of task, consists of three parts,
which in addition to the transmission delay from TU; to UAV;,
also includes the transmission delay T}fﬁ(n) from UAV; to the
cloud and the computation delay 7% (n) of the cloud. The
time delay of the cloud T; .(n) is represented by

Ti,c(n) = T () + T (n) + TS (n)

Similarly, the cloud energy consumption E; .(n) is defined as

Ej c(n) = E(n) + Ef%.(n) + E& (n)
up P
D; In pj n 2
= + + kfdys.
rgt) o orety "

13)

E. Security Cost Model

Security cost model employs 128-bit AES for encrypting
and decrypting data during task transmission, thereby ensuring
data security. Once the TO target for task, is established, UAV;
provides the key used for data encryption to TU; and employs
the same key with the cloud to decrypt the received data.
Similar to [26], the energy consumption and delay related to
the AES of task, are expressed as

d 1 d 2
o= G T X | BT XY (14)
fi Ju Jfe
enc ddec y ddec Y 2
epVC:p'Xn—+p'X n "+p.xu
" B R ok
=k % (fﬁdgm n (ynljj? n y,fﬁ) x d;‘“) (15)

where d" and d%° represent the CPU cycles of data
encryption and decryption. )’ is a binary variable that
indicates whether task, can choose between local computing
or offloading computing. m € {0, 1, 2} represents three types
of facilities: 1) the TU; 2) the UAV; and 3) the cloud server.
When ! = 1, task, is categorized as an edge offloading state.
Therefore, the TO delay T'(n) and the energy consumption
E(n) for task, are improved as

T(n) = ) x Ti(n) + wh x (Tij(n) + £) + o

X (Ti.e(m) + 1*°)
E(n) = oy x Ei(n) + @, x (Eij(n) +e)') + o

(16)
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x (Ejc(n) + el'). (17)

According to (16) and (17), the total cost of task, under
security considerations is defined as C, = a x T'(n)+ 8 x E(n),
where o and S are the weights used to denote the varying
levels of importance assigned to delay and energy consump-
tion, respectively. Consequently, the primary evaluation metric
is defined as security system cost (SSC).

Definition 1 (SSC): The SSC is defined as the total cost
incurred by each task, during computation and transmission
across the entire time sequence. It accounts for the costs
of encryption and decryption and the energy consumed for
hovering and flying while the UAV cluster is in operation. The
SSC is defined as follows:

J N
ssc:Z

t=1j

(cn +EM 1) + E}"’V(t)). (18)

1 n=1

FE. Problem Description

The aim of this study is to optimize the SSC for all tasks and
UAVs while taking into account the costs associated with AES
technology and the constraints of computational resources. The
minimization problem can be defined as follows:

(P1) : minimize SSC
{8,0,v,0,v}
st. Cr:a+pB8=1

Cy:wy ef0, 1} Vm, n

2
Ci: Y wf=1 Vn
m=0
T
G Y (BPO+EC0+E0) < B V.
t=1
Cs : T(n) < D™ Vn
Ce:0=< 0j(t) < 2w, 0 < vi(®) < Vmax VI

Cr @, 5, () 19)

where C; represents the weight constraint. C; and C3 specify
the task attribution constraints, with ' ensuring that each
task is processed individually. C4 represents the UAV power
constraint, where E]ﬂy(t) and E]*-“"’(t) indicate the energy con-
sumed during flying and hovering by UAV; [16]. The service
energy consumption E;ev(t) encompasses Ej‘ri and Ej?al. Cs
denotes a tolerance constraint, stipulating that the completion
time of task, must be less than its maximum deadline. Cg
establishes the UAV motion constraint. C;7 defines the lawful
action constraint, specifying the legality of the actions of
individuals in the environment.

IV. UAV-ASSISTED TO ALGORITHM BASED ON
ENTROPY-ENHANCED PPO

This section transforms the previous problem into an MDP
for processing with DRL. It proceeds to presents the principle
of the entropy-enhanced PPO algorithm, followed by a detailed
exploration of the EP-MUSTO.
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A. MDP Formulation

Evidently, P; is classified as mixed-integer nonlinear pro-
gramming, which is known to be NP-hard and nonconvex.
Traditional algorithms struggle to handle it efficiently, which
impels this study to design other schemes. Given that P
is a sequential decision-making problem within a time-
varying environment, it is well-suited for an MDP-based DRL
approach.

The MDP offers a mathematical framework for DRL,
allowing the agent to engage with a sequential decision-
making environment and learn optimal schemes through neural
networks and actions in accordance with Markovian character-
istics. This section reformulates P into an MDP consisting of
three components: 1) state; 2) action; and 3) reward function.

1) State: Within the UAV-DEC environment, the state
space is constructed from the UAV data received by the
DTN and the current environmental information, which is
modeled as

S = {silss = {E (1), Lu(®), Lru (@), di(0), pij(D}} (20)

where E, () represents the remaining power of each UAV at
time slot t. Ly(f) and Lyy(¢) indicate the location of each
UAV and TU. d;(r) denotes the number of tasks waiting
offloading by TU;. Normalizing the state space can enhance
the processing efficiency of the neural network.

Definition 2 [State Normalization (SN)]: SN employs the
difference between the maximum value statep,x and the
minimum value state;;, of each state as a normalization factor,
subsequently carrying out the normalization operation. The SN
for each element in the state space is defined as

SN(state;) = state;/(statemax — Statemin) V item; € s; (21)

where state; denotes the five state elements within S.
2) Action: The UAV makes decisions based on the current
state of the environment. The action space is modeled as

A ={asla; = {U(@), Ou(0), Vu(®), 0(0)}}

where U(#) denotes the service target set of the UAV cluster
during the time slot ¢. O,(¢) and V,(#) indicate the flight angle
set and flight speed set.

A encompasses discrete actions [such as U(¢) and w(¢)] and
continuous actions [such as O,(¢) and V, ()], constituting an
HAS. To effectively handle it, a parameterized action (PA)
space is implemented in the form of a hierarchical structure.
The PA is represented as PA = {(a, a“)|a® € Cy4 for all a? €
D}. In PA, the agent selects a discrete action a from the
discrete action set D to determine which task should be
offloaded to a specific computational facility. Each a? is linked
to a continuous parameter set Cy, which includes o;(¢) and
vj(#) [27]. On this basis, continuous parameters a¢ are assigned
from Cy to specify the flight actions of the UAV.

3) Reward: In the context of P, which focuses on the joint
optimization of UAV energy consumption and SSC, the reward
is minimized according to the level of optimization achieved
for this goal. The reward is formulated by

(22)

J N
R=rGna) ==Y 3 (Cu+ EP O +E0). @3)

j=1 n=1

Authorized licensed use limited to: Hunan University of Tech. Downloaded on August 09,2025 at 02:05:45 UTC from IEEE Xplore. Restrictions apply.



34464

B. Policy Optimizer Considering Exploration Entropy and
Mixed Action Outputs

HAS effectively represents action design in complex
environments. However, discretizing continuous actions in
value-based algorithms can affect training accuracy. By con-
trast, policy-based approaches utilize stochastic gradient ascent
to optimize a policy function that directly learns a specific
policy through interaction of the environment. Given that 6
represents the policy parameter, the policy my is defined as

T
J(0) = Eyy [V (50)] = Ex, [Z y'r(ss, a,)} (24)
=0

where V™ represents the total state value of mg. y’ indicates
the reward discount factor for the time slot ¢. This implies
that the strategy is not optimized discretely for individual
action in each time slot; instead, it focuses on the cumulative
reward of the entire strategy from the initial state s¢ to the end
while updating 6 in the direction of the gradient VyJ(8). The
difference between the old and new strategies is represented
as follows:
T

USENOESY V'E,, o Bapomye (s [A™ (0] (25)
=0

where P;*" represents the current state transfer distribution.
AT (1) = r(sq, a)+y Vs (si41)— V3" (s¢) denotes the temporal
difference residual (TDR) at single step. V;m (s) is the state
value function with parameter §. The raw TDR can introduce
considerable variance. Stability is updated by utilizing TDRs
from multiple future time steps to compute the advantage
function estimate while weighting current and future rewards
with the GAE coefficient ¢ € [0, 1]. Similar to [28], the
dominance function estimation is expressed as

e¢]

A =Y [(ye)A™ @ +1i)].

i=0

(26)

However, directly tracing the policy gradient without con-
straints may result in excessive policy changes. This issue
is mitigated by using the trust region (TR) mechanism to
limit the updated step size within a defined region. However,
using the conjugate gradient method to solve Kullback-Leibler
divergence constrained optimization can affect the flexibility
and efficiency of TR Policy Optimization (TRPO) [29]. By
contrast, the PPO algorithm manages the disparity by incor-
porating a regularization term constraint. It directly imposes
upper and lower bounds on the objective function, simplifying
TRPO. The loss function of the policy network is defined as

LE©) = E[min {1, 0)A(1), clip

(A, ), 1 — 1,1+ DAD}] 27)

where I(t, 0) = mg(asls;)/ma,,(as]s;) represents the impor-
tance weight sampling (IS) ratio. The IS technique corrects the
bias between the past and current gradients. clip(x, y, z) =
max(min(x, z), y) denotes the trimming function, which
restricts x to [y, z]. Values outside the interval will be clipped
to the boundary, with t serving as the cropping boundary
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constant. As a result, PPO is chosen as the policy generation
kernel for EP-MUSTO.

PPO gradient direction update method provides a certain
exploration ability through a randomly distributed strategy
function. Entropy serves as a measure of uncertainty for a
random variable. In a DRL framework grounded in ME theory,
maximizing the strategy gain and the entropy value encourages
the agent to behave as randomly as possible. At this point, the
strategy is represented as

MERL __
s = arg max Ey, q)~m

T
[Z r(si. ar) + wE(n9<-|st>)} (28)
t=0

where 1 represents the temperature coefficient, which is
adjusted to control the randomness weight of the strategy.
E(mg(-ls)) = Eg~zcls)l—logmg(als;)] is the information
entropy, serving as a specific measure of the degree of ran-
domness in the strategy my at state s;. By maximizing entropy,
the strategy network can utilize its chaos and randomness to
capture multiple extreme points of the policy, avoiding local
optima. Therefore, this study applies the concept of MERL to
PPO strategy networks, with the optimization objective based
on (27) and (28), which is rewritten as

LCE(9) = E[min{I(t, 0)A(1)clip (1, 6)
1 =7, 14+71) x A0} — ¥ log g (arlsn)]. (29)

Simultaneously, the structure and outputs of the policy
network must be adjusted in accordance with the param-
eterized HAS. The policy network is required to optimize
the mutually independent discrete policy 7g, and continuous
policy mg, separately. The optimization objectives for both is
defined as

LSE(6g) = B, |:min {122, 6)A(), clip(La(t, 6a)

l—17, 1+ t)X(t)} — ¥ logmy, (a?’ISz)} (30)

LEEBe) = E/[min (1.1, 0)A®), clip(c(t, 6.), 1
— 1, 11 — 7, 1 + D)A®) — ¢ log g, (aCls1) ]
3D

where Iy(t, 05) = mg,(alls)/mpoa(al]s) and I.(t, 6) =
7, (g |s1) /mgea (af |sy) represent the IS ratios of 7y, and 7g,,
respectively [29]. Thus, the total loss function is defined as

L% = —(uLGE (Buw) + LEEO,) + LEEBY))  (32)

where the discrete actions are updated in accordance with
LSE (64), while the continuous actions also follow the update
of LEE(6,), with w serving as the weighting factor.
Algorithm 1 outlines the parameter update rules for the
PPO algorithm. The PPO algorithm utilizes an actor-critic
architecture, comprising two types of networks: 1) the actor
and 2) the critic. The actor interacts with the environment
to generate strategies that follow a importance sampling.
Meanwhile, the critic learns a value function from the existing
experience and computes Z(t) for the actor using Vs. The
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Fig. 2. Overall structure of the EP-MUSTO algorithm.

Algorithm 1 PPO Algorithm Based on Policy Entropy and
HAS

Require: Policy parameters 6; and 6, critic parameter &,
number of updates U, batch size M.
Ensure: The updated parameters 6, 6., and §.
1. foru=1,2,...,U do
2:  Calculate the total reward V™ for each trajectory in M;
3 Calculate X(t) for each trajectory by using (26);
4 Calculate the loss of actor L' by using (32);
s:  Calculate the loss of critic L by using (33);
6:  Update 6, and 6. by using L/ and § = 6 — 14 VyLiowl,
7. Update 8 by using L and § = § — AsVsLi(8);
8: end for

update for the critic network is represented through mean-
square error as

L8) = (Vi(sg1) — V™ (5)° (33)

C. EP-MUSTO Algorithm

To address problem P1 efficiently, we propose an entropy-
enhanced PPO-based multi-UAV-assisted security-aware task
optimization algorithm, named EP-MUSTO. The framework
of EP-MUSTO is illustrated in Fig. 2. It comprises three
primary components: 1) the actor; 2) the critic; and 3) the
DT-enabled UAV-DEC environment. With the inclusion of a
parameterized HAS, the policy network output is divided into
three distinct branches. These branches comprise a discrete
actor network 7y, that identifies the service goal and endpoint,
along with two continuous actor networks g, that determine
the flight actions. 7y, acquires discrete actions through random
sampling, while mg, derives continuous actions from the

mean and variance of continuous parameters in a Gaussian
distribution. The pseudocode for EP-MUSTO is presented in
Algorithm 2. The overall flow of EP-MUSTO is organized into
the following four phases.

Initialization phase (lines 1-3). Once the environment is
initialized, the system enters a standby state. At the beginning
of each exploration, the DTN replicates the state parameters
of each device in the environment as a virtual device.

Interaction phase (lines 4-17). The DTN sends the current
state s; to the actor. The policy network creates a group of
HAS a; using the current policies 7g, and my,. After the UAV
cluster executes a;, the SSC of a; is calculated. The reward r;
and the status for the next time slot s;y| are obtained from the
DTN. Finally, the tuple (s;, a;, 1, S:+1) is stored in the buffer.

Parameter update phase (lines 18-23). During a maximum
number of updates, the agent randomly samples a strategy
trajectory from the experience pool. Next, a dominance esti-
mate Z(t) is generated from the critic. Finally, the two strategy
networks are updated independently of the critic network.

Prepreparation phase (line 24). Given that EP-MUSTO is an
online learning algorithm, the buffer pool is cleared, making
way for the training of new experiences.

V. PERFORMANCE EVALUATION AND ANALYSIS

This section outlines the experimental setup and assesses
EP-MUSTO’s performance in various environments.

A. Experiment Setting

The UAV-DEC operates within a square area measuring
600 m on each side, with UAVs evenly distributed throughout
this area. The TUs are generated at random locations on the
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Fig. 3.

Effect of different hyperparameters of EP-MUSTO on episode rewards. (a) Learning rate. (b) Clip factor. (¢) GAE coefficient.

Algorithm 2 EP-MUSTO
Require: Environment information, iteration rounds emgx,
maximum update length zpax, time sequence length fyax.
Ensure: Optimum TO strategy mmqx.-
1: Randomly initialize the parameters 6,4, 6., and §;
2: for e < 1 to epax do

TABLE I
LIST OF EXPERIMENTAL PARAMETERS

Parameters Values
Bandwidth (B) 1 MH
Gaussian white noise (o2) —-100 dBm
Noise with obstacles (O’?VLO g) -80 dBm
Computing frequency of TU; (f;) 1 GHz
Computing frequency of UAV (f;) 5 GHz
Computing frequency of cloud (f.) 10 GHz
Channel gain per unit distance (go) 1x 1072
Computational density (s) 1 x 103 cycles/s
Uplink transmit power of TU; (p:?) 1w
Uplink transmit power of UAV (p?p ) 2 W
Power coefficient of CPU (k) 1x 1028
Battery capacity of UAV (Ep) 500 KJ

2) SAC-Enc [30]: SAC-Enc utilizes a multitask agent-
based SAC algorithm to solve the energy minimization
problem.

TD3-based UAV-assisted computational offloading algo-
rithm (TD3CO) [31]: TD3CO employs the TD3
algorithm to minimize processing delay and energy
consumption for IoT devices.

3)

4)

DDPG-based UAV-assisted computation offloading

3:  Randomly initialize the DTN;
4:  for t < 1 to typax do
5: Get s; from the DTN virtual environment;
6: Perform SN on s; by using (21);
7: The discrete action policy receives s; and outputs
al = (U), o)} ~ mg,(|s0);
8: The continuous action policy receives s; and outputs
a; ={0u(®), Vu(@®)} ~ 7o, (I51);
9: The UAV swarm executes the actions a¢ and a$ and
updates the position by using Egs. (2) and (3);
10: if Ly(t)! = Ly(t — 1) then
11: Calculate Ef Y (f) for each UAV;
12: end if
13: Calculate E;“’V(t) of each UAV hovering;
14: Calculate SCC by using (18);
15: Obtain r(s;, a;) and 5,41 by using (23);
16: Store the tuple (s;, a;, r;, sy41) into the buffer D;
17 end for
18:  for z < 1 to Zmax do
19: Randomly sample a strategy trace from D;
20: Update 6, 6., and 6 by using Algorithm 1;
21: Oq(old) < 6y
22: 6. (old) < 6,
23:  end for
24:  Empty the buffer;
25: end for

ground. A cloud server is positioned outside the region. Table I
provides the main experimental parameters.

To

validate the effectiveness of EP-MUSTO, this study

compares it with four other advanced algorithms:

1y

Raw PPO-based UAV-assisted task offloading algorithm
(PPOTO): This algorithm is a version of EP-MUSTO
that does not include any additional enhancements.

algorithm (DDPGCO) [32]: DDPGCO employs a

DDPG-based scheme to solve a delay minimization

problem with discrete variables and energy consumption

constraints.

LocalOnly algorithm: This algorithm focuses on keeping

all tasks localized to the TU.

6) Round-robin algorithm (RR): RR sequentially offloads
tasks to multiple UAVs following a predetermined flight
path.

5)

B. Performance Analysis

1) Analysis of Hyperparameters: Fig. 3(a) demonstrates
the effect of the learning rate i on the neural network.
Notably, when i is set to 0.003 in EP-MUSTO, the reward
value quickly and stably converges to the optimal solution. By
contrast, when ¢ is 0.03, learning stability is compromised,
leading to rapid convergence with considerable fluctuations;
when v is 0.0006, learning capability is hindered, resulting
in slow convergence. Thus, ¥ is set to 0.003. Fig. 3(b)
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Fig. 4. Flight trajectory diagram of UAV cluster.

illustrates the effect of the clip factor ¢ in EP-MUSTO.
Particularly, when 7 equals 0.03, the reward curve has the
lowest convergence amplitude and eventually converges to the
optimal solution. Conversely, when 7 is 0.05, the excessive
update of the old and new strategies results in oscillations
in convergence; when 7 is 0.01 or 0.005 restricts the extent
of strategy updates, resulting in slow convergence progress.
Therefore, 7 is set to 0.03. Fig. 3(c) demonstrates the effect of
the GAE coefficient ¢. Specifically, when ¢ equals 0.95, the
reward function converges rapidly and stably to the optimal
solution. However, at ¢ = 0.99, the large decay factor favors
future rewards, leading to optimistic convergence near the
solution interval; when ¢ is 0.90 or 0.80, the smaller decay
factor bias the focus toward immediate rewards, resulting in
instability during the convergence phase. Therefore, ¢ is set
to 0.95.

2) Analysis of UAV Trajectory: Fig. 4 depicts a 3-D scatter
diagram that illustrates the flight trajectories of the UAV
swarm under an optimal policy. The hovering point of each
UAV indicating the provision of TO service during specific
time slots. As shown in Fig. 4, the service trajectories of UAV
swarm cover nearly the entire area without any overlap, signi-
fying that in the optimal offloading strategy, UAVs can avoid
energy waste caused by overlapping trajectories. Moreover, the
closed-loop service paths effectively minimize flight distance
and conserve UAV power. These findings demonstrate that EP-
MUSTO adeptly manages UAV energy-efficient flight paths
within the environment through constraints, DTNs, and MDPs.

3) Analysis of Overall Convergence: As illustrated in
Fig. 5, among all algorithms, EP-MUSTO achieves the optimal
convergence position, demonstrating remarkable accuracy and
stability as it steadily converges to 300 in approximately
80 generations. TD3CO and DDPGCO are the fastest converg-
ing algorithms; however, they exhibit great oscillations upon
reaching convergence. By contrast, EP-MUSTO improves the
accuracy of the optimal solution by 14.29% and 22.06%
compared with these algorithms, respectively. This enhance-
ment is attributed to EP-MUSTO with online updates, which
boosts update stability, along with the incorporation of strategy
entropy into the actor network to enhance exploration at
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extreme points. The SAC-Enc algorithm achieves the second-
best convergence accuracy after EP-MUSTO, also leveraging
the strategy entropy mechanism and utilizing a multicritic
network for value assessment. However, EP-MUSTO tackles
the training complexity of the HAS through a parametric
design approach, thereby improving the network to understand
actions. Experimental results indicate that EP-MUSTO effec-
tively enhances convergence accuracy and stability compared
with PPOTO.

4) Analysis of Comparative Experiments: The LocalOnly
and Round-robin algorithm are considered to represent the
scenarios of fully local computing and polling offloading.
Fig. 6(a) depicts the effect of varying TU numbers on the
SSC of each algorithm. Among the six algorithms, EP-
MUSTO consistently achieves the lowest SSC, followed by
the four DRL-based algorithms. This performance advantage
is attributed to the ability of DRL to learn effective strategies
iteratively through interaction with the DT model. By contrast,
the RR and LocalOnly algorithms demonstrate relatively lower
performance. The RR algorithm performs better due to its
efficient use of resources, distributing tasks among servers in a
rotational manner. Fig. 6(b) examines the effect of varying task
sizes on the SSC of each algorithm. This experiment lists three
task size scenarios: 1) small tasks (1.5-3 MB); 2) medium
tasks (3—4.5 MB); and 3) large tasks (4.5-6 MB). Among all
algorithms, EP-MUSTO achieves the best SSC values across
all task sizes. Compared to SAC-Enc, which also incorporates
the MERL, EP-MUSTO’s parameterized HAS offers enhanced
cognitive ability for exploration. Fig. 6(c) illustrates the
effect of varying the number of UAVs on the time delay of
each algorithm. Given that energy consumption by UAVs is
proportional to their quantity, this experiment prioritizes delay
as the performance metric. Among all algorithms, EP-MUSTO
delivers optimal results across different UAV cluster sizes.
The delay of LocalOnly remains constant because it operates
independently of the UAVs. However, the RR algorithm is
heavily reliant on the computational power of the UAVs,
leading to great performance fluctuations as the number of
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Fig. 6. Result of (a) number of TUs, (b) task size, (c) number of UAVs quantity, and (d) computation loads on evaluation metrics across various algorithms.

UAVs changes. Fig. 6(d) depicts the overall SSC performance
of various algorithms under different computational loads. This
experiment lists three computational load scenarios: 1) low
load (500 times/bit); 2) medium load (1000 times/bit); and
3) high load (1500 times/bit). Task computation efficiency is
measured by the number of processor cycles needed to process
1 bit of data. The load conditions of the facilities can be influ-
enced by controlling their computational efficiency. Among
all algorithms, EP-MUSTO displayed optimal optimization
across all computational load scenarios. Furthermore, during
the experiment, both the PPOTO and DDPG algorithms failed
to converge normally within the designated duration under
high computational loads due to their inefficiency in handling
extensive volumes of action data under such circumstances.
To tackle these issues, this experiment suggests enhancements
to them. Results show that even in high-load environments,
EP-MUSTO improves the metrics by 5.56%, 8.42%, 5.03%,
and 6.02% compared with the suboptimal algorithm.

VI. CONCLUSION

This study explores the TO problem while incorporating
privacy techniques in a UAV swarm-assisted D-E-C cooper-
ative computing environment. We first construct a model of
a cooperative edge computing system supported by multiple
UAVs, utilizing a DT virtual network to gather and train
realistic device parameters. To tackle effectively the joint
minimization problem of SSC and UAV endurance under

security and resource constraints, we develop an MDP with
an HAS. Global states are collected and virtually trained
using DT technology, leading to the proposal of an algo-
rithm called EP-MUSTO. By integrating policy entropy and
parameterized action outputs, EP-MUSTO enhances the PPO
algorithm to identify optimal solutions, addressing the hybrid
action training issue. Experimental results across various
environments validate the effectiveness of EP-MUSTO, with
improvements of at least 58.6% and 9.43% in SSC com-
pared to other advanced algorithms. Additionally, it achieves
an average delay improvement of at least 8.62% across
different UAV swarms. Future work will explore the multi-
UAV-assisted TO and trajectory optimization problem using
MADRL.
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