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Abstract—In cloud-edge computing paradigms, the integration
of edge servers and task offloading mechanisms has posed new chal-
lenges to developing task scheduling strategies. This paper proposes
an efficient convergent firefly algorithm (ECFA) for scheduling
security-critical tasks onto edge servers and the cloud datacenter.
The proposed ECFA uses a probability-based mapping operator
to convert an individual firefly into a scheduling solution, in or-
der to associate the firefly space with the solution space. Distinct
from the standard FA, ECFA employs a low-complexity position
update strategy to enhance computational efficiency in solution
exploration. In addition, we provide a rigorous theoretical anal-
ysis to justify that ECFA owns the capability of converging to
the global best individual in the firefly space. Furthermore, we
introduce the concept of boundary traps for analyzing firefly move-
ment trajectories, and investigate whether ECFA would fall into
boundary traps during the evolutionary procedure under different
parameter settings. We create various testing instances to evaluate
the performance of ECFA in solving the cloud-edge scheduling
problem, demonstrating its superiority over FA-based and other
competing metaheuristics. Evaluation results also validate that the
parameter range derived from the theoretical analysis can prevent
our algorithm from falling into boundary traps.

Index Terms—Cloud-edge computing, task scheduling, firefly
algorithm, convergence proof, trajectory analysis.

I. INTRODUCTION

W ITH the great advance in 5th Generation (5G) com-
munications and Internet of Things (IoT), conventional

mobile cloud computing (MCC) is inadequate to satisfy the
requirements of high-bandwidth and low-latency due to the

Manuscript received 14 February 2023; revised 3 June 2023; accepted 22 June
2023. Date of publication 10 July 2023; date of current version 8 October 2023.
This work was supported in part by Jiangsu Provincial Key Research and De-
velopment Program under Grant BE2022065-2, in part by the National Natural
Science Foundation of China under Grant 62172224, in part by the Natural
Science Foundation of Jiangsu Province under Grant BK20220138, in part by
Kempe Foundation, Sweden, and in part by the Industry-University-Research
Innovation Funds for Chinese Universities under Grant 2020ITA03002. Recom-
mended for acceptance by H. Karatza. (Corresponding author: Jin Sun.)

Lu Yin, Jin Sun, and Junlong Zhou are with the School of Computer Sci-
ence and Engineering, Nanjing University of Science and Technology, Nan-
jing, Jiangsu 210094, China (e-mail: ylu@njust.edu.cn; sunj@njust.edu.cn;
jlzhou@njust.edu.cn).

Zonghua Gu is with the Department of Applied Physics and Electronics, Umeå
University, 90187 Umeå, Sweden (e-mail: zonghua.gu@umu.se).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TSC.2023.3293048

centralized mechanism and the increasing number of mobile
devices (MDs) [1], [2], [3]. To address this limitation, mobile
edge computing (MEC) has become a promising computing
paradigm that deploys computing resources and services on
network edges to reduce the end-to-end delay [4], [5], [6]. By
offloading computation tasks to edge servers instead of the
cloud datacenter, MEC can deliver low-latency services and
address the energy limitation of MDs. However, edge servers
are generally resource-limited and may be incapable of pro-
cessing computation-intensive applications under tight deadline
constraints [7]. Therefore, cloud-edge computing becomes an
ideal collaborative platform that takes advantage of both MCC’s
large-scale computing resources and MEC’s low-latency com-
puting services [8]. In case of insufficient computing resources,
the edge server can further submit the computation tasks to the
resource-rich datacenter to avoid deadline violation. In this con-
text, it would be challenging to schedule deadline-constrained
computation tasks considering the collaboration between cloud
datacenter and edge servers.

Task scheduling problems are generally modeled as combi-
natorial optimization problems that seek for the optimal assign-
ment of tasks onto computing resources. Metaheuristic algo-
rithms, especially swarm intelligence algorithms, are popularly
used to develop scheduling strategies. In this work, we propose
an efficient metaheuristic based upon the solution exploration
framework of the firefly algorithm (FA) to solve the afore-
mentioned cloud-edge scheduling problem. FA is essentially a
swarm intelligence algorithm inspired by the social behavior of
fireflies [9]. Due to its advantages such as few parameters and
easy implementation, FA has been used in various fields to solve
real-world optimization problems. However, there still exist
challenging issues when applying FA to solve the cloud-edge
scheduling problem. On the one hand, the heavy computation
burden induced by the frequent calculation of distances among
fireflies degrades FA’s computational efficiency. On the other
hand, inappropriate selection of parameter values may cause
FA not to converge to the global best solution. With these
two challenges in mind, this work attempts to enhance FA’s
performance in solving scheduling problems by reducing its
computational complexity as well as improving the quality of
scheduling solutions.

This paper proposes an efficient convergent firefly algorithm
(ECFA) for solving the task scheduling problem in a cloud-edge
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system. The proposed ECFA uses a probability-based mapping
operator to convert an individual firefly into a high-quality
scheduling solution, represented by a task sequence, to associate
the firefly space with the solution space. Distinct from the stan-
dard FA, our proposed ECFA employs a low-complexity position
update strategy to significantly reduce the computational burden
when updating firefly positions. Based on rigorous theoretical
analysis, we justify that ECFA owns the capability of converging
to the global best individual in the firefly space. Thus, ECFA
is significantly advantageous over the standard FA due to its
efficient and convergent characteristics. Furthermore, to fully
investigate the movement mechanism for firefly position change,
we introduce a new concept of boundary trap for analyzing
firefly movement trajectories during the evolutionary procedure,
in order to predict whether ECFA would fall into boundary traps
and to avoid such occurrences by setting appropriate parameter
values. Simulations were performed by comparing ECFA with
three FA-based methods and four other metaheuristic-based
methods to demonstrate the superiority of our proposed ECFA
in terms of both effectiveness and efficiency. Our main contri-
butions are highlighted as follows:

1) We propose an efficient convergent firefly algorithm,
which improves the standard FA by designing a low-
complexity position update strategy and a probability-
based mapping operator.

2) We perform rigorous theoretical analyses on ECFA’s con-
vergence by determining an appropriate range of the crit-
ical parameter.

3) We introduce the concept of boundary traps for analyzing
the fireflies’ trajectories during the evolutionary proce-
dure, and further investigate whether the algorithm would
fall into boundary traps.

4) Experimental results demonstrate ECFA’s superiority and
also justify that the parameter range determined by the
theoretical analysis can prevent the algorithm from falling
into boundary traps.

We organize the remainder of this paper as follows. Section II
provides a literature review. Section III introduces the problem
model. Section IV provides the details about ECFA. Section V
proves the ECFA’s convergence. Section VI discusses the fire-
fly’s moving trajectory during ECFA’s evolutionary procedure.
Section VII presents evaluation results, followed by the conclud-
ing remarks in Section VIII.

II. RELATED WORK

In the literature, there are a variety of studies dedicated to
task scheduling in cloud-edge computing [10], [11], [12]. These
studies generally formulate task scheduling problems as combi-
natorial optimization models or approximate them by convex op-
timization models, and develop heuristics or analytical methods
to solve the optimization problems. Chen et al. [13] formulated
a performance-constrained computation offloading problem for
minimizing the execution time in cloud-edge computing and
introduced a stochastic optimization algorithm. Ning et al. [14]
presented a branch and bound algorithm and an iterative heuristic
strategy, respectively, to solve task scheduling problems for

cloud-edge systems with a single device and multiple devices.
Du et al. [3] studied the scheduling problem of the execution
delay and total energy consumption optimization in a cloud-edge
system and developed a cost-effective sub-optimal algorithm to
solve it. Dou et al. [15] studied the computation offloading prob-
lem in a hybrid multi-access edge-cloudlet platform and sug-
gested an energy-efficient task scheduling algorithm for the joint
optimization of computation offloading, data transmission, and
bandwidth assignment. Though recognizing the significance of
the above-mentioned studies, these existing methods either use
analytical methods that are problem-dependent, or use heuristic
methods that may suffer from local optima. Our proposed ECFA,
on the one hand, can be easily adapted to solve task scheduling
problems in different computing environments by redesigning
the task assignment strategy for solution evaluation. On the
other hand, the convergence feature of ECFA can prevent it
from falling into local optima, leading to high-quality scheduling
solutions.

Inspired by the social behaviors of fireflies, Yang et al. [16]
proposed the standard FA, which is proven to outperform many
other popular metaheuristic algorithms [17]. Since our algo-
rithm is based on the search strategy of FA, in what follows,
we investigate existing methods employing FAs to solve opti-
mization problems. Ren et al. [18] proposed a variant firefly
algorithm for solving constrained engineering design problems
by applying self-adaptive strategies to balance its exploration
and exploitation capacities. Altabeeb et al. [19] introduced a
multi-population-based firefly algorithm CVRP-CHFA for solv-
ing a vehicle routing problem, in which populations communi-
cate and cooperate to maintain population diversity. We further
pay special attention to the FA-based methods oriented toward
task scheduling problems. Li et al. [20] introduced a multi-
objective discrete FA, which divides the continuous position
into discretized regions and employs a local search strategy to
accelerate the search process. Ren et al. [21] used a selective
elimination strategy to improve FA’s global search ability and a
decision strategy to enhance FA’s local search ability. Zhang
et al. [22] introduced an improved FA involving a mapping
operator to covert a firefly into a scheduling sequence and a new
movement scheme to enhance the searching capability. Sekaran
et al. [23] developed a dominant FA that uses an adjacency
matrix to represent the dominant fireflies’ behaviors. Although
these FA-based metaheuristics can be used to solve scheduling
problems, they may generally suffer from limitations in com-
putational efficiency and/or solution exploration effectiveness.
Specifically oriented toward a cloud-edge system, our proposed
ECFA focuses on improving FA’s searching efficiency as well as
providing convergence proof and trajectory analysis for param-
eter determination. Table I summarizes the main characteristics
of existing FA-based scheduling algorithms and highlights the
distinguishing properties of ECFA.

III. PROBLEM DESCRIPTION

This section formulates the system model for the cloud-edge
scheduling problem with the objective of energy minimization
under the deadline constraint. For ease of reference, all the
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TABLE I
SUMMARY OF EXISTING STUDIES USING FAS TO SOLVE OPTIMIZATION PROBLEMS

TABLE II
ALL NOTATIONS FOR THE CLOUD-EDGE SCHEDULING PROBLEM

notations used for problem formulation and their definitions are
listed in Table II.

A. Task Model

With the increasing demands for data security and user
privacy, we consider the tasks to be security-critical, requir-
ing data encryption and decryption when making scheduling
decisions [24], [25], [26]. To achieve data protection, users
can choose different levels of security services implemented
by different encryption algorithms to encrypt the tasks before
offloading them [25]. Similarly, as in [27], [28], [29], we assume
that the time and energy cost of sending back the computation
results can be negligible.

There are N independent security-critical tasks on the MD,
that need to be offloaded through radio access networks. Each
task can be characterized by ti =<di, wi> (i∈{1, 2, . . . , N}),

Fig. 1. Security-critical task scheduling in a cloud-edge system.

where di the data amount of ti and wi is the computation work-
load (in CPU cycles) for executing ti. Mobile users can select
specific security services implemented by different encryption
algorithms to encrypt data before task offloading [25]. We use
a set {sp1, sp2, . . . , spM} to represent several security policies
that are available on edge and cloud. Each task is associated
with a security policy that can satisfy the user’s requirement on
security level [5], [26], [30]. For example, the user chooses spv
to protect ti, and the computation workloads for encrypting and
decrypting ti can be determined by

wEi = di × ecwv, (1)

wDi = di × dcwv, (2)

where ecwv and dcwv represent the CPU cycles required for
encrypting and decrypting a single data bit, respectively.

B. Cloud-Edge System Model

Fig. 1 illustrates an example of a cloud-edge system consisting
of an MD, an edge server deployed along with a base station,
and a cloud datacenter. Following [5], [26], we assume that
the MD is equipped with one antenna, and thus only one task
can be offloaded at a time. For any MD, the resource-limited
edge server usually provides a dedicated virtual machine to
execute the offloaded tasks in a first come first served (FCFS)
manner [31]. Considering some tasks would not finish on time
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under such circumstances, some tasks can be further outsourced
to the resource-rich cloud datacenter. For a specific task ti
(i∈{1, 2, . . . , N}), a binary variable xi indicates the destination
where ti is scheduled. If ti is outsourced to the cloud, we
have xi = 1, and xi = 0 if ti is offloaded to the edge server.
For ease of understanding, we define two task subsequences
S = (s1, s2, . . . , sK) and C = (c1, c2, . . . , cL) to represent the
set of tasks offloaded to the edge server and outsourced to the
cloud, respectively. Apparently,N=K + L, whereK andL are
the number of tasks in S and C, respectively.

C. Time and Energy Models

For any task ti, its encryption duration, decryption duration,

and processing duration can be calculated byDE
i =

wEi
Fdevice

,DD
i =

wDi
Fx

, and DP
i = wi

Fx
, respectively. Depending on the scheduling

decision xi, we haveFx = Fc if xi = 1, andFx = Fs otherwise.
On the MD, the encryption of ti starts only after the encryption
of its previous task is finished. So, the encryption completion
time of ti is

TEi =

{
0, i = 0
TEi−1 +DE

i , i = 1, 2, . . . , N.
(3)

When data encryption of ti is completed, the MD transmits it
to the edge server. Following [32], the transmission rate between
the MD and the edge server’s base station is

R = b log2

(
1 +

g0(u0/u)
θp

bN0

)
, (4)

where definitions of relevant parameters can be referred to
in [26]. Then, ti’s transmission duration can be calculated by

DT
i =

{
di
R , if xi = 0
di
R + di

τR , otherwise,
(5)

where τ is a multiplicative factor denoting the ratio of the wired
edge-to-cloud transmission rate to the wireless MD-to-edge
transmission rate. The value of τ is set within the range [2, 5]
by investigating related studies [33], [34], IEEE standards, and
cloud providers’ websites.

Since a task can only be transmitted after completing its own
data encryption and the data transmission of the previous task
is completed, the transmission completion time of ti can be
calculated by

TTi =

{
0, i = 0
max{TTi−1, T

E
i }+DT

i , i = 1, 2, . . . , N.
(6)

For the task offloaded to the edge server, it cannot start the data
decryption until both its own data transmission and the previous
task’s execution is completed. Assume that ti is the k-th task in
S, we have

TPk (S) =

⎧⎨
⎩

0, k = 0
max{TPk−1(S), T

T
i }

+DD
i +DP

i , k = 1, 2, . . . ,K.
(7)

On the other hand, the tasks scheduled to the cloud can be
processed in parallel as long as their respective data transmis-
sions are completed. Assuming that ti is the l-th task in C, we
have

TPl (C) =

{
0, l = 0
TTi +DD

i +DP
i , l = 1, 2, . . . , L.

(8)

Then, ti’s execution completion time TCi is

TCi =

{
TPk (S), xi = 0

TPl (C), otherwise.
(9)

The completion time of all tasks can be determined by

T = max
{
TCi
}
, i = 1, 2, . . . , N. (10)

The energy consumption of each task can be decomposed
into three parts: Eidevice, Eiedge, and Eicloud. Specifically, Eidevice
consists of the energy consumption for data encryption and
transmission, i.e.,

Eidevice = Pe
wEi
Fdevice

+ Pt
di
R
, (11)

where Pe and Pt denote MD’s CPU operating power and trans-
mission power, respectively. Eiedge and Eicloud depends on the
scheduling decision on ti. If ti is scheduled onto the edge
server (xi = 0),Eiedge includes the energy consumption for data
receiving, data decryption, and task execution, and Eicloud = 0.
In the opposite scenario (xi = 1),Eiedge includes the energy con-
sumption for transmitting data to the cloud, and Eicloud involves
data receiving, data decryption, and task execution. Thus, we
have

Eiedge = Pb
di
R

+ (1− xi)Ps

(
wDi
Fs

+
wi
Fs

)
+ xiPb

di
τR

, (12)

Eicloud = xi

(
Pc
di
R

+ Pc
wDi
Fc

+ Pc
wi
Fc

)
, (13)

where Pb is the transmission power of the edge server,Ps and Pc

denote the CPU operating power of the edge server and cloud,
respectively.

The optimization goal is the weighted sum of all three energy
components, which are summed over all tasks, i.e.,

Esum =

N∑
i=1

(
δEidevice + �Eiedge + ηEicloud

)
, (14)

where δ, �, and η are weighting factors.

D. Scheduling Model

To summarize, we formulate the cloud-edge scheduling prob-
lem as the following constrained optimization problem:

minimize Esum (15)

subject to T ≤ DL (16)

variables {x1, x2, . . . , xN} , (17)

whereDL is a specified deadline value imposed on task comple-
tion time. The scheduling algorithm is to solve the formulated
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problem by determining the most appropriate values of decision
variables, such that the total energy is minimized while satisfying
the deadline constraint.

IV. THE PROPOSED ECFA

This section details the proposed ECFA for solving the task
scheduling problem formulated in Section III-D. As the name
of ECFA suggests, the main differences between ECFA and
standard FA lay in ECFA’s efficiency and convergence char-
acteristics. On the one hand, the low-complexity position up-
date strategy in ECFA avoids frequent calculations of distances
among firefly individuals, which account for the major compu-
tation overhead in standard FA, and significantly improves the
computational efficiency. On the other hand, as will be proved in
the convergence analysis, ECFA can guarantee its convergence
to the global best position in the firefly space. Benefited from
this convergence feature, ECFA is advantageous over standard
FA and other metaheuristics in escaping from local optima.

It is worth mentioning that, the cloud-edge scheduling prob-
lem studied in this work aims at compute-intensive tasks with
long execution times, and falls within the scope of static schedul-
ing in which task characteristics are known in advance. As will
be revealed in experiments, ECFA can produce the scheduling
solutions, for different problem scales, with negligible time
overhead compared with the task execution durations.

A. Solution Representation

We define the firefly population as Ω = {f1, f2, . . . , f|Ω|}
where |Ω| denotes the population size. For each firefly ψi in
Ω, its position is represented by a n-dimensional vector xi=<
xi1, xi2, . . . , xiN >, whereN is the number of all tasks. We use
a task sequence ψi=< ϕ1

i , ϕ
2
i , . . . , ϕ

N
i >, i.e., a permutation of

all tasks to be scheduled, to represent a scheduling solution.
In the FA framework, a firefly with lower brightness would be
attracted by and move toward brighter fireflies. To enable ECFA’s
capability in solving the concerned problem, it is necessary to
establish a concrete connection between the firefly position and
the scheduling solution and link the brightness of the firefly to
the objective value of the corresponding scheduling solution.

B. Mapping Operator

To map a firefly onto a scheduling solution, we propose
a probability-based mapping operator to produce high-quality
solutions. Different from the sorting-based ranked-order value
(ROV) rule [9], [32] that sorts the firefly’s position values to
obtain a task sequence, our mapping scheme takes into account
the position of the current best firefly such that the “good genes”
hidden in the current best solution could be inherited.

The input to the mapping operator includes the current best
solution ψbest and the position Xi of the firefly to be mapped.
The output is the scheduling solution ψi of the input firefly. We
initializeψi as an empty sequence. For an individual firefly fi, its
position value in each dimension is associated with a probability

Algorithm 1: Task Assignment Strategy.

value

ρq =
1

1 + e−Xiq
, q = 1, 2, . . . , N, (18)

which is within the range [0, 1]. We copy the q-th task in ψbest

to the corresponding position in ψi depending on the ρq value.
The remaining tasks in ψbest would be assigned to ψi with an
equal probability. In this manner, we can obtain a valid and
high-quality scheduling solution ψi.

C. Task Assignment Strategy

To evaluate the fitness value of each firefly, we propose a
task assignment strategy (TAS). The pseudocode in Algorithm
1 describes the processing flow of TAS. The input includes a
firefly’s task sequence ψi, which is obtained by the mapping
operator as well as the deadline requirement DL. The opti-
mization objective Esum is initialized as 0. TAS traverses the
task sequence ψi to decide the destination each task should be
dispatched onto (lines 2-16). Taking the q-th task in ψi (i.e.,
tqi ) for example. The energy consumed by tqi on the MD can be
calculated according to (11) and is then added to Esum (lines
3-4). Next, we calculate the time and energy overheads that
would be incurred by assigning tqi to the edge server (line 5)
and to the cloud (line 6), respectively. The offloading decision is
accordingly to select the offloading destination leading to lower
energy consumption while fulfilling the deadline requirement
(lines 7-12). In case tqi cannot be completed ahead of the deadline
whichever destination it is scheduled onto, ψi is identified as an
infeasible solution (lines 13-16). Once having assigned all the
tasks in ψi, TAS returns the scheduling objective value (i.e., the
total energy consumption).

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on October 15,2023 at 03:58:07 UTC from IEEE Xplore.  Restrictions apply. 



YIN et al.: ECFA: AN EFFICIENT CONVERGENT FIREFLY ALGORITHM FOR SOLVING TASK SCHEDULING 3285

We further use a simple illustrative example to explain the
fundamental flow of the task assignment strategy. Assuming that
there are three tasks to be scheduled. The input task sequence
ψi is denoted byψi=<t2, t1, t3>. The completion time of each
task cannot exceed a pre-specified deadline value DL = 40ms.
TAS determines the scheduling destinations, one by one, for all
tasks in ψi. Starting with task t2, we evaluate the energy con-
sumption and completion time for scheduling it onto the cloud
or edge server, respectively. Suppose that in the former case,
the two metrics are E2

cloud = 5mJ and T 2
cloud = 30ms, whereas

those in the latter case areE2
edge = 3mJ and T 2

edge = 22ms. Since
T 2

cloud and T 2
edge both satisfy the deadline constraint and E2

edge is
lower than E2

cloud, TAS makes the decision that t2 should be
scheduled onto the edge server. For the second task t1, suppose
that E1

cloud, T 1
cloud, E1

edge, and T 1
edge are 13mJ, 42ms, 8mJ, and

32ms, respectively. Since T 1
cloud exceeds the deadline value, TAS

has to assign t1 to the edge server for execution. In the same
manner, if E3

cloud, T 3
cloud, E3

edge, and T 3
edge for task t3 are 10mJ,

36ms, 7mJ, and 42ms, respectively. TAS would designate the
cloud for t3’s execution in order to avoid deadline violation.
Once having determined the destinations for all tasks inψi, TAS
returns the total energy consumption summed over all tasks.

D. Position Update Strategy

In the FA framework, each firefly fi (i=1, 2, . . . , |Ω|) moves
toward all other brighter fireflies in the population. For any firefly
fj whose fitness value is higher than fi (j �= i), fi updates its
position in any dimension by

xnew
i = xi + βe−γr

2
ij (xj − xi) + α

(
ε− 1

2

)
, (19)

where the first term is the current position of fi, the second
term is the movement from fi’s current position to its new
position due to fj’s brightness attraction, and the third term
stands for a certain random movement. Here, α and β are two
coefficients satisfying α+ β=1, and rij denotes the euclidean
distance between fi and fj :

rij =

√√√√ N∑
l=1

(xil − xjl)
2, (20)

where l indicates the index of position dimension. The major
computation burden in (19) is accounted for by the distance
calculation with computational complexity O(N) where N is
the total number of tasks. Note that for each firefly individual, the
position update in (19) needs to iterate over every other firefly
brighter than it. Thus, the calculation of euclidean distance has
to be repeated |Ω|(|Ω|−1)

2 times for the entire population during
one iteration.

To avoid the frequent distance calculations analyzed above,
we introduce a new linear update scheme in which any firefly
only moves toward the firefly with the highest brightness in the
population. To be specific, for any dimension, the new update
rule used in our proposed ECFA is defined as

xnew
i = xi + β (xbest − xi) + α

(
ε− 1

2

)
, (21)

Algorithm 2: ECFA.

where xbest denotes the position of the brightest firefly in the
population. By replacing the exponential term involving distance
calculation by a linear term, the computational complexity of
updating one firefly’s position is merely O(1). Compared with
the standard FA, the linear update rule in ECFA reduces the com-
putational complexity of updating the positions of all fireflies in
the population from O(|Ω|2 ·N) to O(|Ω|).

E. The Proposed ECFA

We now present our proposed ECFA for solving the cloud-
edge scheduling problem, of which the algorithmic details are
provided in Algorithm 2. Built upon the probability-based map-
ping operator, task assignment strategy, and position update rule
that have been elaborated previously, ECFA uses an iterative
procedure to explore the best scheduling solution leading to the
lowest energy consumption.

ECFA starts with initializing the firefly population as well as
the current best solution (lines 1-4). Specifically, the initial best
solution ϕbest is obtained by using the shortest task first (STF)
rule. The objective value ofϕbest can be evaluated by performing
Algorithm 1. ECFA iterates the following procedure to explore
high-quality solutions (lines 5-14). During each iteration, ECFA
first updates each firefly’s position by the new position update
strategy (line 7), converts it into a valid task sequence (line 8),
and evaluates its objective value (line 9). Once an individual
firefly with lower energy consumption is identified, the current
best firefly along with its objective value would be updated
accordingly (lines 10-13). The iterative procedure terminates
when the max number of iterations is reached. The energy
consumption of the best solution explored so far is returned as
the final result.
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F. Complexity Analysis

The computational complexity of the proposed ECFA is
analyzed as follows. First, the complexity of generating the
initial firefly population (at random) and initial best solution
(by using STF) are O(N) and O(N · logN), respectively. Next,
the complexity of the probability-based mapping operator in
this work is O(N), which is significantly lower than that of
the ROV rule O(N · logN). Then, the position update strategy
also has a linear complexity O(1) due to the linear update
rule defined in Section IV-D. Compared with the conventional
update rule, which is of O(N) complexity, ECFA achieves
higher computational efficiency, which will be later justified
by experimental results. In addition, the complexity of the task
assignment heuristic for evaluating solution quality is O(N). To
conclude, the complexity of the entire ECFA flow is determined
as O(Gmax · |Ω| ·N), where Gmax and |Ω| stand for the max-
imum number of generations and the number of fireflies in the
population, respectively.

V. PROOF OF CONVERGENCE

This section provides theoretical proof of ECFA’s conver-
gence. Similarly as in the convergence analyses given in [35],
[36], we assume the global best firefly’s position x∗ is constant.
Also, the subsequent analysis applies to a firefly position of an
arbitrary dimension.

Lemma 1: For any firefly fi (i ∈ {1, 2, . . . , |Ω|}), its po-
sitions among all iterations xti (t = 0, 1, . . . ,+∞) follows a
geometric sequence with the common ratio of 1− β.

Proof: Letting c = βx∗ + α(ε− 1
2 ), we rewrite the position

update equation (i.e., (21)) as

xt+1
i − c

β︸ ︷︷ ︸
(t+1)-th term

= (1− β)︸ ︷︷ ︸
common ratio

(
xti −

c

β

)
︸ ︷︷ ︸

t-th term

. (22)

We can observe that x0i − c
β , x1i − c

β , . . ., xti − c
β , xt+1

i − c
β

form a geometric sequence. The common ratio of this geometric
sequence is 1− β. The general term can be expressed as

xt+1
i = (1− β)t+1

(
x0i −

c

β

)
+
c

β
. (23)

Based on Lemma 1, we deduce the following theorem.
Theorem 1: When β ∈ (0, 1) ∪ (1, 2), ECFA converges to the

global optimal position x∗.
Proof: Let q be the common ratio, i.e., q = 1− β. According

to (23), we have

lim
t→+∞x

t+1
i = lim

t→+∞ q
t+1

(
x0i −

c

β

)
+
c

β
. (24)

To guarantee ECFA’s convergence, limt→+∞ xt+1
i must exist.

Therefore, q needs to meet |q| < 1. Since q = 1−β, we have
|1−β|<1, and thus β ∈ (0, 1) ∪ (1, 2). Accordingly, (24) can
be further expressed as

lim
t→+∞x

t+1
i =

c

β
= x∗ +

α

β

(
ε− 1

2

)
. (25)

Since ε is a random parameter uniformly distributed within
the range [0, 1], its expected value is 1

2 . Therefore, we have
limt→+∞ xt+1

i = x∗. Thus, each firefly will consequently con-
verge to the optimal position when β ∈ (0, 1) ∪ (1, 2).

VI. TRAJECTORY ANALYSIS

This section investigates the firefly’s moving trajectories with
regard to the optimal firefly position and ECFA-associated pa-
rameter values. For this reason, we introduce the concept of
boundary trap to characterize the behavior of ECFA’s searching
procedure getting stuck in local optima. In the same manner,
we assume that x∗ is constant without any stochastic compo-
nent [35], [36].

A. Boundary Trap

We use [xmin, xmax] to indicate the boundary of the search
region in a certain dimension of the firefly position. During the
iterations, in case the firefly position is beyond the upper bound
xmax, we truncate the position value at xmax. Likewise, firefly
positions less than the lower bound xmin will be all replaced
by xmin. We define the boundary traps in the following four
situations.

BT-A: Once ∃ν = argminν∈N+ xνi = xmin, we identify
a boundary trap xti = xmin, where t = ν, ν +
1, . . . ,+∞.

BT-B: Once ∃κ = argminκ∈N+ xκi = xmax, we identify
a boundary trap xti = xmax, where t = κ, κ+
1, . . . ,+∞.

BT-C: All fireflies satisfying ∃ςi = argminςi∈N+ xςii =
xmin form a set Φ = {f1, f2, . . . , fϕ}. For all fireflies
in set Φ, we identify a boundary trap xς11 = xς22 =

. . . = x
ςϕ
ϕ = xmin, xς1+1

1 = xς2+1
2 = . . . = x

ςϕ+1
ϕ ,

. . ., xς1+2
1 = xς2+2

2 = . . . = x
ςϕ+2
ϕ , etc.

BT-D: All fireflies satisfying ∃τi = argminτi∈N+ xτii =
xmax form a setΨ = {f1, f2, . . . , fψ}. For all fireflies
in set ψ, we identify a boundary trap xτ11 = xτ22 =

. . . = x
τψ
ψ = xmax, xτ1+1

1 = xτ2+1
2 = . . . = x

τψ+1
ψ ,

. . ., xς1+2
1 = xτ2+2

2 = . . . = x
τψ+2
ψ , etc.

For the sake of clarity, we summarize the four boundary
traps into two categories. BT-A and BT-B can be attributed
as one trapping scenario: once a firefly encounters the search
boundary (xmin or xmax) in a particular iteration, this firefly
would be trapped in this boundary in all subsequent iterations.
BT-C and BT-D are classified as the other trapping scenario:
for the fireflies that encounter the search boundary (xmin or
xmax), the trajectories of all these fireflies would be identical
since the particular iteration in which they each encounter the
search boundary.

B. Trajectory Analysis

Based on the definitions of boundary traps in Section VI-A, we
analyze in a theoretical manner whether ECFA would fall into
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TABLE III
A SUMMARY OF BOUNDARY TRAPPING CASES OF ECFA UNDER DIFFERENT β AND x∗ VALUES

any boundary traps depending on the position of the optimal
firefly and the value of parameter β.

Theorem 2: If x∗ /∈ [xmin, xmax], ECFA would fall into
boundary traps. To be specific,

2.1: if x∗<xmin and β∈ (0, 1), ECFA would fall into BT-A;
2.2: if x∗<xmin and β∈ (1, 2), ECFA would fall into BT-C;
2.3: if x∗>xmax and β∈ (0, 1), ECFA would fall into BT-B;
2.4: if x∗>xmax and β∈ (1, 2), ECFA would fall into BT-D.
Proof: According to (23), the position of firefly fi in the t-th

iteration is given by

xti =

⎧⎪⎨
⎪⎩
xmin, if qt(x0i − c

β ) +
c
β ≤ xmin

qt
(
x0i − c

β

)
+ c

β , if xmin<q
t(x0i − c

β ) +
c
β <xmax

xmax, if qt(x0i − c
β ) +

c
β ≥ xmax,

(26)
where q = 1− β and x0i ∈ [xmin, xmax] is the initial solution.
Due to the fact that c = βx∗ + α(ε− 1

2 ) andE[ε] = 1
2 , (26) can

be further described as

xti =

⎧⎨
⎩
xmin, if x∗ + qt(x0i − x∗) < xmin

x∗ + qt(x0i − x∗), if xmin≤x∗ + qt(x0i − x∗)≤xmax

xmax, if x∗ + qt(x0i − x∗) > xmax.
(27)

Let Δxi = qt(x0i − x∗), ∀i ∈ {1, 2, . . . , |Ω|}. We prove the
following four theorems based on (27).

Theorem 2.1: In case that x∗<xmin and β∈ (0, 1), since
q = 1− β > 0 and x0i − x∗>0, we know that Δxi > 0 and
Δxi decreases with the increase of t. Once Δxi = xmin − x∗,
fi encounters the search boundary xmin. Assume that fi encoun-
ters xmin in the ti-th iteration. We derive that qti(x0i − x∗) =
xmin − x∗ and accordingly ti = �logq xmin−x∗

x0
i−x∗ 
. Next, we have

xti = Δxi + x∗ ≤ xmin, ∀t ∈ {ti, ti + 1, ti + 2, . . . ,+∞} and
thus xtii = xti+1

i = . . . = x+∞
i = xmin. Referring to Case 1 in

Table III, we provide an illustration of firefly fi’s trajectory
to indicate that fi would be trapped in xmin since the ti-th
iteration. Moreover, this phenomenon takes place for every

individual firefly in the population. Therefore, when x∗<xmin

and β∈ (0, 1), ECFA falls into BT-A.
Theorem 2.2: In case that x∗<xmin and β∈ (1, 2), since x0i ∈

[xmin, xmax] and q = 1− β < 0, we have q(x0i − x∗) < 0.
Then, we can derive x1i = x∗ + q(x0i − x∗) < x∗ < xmin, ∀i ∈
{1, 2, . . . , |Ω|}, i.e., x11 = x12 = . . . = x1|Ω| = xmin. As x2i =

(1− β)(x1i − c
β ) +

c
β , we next have x21 = x22 = . . . = x2|Ω| =

(1− β)(xmin − c
β ) +

c
β . In the same manner, we deduce x31 =

x32 = . . . = x3|Ω|, x
4
1 = x42 = . . . = x4|Ω|, and so on. As indicated

by Case 2 in Table III, all fireflies encounter the search boundary
xmin after the first iteration, and remain trapped in there in all
subsequent iterations. Case 2 in fact can be regarded as a special
case of BT-C in which the trajectories of all fireflies merge into
an identical position.

Theorem 2.3: In case that x∗>xmax and β∈ (0, 1), since q =
1− β > 0, x0i ∈ [xmin, xmax], and x∗ > xmax, we know that
Δxi = qt(x0i − x∗) < 0 and Δxi increases with the increase of
the iteration t. Similarly as in the proof of Theorem 2.1, firefly
fi will encounter the search boundary xmax in the ti-th iteration
where ti = logq(

xmax−x∗
x0
i−x∗ ). Due to the fact that x∗ + qti(x0i −

x∗) > xmax after the ti-th iteration, we have xti+1
i = xti+2

i =
. . . = x+∞

i = xmax. Therefore, when x∗>xmax and β∈ (0, 1),
ECFA falls into BT-B. The corresponding illustration of firefly
trajectories can be referred to Case 3 in Table III.

Theorem 2.4: In case that x∗>xmax and β∈ (1, 2), since
x0i ∈ [xmin, xmax] and q = 1− β < 0, we have q(x0i − x∗) >
0 for any i ∈ {1, 2, . . . , |Ω|}. We further derive that x∗ +
q(x0i − x∗) > x∗ > xmax, and thus x11 = x12 = . . . = x1|Ω| =
xmax. Similar to the proof of Theorem 2.2, we can draw the
conclusion that all fireflies encounter the search boundary xmax

in the very first iteration and remain trapped since then. In other
words, ECFA falls into a special case of BT-D in which all
fireflies move toward an identical position. An illustration of
the fireflies’ trajectories in this situation is provided by Case 4
in Table III.
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We draw the conclusion from Theorem 2 that, ECFA would
inevitably fall into boundary traps if the search space does not
contain the optimal solution. Thus, when pre-defining ECFA’s
search boundary, we have to guarantee that the search space
covers the optimal solution to prevent ECFA from falling into
boundary traps. We further analyze the trajectories of fireflies
and possible boundary traps if this prerequisite can be satis-
fied. Since parameter β is required to be β ∈ (0, 1) ∪ (1, 2) to
guarantee ECFA’s convergence (refer to Theorem 1), we discuss
the two situations in which β value is within (0, 1) and (1, 2),
respectively.

Lemma 2: If x∗ ∈ [xmin, xmax] and β ∈ (1, 2), ECFA would
fall into boundary traps. To be specific,

2.1: for x0i ∈ (xa, xmax), ECFA falls into BT-C;
2.2: for x0i ∈ (xmin, xb), ECFA falls into BT-D,
where xa = xmin−c

1−β , xb =
xmax−c
1−β , and c = βx∗ + α(ε− 1

2 ).
Proof: According to (23), we have

x1i = (1− β)

(
x0i −

c

β

)
+
c

β

= q

(
x0i −

c

β

)
+
c

β

= x∗ + q(x0i − x∗) + Λ, (28)

where q = 1− β, c = βx∗ + α(ε− 1
2 ) and Λ = α

β (1− q)(ε−
1
2 ). Here, Λ can be considered as a random disturbance compo-
nent with extremely small values that can be neglected in the
following analysis. Since β ∈ (1, 2) in this situation, we have
q < 0. According to (28), there exist the following two cases: (a)
if x0i < x∗, then q(x0i − x∗) > 0, and x1i > x∗; (b) if x0i > x∗,
then q(x0i − x∗) < 0 and x1i < x∗. Accordingly, we identify
that x1i /∈ (x0i , x

∗) (if x0i < x∗) or x1i /∈ (x∗, x0i ) (if x∗ < x0i ).
However, we cannot identify whether x1i ∈ (xmin, xmax) is true.
With this concern in mind, we introduce two threshold values,xa
and xb, to represent the critical situations in which x1i is exactly
equal to xmin and xmax, respectively. Taking xa for example, it
can be calculated as follows.

x1i = (1− β)

(
xa − c

β

)
+
c

β
= xmin (29)

⇒ xa =
xmin − c

β

1− β
+
c

β
=
xmin − c

1− β
. (30)

Likewise, xb is determined by

xb =
xmax − c

β

1− β
+
c

β
=
xmax − c

1− β
. (31)

Due to the fact that xmin < xmax and 1− β < 0, we know
that xb < xa. Depending on the value of x0i , we discuss the
following two possible scenarios:

1) x0i ∈ (xa, xmax]: (28) and (30) lead to

x1i = (1− β)

(
x0i −

c

β

)
+
c

β

< (1− β)

(
xmin − c

1− β
− c

β

)
+
c

β
< xmin. (32)

For any x0i ∈ [xa, xmax] (i ∈ {1, 2, . . . , |Ω|}), we have
x1i = xmin. Since xti = (1− β)t(x1i − c

β ) +
c
β , ∀t =

2, 3, . . . ,+∞, we can deduce that for all fireflies whose
initial positions are within [xa, xmax], their trajectories
would be exactly the same. As a result, ECFA falls into
BT-C in this scenario.

2) x0i ∈ [xmin, xb): (28) and (31) lead to

x1i = (1− β)

(
x0i −

c

β

)
+
c

β

> (1− β)

(
xmax − c

1− β
− c

β

)
+
c

β
> xmax. (33)

Similarly, for all fireflies whose initial positions are within
[xmin, xb], their trajectories would be identical, indicating
that ECFA falls into BT-D.

Case 5 in Table III illustrates the firefly trajectories in the
aforementioned two scenarios. Note that, the trajectory in red
color represents the identical trajectory that all fireflies whose
initial positions are within [xa, xmax] (or [xmin, xb]) would move
along. Lemma 2 suggests that forβ ∈ (1, 2), if the initial position
x0i is within [xmin, xb) (or (xa, xmax]), it will be determined as
the boundary value xmax (or xmin). The reason is that the posi-
tion in the first iteration is outside of the search space, resulting
in identical firefly trajectories. Falling into such boundary traps
will significantly degrade the diversity of the population, thereby
affecting ECFA’s search effectiveness.

We now analyze the only unvisited situation, in which x∗ ∈
[xmin, xmax] and β ∈ (0, 1). We present the following theorem
to prove that ECFA is capable of escaping from all boundary
traps in this particular situation.

Theorem 3: Ifx∗ ∈ [xmin,xmax] andβ ∈ (0, 1), ECFA would
not fall into any boundary traps.

Proof: According to (23), we express the firefly position in
the t-th iteration as

xti = (1− β)t
(
x0i −

c

β

)
+
c

β

= qtx∗ + (1− qt)

(
x∗ +

c

β

)
= x∗ + qt(x0i − x∗) + Ξ, (34)

where Ξ = α
β (1− qt)(ε− 1

2 ), which is a negligible random
disturbance component. Since β value is restricted within (0,
1), we have q∈ (0, 1) and qt∈ (0, 1). Depending on the initial
position, if x0i < x∗, ∀t = 1, 2, . . . ,+∞, we can derive qt(x0i −
x∗) < 0 and x0i < xti < x∗. On the contrary, if x0i > x∗, ∀t =
1, 2, . . . ,+∞, we have qt(x0i − x∗) > 0 and x0i > xti > x∗. We
observe that regardless of the initial position x0i , the value
of xti is bounded by x0i and x∗. Since x0i and x∗ are both
within [xmin, xmax], we obtain that xti ∈ [xmin, xmax], ∀t =
1, 2, . . . ,+∞, ∀i = 1, 2, . . . , |Ω|. In other words, ECFA would
not fall into any boundary traps.

Moreover, as q > 0, the value of the term qt|x0i − x∗| de-
creases with the increasing t value. This observation validates
that the fireflies gradually move closer to the position of the
optimal solution as the iteration proceeds.
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Fig. 2. An illustrative three-dimensional example of firefly trajectories: (a) x∗ is outside of search space and β ∈ (1, 2); (b) x∗ is outside of search space and
β ∈ (0, 1); (c) x∗ is inside search space and β ∈(1, 2); (d) x∗ is inside search space and β ∈(0, 1).

To finalize the trajectory analysis, Table III summarizes all
possible boundary trap situations under different values of pa-
rameterβ and positionx∗. Cases 1-4 reveal that ECFA inevitably
falls into certain boundary traps as long as the optimal solution
is not included in the search space, i.e., x∗ /∈ [xmin, xmax]. In
the opposite situation, i.e., x∗ ∈ [xmin, xmax], depending on β
value, falling with boundary traps occurs when β ∈ (1, 2). Con-
sequently, ECFA’s parameter β must be carefully determined
within (0, 1) to avoid any boundary traps. For the purpose of
an intuitive interpretation, Fig. 2 further provides an illustrative
example of firefly trajectories in a three-dimensional search
space in different situations. The red star specifies the position
of the optimal solution, and each colored spot denotes the
movement of a firefly’s position. When the optimal solution
is outside of the search space, the selection of β value may
guide the firefly trajectories to certain boundary traps, e.g.,
BT-C/BT-D (β∈ (1, 2) in Fig. 2(a)) and BT-A/BT-B (β∈ (0, 1)
in Fig. 2(b)). Even if the optimal solution is inside the search
space, inappropriate β value may still cause the boundary traps
to happen (β∈ (1, 2) in Fig. 2(c)). Only when β ∈ (0, 1) is also
satisfied, all fireflies gradually approach and eventually reach
the position of the optimal solution (Fig. 2(d)).

VII. EVALUATION RESULTS

To evaluate the performance of our proposed ECFA, we
implement simulations by Java programming. All experiments
were performed on a desktop machine with a 10-core CPU and
32-GB memory. Experimental settings are as follows.

In terms of testing instance set, we design ten groups of testing
instances, in which the number of tasks to be scheduled are 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100, respectively. Moreover,
there are ten different testing instances in each group. For all
the tasks in the testing instance set, their characteristics di and
wi are uniformly distributed over [0, 200] bits and [1000, 2000]
CPU cycles/bit, respectively. Six security policies of different
protection levels are considered in the experiments, with details
of the parameters available in [26]. In the cloud-edge system,
the CPU operating frequency of the MD, the edge server, and
the cloud are 1.33GHz, 3.3GHz, and 4.0GHz, respectively. The
power consumption of the MD transmitting data to the edge
server is 0.1W, whereas that of the edge server transmitting
data to the cloud is 0.2W [22]. The operating powers of the
MD, the edge server, and the cloud are 1.65 × 10-9 Joules/cycle,

2.50 × 10-8 Joules/cycle, and 2.88 × 10-8 Joules/cycle, respec-
tively [5]. Regarding the three energy components in (14), we
set their weighting factors as δ = 0.5, � = 0.3, and η = 0.2. For
the sake of a fair comparison, all metaheuristic algorithms used
for performance evaluation use identical parameter settings, in
which the population size is 30 and the maximum number of
iterations is 500. The range of firefly position in any dimension
is set to [-2, 2]. Other parameters associated with ECFA will be
determined in subsequent experiments.

Since the proposed ECFA is a metaheuristic involving ran-
domness, we use the analysis of variance (ANOVA) method [37]
to evaluate algorithm performance in a statistical manner. To be
specific, we repeat each algorithm to be evaluated for multiple
rounds, and record the values of optimization objectives obtained
in all rounds. In ANOVA, the metric of relative percentage de-
viation (RPD) is used to quantify the algorithm’s effectiveness,
which is defined as

RPD =
1

K

(
K∑
k=1

Eksum − E∗
sum

E∗
sum

)
× 100%, (35)

where Eksum is the total energy obtained in the k-th round and
E∗

sum is the lowest energy in all K replications. The lower the
value of RPD is, the better the effectiveness of the algorithm has.
We use K = 5 in all evaluation experiments.

A. Determination of Important Parameters

1) Parameter β: Parameter β, which represents the attrac-
tiveness between any two fireflies, is a critical parameter in
our proposed linear update rule (refer to (21)). As justified by
the trajectory analysis in Section V, the range of β should be
within [0, 1] to ensure ECFA’s convergence. For this reason,
we investigate the mean RPDs and least-significant difference
(LSD) intervals with 95% confidence of ECFA under different
β values, i.e., β = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The
results in Fig. 3 verify that ECFA achieves the lowest mean RPD
when the β value is 0.1. Thus, we use β = 0.1 in all subsequent
experiments.

2) Parameter m: As one of ECFA’s distinguishing proper-
ties, the new position update strategy forces each firefly only
to move toward the brightest firefly to reduce computational
burden (refer to (21)). To validate this point, we usem to denote
the number of brightest fireflies that each individual firefly is
attracted by, and investigate the impact of parameter m on
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Fig. 3. RPDs obtained by ECFA with different β values.

Fig. 4. The runtime statistics for ECFA using different m values on testing
instances of different scales.

Fig. 5. RPDs obtained by ECFA with different m values.

algorithm performance in terms of effectiveness and efficiency,
respectively.

On the one hand, we set different m values and evaluate the
mean RPDs and 95% LSD intervals obtained by using ECFA.
As indicated by the results in Fig. 5, ECFA achieves the best
performance whenm=1 as a lower RPD value indicates greater
effectiveness. On the other hand, we examine the computation
times by using ECFA on various testing instances of different
scales. Also, we choose tenm values for evaluation, i.e.,m ∈{1,
2, 3, 4, 5, 6, 7, 8, 9, 10}. The runtime statistics in Fig. 4 show

Fig. 6. RPDs obtained by PSFA, RLFA, and RSFA with different β values.

that, for each m value, the computation time increases as the
number of tasks grows. Also, on the same testing instance,
greater m values lead to more overheads in computation time.
This overhead becomes more significant as the number of tasks
continues to increase. The experiments performed in this section
justify that, using only the brightest firefly to attract other fireflies
(i.e., m = 1) achieves not only the lowest RPD but also the
shortest computation time.

B. Evaluation of Scheduling Performance

1) Competing Algorithms: FA-Based Algorithms: We create
three FA-based competing algorithms for comparison purposes.
To evaluate the computational efficiency of ECFA’s new position
update strategy, the first FA variant uses the probability-based
mapping method and the standard position update rule, and is
denoted by PSFA. To evaluate the effectiveness of the mapping
operator in ECFA, the second FA variant, denoted by RLFA,
uses the conventional ROV mapping method [9], [32] and the
new position update strategy. The third competing algorithm is
the standard FA that uses ROV mapping and standard position
update strategy, which is regarded as the baseline algorithm
denoted by RSFA. We also evaluate the parameter setting for
these three competing algorithms. As shown in Fig. 6, RLFA
achieves the lowest RPD values when β = 0.2, whereas PSFA
and RSFA show insignificant differences in PRD under different
β values. Therefore, we set β value to 0.2 for all three competing
algorithms in the following experiments. Parameter m is set as
1, which is consistent with ECFA’s parameter setting.

Representative Metaheuristic Algorithms: We further com-
pared our ECFA with four other population-based metaheuristics
for solving cloud-edge scheduling problems.
� Distributed particle swarm optimization (DPSO) [38]: This

metaheuristic divides the original population into multiple
sub-populations and applies adaptive parameters to update
the velocity and position of particles.

� Genetic algorithm (GA) [39]: This metaheuristic employs
standard GA evolutionary mechanisms, i.e., crossover, mu-
tation, and selection operations.
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Fig. 7. RPDs obtained by ECFA and competing algorithms.

� Hybrid whale optimization algorithm (HWOA) [40]: This
metaheuristic incorporates the position update strategy of
the dragonfly algorithm and the mutation operator of GA
into the whale optimization algorithm framework.

� Self-adaptive particle swarm optimization algorithm using
the genetic algorithm operators (SPSOGA) [7]: This meta-
heuristic is a hybrid of GA and PSO, which incorporates the
mutation and crossover operations into the particle update
process.

2) Performance Evaluation: We start with evaluating the
effectiveness of ECFA by using the RPD metric. Fig. 7 pro-
vides the mean values and LSD intervals of RPDs obtained
by our proposed ECFA and all competing algorithms. The
non-overlapping LSD intervals among these algorithms indicate
that the performance of ECFA is significantly higher than those
of all non-FA-based metaheuristics. The reason mainly lies in
ECFA’s convergence feature, which is beneficial for enhancing
ECFA’s solution exploration capability. Regarding the compar-
ison with the three FA-based algorithms, ECFA still performs
better than PSFS, RLFA, and RSFA. The difference between
ECFA and PSFA is the least significant, as PSFA uses the same
probability-based mapping operator as in our ECFA. However,
the ROV mapping rule used by RLFA and RSFA substantially
degrades their performances.

We further compare the computational efficiency between
ECFA and other competing algorithms in solving the cloud-edge
scheduling problem. To evaluate computational efficiency in a
quantitative manner, we introduce a metric called normalized
efficiency (NE), which is calculated by

NE =
T

Tbaseline
, (36)

where T represents the runtime by the algorithm to be evaluated,
andTbaseline represents that by the baseline algorithm, i.e., RSFA.
Each algorithm is repeated for R rounds on every single testing
instance, and thus both T and Tbaseline are averaged over the R
replications. As mentioned previously, we chose RSFA as the
baseline algorithm. The definition in (36) means that a lower
NE value corresponds to a higher computational efficiency.

Table IV lists the average runtimes as well as the NE met-
rics obtained by different algorithms on all testing instances.

TABLE IV
AVERAGE RUNTIMES AND MEAN NES OF ECFA AND COMPETING

ALGORITHMS

Fig. 8. The average occurrence number of encountering search boundaries
with different β values.

The comparison results confirm that our ECFA is the most
computationally efficient among all FA-based algorithms. The
NE value by using ECFA is 0.139, indicating a 7.19× speedup
achieved by ECFA over the baseline RSFA. This is because the
new position update strategy in ECFA significantly reduces the
computational burden compared to the standard position update
strategy. For the same reason, despite the closest performance
gap between PSFA and our proposed ECFA, ECFA substantially
improves the computational efficiency with a 7.23× speedup
over PSFA. On the other hand, the average NE of ECFA is close
to those of other non-FA-based metaheuristics. In particular,
since GA and SPAOGA use discrete binary encoding for solution
representation and require no mapping operator, they are slightly
more efficient than ECFA is. However, as revealed in Fig. 7,
ECFA outperforms these two algorithms significantly in terms
of solution quality.

The last set of experiments is to verify that the value range
for parameter β determined by the theoretical analysis can
effectively prevent ECFA from falling into boundary traps. We
perform ECFA by using differentβ values and record the number
of occurrences of encountering the search boundaries on average
for all testing instances. As reported in Fig. 8, for β∈ (0, 1), the
occurrence of ECFA falling into boundary traps is obviously
less frequent than those for other parameter settings, which is
consistent with our conclusion drawn in the trajectory analysis.
In addition, whenβ∈ [1,2), we observe an increase in the average
number of occurrences of boundary traps as the value of β
increases. This observation is because a greater β value would
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cause a larger search space and accordingly a higher possibility
of encountering the search boundaries.

VIII. CONCLUSION

This paper proposes an efficient convergent firefly algorithm
(ECFA) that incorporates a novel probability-based mapping
method and an efficient position update strategy to solve task
scheduling problems in cloud-edge computing. The proposed
ECFA is capable of improving the searching efficiency as well as
guaranteeing the scheduling performance. We provide a theoret-
ical analysis to prove the convergence of ECFA by determining
an appropriate range of the critical parameter. We also introduce
a new concept of boundary trap to analyze the trajectories
of firefly movements, for the purpose of predicting whether
ECFA would fall into boundary traps under different parameter
settings. Experimental results demonstrate that, compared with
other FA-based algorithms and representative population-based
metaheuristics, ECFA can produce high-quality scheduling so-
lutions with promising computational efficiency. Evaluation re-
sults also justify that the parameter range determined by the
trajectory analysis can effectively prevent ECFA from falling
into boundary traps.

It is worth emphasizing that, this work can be readily extended
to cope with more complicated cloud-edge systems scenarios
considering server heterogeneity, device-to-device collabora-
tion, etc. To facilitate the adaption of our proposed ECFA in
such scenarios, it is necessary to re-design the task assign-
ment strategy, which is used to calculate scheduling objective
value and evaluate solution quality, depending on the specific
scheduling scenario. Other fundamental operators in the FA-
based evolutionary framework, such as solution representation,
firefly mapping, and position update, can remain unchanged.
The proof of convergence and trajectory analysis derived in this
work would still be effective for the extensions of ECFA.
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