
Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

Adaptive virtual anchors for efficient and stable clustering over large 

multi-view attributed graphs

Mengyao Li a, Zhibang Yang b,∗, Xu Zhou a, Joey Tianyi Zhou c, Quanqing Xu d, 
Chuanhui Yang d, Kenli Li a, Keqin Li a,e

aHunan University, Changsha, 410082, China
bHunan Province Key Laboratory of Industrial Internet Technology and Security, Changsha University, Changsha, 410022, China
cA*STAR Centre for Frontier AI Research, 138632, Singapore
dOceanBase and the Research Institute of Ant Group, Hangzhou, 310000, China
e State University of New York, New Paltz, NY 12561, USA

a r t i c l e  i n f o

Keywords:
Attributed graph clustering
Community detection
Multi-view attributed graph

 a b s t r a c t

Multi-view attributed graphs (MVAG) are well-known for their ability to model complex networks and relation-
ships, which can provide diverse yet complementary information for finding a consensus partition suitable for 
all views. There have been abundant methods for clustering over multi-view attributed graphs. However, most 
of them are not suitable for large-scale graphs due to high complexity. Moreover, while existing anchor-based 
methods can effectively accelerate clustering, they mainly focus on either attribute information or graph struc-
ture during anchor selection, and some suffer from stability issues. Inspired by this, in this paper, we propose 
the adaptive virtual anchor clustering method (AVAC) to boost clustering performance and keep stable results. 
In particular, we first introduce adaptive virtual anchors for multi-view attributed graphs, which are learned 
and generated from graphs adaptively. After that, we connect anchor learning and anchor graph construction 
closely and cyclically to learn virtual anchors dynamically and make them capture real data distribution and 
topology information more accurately. Last but not least, we design a five-block coordinate descent method with 
proven convergence to further optimize our virtual anchors more representative of existing nodes. Extensive 
experiments over both real and synthetic datasets demonstrate the effectiveness, efficiency, and stability of our 
method. Compared to state-of-the-art approaches, the AVAC algorithm always gains stable results with a signif-
icant improvement in accuracy, and achieves a speedup of 1.8 times on public large-scale datasets. The source 
code is available at https://github.com/lmyfree/AVAC.

1.  Introduction

As a prevalent type of graph, attributed graphs [1–4] contribute to 
modeling complex relationships between various entities with related 
attributes in social networks [5], citation networks [6], biological net-
works [7], and so on. Recently, as the network data in real-world appli-
cations become typically multi-modal and multi-relational, multi-view 
attributed graphs [8,9] have garnered significant attention. Multi-view 
attributed graph clustering [10,11], which aims to seek a unified parti-
tion to divide nodes into several disjoint clusters, plays a critical role in 
many applications.

Application. Clustering on multi-view attributed graphs plays a 
critical role in recommendation systems [12], social network analysis 
[11] and other applications. For instance, multi-view attributed graphs 
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in movie recommendation systems can showcase various relationships 
among movies such as co-actor and co-director relationships, along with 
related keywords, types, and other attribute features. The integration of 
diverse views provides more comprehensive information for clustering 
which can contribute to accurate movie recommendation.

Prior Work and Limitations. Faced with complex multi-view at-
tributed graphs, how to fuse different views is the most imperative 
problem. At present, existing approaches can be categorized into two 
classes. The first class endeavors to fuse the attributed graphs of all views 
into a consistent graph, such as subspace-based methods [10,11,13]. 
Multi-view attributed graph clustering (MAGC) [11] leverages the self-
expressiveness property to combine diverse views into a consistent 
graph. Multi-view contrastive graph clustering (MCGC) [13] learns a 
consensus graph regularized by graph contrastive loss. The other class 
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Fig. 1. Traditional anchors vs Virtual anchors. Fig. 1(a) shows traditional anchors that are sampled from existing nodes only considering topology. Fig. 1(b) shows 
adaptive virtual anchors learned and generated from data dynamically. Fig. 1(c) and (d) show anchor embeddings obtained by MvAGC and our method in the 
BlogCatalog dataset, where yellow stars are anchors.

[14–16] applies graph embedding techniques to transform graph data 
into low-dimensional feature representations and then clusters on these 
representations to obtain final results. Fan et al. [17] introduces an in-
novative autoencoder framework that encompasses an encoder shared 
across all views for extracting shared representations, along with multi-
ple decoders for reconstructing multi-view graphs.

Although there have been some works [11,13] on clustering multi-
view attributed graphs, they also encounter the following limitations:

• They are not suitable for large-scale graphs due to their high 
complexity. In real-life scenarios, graph data becomes increasingly 
complex and large-scale. For example, the number of nodes in user 
networks on social media platforms such as Facebook1 and QQ2 has 
already exceeded millions by 2018. However, most methods fail to 
deal with large-scale graphs due to long running time or memory 
limitations, as shown in Section 4.4.

• Existing anchor-based methods can not effectively deal with 
multi-view attributed graphs. Although numerous anchor-based 
methods [18–21] have been developed to reduce running time, they 
are mainly designed for Euclidean data and focus solely on at-
tributes, making them unsuitable for multi-view attributed graphs, 
as demonstrated in Section 4.2. Recently, MvAGC [10] introduces 
an anchor-based method for multi-view attributed graphs, which se-
lects anchors from existing nodes via a sampling algorithm. How-
ever, MvAGC only considers graph structure and ignores attribute 
information during sampling, which directly affects the quality of 
anchors and clustering accuracy. Moreover, due to its dependence 
on random sampling algorithms, MvAGC introduces uncertainty in 
the anchor selection process, leading to unstable anchors that ad-
versely impact model stability. Section 4.5 depicts that the cluster-
ing results of MvAGC fluctuate significantly, with evaluation indica-
tors varying by approximately 15%. These unstable results mean that 
MvAGC requires multiple repeated experiments and additional com-
putational time to achieve optimal outcomes, making it unsuitable 
for real-world applications.
Challenges. Consequently, how to obtain efficient and stable an-

chors adaptive for multi-view attributed graphs has become a challeng-
ing problem. We summarize posed grim challenges as two aspects. First, 
it is crucial to design efficient and stable anchors adaptive for multi-view 
attributed graphs. The quality of anchors directly affects the accuracy 
of clustering, so how to obtain high-quality anchors that can accurately 
capture real features and topology structures becomes a core concern. 
Second, it is significant to design an effective and convergent solution 
to solve the multivariate optimization problem. Multi-view attributed 
graph clustering usually can be modeled as a multivariate optimization 
problem. Different optimization strategies directly affect the optimized 
results, which can influence the clustering accuracy.

Our Solution. We first introduce adaptive virtual anchors specif-
ically designed for multi-view attributed graphs, more efficient than 

1 https://investor.fb.com/home/default.aspx
2 https://www.tencent.com/zh-cn/investors/financial-reports.html

existing methods. Moreover, to solve the multivariate optimization
problem proposed by our method, we design an optimization solver, 
derived from the Alternating Direction Method of Multipliers (ADMM) 
[22], specifically customized to address the unique challenges of our 
method and update adaptive virtual anchors dynamically.
Example 1. Fig. 1 delineates the differences between traditional an-
chors and our proposed adaptive virtual anchors, using MvAGC as a 
representative example. Fig. 1(a) depicts the anchors of traditional ap-
proach, which are sampled from given nodes only considering topology. 
For instance, given an attributed graph with nine nodes categorized into 
three classes marked with different colors, the traditional methods only 
consider the structural information and randomly sample three nodes 
𝑣4, 𝑣5 and 𝑣9 from the nine nodes as anchors that remain fixed in other 
processes. It fails to fully leverage both attribute and structural informa-
tion, and the random sampling process is entirely decoupled from the 
other steps, resulting in unrepresentative anchors that adversely affect 
accuracy. Fig. 1(b) showcases our adaptive virtual anchors, which are 
adaptively learned by considering both structure and attribute informa-
tion and are dynamically updated to capture the true data distribution 
accurately. Fig. 1(c) and (d) visualize the sampled anchors obtained by 
MvAGC and the adaptive virtual anchors produced by our method in 
the BlogCatalog dataset [23] using t-SNE, where “yellow stars” denote 
the anchors. It is clear that our method provides a sharper distinction 
between clusters than traditional approaches, with adaptive virtual an-
chors primarily positioned at cluster centers, showing them more repre-
sentative than sampled anchors.

Contributions. We propose the adaptive virtual anchor clustering 
method (AVAC) to maintain high accuracy stably while reducing the 
running time. AVAC generates adaptive virtual anchors through alter-
nate optimization. In summary, we highlight the contributions as fol-
lows:

• We first introduce adaptive virtual anchors for multi-view attributed 
graph clustering which can be learned and generated adaptively 
from graphs.

• We propose the adaptive virtual anchor clustering method (AVAC) 
which generates adaptive virtual anchors via optimization and con-
nects anchor generation and anchor graph construction closely and 
cyclically to dynamically learn adaptive virtual anchors and capture 
the real data distribution and graph structure more accurately.

• We design a five-block coordinate descent method to solve the multi-
variate optimization problem proposed by AVAC, and prove its con-
vergence.

• Extensive experimental results demonstrate that AVAC can obtain 
stable results with a significant improvement in accuracy while fur-
ther reducing the time cost of clustering. In particular, on the pub-
lic large-scale dataset, our algorithm has achieved a speedup of 1.8 
times over the advanced method.

The rest of this paper is organized as follows. In Section 2, we present 
preliminaries and related works. Section 3 describes our method and op-
timization while analyzing the time complexity and convergence. Then, 
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we conduct extensive experiments and analyze results in Section 4. Fi-
nally, Section 5 concludes this paper.

2.  Preliminaries

In this section, we display the definition of multi-view attributed 
graphs (MVAG) clustering and then introduce related works includ-
ing attributed graph clustering methods, multi-view subspace methods, 
multi-view deep learning methods, and anchor-based methods. We sum-
marize frequently used notations in Table 1.

Table 1 
Notations and descriptions.
 Notation Description  Notation Description

𝑛 Number of nodes 𝑿 Attribute matrix
𝜆 Weighting factor 𝑨 Adjacency matrix
𝑑 Consensus dimen-

sion
ℎ ℎ-order filter

𝑉 Number of views 𝑚 Number of anchors
𝐾 Number of clusters 𝛼𝑖 View coefficient
𝑷 Consensus anchors 𝒁 Fused anchor graph
𝑾 (𝟏)

𝒗 Attribute projecting 
matrix in the 𝑣-𝑡ℎ
view

𝑾 (𝟐)
𝒗 Topology projecting 

matrix in the 𝑣-𝑡ℎ
view

𝑺 Self-representation 
matrix

𝑑𝑣 Dimension in the 
𝑣-𝑡ℎ view

2.1.  Problem statement

Definition 1. (Multi-view attributed graph clustering [11])
A multi-view attributed graph can be defined as 𝐺 =

{

Φ, 𝐸1, 𝐸2,… , 𝐸𝑉 ,𝑿𝟏, 𝑿𝟐,… , 𝑿𝑽
} , where Φ represents the node 

set and 𝑒𝑣𝑖,𝑗 ∈ 𝐸𝑣 denotes the relationship between node 𝑣𝑖 and 𝑣𝑗 in the 
𝑣-𝑡ℎ view. 𝑿𝒗 ∈ ℝ𝑑𝑣×𝑛 denotes the attributed matrix for 𝑣-𝑡ℎ view with 
𝑑𝑣 dimensions. Furthermore, the structural information can be repre-
sented by 𝑉  adjacency matrices {𝑨𝒗

}𝑉
𝑣=1 , where 𝑨𝒗 = {𝑎𝑣𝑖,𝑗} ∈ ℝ𝑛×𝑛

and if there exists an edge between nodes 𝑣𝑖 and 𝑣𝑗 in the 𝑣-𝑡ℎ view, 
𝑎𝑣𝑖,𝑗 = 1, otherwise, 𝑎𝑣𝑖,𝑗 = 0. In addition, clustering on the multi-view 
attributed graph aims to find a unified partition fitting all views to 
divide the nodes of the graph 𝐺 into K clusters (𝐶1, 𝐶2,… , 𝐶𝐾

)

.

2.2.  Related work

2.2.1.  Attributed graph clustering
Attributed graph clustering has garnered sustained attention in re-

cent years. From a task-oriented perspective, it can be broadly divided 
into graph-level clustering and node-level clustering. The former fo-
cuses on partitioning multiple graphs into distinct clusters. Recently, 
Graph Prompt Clustering (GPC) [24] proposed a "pretraining-prompt-
finetuning" framework specifically designed for graph-level clustering. 
However, in this paper, we focus on node-level clustering, which aims to 
group nodes into disjoint clusters. Hu et al. [25] constructed proximity 
matrices from topological connections and employed a Double Visible-
Hidden Feature Extraction mechanism for multi-view node clustering. 
Up to now, existing multi-view attributed graph clustering methods can 
be divided into several classes: multi-view subspace clustering methods, 
multi-view deep-learning methods and so on.

2.2.2.  Multi-view subspace clustering
The subspace-based methods [11,13,26] hold an assumption that 

each data sample can be represented as a linear combination of other 
data samples in the same subspace. Therefore, subspace-based methods 
for multi-view can be summarized as follows:

min
𝑺,𝛼𝑣

𝑉
∑

𝑣=1
𝛼𝑣
(

||𝑿𝒗 −𝑿𝒗 ⋅ 𝑺||2𝐹 + 𝜆||𝑺 −𝑨𝒗||
2
𝐹
)

, (1)

where 𝑿𝒗 and 𝑨𝒗 denote the attribute matrix and adjacency matrix 
for 𝑣-𝑡ℎ view respectively. 𝛼𝑣 is the weight parameter for 𝑣-𝑡ℎ view. 
𝑺 ∈ ℝ𝑛×𝑛 is the self-representation matrix and || ∗ ||𝐹  represents the 
Frobenius norm. Eq. (1) attempts to reconstruct the attribute matrix and 
minimizes the self-reconstruction error. In subspace methods [13], they 
always cost (𝑛3) , a high time complexity, to acquire 𝑺 via optimiza-
tion, bringing a grim challenge to large-scale graphs.

2.2.3.  Multi-view deep-learning methods
Numerous methods based on deep learning [27–29] have achieved 

promising results in clustering attributed graphs, however, they fail to 
deal with multi-view attributed graphs that integrate information from 
multiple views. Recently, DIAGC [30] and MAGAF [31] introduced the 
innovative autoencoder framework to cluster multi-view graphs. How-
ever, these complex models involve many parameters that require opti-
mization, making them unsuitable for large-scale attributed graphs.

2.2.4.  Anchor-based methods
Anchor-based methods aim to reduce computational cost and shorten 

runtime by introducing representative anchors. In recent years, Zhang 
et al. [32] found the anchors that satisfy the desired conditions by maxi-
mizing the Mahalanobis distance between them. Qin et al. [33] proposed 
the discriminative anchor learning for multi-view clustering.

Limitations of Anchor-based methods.
Although many Euclidean anchor-based methods [19,20,32,34,35], 

such as DAGF [36] and DALMC [33], have achieved promising results 
on Euclidean data, they primarily rely on attributes while overlooking 
structural information. In contrast, MvAGC [10] selected anchors solely 
based on graph topology and suffered from instability issues.

In attributed graphs, topology and attributes convey distinct yet com-
plementary information, as shown in Fig. 2. For instance, node 538 and 
node 1022 exhibit a high cosine similarity of 0.72 but are not linked, 
whereas node 15 and node 667 are linked yet share a low attribute sim-
ilarity of only 0.06. These examples highlight anchors for multi-view 
attributed graphs should be specifically designed which can fuse both 
topological information and node attributes.

Comparison with Anchor-based methods. In this paper, we pro-
pose adaptive virtual anchors that jointly fuse structural and attribute 
information to generate higher quality anchors. Moreover, by connect-
ing anchor generation and anchor graph construction closely, the opti-
mization problem of our model is more complex compared with other 
methods [10,19,32,35], for it has five variables with more constraints to 
optimize. Thus, we design an optimization solver named the five-block 
coordinate descent optimization to solve it.

3.  The proposed methodology

In this section, we first introduce the overall framework of our 
method (AVAC). Then, we present the important components in our 
method. Finally, we depict our method in algorithm and provide its time 
complexity, convergence analysis, and memory optimization discussion.

3.1.  Overall framework

AVAC includes four stages: data preprocessing, adaptive virtual an-
chor generation, adaptive virtual anchor graph construction, and clus-
tering, as shown in Fig. 3.

Data Preprocessing. In Stage A, in the data preprocessing, we adopt 
the ℎ-order graph filter [11] to preprocess the multi-view attributed 
graph and obtain smooth representations,

𝑿̂ =
(

1 − 1
2
𝑳
)ℎ

𝑿, (2)

where ℎ is a non-negative integer and 𝑳 = 𝑰 −𝑨 denotes the normalized 
graph Laplacian.

Adaptive virtual Anchor Generation.

Information Fusion 131 (2026) 104190 

3 



M. Li et al.

Fig. 2. Inconsistency between graph attributes and topology information.

Fig. 3. Framework of the AVAC method. Our method includes four stages: data preprocessing, adaptive virtual anchor generation, adaptive virtual anchor graph 
construction, and clustering. AVAC generates adaptive virtual anchors and connects anchor generation and anchor graph construction closely and cyclically to capture 
topology and real distribution of attributes.

In Stage B, we generate adaptive virtual anchors to effectively rep-
resent all nodes. To ensure that these anchors accurately reflect the 
real distribution of the given graph, we design an optimization solver
(Section 3.2.3) to update the anchors.

Adaptive virtual Anchor Graph Construction. In Stage C, we con-
struct an adaptive virtual anchor graph that captures the similarities 
between nodes and anchors. To ensure that the anchor graph accurately 
captures the true topology of the original graph, an optimization solver 
(Section 3.2.3) is designed to optimize it.

Clustering. After obtaining the adaptive virtual anchors 𝑷  and the 
virtual anchor graph 𝒁 from the optimization solver, we perform SVD 
on the virtual anchor graph 𝒁 to get the left singular vector 𝑼 as the sub-
space representation. Finally, we perform the clustering algorithm like 
K-means on the subspace representation 𝑼 to get the clustering results.

Overall, we depict the general framework in brief, as shown in
Algorithm 1. We perform Stage B and Stage C repeatedly to update the 
adaptive virtual anchors and the adaptive virtual anchor graph dynam-
ically. 

3.2.  Core components of the proposed method

In this section, we will introduce three important components: adap-
tive virtual anchor generation, adaptive virtual anchor graph construc-
tion, and the five-block coordinate descent optimization. In AVAC, we 
adaptively learn virtual anchors by projecting virtual anchors to dif-
ferent views to reconstruct attribute matrices and adjacency matrices, 
thereby obtaining a consensus anchor graph with attribute information 
and topology information of all views. The details are as follows.
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Algorithm 1: Overall framework of AVAC.
Input: Multi-view attributed graph, the number of cluster 𝐾.
Output: 𝐾 clusters.

1 Stage A: Data Processing.
 Perform the graph filter to obtain smooth representations.

2 while not converged do
3 Stage B: Adaptive Virtual Anchor Generation.

 Utilize the individual view attention mechanism to 
adaptively learn virtual anchors. (Subsection 3.2.1). 
Design the solver optimization to obtain the updated 
adaptive virtual anchors (Subsection 3.2.3). 

4 Stage C: Adaptive Virtual Anchor Graph Construction.
 Construct the adaptive virtual anchor graph via individual 
view projecting (Subsection 3.2.2). Design the 
optimization solver to obtain the updated adaptive virtual 
anchor graph (Subsection 3.2.3). 

5 end 
6 Stage D: Clustering.

 Perform the clustering algorithm to obtain clusters. return K 
clusters. 

3.2.1.  Adaptive virtual anchor generation
The adaptive virtual anchor generation process, illustrated in Stage 

B of Fig. 3, comprises two main components: adaptive learning and in-
dividual view attention.

• Adaptive learning. To generate adaptive virtual anchors, we project 
adaptive virtual anchors 𝑷 ∈ ℝ𝑑×𝑚 to the real feature space 𝑿̂𝒗 ∈
ℝ𝑑𝑣×𝑛 of each view, where 𝑑 and 𝑚 are consensus dimension and 
number of anchors. By minimizing the distance between recon-
structed features and original features, we can adaptively learn rep-
resentative virtual anchors that can effectively capture the real dis-
tribution. We formulate this objective function as:

min
𝒁,𝑷 ,𝑾 (𝟏)

𝒗

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹 ,

s.t. 𝑾 (𝟏)
𝒗

𝑻
𝑾 (𝟏)

𝒗 = 𝑰 ,𝑷 𝑻 𝑷 = 𝑰
(3)

where 𝑷  is the consistent anchor and 𝑾 (𝟏)
𝒗 ∈ ℝ𝑑𝑣×𝑑 denotes a project-

ing matrix that can map the consensus dimension 𝑑 to the dimensions 
of attributes in the 𝑣-𝑡ℎ view. 𝒁 is the anchor graph that indicates 
the similarity among original nodes and anchors.

• Individual View Attention. Since different views play various roles 
in the clustering task, we introduce the view-attention mechanism 
[18] in our AVAC method. In view-attention mechanism, we set a 
series of parameters {𝛼𝑣}𝑉𝑣=1 to pay different attention to individ-
ual views, and then optimize them through the optimization solver. 
Thus, Eq. (3) can be further developed as:

min
𝑾 (𝟏)

𝒗 ,𝒁,𝑷 ,𝛼𝑣

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

)

,

s.t.
𝑉
∑

𝑣=1
𝛼𝑣 = 1,𝑾 (𝟏)

𝒗
𝑻
𝑾 (𝟏)

𝒗 = 𝑰 ,𝑷 𝑻 𝑷 = 𝑰

(4)

where 𝛼𝑣 is the attention coefficient of the 𝑣-𝑡ℎ view. 𝒁 ∈ ℝ𝑚×𝑛 de-
notes the anchor graph which reflects the similarity relationships 
among anchors and nodes and 𝑚 is the number of anchors. 𝑷 ∈ ℝ𝑑×𝑚

represents the consensus anchors for all views, and 𝑑 is the consensus 
dimension. The individual view attention mechanism can selectively 
absorb useful information from each view and combine the comple-
mentarity and consensus information among these views more effec-
tively.

3.2.2.  Adaptive virtual anchor graph construction
We project the anchor graph into the real topological space in each 

view to reconstruct the topological information and update the anchor 

graph by reducing the distance between the reconstructed adjacency 
matrix and the original adjacency matrix, as shown in the Stage C of 
Fig. 3. Meanwhile, we can reconstruct the original feature by project-
ing the adaptive virtual anchor to the real feature space via the anchor 
graph. Furthermore, through the individual view attention, we can as-
sign different weights to each view to combine these views effectively. 
In summary, we obtain the final formulation of our problem:

min
𝑾 (𝟏)
𝒗 ,𝑾 (𝟐)

𝒗
,𝒁,𝑷 ,𝛼𝑣

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Feature Reconstruction

+𝜆 ||𝑨𝒗 −𝑾 (𝟐)
𝒗 𝒁||

2
𝐹

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Topology Reconstruction

)

,

s.t.
𝑉
∑

𝑣=1
𝛼𝑣 = 1,𝑾 (𝟏)

𝒗
𝑻
𝑾 (𝟏)

𝒗 = 𝑰 ,𝑷 𝑻 𝑷 = 𝑰 ,𝑾 (𝟐)
𝒗

𝑻
𝑾 (𝟐)

𝒗 = 𝑰

(5)

where 𝒁 is the anchor graph which reflects the similarity score between 
node representations and anchors. The smaller it is, the less relevant it 
is between the node and the adaptive virtual anchors [10,11]. 𝑾 (𝟐)

𝒗 ∈
ℝ𝑛×𝑚 is a projecting matrix that maps the consistent anchor graph 𝒁 ∈
ℝ𝑚×𝑛 to the original space of adjacency information in the 𝑣-𝑡ℎ view. We 
constrain 𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗 , 𝑷  to be orthogonal to utilize relevant properties for 

rapid derivation [18]. 𝛼𝑣 is the attention coefficient of the 𝑣-𝑡ℎ view, and 
we set some constraints for it to better balance the weight ratio among 
different views. 𝜆 is the weight factor to balance between the structural 
information and attribute information.

To solve Eq. (5), we design the optimization solver named the five-
block coordinate descent optimization described in Section 3.2.3 to ob-
tain the adaptive virtual anchors 𝑷  and the virtual anchor graph 𝒁 .

3.2.3.  The five-block coordinate descent optimization
In this subsection, we describe the optimization solver named the 

five-block coordinate descent optimization, which is utilized to obtain 
the adaptive virtual anchors 𝑷  and the virtual anchor graph 𝒁. Five-
Block Coordinate Descent Optimization method is a customized solver, 
derived from Alternating Direction Method of Multipliers (ADMM) [22], 
but specifically designed to tackle the specific and complex multi-
variable optimization problem in this paper. When optimizing each sub-
problem, our solver effectively leverages the relationship between the 
Frobenius Norm and the matrix trace to streamline the computational 
process. Further, confronted with the specific constraints in AVAC, we 
incorporate singular value decomposition, the Schwarz-Cauchy inequal-
ity, and other analytical techniques to enhance the optimization, en-
suring an efficient and effective resolution of the complex multivariate 
optimization problem in this paper.

There are five groups of variables in Eq. (5), and when considering all 
variables simultaneously, Eq. (5) is not jointly convex. Thus, we design 
the five-block coordinate descent optimization to solve this multivari-
ate optimization problem. We can divide the multivariate optimization 
problem into five subproblems and minimize Eq. (5) by solving the fol-
lowing five subproblems iteratively:

• Attribute projecting matrix 𝑾 (𝟏)
𝒗 -Subproblem. Fix 𝑷 ,𝒁,𝑾 (𝟐)

𝒗  , 𝛼𝑣 , 
and update the attribute projecting matrix 𝑾 (𝟏)

𝒗  .
• Topology projecting matrix 𝑾 (𝟐)

𝒗 -Subproblem. Fix 𝑷 ,𝒁,𝑾 (𝟏)
𝒗  , 𝛼𝑣 , 

and update the topology projecting matrix 𝑾 (𝟐)
𝒗  .

• Adaptive virtual anchors 𝑷 -Subproblem. Fix 𝒁,𝑾 (𝟏)
𝒗 ,𝑾 (𝟐)

𝒗  , 𝛼𝑣 , and 
update adaptive virtual anchors 𝑷  .

• Adaptive virtual Anchor graph 𝒁 -Subproblem. Fix 𝑷 ,𝑾 (𝟏)
𝒗 ,𝑾 (𝟐)

𝒗  , 𝛼𝑣
, and update the anchor graph 𝒁 .

• Attention for individual views 𝛼𝑣 -Subproblem. Fix 𝒁,𝑾 (𝟏)
𝒗 ,𝑾 (𝟐)

𝒗 , 𝑷
, and update the attention score for each view 𝛼𝑣 .

The five subproblems are solved as follows iteratively.
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Subproblem-1. Attribute projecting matrix 𝑾 (𝟏)
𝒗  -Subproblem.

Fix 𝑷 ,𝒁,𝑾 (𝟐)
𝒗  , 𝛼𝑣 , and the optimization function can be presented as

min
𝑾 (𝟏)

𝒗

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

)

,

s.t.𝑾 (𝟏)
𝒗

𝑻
𝑾 (𝟏)

𝒗 = 𝑰 .

(6)

For each view, the value of 𝑾 (𝟏)
𝒗  is independent of other views, there-

fore, according to relationships between the Frobenius norm and matrix 
trace, we extend the Frobenius norm, delete some irrelevant items, and 
transform Eq. (6) as

min
𝑾 (𝟏)

𝒗

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

)

,

s.t. 𝑾 (𝟏)
𝒗

𝑻
𝑾 (𝟏)

𝒗 = 𝑰 ,

⇔min
𝑾 (𝟏)

𝒗

𝑉
∑

𝑣=1
𝛼2𝑣𝑇 𝑟

(

𝑿̂𝑻
𝒗 𝑿̂𝒗 − 2𝑿̂𝑻

𝒗 𝑾
(𝟏)
𝒗 𝑷𝒁 +𝒁𝑻 𝑷 𝑻 𝑷𝒁

)

⇔min
𝑾 (𝟏)

𝒗

𝑉
∑

𝑣=1
𝛼2𝑣𝑇 𝑟

(

−2𝑿̂𝑻
𝒗 𝑾

(𝟏)
𝒗 𝑷𝒁

)

⇔max
𝑾 (𝟏)

𝒗

𝑇 𝑟
(

𝑾 (𝟏)
𝒗

𝑻
𝑪
)

,

(7)

where 𝑪 represents 𝑿̂𝒗𝒁𝑻 𝑷 𝑻  . Assuming that the singular value de-
composition (SVD) of 𝑪 is 𝑼𝒄𝚺𝒄𝑹𝑻

𝒄  , 𝑾 (𝟏)
𝒗  should be 𝑼𝒄𝑹𝑻

𝒄  based on 
Proposition 1.

Proposition 1.  When the singular value decomposition of 𝑪 is 𝑪 = 𝑼𝚺𝑹𝑻

, the following constrained problem has closed form solution 𝑴 = 𝑼𝑹𝑻  .

max
𝑴

𝑇 𝑟(𝑴𝑻𝑪), s.t. 𝑴𝑻𝑴 = 𝑰 . (8)

Proof.  Assuming the singular value decomposition of 𝑪 is 𝑪 = 𝑼𝚺𝑹𝑻  , 
we can obtain

𝑇 𝑟(𝑴𝑻𝑪) = 𝑇 𝑟(𝑴𝑻𝑼𝚺𝑹𝑻 ) = 𝑇 𝑟(𝑹𝑻𝑴𝑻𝑼𝚺) (9)

Let 𝑸 = 𝑹𝑻𝑴𝑻𝑼 , it is evident that 𝑹𝑻𝑴𝑻𝑼𝑼𝑻𝑴𝑹 = 𝑰 . Then we 
can get 𝑇 𝑟(𝑹𝑻𝑴𝑻𝑼𝚺) = 𝑇 𝑟(𝑸𝚺) ≤ 𝑇 𝑟(𝑰𝚺) =

∑𝑡
𝑖=1 𝜎𝑖 , where 𝜎𝑖 is the 

𝑖-𝑡ℎ diagonal element of Σ. Thus, when 𝑸𝚺 = 𝑰𝚺 , indicating 𝑹𝑻𝑴𝑻𝑼 =
𝑰 , Eq. (8) achieves the maximum, and we get the closed solution 𝑴 =
𝑼𝑹𝑻  . ∎

Subproblem-2. Topology projecting matrix 𝑾 (𝟐)
𝒗  -Subproblem.

The optimization of 𝑾 (𝟐)
𝒗  is similar to 𝑾 (𝟏)

𝒗  . When 𝒁,𝑷 ,𝑾 (𝟏)
𝒗 , 𝛼𝑣 are 

fixed, Eq. (5) can be transformed into the following problem

min
𝑾 (𝟐)

𝒗

𝑉
∑

𝑣=1
𝛼2𝑣

(

𝜆||𝑨𝒗 −𝑾 (𝟐)
𝒗 𝒁||

2
𝐹

)

,

s.t.𝑾 (𝟐)
𝒗

𝑻
𝑾 (𝟐)

𝒗 = 𝑰 .

(10)

According to the relationship between the Frobenius norm and ma-
trix trace, we can change Eq.  (10) into

max
𝑾 (𝟐)

𝒗

𝑇 𝑟(𝑾 (𝟐)
𝒗

𝑻
𝑩), s.t. 𝑾 (𝟐)

𝒗
𝑻
𝑾 (𝟐)

𝒗 = 𝑰 , (11)

where 𝑩=𝑨𝒗𝒁𝑻  , therefore 𝑾 (𝟐)
𝒗  equals 𝑼𝒃𝑹𝑻

𝒃  when 𝑩 = 𝑼𝒃𝚺𝒃𝑹𝑻
𝒃  .

Subproblem-3. Adaptive virtual anchors 𝑷 -Subproblem. When 
𝒁,𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗 , 𝛼𝑣 fixed, Eq. (5) can be transformed into the following 

formula

min
𝑷

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

)

, s.t. 𝑷 𝑻 𝑷 = 𝑰 . (12)

Moreover, Eq. (12) can be rewritten as

min
𝑷

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

)

,

⇔min
𝑷

𝑉
∑

𝑣=1
𝛼2𝑣𝑇 𝑟

(

𝑿̂𝑻
𝒗 𝑿̂𝒗 − 2𝑷 𝑻𝑾 (𝟏)

𝒗
𝑻
𝑿̂𝒗𝒁𝑻 +𝒁𝑻𝒁

)

⇔max
𝑷

𝑉
∑

𝑣=1
𝛼2𝑣𝑇 𝑟

(

𝑷 𝑻𝑾 (𝟏)
𝒗

𝑻
𝑿̂𝒗𝒁𝑻

)

⇔max
𝑷

𝑇 𝑟
(

𝑷 𝑻 𝑭
)

, s.t. 𝑷 𝑻 𝑷 = 𝑰 ,

(13)

where 𝑭 =
∑𝑉

𝑣=1 𝛼
2
𝑣𝑾

(𝟏)
𝒗

𝑻
𝑿̂𝒗𝒁𝑻  . Supposing optimization results of 𝑭  is 

𝑼𝒇𝚺𝒇𝑹𝑻
𝒇  , 𝑷  equals to 𝑼𝒇𝑽 𝑻

𝒇  .
Subproblem-4. Adaptive virtual Anchor graph 𝒁 -Subproblem.

When we fix 𝑷 ,𝑾 (𝟏)
𝒗 ,𝑾 (𝟐)

𝒗  , 𝛼𝑣 , we can transform Eq. (5) based on the 
relationship between the Frobenius norm and matrix trace. Then we 
can delete some terms unrelated to 𝒁 , which have no effect on the 
first derivative of the equation. Finally, we set the first derivative of the 
equation to zero to obtain the optimization result. Therefore, we have

𝜕
∑𝑉

𝑣=1 𝛼
2
𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹 + 𝜆||𝑨𝒗 −𝑾 (𝟐)

𝒗 𝒁||

2
𝐹

)

𝜕𝒁

⇔

𝜕
∑𝑉

𝑣=1 𝛼
2
𝑣𝑇 𝑟

[

(𝑰 + 𝜆𝑰)𝒁𝑻𝒁 − 2𝒁𝑻 𝑷 𝑻𝑾 (𝟏)
𝒗

𝑻
𝑿̂𝒗

]

𝜕𝒁

−
𝜕
∑𝑉

𝑣=1 𝛼
2
𝑣𝑇 𝑟

[

2𝜆𝒁𝑻𝑾 (𝟐)
𝒗

𝑻
𝑨𝒗

]

𝜕𝒁
.

(14)

When setting Eq. (15) to 0, we can get the optimization as

𝑍 =
[ 𝑉
∑

𝑣=1
𝛼2𝑣(𝑰 + 𝜆𝑰)

]

−1 ×
[ 𝑉
∑

𝑣=1
𝛼2𝑣

(

𝑷 𝑻𝑾 (𝟏)
𝒗

𝑻
𝑿̂𝒗 + 𝜆𝑾 (𝟐)

𝒗
𝑻
𝑨𝒗

)

]

. (15)

Subproblem-5. Attention for individual views 𝛼𝑣-Subproblem.
When updating the attention score 𝛼𝑣, we keep 𝒁,𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗 , 𝑷  fixed. 

Marking 
(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹 + 𝜆||𝑨𝒗 −𝑾 (𝟐)

𝒗 𝒁||

2
𝐹

)

 as 𝐻 , Eq. (5) can be 
transformed as
𝑉
∑

𝑣=1
𝛼2𝑣𝐻

2
𝑣 ⇔

1
𝑉

𝑉
∑

𝑣=1

(

𝛼𝑣𝐻𝑣
)2

𝑉
∑

𝑣=1
12 ≥ 1

𝑉

( 𝑉
∑

𝑣=1
𝛼𝑣𝐻𝑣

)

2. (16)

According to the conditions for equality, we can obtain the optimal 
results when 𝛼1𝐻1 = 𝛼2𝐻2 = … = 𝛼𝑉 𝐻𝑉  , and we set 𝐿 = 𝛼1𝐻1 . Ac-
cording to Schwarz Cauchy inequality, we can acquire 𝛼𝑣 = 𝐿

𝐻𝑣
 where 

𝐿 = 1
1
𝐻1

+ 1
𝐻2

+…+ 1
𝐻𝑉

 .
The designed optimization solver (the five-block coordinate descent 

optimization) divides the multivariate optimization problem into five 
sub-problems. By solving these subproblems iteratively, we can obtain 
the updated virtual anchors 𝑷  and the virtual anchor graph 𝒁 .

3.3.  Algorithm summary and theoretical analysis

In this subsection, we conclude our adaptive virtual anchor clus-
tering algorithm and further analyze its time complexity and conver-
gence. Moreover, we discuss our memory optimization techniques (ma-
trix chunking multiplication) to further reduce memory requirements 
when dealing with large graphs.  The complete procedures of AVAC are 
outlined in Algorithm 2. As depicted, we initialize 𝑷 ,𝒁,𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗  with 

zero matrices. First, we preprocess the multi-view attributed graph via 
the ℎ-order graph filter to obtain smooth representations. Then, we up-
date 𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗  to prepare the attributed projecting matrix and topology 

projecting matrix. After that, we can update the adaptive virtual anchors 
by solving the 𝑷 -Subproblem to obtain the optimized virtual anchors. 
Then, we update 𝒁, 𝛼 to obtain the adaptive virtual anchor graph. We 
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Algorithm 2: The AVAC algorithm.
Input: Multi-view attributed graph {𝑨𝟏,… , 𝑨𝑽 , 𝑿𝟏,… , 𝑿𝑽

} , 
the number of cluster 𝐾.

Output: 𝐾 clusters.
1 Initialization: Initialize 𝑷 ,𝒁,𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗  with zero matrix. 

Initialize 𝛼𝑣 with 1𝑣 .
2  Perform the h-order graph filter to obtain the smooth 

representation of multi-view attributed graph 
{

𝑨𝟏,… , 𝑨𝑽 , 𝑿̂𝟏,… , 𝑿̂𝑽

}

 .
3 while not converged do
4  Update 𝑾 (𝟏)

𝒗  by solving the attribute projecting matrix 
𝑾 (𝟏)

𝒗 -Subproblem.
5  Update 𝑾 (𝟐)

𝒗  by solving the topology projecting matrix 
𝑾 (𝟐)

𝒗 -Subproblem.
6  Update 𝑷  by solving adaptive virtual anchors 𝑷

-Subproblem.
7  Update 𝒁 by solving the anchor graph 𝒁 -Subproblem.
8  Update 𝛼𝑣 by solving the attention score for individual 

views 𝛼𝑣-Subproblem.
9 end 
10  Perform SVD on 𝒁 to obtain the left singular vector 𝑼 .
11  Perform clustering algorithm on 𝑼 to get the 𝐾 clusters.
12 return K clusters. 

can adaptively learn virtual anchors and construct the virtual anchor 
graph by minimizing Eq. (5). This process effectively captures the un-
derlying distribution and topological information by reconstructing both 
the attribute matrix and the adjacency matrix. Moreover, we execute 
Stages B and C alternately to dynamically update the virtual anchors 
and the virtual anchor graph. After obtaining the anchor graph 𝒁 , we 
perform SVD on the anchor graph to acquire the left singular vector 𝑼
. Finally, we execute K-means on the eigenvalue 𝑼 to get the clustering 
results.

Time complexity. For AVAC, the cost of optimization for each vari-
able composes the overall computational complexity. When updating 
𝑾 (𝟏)

𝒗  , the implementation of SVD on 𝑪𝒗 takes (𝑑𝑣𝑑2) , and it costs 
(𝑑𝑣𝑑𝑘2) for other matrix multiplication. When updating 𝑾 (𝟐)

𝒗  , it costs 
(𝑚2𝑛) to execute SVD on 𝑩𝒗.

When updating 𝒁 , the inverse operation costs (𝑚3) . Since the adja-
cency matrix is sparse, assuming that the number of non-zero elements 
in the matrix is 𝑛𝑧, where 𝑛𝑧 is much smaller than 𝑛2, the other matrix 
multiplications cost (𝑚𝑑𝑑𝑣+𝑚𝑑𝑣𝑛+𝑛𝑧+𝑚2𝑛) . When updating 𝑷  , it takes 
(𝑚𝑑2) for SVD and (𝑑𝑚𝑘2) for matrix multiplications. Furthermore, it 
costs (1) when calculating 𝛼𝑣. In summary, we can find the complexity 
of AVAC is with respect to (𝑛𝑧) , which is far less than 𝑛2. To further im-
prove the efficiency of AVAC, we can consider the adjacency matrix as 
𝑛 vectors, and implement the matrix multiplication in parallel, reducing 
the time complexity of AVAC to (𝑛).

Convergence analysis. We design the five-block coordinate descent 
optimization for the AVAC method. It monotonically decreases during 
the iteration process when one subproblem is solved with the others 
fixed at each iteration. Moreover, we can observe that the lower bound 
of Eq. (5) is 0. Thus, according to [37], the algorithm can be guaranteed 
to converge.

Discussion. As the graph size increases, we find that the memory 
requirement of clustering is increasing. Through experiments, it is clear 
that matrix multiplications consume the most memory. To better adapt 
to large graph scenarios, we design the matrix chunking multiplication 
for AVAC to reduce the memory requirement. As shown in Fig. 4, we 
divide the original matrix into nine sub-matrices. We decompose large 
matrix multiplications into several smaller block multiplications. The 
first block of results ( 𝑨𝑨′ + 𝑩𝑫′ + 𝑪𝑮′ ) is computed by multiplying 

Table 2 
Multi-view attributed graph datasets.
 Dataset  Views  Nodes  Attributes  Edges  Clusters
 ACM  2  3,025  1,830  29,281  3

 2,210,761

DBLP 3 4,057 334
 11,113

4 5,000,495
 6,776,335

 BlogCatalog  2  5,196  8,189  171,743  6
 5,196

 Flickr  2  7,575  12,047  479,476  9
 7,575

 AMAP  2  7,650  745  119,081  8
 7,650

 Wiki  4  2,405  4,973  24,357  17
 12,025

 Pubmed  2  19,717  500  44,338  3
 Computer  2  13,752  767  133,289  10
 Ogbn-products  2  2,449,029  100  61,859,140  47

the first row of matrix 𝑳 with the first column of matrix 𝑴 . The size 
of the sub-matrices is determined based on the memory capacity of the 
running environment.

4.  Experiment

In this section, we evaluate AVAC with a comparison to the state-of-
the-art algorithms over real and synthetic datasets.

4.1.  Experimental setup

In this subsection, we introduce metrics, datasets, and comparison 
algorithms, respectively.

Metrics and Datasets. We use four evaluation metrics to measure 
clustering results: accuracy (ACC), F1-score (F1), normalized mutual in-
formation (NMI), and adjusted rand index (ARI) [11].

Moreover, in the experiments, we use nine datasets covering three 
types of multi-view attributed graphs. The detailed information is shown 
in Table 2.

• Multi-view attributed graph datasets with multiple graph struc-
tures. We implement two real datasets (ACM3, DBLP4) which con-
tain one attributed matrix and multiple adjacency matrices.

• Multi-view with multiple attribute matrices. Blogcatalog dataset 
[23], Pubmed dataset [38], Computer dataset,5 AMAP dataset6, 
Flickr dataset [39] and the Ogbn-products dataset [40] contain one 
adjacency matrix and multiple attribute matrices. Moreover, the 
attribute matrix of the Blogcatalog, Flickr, and AMAP datasets in 
the second view is constructed via a cartesian product [11]. In the 
Pubmed, Computer and Ogbn-products datasets, the attribute matrix 
of the second view is constructed using a log-scale of the original 
ones [41].

• Multi-view attributed graph datasets with multiple attributes 
and graph structures. The Wiki dataset [41] contains multiple 
attribute matrices and multiple adjacency matrices. In the Wiki 
dataset, the additional views are created from the initial data which 
contains a single graph structure and attribute matrix.
Comparison Algorithms. We compare AVAC with several represen-

tative works in recent years from the perspectives of accuracy and ef-
ficiency on nine datasets, which contain different types of multi-view 
attributed graphs. The comparison algorithms mainly include the fol-
lowing four categories:

3 http://dl.acm.org
4 https://dblp.uni-trier.de/
5 https://github.com/Karenxt/AGCandIAGC-code/
6 https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering/
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Fig. 4. Matrix chunking multiplication.

Fig. 5. Two-dimensional projections of AVAC embeddings using t-SNE colored according to real labels.

Fig. 6. Two-dimensional projections of DIAGC embeddings using t-SNE colored according to real labels.

• Subspace clustering methods: PwMC [42] and MAGC [11].
• Single-view methods: SDCN [43], SDCN-avg, AGCN [44], and 
AGCN-avg. We implement these single-view methods on each view 
and take the best result as the final result. Furthermore, we calcu-
late average results of all views and remark them as SDCN-avg and 
AGCN-avg.

• Anchor-based methods: SMVSC [18] and MvAGC [10].
• Deep learning-based method: DIAGC [30] and GMVC [45].

Experiments are performed on the computer equipped with TITIAN 
RTX 2080TI GPU of memory 11G and Intel Core i9 9820X CPU of 128G. 
Based on our memory capacity, for the Ogbn-products dataset, we di-
vide the matrix 2, 449, 029 × 2, 449, 029 into several 100, 000 × 100, 000
chunks for matrix multiplication. The source code is available at 
https://github.com/lmyfree/AVAC.

4.2.  Clustering results

In this experiment, we evaluate the effectiveness of AVAC and 
the comparison algorithms based on the clustering results. Tables 3 
and 4 list clustering results compared with recent algorithms. Over-
all, our proposed method AVAC outperforms other advanced methods 
[10,11,18,30,42–45]. To be precise, we have the following observations.

According to Tables 1 and 3, single-view methods are not suitable 
for multi-view datasets and fail to deal with multi-view datasets be-
cause they cannot take advantage of complementary information be-
tween views.

PwMC and MAGC are subspace methods. In comparison, AVAC 
consistently achieves superior performance. Specifically, on the Flickr 
dataset, AVAC outperforms MAGC by approximately 40% in terms of 
accuracy. Furthermore, in the AMAP dataset, AVAC achieves an accu-
racy that is roughly 50% greater than that of PwMC.

Anchor-based methods for Euclidean data fail to deal with multi-
view attributed graphs. We can observe that SMVSC performs worse in 
multi-view attributed graphs, and is more than 10% lower than AVAC 
in terms of accuracy in most datasets. It can only focus on attributed 

matrices without considering multiple graph structures, which leads to 
lower accuracy. Thus, these anchor methods for Euclidean data are not 
effective for multi-view attributed graphs. As for MvAGC, the sampled 
anchor-based method, our method AVAC presents better performances 
than MvAGC, with about 10% higher in NMI or ARI in most datasets 
like BlogCatalog, Pubmed, Flickr, and AMAP datasets. This illustrates 
that our virtual anchors can accurately capture the distribution of the 
real data compared with the sampled anchors.

Compared with deep-learning methods, AVAC performs better than 
DIAGC with about 10% higher on four evaluated metrics in the AMAP 
dataset. AVAC outperforms GMVC across all datasets, achieving over 
40% higher accuracy on the BlogCatalog, Flickr, and AMAP datasets. 
AVAC generates virtual anchors from adaptive learning which makes 
anchors more representative and contributes to better performances. 
Additionally, experimental results show that the GMVC model suffers 
from class imbalance during clustering, leading to lower F1 scores.

According to the results of the BlogCatalog dataset, AVAC is 33% 
higher than the best advanced methods in accuracy. Also, AVAC is 
about 6% higher than other methods in the Wiki dataset according to 
NMI. From the results of the Flickr dataset, AVAC is about 15% higher 
than other advanced methods on four evaluated metrics. In the Ogbn-
products dataset, most methods are unable to process large-scale graphs 
due to excessive running time or high memory requirements. Compared 
with MvAGC, AVAC is about 80% higher in the Ogbn-products dataset 
according to ARI, which indicates AVAC is more effective than other 
methods. Fig. 5 visualizes the clustering results of our method. Fig. 6 vi-
sualizes the clustering results of the latest comparison method, DIAGC. 
We find that the clustering results of AVAC are clearer and more distin-
guishable than those of DIAGC, especially in the BlogCatalog and Flickr 
datasets.

4.3.  Time comparison

In this experiment, we assess the time of AVAC and other compari-
son algorithms. For a fair comparison, we compare the running times of 
various methods with the best results. From Table 5, we can obviously 
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Table 3 
Clustering accuracy. The symbol "-" indicates that no clustering result was obtained within 24 h, typically due to memory or time 
constraints.( ).

Table 4 
Clustering accuracy. The symbol "-" indicates that no clustering result was obtained within 24 h, typically due to memory or time 
constraints.( ).

observe that AVAC consumes much less time than other advanced meth-
ods. Compared with MvAGC, our method AVAC achieves a speedup of 
2–5 times while maintaining high accuracy in most datasets. Notably, in 
the BlogCatalog dataset, AVAC demonstrates a remarkable speedup of 
24 times compared to MvAGC. In contrast, as a deep learning approach, 
DIAGC incurs higher computational costs and requires more resources 
than alternative methods due to its extensive number of parameters that 
need to be trained. In the large-scale dataset (Ogbn-products dataset), 
AVAC is approximately 1.8 times faster than MvAGC. In contrast, SM-
VAC takes more than 24 h, while PwMC, MAGC, and DIAGC require too 
much memory.

4.4.  Scalability experiments

We conducted scalability experiments at different scales–thousands, 
tens of thousands, hundreds of thousands, and millions to assess the ca-
pability of various methods in handling large-scale graphs, as shown 
in Table 6. Among these datasets, BlogCatalog, Ogbn-arxiv, and Ogbh-
products are publicly available datasets, while BlogCatalog-pro is a syn-
thetic dataset obtained by replicating the nodes of BlogCatalog eight 
times, resulting in a dataset with 40,000 nodes.

Discussion about the large-scale dataset. To analyze the capac-
ity of different approaches in handling large-scale graphs, we introduce 
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Table 5 
Running time. We mark italic to show the best performances. “OOM” represents out of memory. “Speedup” indicates the 
multiplier of acceleration compared to the fastest method.
 Methods  ACM  DBLP  BlogCatalog  Wiki  Flickr  Com  AMAP  Pubmed  Ogbn-products
 SMVAC  15.32s  26.38s  101.50s  26.65s  215.30s  63.37s  42.26s  90.65s  >24h
 PwMC  252.59s  305.89s  45.01s  42.33s  136.39s  687.09s  144.04s  1936.72s  OOM
 MAGC  83.87s  159.82s  173.40s  103.48s  367.80s  440.82s  54.31s  316.90s  OOM
 MvAGC  5.68s  9.70s  31.60s  16.23s  68.81s  115.10s  19.57s  86.39s  14572.29s
 DIAGC  267.02s  573.96s  600.85s  371.48s  1131.79s  OOM  1115.16s  OOM  OOM
 GMVC  57.97s  89.74s  221.51s  87.51s  635.79s  170.66s  81.13s  686.70s  OOM
 AVAC  1.68s  2.00s  1.29s  4.45s  39.49s  14.43s  7.27s  21.90s  8063.28s
 Speedup  3.38x  4.85x  24.49x  3.64x  1.74x  4.39x  2.69x  3.94x  1.80x

Table 6 
Scalability analysis. “OOM” represents out of memory.( ).

the publicly available large graph dataset (Ogbn-products dataset). This 
dataset contains 2,449,029 nodes and 61,859,140 edges in each view, 
with each node having 100 dimensions. The memory required to store 
the two attributed matrices is 934MB, which is equivalent to 1.03 billion 
nodes with only one dimension. Additionally, the memory of the adja-
cency matrix in COO sparse format is 1.84GB, roughly the same as the 
LiveJournal dataset [46] with 112 million edges. Thus, considering the 
number of attributes and views, we find that the scale of the multi-view 
attributed graph is significantly larger than merely taking into account 
the number of nodes.

Scalability Analysis. From scalability experimental results, deep 
learning methods and several subspace-based methods are not suitable 
for large-scale graphs due to high complexity. Deep clustering methods 
(DIAGC) and subspace clustering methods (PwMC, MAGC) have time 
and space complexities of (𝑁2) or higher. This means that as the data 
scale increases, the computational cost rises exponentially, severely lim-
iting the scalability of these algorithms for large-scale graph data. As the 
number of nodes escalated from thousands to tens of thousands, the run-
time of PwMC increased dramatically from 45 s to over 6 h, representing 
a more than 500-fold increase and underscoring its inadequate scalabil-
ity. Similarly, DIAGC encounters memory exhaustion and is unable to 
complete computations for 40,000 nodes. In the Ogbn-products dataset, 
SMVAC (Anchor methods for Euclidean data) consumes over 24 h; while 
PwMC, DIAGC, and MAGC require more memory than other methods 
when dealing with the same dataset, so they cannot handle large sce-
narios at a low cost. Our method can yield better results and speed up 
by 1.8 times compared with MvAGC. Thus, our method is more suitable 
for large-scale scenarios compared with other methods.

4.5.  Stability analysis

To evaluate the stability of the models, we repeat the experiments on 
the ACM dataset 50 times with fixed parameters and compare the results 
with the existing anchor method, MvAGC [10], as shown in Fig. 7. We 
employ the same settings to ensure the stability of k-means in both our 
method and MvAGC. This allows a fair comparison of stability between 

the sampled anchor method and our adaptive virtual anchor method. 
From Fig. 7, we can observe that the results of AVAC are stable for our 
anchors are obtained via optimization, while MvAGC, where anchors 
are selected by a random algorithm, is affected by the random numbers. 
The results of MvAGC fluctuate ±5%, resulting in poor stability of the 
model.

4.6.  Parameter analysis

AVAC has several parameters to tune, including the number of an-
chors 𝑚, the weighting factor 𝜆, and the filter order ℎ. Fig. 8 shows the 
results under different parameters. In AVAC, we fix one parameter and 
vary the other two parameters. For the DBLP dataset, according to the 
metrics NMI and ARI, we can observe that the weighting factor 𝜆 affects 
the performance to some degree. In the DBLP dataset, when we set it to 
100, AVAC can obtain excellent results considering all evaluation met-
rics. Besides, it is obvious that we should not set the value of anchor 
number 𝑚 too large. According to the results, we infer that an exces-
sive number of optimized anchors may lead to the case that multiple 
representative anchors belong to the same class. This may lead to large 
distances within a class and overly broad class boundaries, making it 
challenging to accurately partition the clusters. Furthermore, we find 
that the filter order ℎ can combine attribute information with structural 
information efficiently.

Moreover, we visualize the view weights of most datasets in Fig. 9 
and find that the weights of each view in ACM, DBLP, and Blogcatalog 
datasets are similar, indicating that each view in these datasets is equally 
important and contains a large amount of information. In AMAP, Com-
puter, and Flickr datasets, the weight of the first view is significantly 
greater than that of the second view, indicating that the first view may 
contain more useful information than the second view.

4.7.  Ablation analysis

To better evaluate the importance of each part in AVAC, we have 
redesigned three ablation experiments as follows:
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Fig. 7. Stability analysis on the ACM dataset.

Fig. 8. Parameter analysis for AVAC.

Table 7 
Ablation analysis.

Dataset
 ACM  DBLP  Wiki
 ACC  NMI  F1  ARI  ACC  NMI  F1  ARI  ACC  NMI  F1  ARI

 w/o TR  0.8614  0.5685  0.8610  0.6340  0.4333  0.2409  0.4575  0.0758  0.5234  0.5489  0.4737  0.3482
 w/o Graph Filter  0.9137  0.7059  0.9150  0.7589  0.9169  0.7427  0.9126  0.7995  0.5480  0.5582  0.4732  0.3668
 w/o FR  0.5990  0.3220  0.5722  0.3173  0.9115  0.7343  0.9052  0.7913  0.4099  0.3769  0.3543  0.2225
 AVAC(ours)  0.9302  0.7534  0.9306  0.8029  0.9346  0.7886  0.9305  0.8419  0.5417  0.5611  0.4730  0.3743

Fig. 9. View weights.

• W/o (With/Without) Topology Reconstruction (TR). According 
to Table 7, we can observe that topology reconstruction plays an im-
portant role in clustering. Without topology reconstruction, we may 
ignore the structure information to some degree and fail to capture 
the real structure of nodes.

• W/o Graph Filter. From Table 7, we can find that the graph fil-
ter has a tiny impact on clustering results. The graph filter attempts 
to combine structure information with attributes and obtain smooth 
representations. However, without the graph filter, the topology re-
construction can contribute to capturing the real structure of nodes, 
so that the graph filter influences the results little.

• W/o Feature Reconstruction (FR). The results in Table 7 indicate 
that feature reconstruction has a greater impact on the ACM dataset, 
which may be due to the higher attribute dimensions of the ACM 
dataset. When facing high-dimensional feature datasets, removing 
the feature reconstruction will ignore important information about 
attributes, thereby affecting clustering results.

4.8.  Summary

Through extensive experiments, we can observe that compared to 
state-of-the-art approaches, AVAC can significantly improve accuracy 
while further reducing the time cost of clustering. Particularly for the 
Blogcatalog dataset, AVAC achieves a speedup of 24 times compared 
to other methods. Furthermore, we find that AVAC can respond more 
quickly to large-scale graphs by enlarging the graph scale to millions 
of nodes. In particular, on the public large-scale dataset, the AVAC al-
gorithm has achieved a speedup of 1.8 times over the state-of-the-art 

Information Fusion 131 (2026) 104190 

11 



M. Li et al.

method MvAGC while improving accuracy significantly. Moreover, com-
pared with other sampled anchor methods like MvAGC [10], AVAC can 
obtain more stable results.

5.  Conclusion

In this paper, we propose the adaptive virtual anchor clustering 
method (AVAC), which efficiently clusters multi-view attributed graphs. 
AVAC generates adaptive virtual anchors and connects anchor genera-
tion and anchor graph construction closely. By executing these two pro-
cesses cyclically and alternately, through which these two processes af-
fect each other, AVAC can generate effective anchors that capture more 
accurate real data distribution and graph structure. Extensive experi-
mental results validate the effectiveness of our method in terms of accu-
racy, running time, and stability. In the future, we will focus on incom-
plete clustering and further explore virtual anchor clustering methods 
that are more suitable for incomplete multi-view attributed graphs.
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