
Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

Adaptive virtual anchors for efficient and stable clustering over large

multi-view attributed graphs

Mengyao Li a, Zhibang Yang b,∗, Xu Zhou a, Joey Tianyi Zhou c, Quanqing Xu d,
Chuanhui Yang d, Kenli Li a, Keqin Li a,e

aHunan University, Changsha, 410082, China
bHunan Province Key Laboratory of Industrial Internet Technology and Security, Changsha University, Changsha, 410022, China
cA*STAR Centre for Frontier AI Research, 138632, Singapore
dOceanBase and the Research Institute of Ant Group, Hangzhou, 310000, China
e State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o

Keywords:
Attributed graph clustering
Community detection
Multi-view attributed graph

 a b s t r a c t

Multi-view attributed graphs (MVAG) are well-known for their ability to model complex networks and relation-
ships, which can provide diverse yet complementary information for finding a consensus partition suitable for
all views. There have been abundant methods for clustering over multi-view attributed graphs. However, most
of them are not suitable for large-scale graphs due to high complexity. Moreover, while existing anchor-based
methods can effectively accelerate clustering, they mainly focus on either attribute information or graph struc-
ture during anchor selection, and some suffer from stability issues. Inspired by this, in this paper, we propose
the adaptive virtual anchor clustering method (AVAC) to boost clustering performance and keep stable results.
In particular, we first introduce adaptive virtual anchors for multi-view attributed graphs, which are learned
and generated from graphs adaptively. After that, we connect anchor learning and anchor graph construction
closely and cyclically to learn virtual anchors dynamically and make them capture real data distribution and
topology information more accurately. Last but not least, we design a five-block coordinate descent method with
proven convergence to further optimize our virtual anchors more representative of existing nodes. Extensive
experiments over both real and synthetic datasets demonstrate the effectiveness, efficiency, and stability of our
method. Compared to state-of-the-art approaches, the AVAC algorithm always gains stable results with a signif-
icant improvement in accuracy, and achieves a speedup of 1.8 times on public large-scale datasets. The source
code is available at https://github.com/lmyfree/AVAC.

1. Introduction

As a prevalent type of graph, attributed graphs [1–4] contribute to
modeling complex relationships between various entities with related
attributes in social networks [5], citation networks [6], biological net-
works [7], and so on. Recently, as the network data in real-world appli-
cations become typically multi-modal and multi-relational, multi-view
attributed graphs [8,9] have garnered significant attention. Multi-view
attributed graph clustering [10,11], which aims to seek a unified parti-
tion to divide nodes into several disjoint clusters, plays a critical role in
many applications.

Application. Clustering on multi-view attributed graphs plays a
critical role in recommendation systems [12], social network analysis
[11] and other applications. For instance, multi-view attributed graphs

∗ Corresponding author.
 E-mail addresses: lmy835@hnu.edu.cn (M. Li), yangzb@ccsu.edu.cn (Z. Yang), zhxu@hnu.edu.cn (X. Zhou), joey.tianyi.zhou@gmail.com (J.T. Zhou),
xuquanqing.xqq@oceanbase.com (Q. Xu), rizhao.ych@oceanbase.com (C. Yang), lkl@hnu.edu.cn (K. Li), likq@hnu.edu.cn (K. Li).

in movie recommendation systems can showcase various relationships
among movies such as co-actor and co-director relationships, along with
related keywords, types, and other attribute features. The integration of
diverse views provides more comprehensive information for clustering
which can contribute to accurate movie recommendation.

Prior Work and Limitations. Faced with complex multi-view at-
tributed graphs, how to fuse different views is the most imperative
problem. At present, existing approaches can be categorized into two
classes. The first class endeavors to fuse the attributed graphs of all views
into a consistent graph, such as subspace-based methods [10,11,13].
Multi-view attributed graph clustering (MAGC) [11] leverages the self-
expressiveness property to combine diverse views into a consistent
graph. Multi-view contrastive graph clustering (MCGC) [13] learns a
consensus graph regularized by graph contrastive loss. The other class

https://doi.org/10.1016/j.inffus.2026.104190
Received 11 February 2025; Received in revised form 30 December 2025; Accepted 26 January 2026

Information Fusion 131 (2026) 104190

Available online 28 January 2026
1566-2535/© 2026 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/inffus
https://www.elsevier.com/locate/inffus
https://orcid.org/0009-0003-6811-0863

v_{4}, v_{5}

v_{9}

$G = \left \{\Phi , E_{1}, E_{2},\ldots , E_{V}, \bm {X_{1}, X_{2}, \ldots , X_{V}}\right \}$

$\Phi $

$e_{i,j}^{v}\in E_{v}$

v_{i}

v_{j}

$v\mbox {-}th$

$\bm {X_{v}}\in \mathbb {R}^{d_{v} \times n}$

$v\mbox {-}th$

d_{v}

V

$\left \{\bm {A_{v}}\right \}_{v=1}^{V}$

$\bm {A_{v}}=\{a_{i,j}^{v}\}\in \mathbb {R}^{n\times n}$

v_{i}

v_{j}

$v\mbox {-}th$

$a_{i,j}^{v}=1$

$a_{i,j}^{v}=0$

G

$\left (C_{1}, C_{2}, \ldots , C_{K}\right)$

\begin {equation}\min _{\bm {S},\alpha _{v}} \sum _{v=1}^{V} \alpha _{v}\left (||\bm {X_{v}}-\bm {X_{v}}\cdot \bm {S}||_{F}^{2}+\lambda ||\bm {S}-\bm {A_{v}}||_{F}^{2}\right),\label {equation1}\end {equation}

$\bm {X_{v}}$

$\bm {A_{v}}$

$v\mbox {-}th$

$\alpha _{v}$

$v\mbox {-}th$

$\bm {S} \in \mathbb {R}^{n \times n}$

$||*||_{F}$

$\mathcal {O}(n^{3})$

$\bm {S}$

h

\begin {equation}\bm {\hat {X}}=\left (1-\frac {1}{2}\bm {L}\right)^{h}\bm {X},\label {equation2}\end {equation}

h

$\bm {L}=\bm {I}-\bm {A}$

$\bm P$

$\bm Z$

$\bm Z$

$\bm U$

$\bm U$

$\bm {P}\in \mathbb {R}^{d \times m}$

$\bm {\hat {X}_{v}} \in \mathbb {R}^{d_{v} \times n}$

d

m

\begin {equation}\label {equation3} \begin {aligned} &\min _{\bm {Z,P,W^{(1)}_{v}}} ||\bm {\hat {X}_{v}}-\bm {W^{(1)}_{v}PZ}||_{F}^{2},\\ &\text {\emph {s.t.}}\quad \bm {{W^{(1)}_{v}}^{T}W^{(1)}_{v}}=\bm {I}, \bm {P^{T}P}=\bm {I} \end {aligned}\end {equation}

$\bm {P}$

$\bm {W^{(1)}_{v}} \in \mathbb {R}^{d_{v} \times d}$

d

$v\mbox {-}th$

$\bm {Z}$

$\{{\alpha _{v}}\}_{v=1}^{V}$

\begin {equation}\label {equation4} \begin {aligned} &\min _{\bm {W^{(1)}_{v}}, \bm {Z,P},\alpha _{v}} \sum _{v=1}^{V}\alpha _{v}^{2}\bigg (||\bm {\hat {X}_{v}}-\bm {W^{(1)}_{v}PZ}||_{F}^{2}\bigg),\\ &\text {\emph {s.t.}}\sum _{v=1}^{V}\alpha _{v} = 1,\bm {{W^{(1)}_{v}}^{T}W^{(1)}_{v}}=\bm {I}, \bm {P^{T}P}=\bm {I} \end {aligned}\end {equation}

$\alpha _{v}$

$v\mbox {-}th$

$\bm {Z} \in \mathbb {R}^{m \times n}$

m

$\bm {P} \in \mathbb {R}^{d \times m}$

d

\begin {equation}\label {equation5} \begin {aligned} &\min _{\bm {W^{(1)}_{v},W^{(2)}_{v}} \atop \bm {,Z,P},\alpha _{v}} \sum _{v=1}^{V}\alpha _{v}^{2}\bigg (\underbrace {||\bm {\hat {X}_{v}}-\bm {W^{(1)}_{v}PZ}||_{F}^{2}}_{\text {Feature Reconstruction}}+\lambda \underbrace {||\bm {A_{v}}-\bm {W^{(2)}_{v}Z}||_{F}^{2}}_{\text {Topology Reconstruction}}\bigg),\\ &\text {\emph {s.t.}}\sum _{v=1}^{V}\alpha _{v} = 1,\bm {{W^{(1)}_{v}}^{T}W^{(1)}_{v}}=\bm {I}, \bm {P^{T}P}=\bm {I}, \bm {{W^{(2)}_{v}}^{T}W^{(2)}_{v}}=\bm {I} \end {aligned}\end {equation}

$\bm {Z}$

$\bm {W^{(2)}_{v}} \in \mathbb {R}^{n \times m}$

$\bm {Z} \in \mathbb {R}^{m \times n}$

$v\mbox {-}th$

$\bm {W^{(1)}_{v}, W^{(2)}_{v}, P}$

$\alpha _{v}$

$v\mbox {-}th$

$\lambda $

$\bm P$

$\bm Z$

$\bm P$

$\bm Z$

$\bm {W^{(1)}_{v}}$

$\bm {P, Z}, \bm {W^{(2)}_{v}}$

$\alpha _{v}$

$\bm {W^{(1)}_{v}}$

$\bm {W^{(2)}_{v}}$

$\bm {P, Z}, \bm { W^{(1)}_{v}}$

$\alpha _{v}$

$\bm {W^{(2)}_{v}}$

$\bm {P}$

$\bm {Z, W^{(1)}_{v}}, \bm {W^{(2)}_{v}}$

$\alpha _{v}$

$\bm {P}$

$\bm {Z}$

$\bm {P}, \bm { W^{(1)}_{v}}, \bm {W^{(2)}_{v}}$

$\alpha _{v}$

$\bm {Z}$

$\alpha _{v}$

$\bm {Z}, \bm {W^{(1)}_{v}}, \bm {W^{(2)}_{v}, P}$

$\alpha _{v}$

$\bm {W^{(1)}_{v}}$

$\bm {P, Z}, \bm {W^{(2)}_{v}}$

$\alpha _{v}$

\begin {equation}\label {equation6} \begin {aligned} &\min _{\bm {W^{(1)}_{v}}} \sum _{v=1}^{V}\alpha _{v}^{2}\bigg (||\bm {\hat {X}_{v}}-\bm {W^{(1)}_{v}PZ}||_{F}^{2}\bigg),\\ &\text {\emph {s.t.}} \bm {{W^{(1)}_{v}}^{T}W^{(1)}_{v}}=\bm {I}. \end {aligned}\end {equation}

$\bm {W^{(1)}_{v}}$

\begin {equation}\label {equation7} \begin {aligned} &\min _{\bm {W^{(1)}_{v}}} \sum _{v=1}^{V}\alpha _{v}^{2}\bigg (||\bm {\hat {X}_{v}}-\bm {W^{(1)}_{v}PZ}||_{F}^{2}\bigg),\\ &\text {\emph {s.t.}}\quad \bm {{W^{(1)}_{v}}^{T}W^{(1)}_{v}}=\bm {I},\\ \Leftrightarrow &\min _{\bm {W^{(1)}_{v}}}\sum _{v=1}^{V}\alpha _{v}^{2}Tr\left (\bm {\hat {X}_{v}^{T}\hat {X}_{v}}-2\bm {\hat {X}_{v}^{T}W^{(1)}_{v}PZ}+\bm {Z^{T}P^{T}PZ}\right)\\ \Leftrightarrow &\min _{\bm {W^{(1)}_{v}}}\sum _{v=1}^{V}\alpha _{v}^{2}Tr\left (-2\bm {\hat {X}_{v}^{T}W^{(1)}_{v}PZ}\right)\\ \Leftrightarrow &\max _{\bm {W^{(1)}_{v}}}Tr\left (\bm {{W^{(1)}_{v}}^{T}C}\right), \end {aligned}\end {equation}

$\bm {C}$

$\bm {\hat {X}_{v}Z^{T}P^{T}}$

$\bm {C}$

$\bm {U_{c}\Sigma _{c}R_{c}^{T}}$

$\bm {W^{(1)}_{v}}$

$\bm {U_{c} R_{c}^{T}}$

\begin {equation}\label {equation8} \begin {aligned} &\max _{\bm {M}}Tr(\bm {M^{T}C}),~\text {\emph {s.t.}}\quad \bm {M^{T}M}=\bm {I}. \end {aligned}\end {equation}

$\bm {C}$

$\bm {C}=\bm {U\Sigma R^{T}}$

$\bm {M}=\bm {UR^{T}}$

$\bm {C}$

$\bm {C}=\bm {U \Sigma R^{T}}$

\begin {equation}\label {equation9} \begin {aligned} &Tr(\bm {M^{T}C})=Tr(\bm {M^{T}U\Sigma R^{T}})=Tr(\bm {R^{T}M^{T}U\Sigma })\\ \end {aligned}\end {equation}

$\bm {Q=R^{T}M^{T}U}$

$\bm {R^{T}M^{T}UU^{T}MR}=\bm {I}$

$Tr(\bm {R^{T}M^{T}U\Sigma })=Tr(\bm {Q\Sigma }) \leq Tr(\bm {I\Sigma })=\sum _{i=1}^{t}\sigma _{i}$

$\sigma _{i}$

$i\mbox {-}th$

$\Sigma $

$\bm {Q\Sigma }=\bm {I\Sigma }$

$\bm {R^{T}M^{T}U}=\bm {I}$

$\bm {M}=\bm {UR^{T}}$

$\bm {W^{(2)}_{v}}$

$\bm {W^{(2)}_{v}}$

$\bm {W^{(1)}_{v}}$

$\bm {Z, P, W^{(1)}_{v}}, \alpha _{v}$

\begin {equation}\label {equation10} \begin {aligned} &\min _{\bm {W^{(2)}_{v}}} \sum _{v=1}^{V}\alpha _{v}^{2}\bigg (\lambda ||\bm {A_{v}}-\bm {W^{(2)}_{v}Z}||_{F}^{2}\bigg),\\ &\text {\emph {s.t.}} \bm {{W^{(2)}_{v}}^{T}W^{(2)}_{v}}=\bm {I}. \end {aligned}\end {equation}

\begin {equation}\label {equation11} \begin {aligned} &\max _{\bm {W^{(2)}_{v}}}Tr(\bm {{W^{(2)}_{v}}^{T}B}),\quad \text {\emph {s.t.}}\quad \bm {{W^{(2)}_{v}}^{T}W^{(2)}_{v}}=\bm {I}, \end {aligned}\end {equation}

$\bm {B}{=}\bm {A_{v}Z^{T}}$

$\bm {W^{(2)}_{v}}$

$\bm {U_{b}R_{b}^{T}}$

$\bm {B}=\bm {U_{b}\Sigma _{b}R_{b}^{T}}$

$\bm {P}$

$\bm {Z,W^{(1)}_{v},W^{(2)}_{v}}, \alpha _{v}$

\begin {equation}\label {equation12} \begin {aligned} &\min _{\bm {P}} \sum _{v=1}^{V}\alpha _{v}^{2}\bigg (||\bm {\hat {X}_{v}}-\bm {W^{(1)}_{v}PZ}||_{F}^{2}\bigg), \quad \text {\emph {s.t.}}\quad \bm {P^{T}P}=\bm {I}. \end {aligned}\end {equation}

\begin {equation}\label {equation13} \begin {aligned} &\min _{\bm {P}} \sum _{v=1}^{V}\alpha _{v}^{2}\bigg (||\bm {\hat {X}_{v}}-\bm {W^{(1)}_{v}PZ}||_{F}^{2}\bigg),\\ \Leftrightarrow &\min _{\bm {P}} \sum _{v=1}^{V}\alpha _{v}^{2}Tr\left (\bm {\hat {X}_{v}^{T}\hat {X}_{v}}-2\bm {P^{T}{W^{(1)}_{v}}^{T}\hat {X}_{v}Z^{T}}+\bm {Z^{T}Z}\right)\\ \Leftrightarrow &\max _{\bm {P}}\sum _{v=1}^{V}\alpha _{v}^{2}Tr\left (\bm {P^{T}{W^{(1)}_{v}}^{T}\hat {X}_{v}Z^{T}}\right)\\ \Leftrightarrow &\max _{\bm {P}}Tr\left (\bm {P^{T}F}\right),~\text {\emph {s.t.}}\quad \bm {P^{T}P}=\bm {I}, \end {aligned}\end {equation}

$\bm {F}=\sum _{v=1}^{V}\alpha _{v}^{2} \bm {{W^{(1)}_{v}}^{T}\hat {X}_{v}Z^{T}}$

$\bm {F}$

$\bm {U_{f}\Sigma _{f}R_{f}^{T}}$

$\bm {P}$

$\bm {U_{f}V_{f}^{T}}$

$\bm {Z}$

$\bm {P}, \bm {W^{(1)}_{v}}, \bm {W^{(2)}_{v}}$

$\alpha _{v}$

$\bm {Z}$

\begin {equation}\label {equation14} \begin {aligned} &\frac {\partial \sum _{v=1}^{V}\alpha _{v}^{2}\bigg (||\bm {\hat {X}_{v}}-\bm {W^{(1)}_{v}PZ}||_{F}^{2}+\lambda ||\bm {A_{v}}-\bm {W^{(2)}_{v}Z}||_{F}^{2}\bigg)}{\partial \bm {Z}}\\ \Leftrightarrow & \frac {\partial \sum _{v=1}^{V}\alpha _{v}^{2}Tr\bigg [(\bm {I}+\lambda \bm {I})\bm {Z^{T}Z}-2\bm {Z^{T}P^{T}{W^{(1)}_{v}}^{T}\hat {X}_{v}}\bigg]}{\partial \bm {Z}}\\ &-\frac {\partial \sum _{v=1}^{V}\alpha _{v}^{2}Tr\bigg [2\lambda \bm {Z^{T}{W^{(2)}_{v}}^{T}A_{v}}\bigg]}{\partial \bm {Z}}.\\ \end {aligned}\end {equation}

\begin {equation}\label {equation15} \begin {aligned} &Z=\bigg [\sum _{v=1}^{V}\alpha _{v}^{2}\left (\bm {I}+\lambda \bm {I}\right)\bigg]{}^{-1} \times \bigg [\sum _{v=1}^{V}\alpha _{v}^{2}\left (\bm {P^{T}{W^{(1)}_{v}}^{T}\hat {X}_{v}}+\lambda \bm {{W^{(2)}_{v}}^{T}A_{v}}\right)\bigg]. \end {aligned}\end {equation}

$\alpha _{v}$

$\alpha _{v}$

$\bm {Z,W^{(1)}_{v},W^{(2)}_{v},P}$

$\bigg (||\bm {\hat {X}_{v}}-\bm {W^{(1)}_{v}PZ}||_{F}^{2}+\lambda ||\bm {A_{v}}-\bm {W^{(2)}_{v}Z}||_{F}^{2}\bigg)$

H

\begin {equation}\label {equation16} \begin {aligned} \sum _{v=1}^{V}\alpha _{v}^{2}H_{v}^{2} \Leftrightarrow \frac {1}{V}{\sum _{v=1}^{V}\big (\alpha _{v}H_{v}\big){}^{2}\sum _{v=1}^{V}1^{2}} \geq \frac {1}{V}\bigg (\sum _{v=1}^{V}\alpha _{v}H_{v}\bigg){}^{2}. \end {aligned}\end {equation}

$\alpha _{1}H_{1}=\alpha _{2}H_{2}=\ldots =\alpha _{V}H_{V}$

$L=\alpha _{1}H_{1}$

$\alpha _{v}=\frac {L}{H_{v}}$

$L=\frac {1}{\frac {1}{H_{1}}+\frac {1}{H_{2}}+\ldots +\frac {1}{H_{V}}}$

$\bm {P}$

$\bm {Z}$

$\bm {P,Z,W^{(1)}_{v},W^{(2)}_{v}}$

h

$\bm {W^{(1)}_{v},W^{(2)}_{v}}$

$\bm {P}$

$\bm {Z}, \alpha $

$\bm {Z}$

$\bm {U}$

$\bm {U}$

$\bm {W^{(1)}_{v}}$

$\bm {C_{v}}$

$\mathcal {O}(d_{v}d^{2})$

$\mathcal {O}(d_{v}dk^{2})$

$\bm {W^{(2)}_{v}}$

$\mathcal {O}(m^{2}n)$

$\bm {B_{v}}$

$\bm {Z}$

$\mathcal {O}(m^{3})$

n_{z}

n_{z}

n^{2}

$\mathcal {O}(mdd_{v}{+}md_{v}n{+}n_{z}{+}m^{2}n)$

$\bm {P}$

$\mathcal {O}(md^{2})$

$\mathcal {O}(dmk^{2})$

$\mathcal {O}(1)$

$\alpha _{v}$

$\mathcal {O}(n_{z})$

n^{2}

n

$\mathcal {O}(n)$

$\bm {AA}'+\bm {BD}'+\bm {CG}'$

$\bm {L}$

$\bm {M}$

$2,449,029 \times 2,449,029$

$100,000 \times 100,000$

$\mathcal {O}(N^{2})$

$\pm 5\%$

m

$\lambda $

h

$\lambda $

m

h

https://orcid.org/0009-0005-1523-5253
https://orcid.org/0000-0002-1400-8375
https://orcid.org/0000-0002-4675-7055
https://orcid.org/0000-0001-8989-9662
https://orcid.org/0009-0009-3530-6476
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5224-4048
https://github.com/lmyfree/AVAC
mailto:lmy835@hnu.edu.cn
mailto:yangzb@ccsu.edu.cn
mailto:zhxu@hnu.edu.cn
mailto:joey.tianyi.zhou@gmail.com
mailto:xuquanqing.xqq@oceanbase.com
mailto:rizhao.ych@oceanbase.com
mailto:lkl@hnu.edu.cn
mailto:likq@hnu.edu.cn
https://doi.org/10.1016/j.inffus.2026.104190
https://doi.org/10.1016/j.inffus.2026.104190

M. Li et al.

Fig. 1. Traditional anchors vs Virtual anchors. Fig. 1(a) shows traditional anchors that are sampled from existing nodes only considering topology. Fig. 1(b) shows
adaptive virtual anchors learned and generated from data dynamically. Fig. 1(c) and (d) show anchor embeddings obtained by MvAGC and our method in the
BlogCatalog dataset, where yellow stars are anchors.

[14–16] applies graph embedding techniques to transform graph data
into low-dimensional feature representations and then clusters on these
representations to obtain final results. Fan et al. [17] introduces an in-
novative autoencoder framework that encompasses an encoder shared
across all views for extracting shared representations, along with multi-
ple decoders for reconstructing multi-view graphs.

Although there have been some works [11,13] on clustering multi-
view attributed graphs, they also encounter the following limitations:

• They are not suitable for large-scale graphs due to their high
complexity. In real-life scenarios, graph data becomes increasingly
complex and large-scale. For example, the number of nodes in user
networks on social media platforms such as Facebook1 and QQ2 has
already exceeded millions by 2018. However, most methods fail to
deal with large-scale graphs due to long running time or memory
limitations, as shown in Section 4.4.

• Existing anchor-based methods can not effectively deal with
multi-view attributed graphs. Although numerous anchor-based
methods [18–21] have been developed to reduce running time, they
are mainly designed for Euclidean data and focus solely on at-
tributes, making them unsuitable for multi-view attributed graphs,
as demonstrated in Section 4.2. Recently, MvAGC [10] introduces
an anchor-based method for multi-view attributed graphs, which se-
lects anchors from existing nodes via a sampling algorithm. How-
ever, MvAGC only considers graph structure and ignores attribute
information during sampling, which directly affects the quality of
anchors and clustering accuracy. Moreover, due to its dependence
on random sampling algorithms, MvAGC introduces uncertainty in
the anchor selection process, leading to unstable anchors that ad-
versely impact model stability. Section 4.5 depicts that the cluster-
ing results of MvAGC fluctuate significantly, with evaluation indica-
tors varying by approximately 15%. These unstable results mean that
MvAGC requires multiple repeated experiments and additional com-
putational time to achieve optimal outcomes, making it unsuitable
for real-world applications.
Challenges. Consequently, how to obtain efficient and stable an-

chors adaptive for multi-view attributed graphs has become a challeng-
ing problem. We summarize posed grim challenges as two aspects. First,
it is crucial to design efficient and stable anchors adaptive for multi-view
attributed graphs. The quality of anchors directly affects the accuracy
of clustering, so how to obtain high-quality anchors that can accurately
capture real features and topology structures becomes a core concern.
Second, it is significant to design an effective and convergent solution
to solve the multivariate optimization problem. Multi-view attributed
graph clustering usually can be modeled as a multivariate optimization
problem. Different optimization strategies directly affect the optimized
results, which can influence the clustering accuracy.

Our Solution. We first introduce adaptive virtual anchors specif-
ically designed for multi-view attributed graphs, more efficient than

1 https://investor.fb.com/home/default.aspx
2 https://www.tencent.com/zh-cn/investors/financial-reports.html

existing methods. Moreover, to solve the multivariate optimization
problem proposed by our method, we design an optimization solver,
derived from the Alternating Direction Method of Multipliers (ADMM)
[22], specifically customized to address the unique challenges of our
method and update adaptive virtual anchors dynamically.
Example 1. Fig. 1 delineates the differences between traditional an-
chors and our proposed adaptive virtual anchors, using MvAGC as a
representative example. Fig. 1(a) depicts the anchors of traditional ap-
proach, which are sampled from given nodes only considering topology.
For instance, given an attributed graph with nine nodes categorized into
three classes marked with different colors, the traditional methods only
consider the structural information and randomly sample three nodes
𝑣4, 𝑣5 and 𝑣9 from the nine nodes as anchors that remain fixed in other
processes. It fails to fully leverage both attribute and structural informa-
tion, and the random sampling process is entirely decoupled from the
other steps, resulting in unrepresentative anchors that adversely affect
accuracy. Fig. 1(b) showcases our adaptive virtual anchors, which are
adaptively learned by considering both structure and attribute informa-
tion and are dynamically updated to capture the true data distribution
accurately. Fig. 1(c) and (d) visualize the sampled anchors obtained by
MvAGC and the adaptive virtual anchors produced by our method in
the BlogCatalog dataset [23] using t-SNE, where “yellow stars” denote
the anchors. It is clear that our method provides a sharper distinction
between clusters than traditional approaches, with adaptive virtual an-
chors primarily positioned at cluster centers, showing them more repre-
sentative than sampled anchors.

Contributions. We propose the adaptive virtual anchor clustering
method (AVAC) to maintain high accuracy stably while reducing the
running time. AVAC generates adaptive virtual anchors through alter-
nate optimization. In summary, we highlight the contributions as fol-
lows:

• We first introduce adaptive virtual anchors for multi-view attributed
graph clustering which can be learned and generated adaptively
from graphs.

• We propose the adaptive virtual anchor clustering method (AVAC)
which generates adaptive virtual anchors via optimization and con-
nects anchor generation and anchor graph construction closely and
cyclically to dynamically learn adaptive virtual anchors and capture
the real data distribution and graph structure more accurately.

• We design a five-block coordinate descent method to solve the multi-
variate optimization problem proposed by AVAC, and prove its con-
vergence.

• Extensive experimental results demonstrate that AVAC can obtain
stable results with a significant improvement in accuracy while fur-
ther reducing the time cost of clustering. In particular, on the pub-
lic large-scale dataset, our algorithm has achieved a speedup of 1.8
times over the advanced method.

The rest of this paper is organized as follows. In Section 2, we present
preliminaries and related works. Section 3 describes our method and op-
timization while analyzing the time complexity and convergence. Then,

Information Fusion 131 (2026) 104190

2

https://investor.fb.com/home/default.aspx
https://www.tencent.com/zh-cn/investors/financial-reports.html

M. Li et al.

we conduct extensive experiments and analyze results in Section 4. Fi-
nally, Section 5 concludes this paper.

2. Preliminaries

In this section, we display the definition of multi-view attributed
graphs (MVAG) clustering and then introduce related works includ-
ing attributed graph clustering methods, multi-view subspace methods,
multi-view deep learning methods, and anchor-based methods. We sum-
marize frequently used notations in Table 1.

Table 1
Notations and descriptions.
 Notation Description Notation Description

𝑛 Number of nodes 𝑿 Attribute matrix
𝜆 Weighting factor 𝑨 Adjacency matrix
𝑑 Consensus dimen-

sion
ℎ ℎ-order filter

𝑉 Number of views 𝑚 Number of anchors
𝐾 Number of clusters 𝛼𝑖 View coefficient
𝑷 Consensus anchors 𝒁 Fused anchor graph
𝑾 (𝟏)

𝒗 Attribute projecting
matrix in the 𝑣-𝑡ℎ
view

𝑾 (𝟐)
𝒗 Topology projecting

matrix in the 𝑣-𝑡ℎ
view

𝑺 Self-representation
matrix

𝑑𝑣 Dimension in the
𝑣-𝑡ℎ view

2.1. Problem statement

Definition 1. (Multi-view attributed graph clustering [11])
A multi-view attributed graph can be defined as 𝐺 =

{

Φ, 𝐸1, 𝐸2,… , 𝐸𝑉 ,𝑿𝟏, 𝑿𝟐,… , 𝑿𝑽
} , where Φ represents the node

set and 𝑒𝑣𝑖,𝑗 ∈ 𝐸𝑣 denotes the relationship between node 𝑣𝑖 and 𝑣𝑗 in the
𝑣-𝑡ℎ view. 𝑿𝒗 ∈ ℝ𝑑𝑣×𝑛 denotes the attributed matrix for 𝑣-𝑡ℎ view with
𝑑𝑣 dimensions. Furthermore, the structural information can be repre-
sented by 𝑉 adjacency matrices {𝑨𝒗

}𝑉
𝑣=1 , where 𝑨𝒗 = {𝑎𝑣𝑖,𝑗} ∈ ℝ𝑛×𝑛

and if there exists an edge between nodes 𝑣𝑖 and 𝑣𝑗 in the 𝑣-𝑡ℎ view,
𝑎𝑣𝑖,𝑗 = 1, otherwise, 𝑎𝑣𝑖,𝑗 = 0. In addition, clustering on the multi-view
attributed graph aims to find a unified partition fitting all views to
divide the nodes of the graph 𝐺 into K clusters (𝐶1, 𝐶2,… , 𝐶𝐾

)

.

2.2. Related work

2.2.1. Attributed graph clustering
Attributed graph clustering has garnered sustained attention in re-

cent years. From a task-oriented perspective, it can be broadly divided
into graph-level clustering and node-level clustering. The former fo-
cuses on partitioning multiple graphs into distinct clusters. Recently,
Graph Prompt Clustering (GPC) [24] proposed a "pretraining-prompt-
finetuning" framework specifically designed for graph-level clustering.
However, in this paper, we focus on node-level clustering, which aims to
group nodes into disjoint clusters. Hu et al. [25] constructed proximity
matrices from topological connections and employed a Double Visible-
Hidden Feature Extraction mechanism for multi-view node clustering.
Up to now, existing multi-view attributed graph clustering methods can
be divided into several classes: multi-view subspace clustering methods,
multi-view deep-learning methods and so on.

2.2.2. Multi-view subspace clustering
The subspace-based methods [11,13,26] hold an assumption that

each data sample can be represented as a linear combination of other
data samples in the same subspace. Therefore, subspace-based methods
for multi-view can be summarized as follows:

min
𝑺,𝛼𝑣

𝑉
∑

𝑣=1
𝛼𝑣
(

||𝑿𝒗 −𝑿𝒗 ⋅ 𝑺||2𝐹 + 𝜆||𝑺 −𝑨𝒗||
2
𝐹
)

, (1)

where 𝑿𝒗 and 𝑨𝒗 denote the attribute matrix and adjacency matrix
for 𝑣-𝑡ℎ view respectively. 𝛼𝑣 is the weight parameter for 𝑣-𝑡ℎ view.
𝑺 ∈ ℝ𝑛×𝑛 is the self-representation matrix and || ∗ ||𝐹 represents the
Frobenius norm. Eq. (1) attempts to reconstruct the attribute matrix and
minimizes the self-reconstruction error. In subspace methods [13], they
always cost (𝑛3) , a high time complexity, to acquire 𝑺 via optimiza-
tion, bringing a grim challenge to large-scale graphs.

2.2.3. Multi-view deep-learning methods
Numerous methods based on deep learning [27–29] have achieved

promising results in clustering attributed graphs, however, they fail to
deal with multi-view attributed graphs that integrate information from
multiple views. Recently, DIAGC [30] and MAGAF [31] introduced the
innovative autoencoder framework to cluster multi-view graphs. How-
ever, these complex models involve many parameters that require opti-
mization, making them unsuitable for large-scale attributed graphs.

2.2.4. Anchor-based methods
Anchor-based methods aim to reduce computational cost and shorten

runtime by introducing representative anchors. In recent years, Zhang
et al. [32] found the anchors that satisfy the desired conditions by maxi-
mizing the Mahalanobis distance between them. Qin et al. [33] proposed
the discriminative anchor learning for multi-view clustering.

Limitations of Anchor-based methods.
Although many Euclidean anchor-based methods [19,20,32,34,35],

such as DAGF [36] and DALMC [33], have achieved promising results
on Euclidean data, they primarily rely on attributes while overlooking
structural information. In contrast, MvAGC [10] selected anchors solely
based on graph topology and suffered from instability issues.

In attributed graphs, topology and attributes convey distinct yet com-
plementary information, as shown in Fig. 2. For instance, node 538 and
node 1022 exhibit a high cosine similarity of 0.72 but are not linked,
whereas node 15 and node 667 are linked yet share a low attribute sim-
ilarity of only 0.06. These examples highlight anchors for multi-view
attributed graphs should be specifically designed which can fuse both
topological information and node attributes.

Comparison with Anchor-based methods. In this paper, we pro-
pose adaptive virtual anchors that jointly fuse structural and attribute
information to generate higher quality anchors. Moreover, by connect-
ing anchor generation and anchor graph construction closely, the opti-
mization problem of our model is more complex compared with other
methods [10,19,32,35], for it has five variables with more constraints to
optimize. Thus, we design an optimization solver named the five-block
coordinate descent optimization to solve it.

3. The proposed methodology

In this section, we first introduce the overall framework of our
method (AVAC). Then, we present the important components in our
method. Finally, we depict our method in algorithm and provide its time
complexity, convergence analysis, and memory optimization discussion.

3.1. Overall framework

AVAC includes four stages: data preprocessing, adaptive virtual an-
chor generation, adaptive virtual anchor graph construction, and clus-
tering, as shown in Fig. 3.

Data Preprocessing. In Stage A, in the data preprocessing, we adopt
the ℎ-order graph filter [11] to preprocess the multi-view attributed
graph and obtain smooth representations,

𝑿̂ =
(

1 − 1
2
𝑳
)ℎ

𝑿, (2)

where ℎ is a non-negative integer and 𝑳 = 𝑰 −𝑨 denotes the normalized
graph Laplacian.

Adaptive virtual Anchor Generation.

Information Fusion 131 (2026) 104190

3

M. Li et al.

Fig. 2. Inconsistency between graph attributes and topology information.

Fig. 3. Framework of the AVAC method. Our method includes four stages: data preprocessing, adaptive virtual anchor generation, adaptive virtual anchor graph
construction, and clustering. AVAC generates adaptive virtual anchors and connects anchor generation and anchor graph construction closely and cyclically to capture
topology and real distribution of attributes.

In Stage B, we generate adaptive virtual anchors to effectively rep-
resent all nodes. To ensure that these anchors accurately reflect the
real distribution of the given graph, we design an optimization solver
(Section 3.2.3) to update the anchors.

Adaptive virtual Anchor Graph Construction. In Stage C, we con-
struct an adaptive virtual anchor graph that captures the similarities
between nodes and anchors. To ensure that the anchor graph accurately
captures the true topology of the original graph, an optimization solver
(Section 3.2.3) is designed to optimize it.

Clustering. After obtaining the adaptive virtual anchors 𝑷 and the
virtual anchor graph 𝒁 from the optimization solver, we perform SVD
on the virtual anchor graph 𝒁 to get the left singular vector 𝑼 as the sub-
space representation. Finally, we perform the clustering algorithm like
K-means on the subspace representation 𝑼 to get the clustering results.

Overall, we depict the general framework in brief, as shown in
Algorithm 1. We perform Stage B and Stage C repeatedly to update the
adaptive virtual anchors and the adaptive virtual anchor graph dynam-
ically.

3.2. Core components of the proposed method

In this section, we will introduce three important components: adap-
tive virtual anchor generation, adaptive virtual anchor graph construc-
tion, and the five-block coordinate descent optimization. In AVAC, we
adaptively learn virtual anchors by projecting virtual anchors to dif-
ferent views to reconstruct attribute matrices and adjacency matrices,
thereby obtaining a consensus anchor graph with attribute information
and topology information of all views. The details are as follows.

Information Fusion 131 (2026) 104190

4

M. Li et al.

Algorithm 1: Overall framework of AVAC.
Input: Multi-view attributed graph, the number of cluster 𝐾.
Output: 𝐾 clusters.

1 Stage A: Data Processing.
 Perform the graph filter to obtain smooth representations.

2 while not converged do
3 Stage B: Adaptive Virtual Anchor Generation.

 Utilize the individual view attention mechanism to
adaptively learn virtual anchors. (Subsection 3.2.1).
Design the solver optimization to obtain the updated
adaptive virtual anchors (Subsection 3.2.3).

4 Stage C: Adaptive Virtual Anchor Graph Construction.
 Construct the adaptive virtual anchor graph via individual
view projecting (Subsection 3.2.2). Design the
optimization solver to obtain the updated adaptive virtual
anchor graph (Subsection 3.2.3).

5 end
6 Stage D: Clustering.

 Perform the clustering algorithm to obtain clusters. return K
clusters.

3.2.1. Adaptive virtual anchor generation
The adaptive virtual anchor generation process, illustrated in Stage

B of Fig. 3, comprises two main components: adaptive learning and in-
dividual view attention.

• Adaptive learning. To generate adaptive virtual anchors, we project
adaptive virtual anchors 𝑷 ∈ ℝ𝑑×𝑚 to the real feature space 𝑿̂𝒗 ∈
ℝ𝑑𝑣×𝑛 of each view, where 𝑑 and 𝑚 are consensus dimension and
number of anchors. By minimizing the distance between recon-
structed features and original features, we can adaptively learn rep-
resentative virtual anchors that can effectively capture the real dis-
tribution. We formulate this objective function as:

min
𝒁,𝑷 ,𝑾 (𝟏)

𝒗

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹 ,

s.t. 𝑾 (𝟏)
𝒗

𝑻
𝑾 (𝟏)

𝒗 = 𝑰 ,𝑷 𝑻 𝑷 = 𝑰
(3)

where 𝑷 is the consistent anchor and 𝑾 (𝟏)
𝒗 ∈ ℝ𝑑𝑣×𝑑 denotes a project-

ing matrix that can map the consensus dimension 𝑑 to the dimensions
of attributes in the 𝑣-𝑡ℎ view. 𝒁 is the anchor graph that indicates
the similarity among original nodes and anchors.

• Individual View Attention. Since different views play various roles
in the clustering task, we introduce the view-attention mechanism
[18] in our AVAC method. In view-attention mechanism, we set a
series of parameters {𝛼𝑣}𝑉𝑣=1 to pay different attention to individ-
ual views, and then optimize them through the optimization solver.
Thus, Eq. (3) can be further developed as:

min
𝑾 (𝟏)

𝒗 ,𝒁,𝑷 ,𝛼𝑣

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

)

,

s.t.
𝑉
∑

𝑣=1
𝛼𝑣 = 1,𝑾 (𝟏)

𝒗
𝑻
𝑾 (𝟏)

𝒗 = 𝑰 ,𝑷 𝑻 𝑷 = 𝑰

(4)

where 𝛼𝑣 is the attention coefficient of the 𝑣-𝑡ℎ view. 𝒁 ∈ ℝ𝑚×𝑛 de-
notes the anchor graph which reflects the similarity relationships
among anchors and nodes and 𝑚 is the number of anchors. 𝑷 ∈ ℝ𝑑×𝑚

represents the consensus anchors for all views, and 𝑑 is the consensus
dimension. The individual view attention mechanism can selectively
absorb useful information from each view and combine the comple-
mentarity and consensus information among these views more effec-
tively.

3.2.2. Adaptive virtual anchor graph construction
We project the anchor graph into the real topological space in each

view to reconstruct the topological information and update the anchor

graph by reducing the distance between the reconstructed adjacency
matrix and the original adjacency matrix, as shown in the Stage C of
Fig. 3. Meanwhile, we can reconstruct the original feature by project-
ing the adaptive virtual anchor to the real feature space via the anchor
graph. Furthermore, through the individual view attention, we can as-
sign different weights to each view to combine these views effectively.
In summary, we obtain the final formulation of our problem:

min
𝑾 (𝟏)
𝒗 ,𝑾 (𝟐)

𝒗
,𝒁,𝑷 ,𝛼𝑣

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Feature Reconstruction

+𝜆 ||𝑨𝒗 −𝑾 (𝟐)
𝒗 𝒁||

2
𝐹

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Topology Reconstruction

)

,

s.t.
𝑉
∑

𝑣=1
𝛼𝑣 = 1,𝑾 (𝟏)

𝒗
𝑻
𝑾 (𝟏)

𝒗 = 𝑰 ,𝑷 𝑻 𝑷 = 𝑰 ,𝑾 (𝟐)
𝒗

𝑻
𝑾 (𝟐)

𝒗 = 𝑰

(5)

where 𝒁 is the anchor graph which reflects the similarity score between
node representations and anchors. The smaller it is, the less relevant it
is between the node and the adaptive virtual anchors [10,11]. 𝑾 (𝟐)

𝒗 ∈
ℝ𝑛×𝑚 is a projecting matrix that maps the consistent anchor graph 𝒁 ∈
ℝ𝑚×𝑛 to the original space of adjacency information in the 𝑣-𝑡ℎ view. We
constrain 𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗 , 𝑷 to be orthogonal to utilize relevant properties for

rapid derivation [18]. 𝛼𝑣 is the attention coefficient of the 𝑣-𝑡ℎ view, and
we set some constraints for it to better balance the weight ratio among
different views. 𝜆 is the weight factor to balance between the structural
information and attribute information.

To solve Eq. (5), we design the optimization solver named the five-
block coordinate descent optimization described in Section 3.2.3 to ob-
tain the adaptive virtual anchors 𝑷 and the virtual anchor graph 𝒁 .

3.2.3. The five-block coordinate descent optimization
In this subsection, we describe the optimization solver named the

five-block coordinate descent optimization, which is utilized to obtain
the adaptive virtual anchors 𝑷 and the virtual anchor graph 𝒁. Five-
Block Coordinate Descent Optimization method is a customized solver,
derived from Alternating Direction Method of Multipliers (ADMM) [22],
but specifically designed to tackle the specific and complex multi-
variable optimization problem in this paper. When optimizing each sub-
problem, our solver effectively leverages the relationship between the
Frobenius Norm and the matrix trace to streamline the computational
process. Further, confronted with the specific constraints in AVAC, we
incorporate singular value decomposition, the Schwarz-Cauchy inequal-
ity, and other analytical techniques to enhance the optimization, en-
suring an efficient and effective resolution of the complex multivariate
optimization problem in this paper.

There are five groups of variables in Eq. (5), and when considering all
variables simultaneously, Eq. (5) is not jointly convex. Thus, we design
the five-block coordinate descent optimization to solve this multivari-
ate optimization problem. We can divide the multivariate optimization
problem into five subproblems and minimize Eq. (5) by solving the fol-
lowing five subproblems iteratively:

• Attribute projecting matrix 𝑾 (𝟏)
𝒗 -Subproblem. Fix 𝑷 ,𝒁,𝑾 (𝟐)

𝒗 , 𝛼𝑣 ,
and update the attribute projecting matrix 𝑾 (𝟏)

𝒗 .
• Topology projecting matrix 𝑾 (𝟐)

𝒗 -Subproblem. Fix 𝑷 ,𝒁,𝑾 (𝟏)
𝒗 , 𝛼𝑣 ,

and update the topology projecting matrix 𝑾 (𝟐)
𝒗 .

• Adaptive virtual anchors 𝑷 -Subproblem. Fix 𝒁,𝑾 (𝟏)
𝒗 ,𝑾 (𝟐)

𝒗 , 𝛼𝑣 , and
update adaptive virtual anchors 𝑷 .

• Adaptive virtual Anchor graph 𝒁 -Subproblem. Fix 𝑷 ,𝑾 (𝟏)
𝒗 ,𝑾 (𝟐)

𝒗 , 𝛼𝑣
, and update the anchor graph 𝒁 .

• Attention for individual views 𝛼𝑣 -Subproblem. Fix 𝒁,𝑾 (𝟏)
𝒗 ,𝑾 (𝟐)

𝒗 , 𝑷
, and update the attention score for each view 𝛼𝑣 .

The five subproblems are solved as follows iteratively.

Information Fusion 131 (2026) 104190

5

M. Li et al.

Subproblem-1. Attribute projecting matrix 𝑾 (𝟏)
𝒗 -Subproblem.

Fix 𝑷 ,𝒁,𝑾 (𝟐)
𝒗 , 𝛼𝑣 , and the optimization function can be presented as

min
𝑾 (𝟏)

𝒗

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

)

,

s.t.𝑾 (𝟏)
𝒗

𝑻
𝑾 (𝟏)

𝒗 = 𝑰 .

(6)

For each view, the value of 𝑾 (𝟏)
𝒗 is independent of other views, there-

fore, according to relationships between the Frobenius norm and matrix
trace, we extend the Frobenius norm, delete some irrelevant items, and
transform Eq. (6) as

min
𝑾 (𝟏)

𝒗

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

)

,

s.t. 𝑾 (𝟏)
𝒗

𝑻
𝑾 (𝟏)

𝒗 = 𝑰 ,

⇔min
𝑾 (𝟏)

𝒗

𝑉
∑

𝑣=1
𝛼2𝑣𝑇 𝑟

(

𝑿̂𝑻
𝒗 𝑿̂𝒗 − 2𝑿̂𝑻

𝒗 𝑾
(𝟏)
𝒗 𝑷𝒁 +𝒁𝑻 𝑷 𝑻 𝑷𝒁

)

⇔min
𝑾 (𝟏)

𝒗

𝑉
∑

𝑣=1
𝛼2𝑣𝑇 𝑟

(

−2𝑿̂𝑻
𝒗 𝑾

(𝟏)
𝒗 𝑷𝒁

)

⇔max
𝑾 (𝟏)

𝒗

𝑇 𝑟
(

𝑾 (𝟏)
𝒗

𝑻
𝑪
)

,

(7)

where 𝑪 represents 𝑿̂𝒗𝒁𝑻 𝑷 𝑻 . Assuming that the singular value de-
composition (SVD) of 𝑪 is 𝑼𝒄𝚺𝒄𝑹𝑻

𝒄 , 𝑾 (𝟏)
𝒗 should be 𝑼𝒄𝑹𝑻

𝒄 based on
Proposition 1.

Proposition 1. When the singular value decomposition of 𝑪 is 𝑪 = 𝑼𝚺𝑹𝑻

, the following constrained problem has closed form solution 𝑴 = 𝑼𝑹𝑻 .

max
𝑴

𝑇 𝑟(𝑴𝑻𝑪), s.t. 𝑴𝑻𝑴 = 𝑰 . (8)

Proof. Assuming the singular value decomposition of 𝑪 is 𝑪 = 𝑼𝚺𝑹𝑻 ,
we can obtain

𝑇 𝑟(𝑴𝑻𝑪) = 𝑇 𝑟(𝑴𝑻𝑼𝚺𝑹𝑻) = 𝑇 𝑟(𝑹𝑻𝑴𝑻𝑼𝚺) (9)

Let 𝑸 = 𝑹𝑻𝑴𝑻𝑼 , it is evident that 𝑹𝑻𝑴𝑻𝑼𝑼𝑻𝑴𝑹 = 𝑰 . Then we
can get 𝑇 𝑟(𝑹𝑻𝑴𝑻𝑼𝚺) = 𝑇 𝑟(𝑸𝚺) ≤ 𝑇 𝑟(𝑰𝚺) =

∑𝑡
𝑖=1 𝜎𝑖 , where 𝜎𝑖 is the

𝑖-𝑡ℎ diagonal element of Σ. Thus, when 𝑸𝚺 = 𝑰𝚺 , indicating 𝑹𝑻𝑴𝑻𝑼 =
𝑰 , Eq. (8) achieves the maximum, and we get the closed solution 𝑴 =
𝑼𝑹𝑻 . ∎

Subproblem-2. Topology projecting matrix 𝑾 (𝟐)
𝒗 -Subproblem.

The optimization of 𝑾 (𝟐)
𝒗 is similar to 𝑾 (𝟏)

𝒗 . When 𝒁,𝑷 ,𝑾 (𝟏)
𝒗 , 𝛼𝑣 are

fixed, Eq. (5) can be transformed into the following problem

min
𝑾 (𝟐)

𝒗

𝑉
∑

𝑣=1
𝛼2𝑣

(

𝜆||𝑨𝒗 −𝑾 (𝟐)
𝒗 𝒁||

2
𝐹

)

,

s.t.𝑾 (𝟐)
𝒗

𝑻
𝑾 (𝟐)

𝒗 = 𝑰 .

(10)

According to the relationship between the Frobenius norm and ma-
trix trace, we can change Eq. (10) into

max
𝑾 (𝟐)

𝒗

𝑇 𝑟(𝑾 (𝟐)
𝒗

𝑻
𝑩), s.t. 𝑾 (𝟐)

𝒗
𝑻
𝑾 (𝟐)

𝒗 = 𝑰 , (11)

where 𝑩=𝑨𝒗𝒁𝑻 , therefore 𝑾 (𝟐)
𝒗 equals 𝑼𝒃𝑹𝑻

𝒃 when 𝑩 = 𝑼𝒃𝚺𝒃𝑹𝑻
𝒃 .

Subproblem-3. Adaptive virtual anchors 𝑷 -Subproblem. When
𝒁,𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗 , 𝛼𝑣 fixed, Eq. (5) can be transformed into the following

formula

min
𝑷

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

)

, s.t. 𝑷 𝑻 𝑷 = 𝑰 . (12)

Moreover, Eq. (12) can be rewritten as

min
𝑷

𝑉
∑

𝑣=1
𝛼2𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹

)

,

⇔min
𝑷

𝑉
∑

𝑣=1
𝛼2𝑣𝑇 𝑟

(

𝑿̂𝑻
𝒗 𝑿̂𝒗 − 2𝑷 𝑻𝑾 (𝟏)

𝒗
𝑻
𝑿̂𝒗𝒁𝑻 +𝒁𝑻𝒁

)

⇔max
𝑷

𝑉
∑

𝑣=1
𝛼2𝑣𝑇 𝑟

(

𝑷 𝑻𝑾 (𝟏)
𝒗

𝑻
𝑿̂𝒗𝒁𝑻

)

⇔max
𝑷

𝑇 𝑟
(

𝑷 𝑻 𝑭
)

, s.t. 𝑷 𝑻 𝑷 = 𝑰 ,

(13)

where 𝑭 =
∑𝑉

𝑣=1 𝛼
2
𝑣𝑾

(𝟏)
𝒗

𝑻
𝑿̂𝒗𝒁𝑻 . Supposing optimization results of 𝑭 is

𝑼𝒇𝚺𝒇𝑹𝑻
𝒇 , 𝑷 equals to 𝑼𝒇𝑽 𝑻

𝒇 .
Subproblem-4. Adaptive virtual Anchor graph 𝒁 -Subproblem.

When we fix 𝑷 ,𝑾 (𝟏)
𝒗 ,𝑾 (𝟐)

𝒗 , 𝛼𝑣 , we can transform Eq. (5) based on the
relationship between the Frobenius norm and matrix trace. Then we
can delete some terms unrelated to 𝒁 , which have no effect on the
first derivative of the equation. Finally, we set the first derivative of the
equation to zero to obtain the optimization result. Therefore, we have

𝜕
∑𝑉

𝑣=1 𝛼
2
𝑣

(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹 + 𝜆||𝑨𝒗 −𝑾 (𝟐)

𝒗 𝒁||

2
𝐹

)

𝜕𝒁

⇔

𝜕
∑𝑉

𝑣=1 𝛼
2
𝑣𝑇 𝑟

[

(𝑰 + 𝜆𝑰)𝒁𝑻𝒁 − 2𝒁𝑻 𝑷 𝑻𝑾 (𝟏)
𝒗

𝑻
𝑿̂𝒗

]

𝜕𝒁

−
𝜕
∑𝑉

𝑣=1 𝛼
2
𝑣𝑇 𝑟

[

2𝜆𝒁𝑻𝑾 (𝟐)
𝒗

𝑻
𝑨𝒗

]

𝜕𝒁
.

(14)

When setting Eq. (15) to 0, we can get the optimization as

𝑍 =
[𝑉
∑

𝑣=1
𝛼2𝑣(𝑰 + 𝜆𝑰)

]

−1 ×
[𝑉
∑

𝑣=1
𝛼2𝑣

(

𝑷 𝑻𝑾 (𝟏)
𝒗

𝑻
𝑿̂𝒗 + 𝜆𝑾 (𝟐)

𝒗
𝑻
𝑨𝒗

)

]

. (15)

Subproblem-5. Attention for individual views 𝛼𝑣-Subproblem.
When updating the attention score 𝛼𝑣, we keep 𝒁,𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗 , 𝑷 fixed.

Marking
(

||𝑿̂𝒗 −𝑾 (𝟏)
𝒗 𝑷𝒁||

2
𝐹 + 𝜆||𝑨𝒗 −𝑾 (𝟐)

𝒗 𝒁||

2
𝐹

)

 as 𝐻 , Eq. (5) can be
transformed as
𝑉
∑

𝑣=1
𝛼2𝑣𝐻

2
𝑣 ⇔

1
𝑉

𝑉
∑

𝑣=1

(

𝛼𝑣𝐻𝑣
)2

𝑉
∑

𝑣=1
12 ≥ 1

𝑉

(𝑉
∑

𝑣=1
𝛼𝑣𝐻𝑣

)

2. (16)

According to the conditions for equality, we can obtain the optimal
results when 𝛼1𝐻1 = 𝛼2𝐻2 = … = 𝛼𝑉 𝐻𝑉 , and we set 𝐿 = 𝛼1𝐻1 . Ac-
cording to Schwarz Cauchy inequality, we can acquire 𝛼𝑣 = 𝐿

𝐻𝑣
 where

𝐿 = 1
1
𝐻1

+ 1
𝐻2

+…+ 1
𝐻𝑉

 .
The designed optimization solver (the five-block coordinate descent

optimization) divides the multivariate optimization problem into five
sub-problems. By solving these subproblems iteratively, we can obtain
the updated virtual anchors 𝑷 and the virtual anchor graph 𝒁 .

3.3. Algorithm summary and theoretical analysis

In this subsection, we conclude our adaptive virtual anchor clus-
tering algorithm and further analyze its time complexity and conver-
gence. Moreover, we discuss our memory optimization techniques (ma-
trix chunking multiplication) to further reduce memory requirements
when dealing with large graphs. The complete procedures of AVAC are
outlined in Algorithm 2. As depicted, we initialize 𝑷 ,𝒁,𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗 with

zero matrices. First, we preprocess the multi-view attributed graph via
the ℎ-order graph filter to obtain smooth representations. Then, we up-
date 𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗 to prepare the attributed projecting matrix and topology

projecting matrix. After that, we can update the adaptive virtual anchors
by solving the 𝑷 -Subproblem to obtain the optimized virtual anchors.
Then, we update 𝒁, 𝛼 to obtain the adaptive virtual anchor graph. We

Information Fusion 131 (2026) 104190

6

M. Li et al.

Algorithm 2: The AVAC algorithm.
Input: Multi-view attributed graph {𝑨𝟏,… , 𝑨𝑽 , 𝑿𝟏,… , 𝑿𝑽

} ,
the number of cluster 𝐾.

Output: 𝐾 clusters.
1 Initialization: Initialize 𝑷 ,𝒁,𝑾 (𝟏)

𝒗 ,𝑾 (𝟐)
𝒗 with zero matrix.

Initialize 𝛼𝑣 with 1𝑣 .
2 Perform the h-order graph filter to obtain the smooth

representation of multi-view attributed graph
{

𝑨𝟏,… , 𝑨𝑽 , 𝑿̂𝟏,… , 𝑿̂𝑽

}

 .
3 while not converged do
4 Update 𝑾 (𝟏)

𝒗 by solving the attribute projecting matrix
𝑾 (𝟏)

𝒗 -Subproblem.
5 Update 𝑾 (𝟐)

𝒗 by solving the topology projecting matrix
𝑾 (𝟐)

𝒗 -Subproblem.
6 Update 𝑷 by solving adaptive virtual anchors 𝑷

-Subproblem.
7 Update 𝒁 by solving the anchor graph 𝒁 -Subproblem.
8 Update 𝛼𝑣 by solving the attention score for individual

views 𝛼𝑣-Subproblem.
9 end
10 Perform SVD on 𝒁 to obtain the left singular vector 𝑼 .
11 Perform clustering algorithm on 𝑼 to get the 𝐾 clusters.
12 return K clusters.

can adaptively learn virtual anchors and construct the virtual anchor
graph by minimizing Eq. (5). This process effectively captures the un-
derlying distribution and topological information by reconstructing both
the attribute matrix and the adjacency matrix. Moreover, we execute
Stages B and C alternately to dynamically update the virtual anchors
and the virtual anchor graph. After obtaining the anchor graph 𝒁 , we
perform SVD on the anchor graph to acquire the left singular vector 𝑼
. Finally, we execute K-means on the eigenvalue 𝑼 to get the clustering
results.

Time complexity. For AVAC, the cost of optimization for each vari-
able composes the overall computational complexity. When updating
𝑾 (𝟏)

𝒗 , the implementation of SVD on 𝑪𝒗 takes (𝑑𝑣𝑑2) , and it costs
(𝑑𝑣𝑑𝑘2) for other matrix multiplication. When updating 𝑾 (𝟐)

𝒗 , it costs
(𝑚2𝑛) to execute SVD on 𝑩𝒗.

When updating 𝒁 , the inverse operation costs (𝑚3) . Since the adja-
cency matrix is sparse, assuming that the number of non-zero elements
in the matrix is 𝑛𝑧, where 𝑛𝑧 is much smaller than 𝑛2, the other matrix
multiplications cost (𝑚𝑑𝑑𝑣+𝑚𝑑𝑣𝑛+𝑛𝑧+𝑚2𝑛) . When updating 𝑷 , it takes
(𝑚𝑑2) for SVD and (𝑑𝑚𝑘2) for matrix multiplications. Furthermore, it
costs (1) when calculating 𝛼𝑣. In summary, we can find the complexity
of AVAC is with respect to (𝑛𝑧) , which is far less than 𝑛2. To further im-
prove the efficiency of AVAC, we can consider the adjacency matrix as
𝑛 vectors, and implement the matrix multiplication in parallel, reducing
the time complexity of AVAC to (𝑛).

Convergence analysis. We design the five-block coordinate descent
optimization for the AVAC method. It monotonically decreases during
the iteration process when one subproblem is solved with the others
fixed at each iteration. Moreover, we can observe that the lower bound
of Eq. (5) is 0. Thus, according to [37], the algorithm can be guaranteed
to converge.

Discussion. As the graph size increases, we find that the memory
requirement of clustering is increasing. Through experiments, it is clear
that matrix multiplications consume the most memory. To better adapt
to large graph scenarios, we design the matrix chunking multiplication
for AVAC to reduce the memory requirement. As shown in Fig. 4, we
divide the original matrix into nine sub-matrices. We decompose large
matrix multiplications into several smaller block multiplications. The
first block of results (𝑨𝑨′ + 𝑩𝑫′ + 𝑪𝑮′) is computed by multiplying

Table 2
Multi-view attributed graph datasets.
 Dataset Views Nodes Attributes Edges Clusters
 ACM 2 3,025 1,830 29,281 3

 2,210,761

DBLP 3 4,057 334
 11,113

4 5,000,495
 6,776,335

 BlogCatalog 2 5,196 8,189 171,743 6
 5,196

 Flickr 2 7,575 12,047 479,476 9
 7,575

 AMAP 2 7,650 745 119,081 8
 7,650

 Wiki 4 2,405 4,973 24,357 17
 12,025

 Pubmed 2 19,717 500 44,338 3
 Computer 2 13,752 767 133,289 10
 Ogbn-products 2 2,449,029 100 61,859,140 47

the first row of matrix 𝑳 with the first column of matrix 𝑴 . The size
of the sub-matrices is determined based on the memory capacity of the
running environment.

4. Experiment

In this section, we evaluate AVAC with a comparison to the state-of-
the-art algorithms over real and synthetic datasets.

4.1. Experimental setup

In this subsection, we introduce metrics, datasets, and comparison
algorithms, respectively.

Metrics and Datasets. We use four evaluation metrics to measure
clustering results: accuracy (ACC), F1-score (F1), normalized mutual in-
formation (NMI), and adjusted rand index (ARI) [11].

Moreover, in the experiments, we use nine datasets covering three
types of multi-view attributed graphs. The detailed information is shown
in Table 2.

• Multi-view attributed graph datasets with multiple graph struc-
tures. We implement two real datasets (ACM3, DBLP4) which con-
tain one attributed matrix and multiple adjacency matrices.

• Multi-view with multiple attribute matrices. Blogcatalog dataset
[23], Pubmed dataset [38], Computer dataset,5 AMAP dataset6,
Flickr dataset [39] and the Ogbn-products dataset [40] contain one
adjacency matrix and multiple attribute matrices. Moreover, the
attribute matrix of the Blogcatalog, Flickr, and AMAP datasets in
the second view is constructed via a cartesian product [11]. In the
Pubmed, Computer and Ogbn-products datasets, the attribute matrix
of the second view is constructed using a log-scale of the original
ones [41].

• Multi-view attributed graph datasets with multiple attributes
and graph structures. The Wiki dataset [41] contains multiple
attribute matrices and multiple adjacency matrices. In the Wiki
dataset, the additional views are created from the initial data which
contains a single graph structure and attribute matrix.
Comparison Algorithms. We compare AVAC with several represen-

tative works in recent years from the perspectives of accuracy and ef-
ficiency on nine datasets, which contain different types of multi-view
attributed graphs. The comparison algorithms mainly include the fol-
lowing four categories:

3 http://dl.acm.org
4 https://dblp.uni-trier.de/
5 https://github.com/Karenxt/AGCandIAGC-code/
6 https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering/

Information Fusion 131 (2026) 104190

7

http://dl.acm.org
https://dblp.uni-trier.de/
https://github.com/Karenxt/AGCandIAGC-code/
https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering/

M. Li et al.

Fig. 4. Matrix chunking multiplication.

Fig. 5. Two-dimensional projections of AVAC embeddings using t-SNE colored according to real labels.

Fig. 6. Two-dimensional projections of DIAGC embeddings using t-SNE colored according to real labels.

• Subspace clustering methods: PwMC [42] and MAGC [11].
• Single-view methods: SDCN [43], SDCN-avg, AGCN [44], and
AGCN-avg. We implement these single-view methods on each view
and take the best result as the final result. Furthermore, we calcu-
late average results of all views and remark them as SDCN-avg and
AGCN-avg.

• Anchor-based methods: SMVSC [18] and MvAGC [10].
• Deep learning-based method: DIAGC [30] and GMVC [45].

Experiments are performed on the computer equipped with TITIAN
RTX 2080TI GPU of memory 11G and Intel Core i9 9820X CPU of 128G.
Based on our memory capacity, for the Ogbn-products dataset, we di-
vide the matrix 2, 449, 029 × 2, 449, 029 into several 100, 000 × 100, 000
chunks for matrix multiplication. The source code is available at
https://github.com/lmyfree/AVAC.

4.2. Clustering results

In this experiment, we evaluate the effectiveness of AVAC and
the comparison algorithms based on the clustering results. Tables 3
and 4 list clustering results compared with recent algorithms. Over-
all, our proposed method AVAC outperforms other advanced methods
[10,11,18,30,42–45]. To be precise, we have the following observations.

According to Tables 1 and 3, single-view methods are not suitable
for multi-view datasets and fail to deal with multi-view datasets be-
cause they cannot take advantage of complementary information be-
tween views.

PwMC and MAGC are subspace methods. In comparison, AVAC
consistently achieves superior performance. Specifically, on the Flickr
dataset, AVAC outperforms MAGC by approximately 40% in terms of
accuracy. Furthermore, in the AMAP dataset, AVAC achieves an accu-
racy that is roughly 50% greater than that of PwMC.

Anchor-based methods for Euclidean data fail to deal with multi-
view attributed graphs. We can observe that SMVSC performs worse in
multi-view attributed graphs, and is more than 10% lower than AVAC
in terms of accuracy in most datasets. It can only focus on attributed

matrices without considering multiple graph structures, which leads to
lower accuracy. Thus, these anchor methods for Euclidean data are not
effective for multi-view attributed graphs. As for MvAGC, the sampled
anchor-based method, our method AVAC presents better performances
than MvAGC, with about 10% higher in NMI or ARI in most datasets
like BlogCatalog, Pubmed, Flickr, and AMAP datasets. This illustrates
that our virtual anchors can accurately capture the distribution of the
real data compared with the sampled anchors.

Compared with deep-learning methods, AVAC performs better than
DIAGC with about 10% higher on four evaluated metrics in the AMAP
dataset. AVAC outperforms GMVC across all datasets, achieving over
40% higher accuracy on the BlogCatalog, Flickr, and AMAP datasets.
AVAC generates virtual anchors from adaptive learning which makes
anchors more representative and contributes to better performances.
Additionally, experimental results show that the GMVC model suffers
from class imbalance during clustering, leading to lower F1 scores.

According to the results of the BlogCatalog dataset, AVAC is 33%
higher than the best advanced methods in accuracy. Also, AVAC is
about 6% higher than other methods in the Wiki dataset according to
NMI. From the results of the Flickr dataset, AVAC is about 15% higher
than other advanced methods on four evaluated metrics. In the Ogbn-
products dataset, most methods are unable to process large-scale graphs
due to excessive running time or high memory requirements. Compared
with MvAGC, AVAC is about 80% higher in the Ogbn-products dataset
according to ARI, which indicates AVAC is more effective than other
methods. Fig. 5 visualizes the clustering results of our method. Fig. 6 vi-
sualizes the clustering results of the latest comparison method, DIAGC.
We find that the clustering results of AVAC are clearer and more distin-
guishable than those of DIAGC, especially in the BlogCatalog and Flickr
datasets.

4.3. Time comparison

In this experiment, we assess the time of AVAC and other compari-
son algorithms. For a fair comparison, we compare the running times of
various methods with the best results. From Table 5, we can obviously

Information Fusion 131 (2026) 104190

8

https://github.com/lmyfree/AVAC

M. Li et al.

Table 3
Clustering accuracy. The symbol "-" indicates that no clustering result was obtained within 24 h, typically due to memory or time
constraints.().

Table 4
Clustering accuracy. The symbol "-" indicates that no clustering result was obtained within 24 h, typically due to memory or time
constraints.().

observe that AVAC consumes much less time than other advanced meth-
ods. Compared with MvAGC, our method AVAC achieves a speedup of
2–5 times while maintaining high accuracy in most datasets. Notably, in
the BlogCatalog dataset, AVAC demonstrates a remarkable speedup of
24 times compared to MvAGC. In contrast, as a deep learning approach,
DIAGC incurs higher computational costs and requires more resources
than alternative methods due to its extensive number of parameters that
need to be trained. In the large-scale dataset (Ogbn-products dataset),
AVAC is approximately 1.8 times faster than MvAGC. In contrast, SM-
VAC takes more than 24 h, while PwMC, MAGC, and DIAGC require too
much memory.

4.4. Scalability experiments

We conducted scalability experiments at different scales–thousands,
tens of thousands, hundreds of thousands, and millions to assess the ca-
pability of various methods in handling large-scale graphs, as shown
in Table 6. Among these datasets, BlogCatalog, Ogbn-arxiv, and Ogbh-
products are publicly available datasets, while BlogCatalog-pro is a syn-
thetic dataset obtained by replicating the nodes of BlogCatalog eight
times, resulting in a dataset with 40,000 nodes.

Discussion about the large-scale dataset. To analyze the capac-
ity of different approaches in handling large-scale graphs, we introduce

Information Fusion 131 (2026) 104190

9

M. Li et al.

Table 5
Running time. We mark italic to show the best performances. “OOM” represents out of memory. “Speedup” indicates the
multiplier of acceleration compared to the fastest method.
 Methods ACM DBLP BlogCatalog Wiki Flickr Com AMAP Pubmed Ogbn-products
 SMVAC 15.32s 26.38s 101.50s 26.65s 215.30s 63.37s 42.26s 90.65s >24h
 PwMC 252.59s 305.89s 45.01s 42.33s 136.39s 687.09s 144.04s 1936.72s OOM
 MAGC 83.87s 159.82s 173.40s 103.48s 367.80s 440.82s 54.31s 316.90s OOM
 MvAGC 5.68s 9.70s 31.60s 16.23s 68.81s 115.10s 19.57s 86.39s 14572.29s
 DIAGC 267.02s 573.96s 600.85s 371.48s 1131.79s OOM 1115.16s OOM OOM
 GMVC 57.97s 89.74s 221.51s 87.51s 635.79s 170.66s 81.13s 686.70s OOM
 AVAC 1.68s 2.00s 1.29s 4.45s 39.49s 14.43s 7.27s 21.90s 8063.28s
 Speedup 3.38x 4.85x 24.49x 3.64x 1.74x 4.39x 2.69x 3.94x 1.80x

Table 6
Scalability analysis. “OOM” represents out of memory.().

the publicly available large graph dataset (Ogbn-products dataset). This
dataset contains 2,449,029 nodes and 61,859,140 edges in each view,
with each node having 100 dimensions. The memory required to store
the two attributed matrices is 934MB, which is equivalent to 1.03 billion
nodes with only one dimension. Additionally, the memory of the adja-
cency matrix in COO sparse format is 1.84GB, roughly the same as the
LiveJournal dataset [46] with 112 million edges. Thus, considering the
number of attributes and views, we find that the scale of the multi-view
attributed graph is significantly larger than merely taking into account
the number of nodes.

Scalability Analysis. From scalability experimental results, deep
learning methods and several subspace-based methods are not suitable
for large-scale graphs due to high complexity. Deep clustering methods
(DIAGC) and subspace clustering methods (PwMC, MAGC) have time
and space complexities of (𝑁2) or higher. This means that as the data
scale increases, the computational cost rises exponentially, severely lim-
iting the scalability of these algorithms for large-scale graph data. As the
number of nodes escalated from thousands to tens of thousands, the run-
time of PwMC increased dramatically from 45 s to over 6 h, representing
a more than 500-fold increase and underscoring its inadequate scalabil-
ity. Similarly, DIAGC encounters memory exhaustion and is unable to
complete computations for 40,000 nodes. In the Ogbn-products dataset,
SMVAC (Anchor methods for Euclidean data) consumes over 24 h; while
PwMC, DIAGC, and MAGC require more memory than other methods
when dealing with the same dataset, so they cannot handle large sce-
narios at a low cost. Our method can yield better results and speed up
by 1.8 times compared with MvAGC. Thus, our method is more suitable
for large-scale scenarios compared with other methods.

4.5. Stability analysis

To evaluate the stability of the models, we repeat the experiments on
the ACM dataset 50 times with fixed parameters and compare the results
with the existing anchor method, MvAGC [10], as shown in Fig. 7. We
employ the same settings to ensure the stability of k-means in both our
method and MvAGC. This allows a fair comparison of stability between

the sampled anchor method and our adaptive virtual anchor method.
From Fig. 7, we can observe that the results of AVAC are stable for our
anchors are obtained via optimization, while MvAGC, where anchors
are selected by a random algorithm, is affected by the random numbers.
The results of MvAGC fluctuate ±5%, resulting in poor stability of the
model.

4.6. Parameter analysis

AVAC has several parameters to tune, including the number of an-
chors 𝑚, the weighting factor 𝜆, and the filter order ℎ. Fig. 8 shows the
results under different parameters. In AVAC, we fix one parameter and
vary the other two parameters. For the DBLP dataset, according to the
metrics NMI and ARI, we can observe that the weighting factor 𝜆 affects
the performance to some degree. In the DBLP dataset, when we set it to
100, AVAC can obtain excellent results considering all evaluation met-
rics. Besides, it is obvious that we should not set the value of anchor
number 𝑚 too large. According to the results, we infer that an exces-
sive number of optimized anchors may lead to the case that multiple
representative anchors belong to the same class. This may lead to large
distances within a class and overly broad class boundaries, making it
challenging to accurately partition the clusters. Furthermore, we find
that the filter order ℎ can combine attribute information with structural
information efficiently.

Moreover, we visualize the view weights of most datasets in Fig. 9
and find that the weights of each view in ACM, DBLP, and Blogcatalog
datasets are similar, indicating that each view in these datasets is equally
important and contains a large amount of information. In AMAP, Com-
puter, and Flickr datasets, the weight of the first view is significantly
greater than that of the second view, indicating that the first view may
contain more useful information than the second view.

4.7. Ablation analysis

To better evaluate the importance of each part in AVAC, we have
redesigned three ablation experiments as follows:

Information Fusion 131 (2026) 104190

10

M. Li et al.

Fig. 7. Stability analysis on the ACM dataset.

Fig. 8. Parameter analysis for AVAC.

Table 7
Ablation analysis.

Dataset
 ACM DBLP Wiki
 ACC NMI F1 ARI ACC NMI F1 ARI ACC NMI F1 ARI

 w/o TR 0.8614 0.5685 0.8610 0.6340 0.4333 0.2409 0.4575 0.0758 0.5234 0.5489 0.4737 0.3482
 w/o Graph Filter 0.9137 0.7059 0.9150 0.7589 0.9169 0.7427 0.9126 0.7995 0.5480 0.5582 0.4732 0.3668
 w/o FR 0.5990 0.3220 0.5722 0.3173 0.9115 0.7343 0.9052 0.7913 0.4099 0.3769 0.3543 0.2225
 AVAC(ours) 0.9302 0.7534 0.9306 0.8029 0.9346 0.7886 0.9305 0.8419 0.5417 0.5611 0.4730 0.3743

Fig. 9. View weights.

• W/o (With/Without) Topology Reconstruction (TR). According
to Table 7, we can observe that topology reconstruction plays an im-
portant role in clustering. Without topology reconstruction, we may
ignore the structure information to some degree and fail to capture
the real structure of nodes.

• W/o Graph Filter. From Table 7, we can find that the graph fil-
ter has a tiny impact on clustering results. The graph filter attempts
to combine structure information with attributes and obtain smooth
representations. However, without the graph filter, the topology re-
construction can contribute to capturing the real structure of nodes,
so that the graph filter influences the results little.

• W/o Feature Reconstruction (FR). The results in Table 7 indicate
that feature reconstruction has a greater impact on the ACM dataset,
which may be due to the higher attribute dimensions of the ACM
dataset. When facing high-dimensional feature datasets, removing
the feature reconstruction will ignore important information about
attributes, thereby affecting clustering results.

4.8. Summary

Through extensive experiments, we can observe that compared to
state-of-the-art approaches, AVAC can significantly improve accuracy
while further reducing the time cost of clustering. Particularly for the
Blogcatalog dataset, AVAC achieves a speedup of 24 times compared
to other methods. Furthermore, we find that AVAC can respond more
quickly to large-scale graphs by enlarging the graph scale to millions
of nodes. In particular, on the public large-scale dataset, the AVAC al-
gorithm has achieved a speedup of 1.8 times over the state-of-the-art

Information Fusion 131 (2026) 104190

11

M. Li et al.

method MvAGC while improving accuracy significantly. Moreover, com-
pared with other sampled anchor methods like MvAGC [10], AVAC can
obtain more stable results.

5. Conclusion

In this paper, we propose the adaptive virtual anchor clustering
method (AVAC), which efficiently clusters multi-view attributed graphs.
AVAC generates adaptive virtual anchors and connects anchor genera-
tion and anchor graph construction closely. By executing these two pro-
cesses cyclically and alternately, through which these two processes af-
fect each other, AVAC can generate effective anchors that capture more
accurate real data distribution and graph structure. Extensive experi-
mental results validate the effectiveness of our method in terms of accu-
racy, running time, and stability. In the future, we will focus on incom-
plete clustering and further explore virtual anchor clustering methods
that are more suitable for incomplete multi-view attributed graphs.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

CRediT authorship contribution statement

Mengyao Li: Writing - review & editing; Zhibang Yang: Project ad-
ministration; Xu Zhou: Investigation; Joey Tianyi Zhou: Investigation;
Quanqing Xu: Investigation; Chuanhui Yang: Investigation; Kenli Li:
Supervision; Keqin Li: Supervision.

Acknowledgments

The research was supported by the National Natural Science
Foundation of China (Grant Nos. 62576051, U23A20317, 62225205,
62572182, 62402481), the Creative Research Groups Program of the
National Natural Science Foundation of China (Grant No. 62321003),
the Natural Science Foundation of Hunan Province (Grant No.
2023JJ10016), Ant Group through CCF-Ant Research Fund (Grant No.
CCF-AFSG RF20250518), and International Talented Young Scientist
Program (P2SU43004).

References

[1] Y. Wang, S. Ye, X. Xu, Y. Geng, Z. Zhao, X. Ke, T. Wu, Scalable community search
with accuracy guarantee on attributed graphs, in: 40th IEEE International Confer-
ence on Data Engineering, ICDE 2024, Utrecht, The Netherlands, May 13–16, 2024,
IEEE, Utrecht, The Netherlands, 2024, pp. 2737–2750.

[2] C. He, J. Cheng, G. Chen, Q. Guan, X. Fei, Y. Tang, Detecting communities with mul-
tiple topics in attributed networks via self-supervised adaptive graph convolutional
network, Inf. Fusion 105 (2024) 102254.

[3] J. Wang, X. Qu, J. Bai, Z. Li, J. Zhang, J. Gao, SAGES: scalable attributed graph
embedding with sampling for unsupervised learning, IEEE Trans. Knowl. Data Eng.
35 (5) (2023) 5216–5229.

[4] H. Wang, D. Lian, H. Tong, Q. Liu, Z. Huang, E. Chen, Decoupled representa-
tion learning for attributed networks, IEEE Trans. Knowl. Data Eng. 35 (3) (2023)
2430–2444.

[5] N. Zhang, Y. Ye, X. Lian, M. Chen, Top-L most influential community detection over
social networks, in: 40th IEEE International Conference on Data Engineering, ICDE
2024, Utrecht, The Netherlands, May 13–16, 2024, IEEE, Utrecht, The Netherlands,
2024, pp. 5767–5779.

[6] C. Yang, J. Han, Revisiting citation prediction with cluster-aware text-enhanced het-
erogeneous graph neural networks, in: 39th IEEE International Conference on Data
Engineering, ICDE 2023, Anaheim, CA, USA, April 3–7, 2023, IEEE, Anaheim, CA,
USA, 2023, pp. 682–695.

[7] A.G. Kermani, A. Kamandi, A. Moeini, Integrating graph structure information and
node attributes to predict protein-protein interactions, J. Comput. Sci. 64 (2022)
101837.

[8] S. Jin, Z. Chen, S. Yu, M. Altaf, Z. Ma, Self-augmentation graph contrastive learning
for multi-view attribute graph clustering, in: Proceedings of the 2023 Workshop on
Advanced Multimedia Computing for Smart Manufacturing and Engineering, AMC-
SME 2023, Ottawa on, Canada, 29 October 2023, ACM, Ottawa ON, Canada, 2023,
pp. 51–56.

[9] X. Ma, S. Xue, J. Wu, J. Yang, C. Paris, S. Nepal, Q.Z. Sheng, Deep multi-attributed-
view graph representation learning, IEEE Trans. Netw. Sci. Eng. 9 (5) (2022)
3762–3774.

[10] Z. Lin, Z. Kang, Graph filter-based multi-view attributed graph clustering, in: Pro-
ceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI 2021, Virtual Event / Montreal, Canada, 19–27 August 2021, ijcai.org, Mon-
treal, Canada, 2021, pp. 2723–2729.

[11] Z. Lin, Z. Kang, L. Zhang, L. Tian, Multi-view attributed graph clustering, IEEE Trans.
Knowl. Data Eng. 35 (2) (2023) 1872–1880.

[12] W. Yang, J. Xu, R. Zhou, L. Chen, J. Li, P. Zhao, C. Liu, Multi-view attentive varia-
tional learning for group recommendation, in: 40th IEEE International Conference
on Data Engineering, ICDE 2024, Utrecht, The Netherlands, May 13–16, 2024, IEEE,
Utrecht, The Netherlands, 2024, pp. 5022–5034.

[13] E. Pan, Z. Kang, Multi-view contrastive graph clustering, in: Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6–14, 2021, Virtual, 2021, pp.
2148–2159.

[14] J. Lin, M. Chen, X. Zhu, C. Wang, H. Zhang, Dual information enhanced multi-view
attributed graph clustering, arXiv:2211.14987 (2022).

[15] W. Xia, Q. Wang, Q. Gao, X. Zhang, X. Gao, Self-supervised graph convolutional
network for multi-view clustering, IEEE Trans. Multim. 24 (2022) 3182–3192.

[16] L. Liu, Z. Kang, J. Ruan, X. He, Multilayer graph contrastive clustering network, Inf.
Sci. 613 (2022) 256–267.

[17] S. Fan, X. Wang, C. Shi, E. Lu, K. Lin, B. Wang, One2Multi graph autoencoder for
multi-view graph clustering, in: WWW ’20: The Web Conference 2020, Taipei, Tai-
wan, April 20–24, 2020, ACM / IW3C2, Taipei, 2020, pp. 3070–3076.

[18] M. Sun, P. Zhang, S. Wang, S. Zhou, W. Tu, X. Liu, E. Zhu, C. Wang, Scalable multi-
view subspace clustering with unified anchors, in: MM ’21: ACM Multimedia Con-
ference, Virtual Event, China, October 20, - 24, 2021, ACM, Virtual Event,China,
2021, pp. 3528–3536.

[19] J. Li, Q. Wang, M. Yang, Q. Gao, X. Gao, Efficient anchor graph factorization for
multi-view clustering, IEEE Trans. Multim. 26 (2024) 5834–5845.

[20] Y. Mi, H. Chen, Z. Yuan, C. Luo, S.-J. Horng, T. Li, Fast multi-view subspace cluster-
ing with balance anchors guidance, Pattern Recognit. 145 (2024) 109895.

[21] B. Yang, X. Zhang, Z. Li, F. Nie, F. Wang, Efficient multi-view K-means cluster-
ing with multiple anchor graphs, IEEE Trans. Knowl. Data Eng. 35 (7) (2023)
6887–6900.

[22] P. Neal, C. Eric, P. Borja, E. Jonathan, Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers, Found. Trends® Mach.
Learn. 3 (1) (2011) 1–122.

[23] J. Li, X. Hu, J. Tang, H. Liu, Unsupervised streaming feature selection in social
media, in: Proceedings of the 24th ACM International Conference on Information
and Knowledge Management, CIKM 2015, Melbourne, VIC, Australia, October 19, -
23, 2015, ACM, Melbourne, VIC, Australia, 2015, pp. 1041–1050.

[24] M. Chen, P. Lai, D. Liao, C. Wang, J. Lai, Graph prompt clustering, IEEE Trans.
Pattern Anal. Mach. Intell. 47 (2025) 5794–5805.

[25] X. Hu, J. Chen, G. Chen, Y. Tang, W. Pedrycz, Y. Jiang, Multi-view fuzzy cluster-
ing for multi-layer and multi-attribute graphs, IEEE Trans. Fuzzy Syst. 33 (2025)
1–16.

[26] X. Lin, R. Yang, H. Zheng, X. Ke, Spectral subspace clustering for attributed graphs,
in: Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, V.1, ACM, Toronto, Canada, 2025, pp. 789–799.

[27] N. Mrabah, M. Bouguessa, M.F. Touati, R. Ksantini, Rethinking graph auto-encoder
models for attributed graph clustering (Extended abstract), in: 39th IEEE Interna-
tional Conference on Data Engineering, ICDE 2023, Anaheim, CA, USA, April 3–7,
2023, IEEE, Anaheim, CA, USA, 2023, pp. 3891–3892.

[28] P. Zhu, Q. Wang, Y. Wang, J. Li, Q. Hu, Every node is different: dynamically fusing
self-supervised tasks for attributed graph clustering, in: Thirty-Eighth AAAI Confer-
ence on Artificial Intelligence, AAAI 2024, AAAI Press, Vancouver, Canada, 2024,
pp. 17184–17192.

[29] H. Zhao, B. Yang, Y. Cen, J. Ren, C. Zhang, Y. Dong, E. Kharlamov, S. Zhao, J.
Tang, Pre-training and prompting for few-shot node classification on text-attributed
graphs, in: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD 2024, Barcelona, Spain, August 25–29, 2024, ACM,
Barcelona, Spain, 2024, pp. 4467–4478.

[30] J.-Q. Lin, M.-S. Chen, X.-R. Zhu, C.-D. Wang, H. Zhang, Dual information enhanced
multiview attributed graph clustering, IEEE Trans. Neural Netw. Learn. Syst. 36
(2024) 1–12.

[31] L. Zhou, Y. Guo, Z. Zhang, Multi-view attributed graph clustering based on
graph diffusion convolution with adaptive fusion, Expert Syst. Appl. 260 (2025)
125286.

[32] P. Zhang, Y. Pan, S. Wang, S. Yu, H. Xu, E. Zhu, X. Liu, I.W. Tsang, Max-mahalanobis
anchors guidance for multi-view clustering, in: AAAI-25, Sponsored by the Associ-
ation for the Advancement of Artificial Intelligence, AAAI Press, Philadelphia, PA,
USA, 2025, pp. 22488–22496.

[33] Y. Qin, N. Pu, H. Wu, N. Sebe, Discriminative anchor learning for efficient multi-
view clustering, IEEE Trans. Multim. 27 (2025) 1386–1396.

[34] Z. Lu, F. Nie, L. Ma, R. Wang, X. Li, Simplifying scalable subspace clustering and
its multi-view extension by anchor-to-sample kernel, IEEE Trans. Image Process. 34
(2025) 5084–5098.

[35] X. Yu, H. Liu, Y. Lin, Y. Wu, C. Zhang, Auto-weighted sample-level fusion with an-
chors for incomplete multi-view clustering, Pattern Recognit. 130 (2022) 108772.

[36] H. Jiang, H. Tao, Z. Jiang, C. Hou, Unaligned multi-view clustering via diversified
anchor graph fusion, Pattern Recognit. 170 (2026) 111977.

[37] J.C. Bezdek, R.J. Hathaway, Convergence of alternating optimization, Neural Paral-
lel Sci. Comput. 11 (4) (2003) 351–368.

Information Fusion 131 (2026) 104190

12

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004735
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0001
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0001
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0001
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0001
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0002
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0002
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0002
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0003
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0003
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0003
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0004
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0004
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0004
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0005
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0005
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0005
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0005
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0006
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0006
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0006
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0006
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0007
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0007
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0007
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0008
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0008
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0008
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0008
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0008
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0009
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0009
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0009
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0010
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0010
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0010
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0010
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0011
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0011
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0012
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0012
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0012
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0012
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0013
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0013
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0013
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0013
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0014
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0014
http://arxiv.org/abs/2211.14987
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0015
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0015
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0016
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0016
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0017
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0017
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0017
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0018
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0018
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0018
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0018
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0019
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0019
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0020
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0020
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0021
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0021
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0021
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0022
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0022
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0022
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0023
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0023
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0023
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0023
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0024
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0024
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0025
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0025
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0025
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0026
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0026
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0026
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0027
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0027
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0027
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0027
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0028
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0028
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0028
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0028
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0029
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0029
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0029
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0029
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0029
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0030
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0030
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0030
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0031
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0031
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0031
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0032
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0032
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0032
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0032
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0033
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0033
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0034
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0034
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0034
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0035
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0035
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0036
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0036
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0037
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0037

M. Li et al.

[38] X. Zhang, H. Liu, Q. Li, X.-M. Wu, X. Zhang, Adaptive graph convolution meth-
ods for attributed graph clustering, IEEE Trans. Knowl. Data Eng. 35 (12) (2023)
12384–12399.

[39] R. Yang, J. Shi, Y. Yang, K. Huang, S. Zhang, X. Xiao, Effective and scalable clustering
on massive attributed graphs, in: WWW ’21: The Web Conference 2021, Virtual
Event / Ljubljana, Slovenia, April 19–23, 2021, ACM / IW3C2, Ljubljana, Slovenia„
2021, pp. 3675–3687.

[40] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, J. Leskovec, Open
graph benchmark: datasets for machine learning on graphs, in: Proceedings of the
34th International Conference on Neural Information Processing Systems, Curran
Associates Inc., Red Hook, NY, USA, 2020, p. 16.

[41] C. Fettal, L. Labiod, M. Nadif, Simultaneous linear multi-view attributed graph repre-
sentation learning and clustering, in: Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, WSDM 2023, Singapore, 27 February
2023 - 3 March 2023, ACM, Singapore, 2023, pp. 303–311.

[42] F. Nie, J. Li, X. Li, Self-weighted multiview clustering with multiple graphs, in: Pro-
ceedings of the Twenty-Sixth International Joint Conference on Artificial

Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017, ijcai.org, Mel-
bourne, 2017, pp. 2564–2570.

[43] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, P. Cui, Structural deep clustering network,
in: Proceedings of the Web Conference 2020, Association for Computing Machinery,
New York, NY, USA, 2020, pp. 1400–1410.

[44] Z. Peng, H. Liu, Y. Jia, J. Hou, Attention-driven graph clustering network, in: Pro-
ceedings of the 29th ACM International Conference on Multimedia, Association for
Computing Machinery, New York, NY, USA, 2021, pp. 935–943.

[45] H. He, J. Xu, G. Wen, Y. Ren, N. Zhao, X. Zhu, Graph embedded contrastive
learning for multi-view clustering, in: Proceedings of the Thirty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-25, International Joint
Conferences on Artificial Intelligence Organization, Montreal, Canada, 2025,
pp. 5336–5344.

[46] A. Mislove, M. Marcon, P.K. Gummadi, P. Druschel, B. Bhattacharjee, Measurement
and analysis of online social networks, in: Proceedings of the 7th ACM SIGCOMM
Internet Measurement Conference, IMC 2007, San Diego, California, USA, October
24–26, 2007, ACM, San Diego, California, USA, 2007, pp. 29–42.

Information Fusion 131 (2026) 104190

13

http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0038
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0038
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0038
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0039
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0039
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0039
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0039
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0040
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0040
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0040
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0040
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0041
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0041
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0041
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0041
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0042
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0042
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0042
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0042
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0043
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0043
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0043
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0044
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0044
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0044
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0045
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0045
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0045
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0045
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0045
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0046
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0046
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0046
http://refhub.elsevier.com/S1566-2535(26)00069-2/sbref0046

	Adaptive virtual anchors for efficient and stable clustering over large multi-view attributed graphs
	1 Introduction
	2 Preliminaries
	2.1 Problem statement
	2.2 Related work
	2.2.1 Attributed graph clustering
	2.2.2 Multi-view subspace clustering
	2.2.3 Multi-view deep-learning methods
	2.2.4 Anchor-based methods

	3 The proposed methodology
	3.1 Overall framework
	3.2 Core components of the proposed method
	3.2.1 Adaptive virtual anchor generation
	3.2.2 Adaptive virtual anchor graph construction
	3.2.3 The five-block coordinate descent optimization

	3.3 Algorithm summary and theoretical analysis

	4 Experiment
	4.1 Experimental setup
	4.2 Clustering results
	4.3 Time comparison
	4.4 Scalability experiments
	4.5 Stability analysis
	4.6 Parameter analysis
	4.7 Ablation analysis
	4.8 Summary

	5 Conclusion

