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Multi-view attributed graphs (MVAG) are well-known for their ability to model complex networks and relation-
ships, which can provide diverse yet complementary information for finding a consensus partition suitable for
all views. There have been abundant methods for clustering over multi-view attributed graphs. However, most
of them are not suitable for large-scale graphs due to high complexity. Moreover, while existing anchor-based
methods can effectively accelerate clustering, they mainly focus on either attribute information or graph struc-
ture during anchor selection, and some suffer from stability issues. Inspired by this, in this paper, we propose
the adaptive virtual anchor clustering method (AVAC) to boost clustering performance and keep stable results.
In particular, we first introduce adaptive virtual anchors for multi-view attributed graphs, which are learned
and generated from graphs adaptively. After that, we connect anchor learning and anchor graph construction
closely and cyclically to learn virtual anchors dynamically and make them capture real data distribution and
topology information more accurately. Last but not least, we design a five-block coordinate descent method with
proven convergence to further optimize our virtual anchors more representative of existing nodes. Extensive
experiments over both real and synthetic datasets demonstrate the effectiveness, efficiency, and stability of our
method. Compared to state-of-the-art approaches, the AVAC algorithm always gains stable results with a signif-
icant improvement in accuracy, and achieves a speedup of 1.8 times on public large-scale datasets. The source
code is available at https://github.com/Imyfree/AVAC.

1. Introduction

As a prevalent type of graph, attributed graphs [1-4] contribute to
modeling complex relationships between various entities with related
attributes in social networks [5], citation networks [6], biological net-
works [7], and so on. Recently, as the network data in real-world appli-
cations become typically multi-modal and multi-relational, multi-view
attributed graphs [8,9] have garnered significant attention. Multi-view
attributed graph clustering [10,11], which aims to seek a unified parti-
tion to divide nodes into several disjoint clusters, plays a critical role in
many applications.

Application. Clustering on multi-view attributed graphs plays a
critical role in recommendation systems [12], social network analysis
[11] and other applications. For instance, multi-view attributed graphs

* Corresponding author.

in movie recommendation systems can showcase various relationships
among movies such as co-actor and co-director relationships, along with
related keywords, types, and other attribute features. The integration of
diverse views provides more comprehensive information for clustering
which can contribute to accurate movie recommendation.

Prior Work and Limitations. Faced with complex multi-view at-
tributed graphs, how to fuse different views is the most imperative
problem. At present, existing approaches can be categorized into two
classes. The first class endeavors to fuse the attributed graphs of all views
into a consistent graph, such as subspace-based methods [10,11,13].
Multi-view attributed graph clustering (MAGC) [11] leverages the self-
expressiveness property to combine diverse views into a consistent
graph. Multi-view contrastive graph clustering (MCGC) [13] learns a
consensus graph regularized by graph contrastive loss. The other class
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(c) Sampled Anchors in the
BlogCatalog Dataset

(d) Adaptive Virtual Anchors
in the BlogCatalog Dataset

Fig. 1. Traditional anchors vs Virtual anchors. Fig. 1(a) shows traditional anchors that are sampled from existing nodes only considering topology. Fig. 1(b) shows
adaptive virtual anchors learned and generated from data dynamically. Fig. 1(c) and (d) show anchor embeddings obtained by MvAGC and our method in the

BlogCatalog dataset, where yellow stars are anchors.

[14-16] applies graph embedding techniques to transform graph data
into low-dimensional feature representations and then clusters on these
representations to obtain final results. Fan et al. [17] introduces an in-
novative autoencoder framework that encompasses an encoder shared
across all views for extracting shared representations, along with multi-
ple decoders for reconstructing multi-view graphs.

Although there have been some works [11,13] on clustering multi-
view attributed graphs, they also encounter the following limitations:

e They are not suitable for large-scale graphs due to their high
complexity. In real-life scenarios, graph data becomes increasingly
complex and large-scale. For example, the number of nodes in user
networks on social media platforms such as Facebook' and QQ? has
already exceeded millions by 2018. However, most methods fail to
deal with large-scale graphs due to long running time or memory
limitations, as shown in Section 4.4.

¢ Existing anchor-based methods can not effectively deal with
multi-view attributed graphs. Although numerous anchor-based
methods [18-21] have been developed to reduce running time, they
are mainly designed for Euclidean data and focus solely on at-
tributes, making them unsuitable for multi-view attributed graphs,
as demonstrated in Section 4.2. Recently, MVAGC [10] introduces
an anchor-based method for multi-view attributed graphs, which se-
lects anchors from existing nodes via a sampling algorithm. How-
ever, MVAGC only considers graph structure and ignores attribute
information during sampling, which directly affects the quality of
anchors and clustering accuracy. Moreover, due to its dependence
on random sampling algorithms, MVAGC introduces uncertainty in
the anchor selection process, leading to unstable anchors that ad-
versely impact model stability. Section 4.5 depicts that the cluster-
ing results of MVAGC fluctuate significantly, with evaluation indica-
tors varying by approximately 15%. These unstable results mean that
MvAGC requires multiple repeated experiments and additional com-
putational time to achieve optimal outcomes, making it unsuitable
for real-world applications.

Challenges. Consequently, how to obtain efficient and stable an-
chors adaptive for multi-view attributed graphs has become a challeng-
ing problem. We summarize posed grim challenges as two aspects. First,
it is crucial to design efficient and stable anchors adaptive for multi-view
attributed graphs. The quality of anchors directly affects the accuracy
of clustering, so how to obtain high-quality anchors that can accurately
capture real features and topology structures becomes a core concern.
Second, it is significant to design an effective and convergent solution
to solve the multivariate optimization problem. Multi-view attributed
graph clustering usually can be modeled as a multivariate optimization
problem. Different optimization strategies directly affect the optimized
results, which can influence the clustering accuracy.

Our Solution. We first introduce adaptive virtual anchors specif-
ically designed for multi-view attributed graphs, more efficient than

1 https://investor.fb.com/home/default.aspx
2 https://www.tencent.com/zh-cn/investors/financial-reports.html

existing methods. Moreover, to solve the multivariate optimization
problem proposed by our method, we design an optimization solver,
derived from the Alternating Direction Method of Multipliers (ADMM)
[22], specifically customized to address the unique challenges of our
method and update adaptive virtual anchors dynamically.

Example 1. Fig. 1 delineates the differences between traditional an-
chors and our proposed adaptive virtual anchors, using MvAGC as a
representative example. Fig. 1(a) depicts the anchors of traditional ap-
proach, which are sampled from given nodes only considering topology.
For instance, given an attributed graph with nine nodes categorized into
three classes marked with different colors, the traditional methods only
consider the structural information and randomly sample three nodes
vy, 05 and vy from the nine nodes as anchors that remain fixed in other
processes. It fails to fully leverage both attribute and structural informa-
tion, and the random sampling process is entirely decoupled from the
other steps, resulting in unrepresentative anchors that adversely affect
accuracy. Fig. 1(b) showcases our adaptive virtual anchors, which are
adaptively learned by considering both structure and attribute informa-
tion and are dynamically updated to capture the true data distribution
accurately. Fig. 1(c) and (d) visualize the sampled anchors obtained by
MvVAGC and the adaptive virtual anchors produced by our method in
the BlogCatalog dataset [23] using t-SNE, where “yellow stars” denote
the anchors. It is clear that our method provides a sharper distinction
between clusters than traditional approaches, with adaptive virtual an-
chors primarily positioned at cluster centers, showing them more repre-
sentative than sampled anchors.

Contributions. We propose the adaptive virtual anchor clustering
method (AVAC) to maintain high accuracy stably while reducing the
running time. AVAC generates adaptive virtual anchors through alter-
nate optimization. In summary, we highlight the contributions as fol-
lows:

e We first introduce adaptive virtual anchors for multi-view attributed
graph clustering which can be learned and generated adaptively
from graphs.

e We propose the adaptive virtual anchor clustering method (AVAC)
which generates adaptive virtual anchors via optimization and con-
nects anchor generation and anchor graph construction closely and
cyclically to dynamically learn adaptive virtual anchors and capture
the real data distribution and graph structure more accurately.

* We design a five-block coordinate descent method to solve the multi-

variate optimization problem proposed by AVAC, and prove its con-

vergence.

Extensive experimental results demonstrate that AVAC can obtain

stable results with a significant improvement in accuracy while fur-

ther reducing the time cost of clustering. In particular, on the pub-

lic large-scale dataset, our algorithm has achieved a speedup of 1.8

times over the advanced method.

The rest of this paper is organized as follows. In Section 2, we present
preliminaries and related works. Section 3 describes our method and op-
timization while analyzing the time complexity and convergence. Then,


https://investor.fb.com/home/default.aspx
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we conduct extensive experiments and analyze results in Section 4. Fi-
nally, Section 5 concludes this paper.

2. Preliminaries

In this section, we display the definition of multi-view attributed
graphs (MVAG) clustering and then introduce related works includ-
ing attributed graph clustering methods, multi-view subspace methods,
multi-view deep learning methods, and anchor-based methods. We sum-

marize frequently used notations in Table 1.

Table 1
Notations and descriptions.
Notation Description Notation Description
n Number of nodes X Attribute matrix
A Weighting factor A Adjacency matrix
d Consensus  dimen- h h-order filter
sion
Vv Number of views m Number of anchors
K Number of clusters @ View coefficient
P Consensus anchors z Fused anchor graph
IV[,“’ Attribute projecting I/Vy(z) Topology projecting
matrix in the v-th matrix in the v-th
view view
s Self-representation d, Dimension in the

matrix

v-th view

2.1. Problem statement

Definition 1. (Multi-view attributed graph clustering [11])

A multi-view attributed graph can be defined as G=
{®,E|,E,,...,Ey, X1, X3,...,Xy} , where ® represents the node
set and e]; € E, denotes the relationship between node v; and v; in the
v-th view. X, € R%>" denotes the attributed matrix for v-th view with
d, dimensions. Furthermore, the structural information can be repre-
sented by V adjacency matrices {Av}z;l , where 4, = {a];} € R™"
and if there exists an edge between nodes v; and v; in the v-th view,
aﬁj =1, otherwise, a[’.’d =0. In addition, clustering on the multi-view
attributed graph aims to find a unified partition fitting all views to
divide the nodes of the graph G into K clusters (Cy,C,, ..., Ck).

2.2. Related work

2.2.1. Attributed graph clustering

Attributed graph clustering has garnered sustained attention in re-
cent years. From a task-oriented perspective, it can be broadly divided
into graph-level clustering and node-level clustering. The former fo-
cuses on partitioning multiple graphs into distinct clusters. Recently,
Graph Prompt Clustering (GPC) [24] proposed a "pretraining-prompt-
finetuning" framework specifically designed for graph-level clustering.
However, in this paper, we focus on node-level clustering, which aims to
group nodes into disjoint clusters. Hu et al. [25] constructed proximity
matrices from topological connections and employed a Double Visible-
Hidden Feature Extraction mechanism for multi-view node clustering.
Up to now, existing multi-view attributed graph clustering methods can
be divided into several classes: multi-view subspace clustering methods,
multi-view deep-learning methods and so on.

2.2.2. Multi-view subspace clustering

The subspace-based methods [11,13,26] hold an assumption that
each data sample can be represented as a linear combination of other
data samples in the same subspace. Therefore, subspace-based methods
for multi-view can be summarized as follows:

4

Ig}[ilr:z{av(llxv—X,,~S||%+A||S—Av||f,), 1

o=
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where X, and A, denote the attribute matrix and adjacency matrix
for v-th view respectively. a, is the weight parameter for v-th view.
S € R™" js the self-representation matrix and || = || represents the
Frobenius norm. Eq. (1) attempts to reconstruct the attribute matrix and
minimizes the self-reconstruction error. In subspace methods [13], they
always cost O(n%) , a high time complexity, to acquire S via optimiza-
tion, bringing a grim challenge to large-scale graphs.

2.2.3. Multi-view deep-learning methods

Numerous methods based on deep learning [27-29] have achieved
promising results in clustering attributed graphs, however, they fail to
deal with multi-view attributed graphs that integrate information from
multiple views. Recently, DIAGC [30] and MAGAF [31] introduced the
innovative autoencoder framework to cluster multi-view graphs. How-
ever, these complex models involve many parameters that require opti-
mization, making them unsuitable for large-scale attributed graphs.

2.2.4. Anchor-based methods

Anchor-based methods aim to reduce computational cost and shorten
runtime by introducing representative anchors. In recent years, Zhang
et al. [32] found the anchors that satisfy the desired conditions by maxi-
mizing the Mahalanobis distance between them. Qin et al. [33] proposed
the discriminative anchor learning for multi-view clustering.

Limitations of Anchor-based methods.

Although many Euclidean anchor-based methods [19,20,32,34,35],
such as DAGF [36] and DALMC [33], have achieved promising results
on Euclidean data, they primarily rely on attributes while overlooking
structural information. In contrast, MVvAGC [10] selected anchors solely
based on graph topology and suffered from instability issues.

In attributed graphs, topology and attributes convey distinct yet com-
plementary information, as shown in Fig. 2. For instance, node 538 and
node 1022 exhibit a high cosine similarity of 0.72 but are not linked,
whereas node 15 and node 667 are linked yet share a low attribute sim-
ilarity of only 0.06. These examples highlight anchors for multi-view
attributed graphs should be specifically designed which can fuse both
topological information and node attributes.

Comparison with Anchor-based methods. In this paper, we pro-
pose adaptive virtual anchors that jointly fuse structural and attribute
information to generate higher quality anchors. Moreover, by connect-
ing anchor generation and anchor graph construction closely, the opti-
mization problem of our model is more complex compared with other
methods [10,19,32,35], for it has five variables with more constraints to
optimize. Thus, we design an optimization solver named the five-block
coordinate descent optimization to solve it.

3. The proposed methodology

In this section, we first introduce the overall framework of our
method (AVAC). Then, we present the important components in our
method. Finally, we depict our method in algorithm and provide its time
complexity, convergence analysis, and memory optimization discussion.

3.1. Overall framework

AVAC includes four stages: data preprocessing, adaptive virtual an-
chor generation, adaptive virtual anchor graph construction, and clus-
tering, as shown in Fig. 3.

Data Preprocessing. In Stage A, in the data preprocessing, we adopt
the h-order graph filter [11] to preprocess the multi-view attributed
graph and obtain smooth representations,

X = (1 - %L)hX, @

where 4 is a non-negative integer and L = I — A denotes the normalized
graph Laplacian.
Adaptive virtual Anchor Generation.
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Fig. 3. Framework of the AVAC method. Our method includes four stages: data preprocessing, adaptive virtual anchor generation, adaptive virtual anchor graph
construction, and clustering. AVAC generates adaptive virtual anchors and connects anchor generation and anchor graph construction closely and cyclically to capture

topology and real distribution of attributes.

In Stage B, we generate adaptive virtual anchors to effectively rep-
resent all nodes. To ensure that these anchors accurately reflect the
real distribution of the given graph, we design an optimization solver
(Section 3.2.3) to update the anchors.

Adaptive virtual Anchor Graph Construction. In Stage C, we con-
struct an adaptive virtual anchor graph that captures the similarities
between nodes and anchors. To ensure that the anchor graph accurately
captures the true topology of the original graph, an optimization solver
(Section 3.2.3) is designed to optimize it.

Clustering. After obtaining the adaptive virtual anchors P and the
virtual anchor graph Z from the optimization solver, we perform SVD
on the virtual anchor graph Z to get the left singular vector U as the sub-
space representation. Finally, we perform the clustering algorithm like
K-means on the subspace representation U to get the clustering results.

Overall, we depict the general framework in brief, as shown in
Algorithm 1. We perform Stage B and Stage C repeatedly to update the
adaptive virtual anchors and the adaptive virtual anchor graph dynam-
ically.

3.2. Core components of the proposed method

In this section, we will introduce three important components: adap-
tive virtual anchor generation, adaptive virtual anchor graph construc-
tion, and the five-block coordinate descent optimization. In AVAC, we
adaptively learn virtual anchors by projecting virtual anchors to dif-
ferent views to reconstruct attribute matrices and adjacency matrices,
thereby obtaining a consensus anchor graph with attribute information
and topology information of all views. The details are as follows.
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Algorithm 1: Overall framework of AVAC.

Input: Multi-view attributed graph, the number of cluster K.
Output: K clusters.

1 Stage A: Data Processing.

Perform the graph filter to obtain smooth representations.

2 while not converged do
3 Stage B: Adaptive Virtual Anchor Generation.

Utilize the individual view attention mechanism to
adaptively learn virtual anchors. (Subsection 3.2.1).
Design the solver optimization to obtain the updated
adaptive virtual anchors (Subsection 3.2.3).

4 Stage C: Adaptive Virtual Anchor Graph Construction.

Construct the adaptive virtual anchor graph via individual
view projecting (Subsection 3.2.2). Design the
optimization solver to obtain the updated adaptive virtual
anchor graph (Subsection 3.2.3).

end

6 Stage D: Clustering.

Perform the clustering algorithm to obtain clusters. return K
clusters.

o

3.2.1. Adaptive virtual anchor generation

The adaptive virtual anchor generation process, illustrated in Stage
B of Fig. 3, comprises two main components: adaptive learning and in-
dividual view attention.

¢ Adaptive learning. To generate adaptive virtual anchors, we project
adaptive virtual anchors P € R to the real feature space X, €
R%*" of each view, where d and m are consensus dimension and
number of anchors. By minimizing the distance between recon-
structed features and original features, we can adaptively learn rep-
resentative virtual anchors that can effectively capture the real dis-
tribution. We formulate this objective function as:

min_||X, - W PZ|2,

z,p W 3)

T
st. WO wh=1PTP=1

where P is the consistent anchor and va € R4%*¢ denotes a project-
ing matrix that can map the consensus dimension d to the dimensions
of attributes in the v-th view. Z is the anchor graph that indicates
the similarity among original nodes and anchors.

Individual View Attention. Since different views play various roles
in the clustering task, we introduce the view-attention mechanism
[18] in our AVAC method. In view-attention mechanism, we set a
series of parameters {o:v}l’=1 to pay different attention to individ-
ual views, and then optimize them through the optimization solver.
Thus, Eq. (3) can be further developed as:

v

: 2 v (¢}} 2
min Zau<||Xv - W, PZ||F>,
Wv Z,Pa, =1
@
4 T
— @ @ _ Tp _

st Y a,=1L,W " w=1,PTP=1

v=1
where q,, is the attention coefficient of the v-th view. Z € R™" de-
notes the anchor graph which reflects the similarity relationships
among anchors and nodes and m is the number of anchors. P € R**™
represents the consensus anchors for all views, and d is the consensus
dimension. The individual view attention mechanism can selectively
absorb useful information from each view and combine the comple-
mentarity and consensus information among these views more effec-
tively.

3.2.2. Adaptive virtual anchor graph construction
We project the anchor graph into the real topological space in each
view to reconstruct the topological information and update the anchor
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graph by reducing the distance between the reconstructed adjacency
matrix and the original adjacency matrix, as shown in the Stage C of
Fig. 3. Meanwhile, we can reconstruct the original feature by project-
ing the adaptive virtual anchor to the real feature space via the anchor
graph. Furthermore, through the individual view attention, we can as-
sign different weights to each view to combine these views effectively.
In summary, we obtain the final formulation of our problem:

14
. > 1 2
min Zﬁ(llxv-WJ 'PZ|%+4 |14, - WP Z|2 )
M) (2
Wy W =1
»Z,Pay

Feature Reconstruction Topology Reconstruction 5)
|4
_ Ty, _y pTp T 5,0 _
st ) o, =LW wP=rPTP=1Ww? W>=1

v=1

where Z is the anchor graph which reflects the similarity score between
node representations and anchors. The smaller it is, the less relevant it
is between the node and the adaptive virtual anchors [10,11]. WU(Z) S
R"™™ s a projecting matrix that maps the consistent anchor graph Z €
R™ " to the original space of adjacency information in the v-th view. We
constrain Wv(l) , Wv(z), P to be orthogonal to utilize relevant properties for
rapid derivation [18]. a, is the attention coefficient of the v-th view, and
we set some constraints for it to better balance the weight ratio among
different views. 4 is the weight factor to balance between the structural
information and attribute information.

To solve Eq. (5), we design the optimization solver named the five-
block coordinate descent optimization described in Section 3.2.3 to ob-
tain the adaptive virtual anchors P and the virtual anchor graph Z .

3.2.3. The five-block coordinate descent optimization

In this subsection, we describe the optimization solver named the
five-block coordinate descent optimization, which is utilized to obtain
the adaptive virtual anchors P and the virtual anchor graph Z. Five-
Block Coordinate Descent Optimization method is a customized solver,
derived from Alternating Direction Method of Multipliers (ADMM) [22],
but specifically designed to tackle the specific and complex multi-
variable optimization problem in this paper. When optimizing each sub-
problem, our solver effectively leverages the relationship between the
Frobenius Norm and the matrix trace to streamline the computational
process. Further, confronted with the specific constraints in AVAC, we
incorporate singular value decomposition, the Schwarz-Cauchy inequal-
ity, and other analytical techniques to enhance the optimization, en-
suring an efficient and effective resolution of the complex multivariate
optimization problem in this paper.

There are five groups of variables in Eq. (5), and when considering all
variables simultaneously, Eq. (5) is not jointly convex. Thus, we design
the five-block coordinate descent optimization to solve this multivari-
ate optimization problem. We can divide the multivariate optimization
problem into five subproblems and minimize Eq. (5) by solving the fol-
lowing five subproblems iteratively:

¢ Attribute projecting matrix Wv(l) -Subproblem. Fix P, Z, WV(Z) , s
and update the attribute projecting matrix Wv(l) .

» Topology projecting matrix Wv(z) -Subproblem. Fix P, Z, Wv(l) , s
and update the topology projecting matrix WV(Z) .

e Adaptive virtual anchors P -Subproblem. Fix Z, Wv(l), Wv(z) , @, ,and
update adaptive virtual anchors P .

e Adaptive virtual Anchor graph Z -Subproblem. Fix P, Wv(l), Wv(z) , @,
, and update the anchor graph Z .

¢ Attention for individual views «, -Subproblem. Fix Z, I'VU(I), WV(Z), P
, and update the attention score for each view «,, .

The five subproblems are solved as follows iteratively.
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Subproblem-1. Attribute projecting matrix VVU(I) -Subproblem.
Fix P, Z, W,,(Z) , @, , and the optimization function can be presented as

|4
. 2 v (¢}] 2
min 3 a2 (11, - W P21 ).

o o=1

(6)
stw®Tw® Z
ew® wh =1

For each view, the value of Wv(l) is independent of other views, there-
fore, according to relationships between the Frobenius norm and matrix
trace, we extend the Frobenius norm, delete some irrelevant items, and
transform Eq. (6) as

14

. 2 g @D 2
mip 32 (12, - W P11 ).
v=1

v

st wO w1,
oS TR kT Tpr
< Z{ a2Tr(XIX, - 2XT W PZ + 2T PTPZ) (7)
4 o 1
< min Z{ 2Tr(-2XTw " PZ)

v

T
< max Tr(Wv(l) C),
wd

v

where C represents X,ZT PT . Assuming that the singular value de-
composition (SVD) of C is U,.X.RT , W" should be U, R based on
Proposition 1.

Proposition 1. When the singular value decomposition of C is C = UERT
, the following constrained problem has closed form solution M = URT .

mﬁxTr(MTC), st. MITM=1. 8)

Proof. Assuming the singular value decomposition of C is C = UXRT ,
we can obtain

Tr(MTC)=TrMTUZRT) = TrHRTMTUY) 9)

Let 0 = RTMTU , it is evident that RTMTUUTMR =T . Then we
can get Tr(RTMTUE) = Tr(QX) < Tr(IZ) = Y|_, 6; , where o, is the
i-th diagonal element of X. Thus, when QX = IE, indicating RT MTU =
I, Eq. (8) achieves the maximum, and we get the closed solution M =
URT. O

Subproblem-2. Topology projecting matrix Wv(z) -Subproblem.
The optimization of va is similar to Wlf” . When Z, P, Wv(l) ,a, are
fixed, Eq. (5) can be transformed into the following problem

|4
. 2 (2) 2
mig o </1||AU -w Z||F>,

v v=1

(10)
T
stw® w® =1

According to the relationship between the Frobenius norm and ma-
trix trace, we can change Eq. (10) into

T T )
r;%Tr(Wv B), st W22 w=1I, 1n

v

where B=A,ZT , therefore W,* equals U,R] when B =U,Z,R] .

Subproblem-3. Adaptive virtual anchors P -Subproblem. When
Z, W,j”,W,fz),aU fixed, Eq. (5) can be transformed into the following
formula

14
. 2 ¢ @ 2 Tp _
rrgnZaU<||Xv—Wv PZ||F>, st. PTPp=1. 12)

v=1
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Moreover, Eq. (12) can be rewritten as

14

N 2% —wOpzIP
mﬁ“;‘“("x” -wOPzI).
4 T
emin Y Tr(RI X, -2PTWV %27 + 27 Z)
“ as)

v

& max 2{ agTr(PTWv(l)TX’UZT)
o=

© max Tr(PTF), st. PTP=1,

where F = ZL/: | agWV(l)Tf( ,ZT . Supposing optimization results of F is

UfEfR; , P equals to UfoT .

Subproblem-4. Adaptive virtual Anchor graph Z -Subproblem.
When we fix P, Wv(l), Wv(z) , a, , we can transform Eq. (5) based on the
relationship between the Frobenius norm and matrix trace. Then we
can delete some terms unrelated to Z , which have no effect on the
first derivative of the equation. Finally, we set the first derivative of the
equation to zero to obtain the optimization result. Therefore, we have

& 1 2
oy, ag<||x,, -WPZ|2 + A4, - W, )Z||2F>

0Z

T 4
0XV_ @2Tr [(1 +ADZTZ - 22" PTWP X,,] (14)
<

0z
T
oY) 2Tr [2AZT w2 A,,]

0Z
When setting Eq. (15) to 0, we can get the optimization as

14 14
T 4 T
zZ= [Z al(I+ /11)]“ x [Z ag(PTWU(" X, +aw? A,,)]. (15)
v=1 v=1

Subproblem-5. Attention for individual views «,-Subproblem.
When updating the attention score «,, we keep Z, Wv(l), WV(Z),P fixed.
Marking <||X,, -wPZ| + AlA, - WV‘2>Z||§> as H, Eq. (5) can be

transformed as
v

14
Y ZH: & %Z (a,H )2 Y 12> %(Z%HU>2. (16)

v=1

According to the conditions for equality, we can obtain the optimal

results when o H, = a,H, = ... = a, H, , and we set L = H, . Ac-
cording to Schwarz Cauchy inequality, we can acquire a, = Hi where
v
L= ¢+¢l+ T
Hy — Hy Hy

The designed optimization solver (the five-block coordinate descent
optimization) divides the multivariate optimization problem into five
sub-problems. By solving these subproblems iteratively, we can obtain
the updated virtual anchors P and the virtual anchor graph Z .

3.3. Algorithm summary and theoretical analysis

In this subsection, we conclude our adaptive virtual anchor clus-
tering algorithm and further analyze its time complexity and conver-
gence. Moreover, we discuss our memory optimization techniques (ma-
trix chunking multiplication) to further reduce memory requirements
when dealing with large graphs. The complete procedures of AVAC are
outlined in Algorithm 2. As depicted, we initialize P, Z, PVU(D, Wv(z) with
zero matrices. First, we preprocess the multi-view attributed graph via
the h-order graph filter to obtain smooth representations. Then, we up-
date Wv(l), Wv(z) to prepare the attributed projecting matrix and topology
projecting matrix. After that, we can update the adaptive virtual anchors
by solving the P -Subproblem to obtain the optimized virtual anchors.
Then, we update Z, « to obtain the adaptive virtual anchor graph. We
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Algorithm 2: The AVAC algorithm.

Input: Multi-view attributed graph {Ay, ..., Ay, Xq,..., Xy},
the number of cluster K.
Output: K clusters.
1 Initialization: Initialize P, Z, Wv(l), PVU(Z) with zero matrix.

Initialize @, with 2.

2 Perform the h-order graph filter to obtain the smooth
representation of multi-view attributed graph
{Al, s Ay Ky ,XV} .

3 while not converged do

4 Update Wv(l) by solving the attribute projecting matrix
PVU(I) -Subproblem.

5 Update Wv(z) by solving the topology projecting matrix
Wv(z) -Subproblem.

6 Update P by solving adaptive virtual anchors P
-Subproblem.

7 Update Z by solving the anchor graph Z -Subproblem.

8 Update «, by solving the attention score for individual
views a,-Subproblem.

9 end
10 Perform SVD on Z to obtain the left singular vector U .
1 Perform clustering algorithm on U to get the K clusters.
12 return K clusters.

-

can adaptively learn virtual anchors and construct the virtual anchor
graph by minimizing Eq. (5). This process effectively captures the un-
derlying distribution and topological information by reconstructing both
the attribute matrix and the adjacency matrix. Moreover, we execute
Stages B and C alternately to dynamically update the virtual anchors
and the virtual anchor graph. After obtaining the anchor graph Z , we
perform SVD on the anchor graph to acquire the left singular vector U
. Finally, we execute K-means on the eigenvalue U to get the clustering
results.

Time complexity. For AVAC, the cost of optimization for each vari-
able composes the overall computational complexity. When updating
Wv(l) , the implementation of SVD on C, takes O(d,d?) , and it costs
O(d,dk?) for other matrix multiplication. When updating Wv(z) , it costs
O(m?n) to execute SVD on B,,.

When updating Z , the inverse operation costs O(m?) . Since the adja-
cency matrix is sparse, assuming that the number of non-zero elements
in the matrix is n,, where n, is much smaller than n?, the other matrix
multiplications cost O(mdd,+md,n+n_+m>n) . When updating P , it takes
O(md?) for SVD and ©(dmk?) for matrix multiplications. Furthermore, it
costs O(1) when calculating «,. In summary, we can find the complexity
of AVAC is with respect to O(n,) , which is far less than n2. To further im-
prove the efficiency of AVAC, we can consider the adjacency matrix as
n vectors, and implement the matrix multiplication in parallel, reducing
the time complexity of AVAC to O(n).

Convergence analysis. We design the five-block coordinate descent
optimization for the AVAC method. It monotonically decreases during
the iteration process when one subproblem is solved with the others
fixed at each iteration. Moreover, we can observe that the lower bound
of Eq. (5) is 0. Thus, according to [37], the algorithm can be guaranteed
to converge.

Discussion. As the graph size increases, we find that the memory
requirement of clustering is increasing. Through experiments, it is clear
that matrix multiplications consume the most memory. To better adapt
to large graph scenarios, we design the matrix chunking multiplication
for AVAC to reduce the memory requirement. As shown in Fig. 4, we
divide the original matrix into nine sub-matrices. We decompose large
matrix multiplications into several smaller block multiplications. The
first block of results ( AA’ + BD' + CG’ ) is computed by multiplying
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Table 2
Multi-view attributed graph datasets.
Dataset Views  Nodes Attributes  Edges Clusters
ACM 2 3,025 1,830 29,281 3
2,210,761
11,113
DBLP 3 4,057 334 5,000,495 4
6,776,335
BlogCatalog 2 5,196 8,189 171,743 6
5,196
Flickr 2 7,575 12,047 479,476 9
7,575
AMAP 2 7,650 745 119,081 8
7,650
Wiki 4 2,405 4,973 24,357 17
12,025
Pubmed 2 19,717 500 44,338 3
Computer 2 13,752 767 133,289 10

Ogbn-products 2 2,449,029 100 61,859,140 47

the first row of matrix L with the first column of matrix M . The size
of the sub-matrices is determined based on the memory capacity of the
running environment.

4. Experiment

In this section, we evaluate AVAC with a comparison to the state-of-
the-art algorithms over real and synthetic datasets.

4.1. Experimental setup

In this subsection, we introduce metrics, datasets, and comparison
algorithms, respectively.

Metrics and Datasets. We use four evaluation metrics to measure
clustering results: accuracy (ACC), F1-score (F1), normalized mutual in-
formation (NMI), and adjusted rand index (ARI) [11].

Moreover, in the experiments, we use nine datasets covering three
types of multi-view attributed graphs. The detailed information is shown
in Table 2.

e Multi-view attributed graph datasets with multiple graph struc-
tures. We implement two real datasets (ACM?, DBLP*) which con-
tain one attributed matrix and multiple adjacency matrices.

e Multi-view with multiple attribute matrices. Blogcatalog dataset
[23], Pubmed dataset [38], Computer dataset,” AMAP dataset®,
Flickr dataset [39] and the Ogbn-products dataset [40] contain one
adjacency matrix and multiple attribute matrices. Moreover, the
attribute matrix of the Blogcatalog, Flickr, and AMAP datasets in
the second view is constructed via a cartesian product [11]. In the
Pubmed, Computer and Ogbn-products datasets, the attribute matrix
of the second view is constructed using a log-scale of the original
ones [41].

e Multi-view attributed graph datasets with multiple attributes
and graph structures. The Wiki dataset [41] contains multiple
attribute matrices and multiple adjacency matrices. In the Wiki
dataset, the additional views are created from the initial data which
contains a single graph structure and attribute matrix.

Comparison Algorithms. We compare AVAC with several represen-
tative works in recent years from the perspectives of accuracy and ef-
ficiency on nine datasets, which contain different types of multi-view
attributed graphs. The comparison algorithms mainly include the fol-
lowing four categories:

3 http://dl.acm.org

4 https://dblp.uni-trier.de/

5 https://github.com/Karenxt/AGCandIAGC-code/

6 https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering/
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Fig. 4. Matrix chunking multiplication.
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Fig. 5. Two-dimensional projections of AVAC embeddings using t-SNE colored according to real labels.
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Fig. 6. Two-dimensional projections of DIAGC embeddings using t-SNE colored according to real labels.

¢ Subspace clustering methods: PwWMC [42] and MAGC [11].

¢ Single-view methods: SDCN [43], SDCN-avg, AGCN [44], and
AGCN-avg. We implement these single-view methods on each view
and take the best result as the final result. Furthermore, we calcu-
late average results of all views and remark them as SDCN-avg and
AGCN-avg.

e Anchor-based methods: SMVSC [18] and MvVAGC [10].

¢ Deep learning-based method: DIAGC [30] and GMVC [45].

Experiments are performed on the computer equipped with TITIAN
RTX 2080TI GPU of memory 11G and Intel Core i9 9820X CPU of 128G.
Based on our memory capacity, for the Ogbn-products dataset, we di-
vide the matrix 2,449,029 x 2,449,029 into several 100,000 x 100,000
chunks for matrix multiplication. The source code is available at
https://github.com/lmyfree/AVAC.

4.2. Clustering results

In this experiment, we evaluate the effectiveness of AVAC and
the comparison algorithms based on the clustering results. Tables 3
and 4 list clustering results compared with recent algorithms. Over-
all, our proposed method AVAC outperforms other advanced methods
[10,11,18,30,42-45]. To be precise, we have the following observations.

According to Tables 1 and 3, single-view methods are not suitable
for multi-view datasets and fail to deal with multi-view datasets be-
cause they cannot take advantage of complementary information be-
tween views.

PwMC and MAGC are subspace methods. In comparison, AVAC
consistently achieves superior performance. Specifically, on the Flickr
dataset, AVAC outperforms MAGC by approximately 40% in terms of
accuracy. Furthermore, in the AMAP dataset, AVAC achieves an accu-
racy that is roughly 50% greater than that of PwMC.

Anchor-based methods for Euclidean data fail to deal with multi-
view attributed graphs. We can observe that SMVSC performs worse in
multi-view attributed graphs, and is more than 10% lower than AVAC
in terms of accuracy in most datasets. It can only focus on attributed

matrices without considering multiple graph structures, which leads to
lower accuracy. Thus, these anchor methods for Euclidean data are not
effective for multi-view attributed graphs. As for MVAGC, the sampled
anchor-based method, our method AVAC presents better performances
than MvAGC, with about 10% higher in NMI or ARI in most datasets
like BlogCatalog, Pubmed, Flickr, and AMAP datasets. This illustrates
that our virtual anchors can accurately capture the distribution of the
real data compared with the sampled anchors.

Compared with deep-learning methods, AVAC performs better than
DIAGC with about 10% higher on four evaluated metrics in the AMAP
dataset. AVAC outperforms GMVC across all datasets, achieving over
40% higher accuracy on the BlogCatalog, Flickr, and AMAP datasets.
AVAC generates virtual anchors from adaptive learning which makes
anchors more representative and contributes to better performances.
Additionally, experimental results show that the GMVC model suffers
from class imbalance during clustering, leading to lower F1 scores.

According to the results of the BlogCatalog dataset, AVAC is 33%
higher than the best advanced methods in accuracy. Also, AVAC is
about 6% higher than other methods in the Wiki dataset according to
NMI. From the results of the Flickr dataset, AVAC is about 15% higher
than other advanced methods on four evaluated metrics. In the Ogbn-
products dataset, most methods are unable to process large-scale graphs
due to excessive running time or high memory requirements. Compared
with MvAGC, AVAC is about 80% higher in the Ogbn-products dataset
according to ARI, which indicates AVAC is more effective than other
methods. Fig. 5 visualizes the clustering results of our method. Fig. 6 vi-
sualizes the clustering results of the latest comparison method, DIAGC.
We find that the clustering results of AVAC are clearer and more distin-
guishable than those of DIAGC, especially in the BlogCatalog and Flickr
datasets.

4.3. Time comparison
In this experiment, we assess the time of AVAC and other compari-

son algorithms. For a fair comparison, we compare the running times of
various methods with the best results. From Table 5, we can obviously
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Clustering accuracy. The symbol "-" indicates that no clustering result was obtained within 24 h, typically due to memory or time
Deep learning-based methods )

constraints.( Single-view methods  Anchor-based methods Subspace methods

Blogcatalog ACM DBLP
Dataset
ACC NMI Fi ARI | ACC NMI F1 ARI | ACC NMI Fi1 ARI
SDCN 0.2283 0.0957 0.1337 0.0106 | 0.9064 0.6939 0.9069 0.7444 | 0.5891 0.3442 0.5133 0.2867
SDCN-avg 0.2030 0.0488 0.0925 0.0053 | 0.7829 0.6097 0.7411 0.6022|0.5224 0.2533 0.4344 0.2099
AGCN 0.2575 0.1341 0.1515 0.0307 [ 0.8922 0.6682 0.8913 0.7127|0.7649 0.6137 0.6387 0.6009
AGCN-avg 0.2176 0.0680 0.1014 0.0153|0.7935 0.5610 0.7940 0.5693 | 0.6290 0.4153 0.5536 0.3816
PwMC 0.1776 0.0004 0.2861 0.0000 | 0.5190 0.2857 0.5368 0.3566 | 0.4020 0.1191 0.4253 0.0599
MAGC  0.3369 0.1743 0.2667 0.0791|0.8723 0.5976 0.8705 0.5976 | 0.9307 0.7787 0.9262 0.8326
SMVAC  0.4076 0.2480 0.2944 0.1095|0.7543 0.4015 0.6187 0.4259 | 0.5785 0.3080 0.4406 0.1700
MvAGC 0.5454 0.3616 0.5558 0.2827|0.8882 0.6559 0.8893 0.6995|0.9171 0.7470 0.9116 0.8038
GMVC 04727 0.3014 0.1054 0.2452|0.9289 0.7479 0.0393 0.8006 | 0.7550 0.4788 0.2354 0.4943
DIAGC  0.4500 0.2612 0.4159 0.1818 0.9167 0.7127 0.9177 0.7671|0.9007 0.7353 0.8945 0.7700
AVAC (Our) 0.8749 0.7123 0.8722 0.7278/0.9302 0.7534 0.9306 0.8029|0.9346 0.7886 0.9305 0.8419
Dataset Pubmed Wiki Flickr
ACC NMI Fi1 ARI [ACC NMI F1 ARI | ACC NMI Fi1 ARI
SDCN 0.5470 0.1612 0.5490 0.1502|0.3551 0.3713 0.3137 0.1807|0.1302 0.0197 0.0475 0.0006
SDCN-avg 0.5223 0.1211 0.4615 0.0985 |0.2940 0.2452 0.1928 0.1198|0.1240 0.0109 0.0361 0.0003
AGCN 0.5742 0.1431 0.5794 0.1439|0.1672 0.0142 0.0179 0.0005 | 0.1872 0.0960 0.0922 0.0227
AGCN-avg 0.5256 0.1122 0.5206 0.0989 | 0.1672 0.0142 0.0179 0.0005 | 0.1661 0.0572 0.0733 0.0139
PwMC 0.3994 0 0.5260 0 0.1073 0.3344 0.0519 0.0394 | 0.1172 0.0011 0.2001 0
MAGC  0.6282 0.2324 0.6312 0.2094 |0.5625 0.4654 0.3851 0.3087 | 0.2459 0.1480 0.0599 0.1573
SMVAC  0.5389 0.1531 0.4694 0.1343|0.4686 0.4562 0.3148 0.2317|0.4817 0.3632 0.3437 0.2522
MvAGC  0.3994 0.0002 0.1904 0 0.5018 0.4815 0.4220 0.2781|0.3287 0.2707 0.2726 0.1008
GMVC  0.5507 0.2167 0.2006 0.1646 |0.4424 0.4633 0.0069 0.2615|0.2055 0.1586 0.0154 0.0904
DIAGC - - - - 0.5222 0.5027 0.4468 0.3478 [ 0.2429 0.1066 0.2193 0.0813
AVAC (Our) 0.6495 0.2754 0.6549 0.2551| 0.5417 0.5611 0.4730 0.3743|0.6417 0.5134 0.6271 0.4692

Table 4

Clustering accuracy. The symbol "-" indicates that no clustering result was obtained within 24 h, typically due to memory or time

Constraintsl( Single-view methods  Anchor-based methods Subspace methods

Deep learning-based methods )

COM AMAP Ogbn-products
Dataset
ACC NMI F1 ARI |[ACC NMI F1 ARI |[ACC NMI F1 ARI
SDCN 0.3750 0.0011 0.0551 -0.0001|0.2554 0.0037 0.0579 -0.0014| - - - -
SDCN-avg 0.3750 0.0011 0.0551 -0.0001|0.2546 0.0027 0.0546 -0.0007| - - - -
AGCN  0.3911 0.0398 0.0878 0.0610|0.5026 0.4496 0.3895 0.3637 - - - -
AGCN-avg 0.3836 0.0230 0.0763 0.0341|0.3782 0.2257 0.2204 0.1818 - - - -
PwMC  0.3541 0.0522 0.3361 -0.0028|0.2292 0.1160 0.2691 -0.0033| - - - -
MAGC  0.3655 0.0221 0.0853 -0.0019|0.6671 0.6582 0.6008 0.4957 - - - -
SMVAC  0.3520 0.2119 0.3085 0.1062 |0.4307 0.2907 0.2891 0.1116 - - - -
MvAGC  0.3747 0.0008 0.0546 -0.0003|0.2539 0.0017 0.0513 0 0.1855 0.0680 0.0379 0.0119
GMVC  0.3424 0.0173 0.0589 0.0566 | 0.2444 0.0256 0.0426 0.0007 - - - -
DIAGC - - - - 0.6507 0.5419 0.6004 0.4399 - - - -
AVAC (Our) 0.4760 0.4755 0.3997 0.3094(0.7819 0.7029 0.7193 0.6015|0.2618 0.1178 0.0410 0.8582

observe that AVAC consumes much less time than other advanced meth-
ods. Compared with MVAGC, our method AVAC achieves a speedup of
2-5 times while maintaining high accuracy in most datasets. Notably, in
the BlogCatalog dataset, AVAC demonstrates a remarkable speedup of
24 times compared to MVAGC. In contrast, as a deep learning approach,
DIAGC incurs higher computational costs and requires more resources
than alternative methods due to its extensive number of parameters that
need to be trained. In the large-scale dataset (Ogbn-products dataset),
AVAC is approximately 1.8 times faster than MVAGC. In contrast, SM-
VAC takes more than 24 h, while PwMC, MAGC, and DIAGC require too
much memory.

4.4. Scalability experiments

We conducted scalability experiments at different scales-thousands,
tens of thousands, hundreds of thousands, and millions to assess the ca-
pability of various methods in handling large-scale graphs, as shown
in Table 6. Among these datasets, BlogCatalog, Ogbn-arxiv, and Ogbh-
products are publicly available datasets, while BlogCatalog-pro is a syn-
thetic dataset obtained by replicating the nodes of BlogCatalog eight
times, resulting in a dataset with 40,000 nodes.

Discussion about the large-scale dataset. To analyze the capac-
ity of different approaches in handling large-scale graphs, we introduce
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Running time. We mark italic to show the best performances. “OOM” represents out of memory. “Speedup” indicates the

multiplier of acceleration compared to the fastest method.

Methods ACM DBLP BlogCatalog ~ Wiki Flickr Com AMAP Pubmed Ogbn-products

SMVAC 15325  26.38s  101.50s 26.65s  215.30s  63.37s  42.26s 90.65s >24h

PWMC 252.59s  305.89s  45.01s 42.33s  136.39s  687.09s  144.04s  1936.72s OOM

MAGC 83.87s  159.82s  173.40s 103.48s  367.80s  440.82s  54.31s 316.90s  OOM

MVvAGC  5.68s 9.70s 31.60s 16.23s  68.81s 115.10s  19.57s 86.39s 14572.29s

DIAGC 267.02s  573.96s  600.85s 371.48s  1131.79s OOM 1115.16s  OOM 00OM

GMVC 57.97s  89.74s  221.51s 87.51s  635.79s  170.66s  81.13s 686.70s  OOM

AVAC 1.68s 2.00s 1.295 4.455 39.49s 14.43s  7.27s 21.90s 8063.285

Speedup  3.38x 4.85x 24.49x 3.64x 1.74x 4.39x 2.69x 3.94x 1.80x

Table 6
Scalability analysis. “O0OM” represents out of memory.( Anchor-based methods  Subspace clustering methods Deep learning-based methods )
ataset BlogCatalog BlogCatalog-pro Ogbn-arxiv Ogbh-products
Metho (Thousand-level) (Ten-thousand-level) (Hundred-thousand-level) (Million-level)
PwMC 45.01s >6h OOM OOM
MAGC 173.40s OOM OOM OOM
SMVAC 101.50s 1244.90s 4879.68s >24h
MvAGC 31.60s 110.60s 227.63s 14572.29s
GMVC 221.51s 2574.83s 2397.55s OOM
DIAGC 600.85s OOM OOM OOM
AVAC (Our) 1.29s 68.40s 100.39s 8063.28s

the publicly available large graph dataset (Ogbn-products dataset). This
dataset contains 2,449,029 nodes and 61,859,140 edges in each view,
with each node having 100 dimensions. The memory required to store
the two attributed matrices is 934MB, which is equivalent to 1.03 billion
nodes with only one dimension. Additionally, the memory of the adja-
cency matrix in COO sparse format is 1.84GB, roughly the same as the
LiveJournal dataset [46] with 112 million edges. Thus, considering the
number of attributes and views, we find that the scale of the multi-view
attributed graph is significantly larger than merely taking into account
the number of nodes.

Scalability Analysis. From scalability experimental results, deep
learning methods and several subspace-based methods are not suitable
for large-scale graphs due to high complexity. Deep clustering methods
(DIAGC) and subspace clustering methods (PwMC, MAGC) have time
and space complexities of O(N?) or higher. This means that as the data
scale increases, the computational cost rises exponentially, severely lim-
iting the scalability of these algorithms for large-scale graph data. As the
number of nodes escalated from thousands to tens of thousands, the run-
time of PWMC increased dramatically from 45 s to over 6 h, representing
a more than 500-fold increase and underscoring its inadequate scalabil-
ity. Similarly, DIAGC encounters memory exhaustion and is unable to
complete computations for 40,000 nodes. In the Ogbn-products dataset,
SMVAC (Anchor methods for Euclidean data) consumes over 24 h; while
PwMC, DIAGC, and MAGC require more memory than other methods
when dealing with the same dataset, so they cannot handle large sce-
narios at a low cost. Our method can yield better results and speed up
by 1.8 times compared with MVAGC. Thus, our method is more suitable
for large-scale scenarios compared with other methods.

4.5. Stability analysis

To evaluate the stability of the models, we repeat the experiments on
the ACM dataset 50 times with fixed parameters and compare the results
with the existing anchor method, MVAGC [10], as shown in Fig. 7. We
employ the same settings to ensure the stability of k-means in both our
method and MvAGC. This allows a fair comparison of stability between
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the sampled anchor method and our adaptive virtual anchor method.
From Fig. 7, we can observe that the results of AVAC are stable for our
anchors are obtained via optimization, while MvAGC, where anchors
are selected by a random algorithm, is affected by the random numbers.
The results of MvAGC fluctuate +5%, resulting in poor stability of the
model.

4.6. Parameter analysis

AVAC has several parameters to tune, including the number of an-
chors m, the weighting factor 4, and the filter order h. Fig. 8 shows the
results under different parameters. In AVAC, we fix one parameter and
vary the other two parameters. For the DBLP dataset, according to the
metrics NMI and ARI, we can observe that the weighting factor 4 affects
the performance to some degree. In the DBLP dataset, when we set it to
100, AVAC can obtain excellent results considering all evaluation met-
rics. Besides, it is obvious that we should not set the value of anchor
number m too large. According to the results, we infer that an exces-
sive number of optimized anchors may lead to the case that multiple
representative anchors belong to the same class. This may lead to large
distances within a class and overly broad class boundaries, making it
challenging to accurately partition the clusters. Furthermore, we find
that the filter order 4 can combine attribute information with structural
information efficiently.

Moreover, we visualize the view weights of most datasets in Fig. 9
and find that the weights of each view in ACM, DBLP, and Blogcatalog
datasets are similar, indicating that each view in these datasets is equally
important and contains a large amount of information. In AMAP, Com-
puter, and Flickr datasets, the weight of the first view is significantly
greater than that of the second view, indicating that the first view may
contain more useful information than the second view.

4.7. Ablation analysis

To better evaluate the importance of each part in AVAC, we have
redesigned three ablation experiments as follows:
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Fig. 7. Stability analysis on the ACM dataset.
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Fig. 8. Parameter analysis for AVAC.
Table 7
Ablation analysis.
ACM DBLP Wiki
Dataset
ACC NMI F1 ARI ACC NMI F1 ARI ACC NMI F1 ARI
w/o TR 0.8614 0.5685 0.8610 0.6340 0.4333 0.2409 0.4575 0.0758 0.5234 0.5489 0.4737 0.3482
w/o Graph Filter 0.9137 0.7059 0.9150 0.7589 0.9169 0.7427 0.9126 0.7995 0.5480 0.5582 0.4732 0.3668
w/o FR 0.5990  0.3220  0.5722  0.3173 09115 0.7343  0.9052 0.7913  0.4099  0.3769  0.3543  0.2225
AVAC(ours) 0.9302 0.7534 0.9306 0.8029 0.9346 0.7886 0.9305 0.8419 0.5417 0.5611 0.4730 0.3743
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Fig. 9. View weights.

¢ W/0 (With/Without) Topology Reconstruction (TR). According
to Table 7, we can observe that topology reconstruction plays an im-
portant role in clustering. Without topology reconstruction, we may
ignore the structure information to some degree and fail to capture
the real structure of nodes.

11

e W/o Graph Filter. From Table 7, we can find that the graph fil-
ter has a tiny impact on clustering results. The graph filter attempts
to combine structure information with attributes and obtain smooth
representations. However, without the graph filter, the topology re-
construction can contribute to capturing the real structure of nodes,
so that the graph filter influences the results little.

¢ W/o Feature Reconstruction (FR). The results in Table 7 indicate
that feature reconstruction has a greater impact on the ACM dataset,
which may be due to the higher attribute dimensions of the ACM
dataset. When facing high-dimensional feature datasets, removing
the feature reconstruction will ignore important information about
attributes, thereby affecting clustering results.

4.8. Summary

Through extensive experiments, we can observe that compared to
state-of-the-art approaches, AVAC can significantly improve accuracy
while further reducing the time cost of clustering. Particularly for the
Blogcatalog dataset, AVAC achieves a speedup of 24 times compared
to other methods. Furthermore, we find that AVAC can respond more
quickly to large-scale graphs by enlarging the graph scale to millions
of nodes. In particular, on the public large-scale dataset, the AVAC al-
gorithm has achieved a speedup of 1.8 times over the state-of-the-art
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method MVAGC while improving accuracy significantly. Moreover, com-
pared with other sampled anchor methods like MVAGC [10], AVAC can
obtain more stable results.

5. Conclusion

In this paper, we propose the adaptive virtual anchor clustering
method (AVAC), which efficiently clusters multi-view attributed graphs.
AVAC generates adaptive virtual anchors and connects anchor genera-
tion and anchor graph construction closely. By executing these two pro-
cesses cyclically and alternately, through which these two processes af-
fect each other, AVAC can generate effective anchors that capture more
accurate real data distribution and graph structure. Extensive experi-
mental results validate the effectiveness of our method in terms of accu-
racy, running time, and stability. In the future, we will focus on incom-
plete clustering and further explore virtual anchor clustering methods
that are more suitable for incomplete multi-view attributed graphs.
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