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 A B S T R A C T

Precise forecasting of lung tumor growth is essential for devising effective treatment strategies and managing 
early-stage lung cancer. However, existing methods lack intuitive judgments for tumor growth and evolution 
patterns, as well as clinical information. To address this problem, this paper introduces a versatile and easy-to-
train architecture called the Spatio-Temporal Convolutional Transformer (ST-ConvTransformer) to facilitate the 
prediction of early-stage tumor growth. The ST-ConvTransformer is composed of two transformer submodules 
that utilize the same self-attention layers. During the extraction of visual features from medical images, 
textual features from clinical information are also extracted and integrated. Simultaneously, the visual encoder 
submodule incorporates the temporal and spatial information of tumors. Extensive experiments are conducted 
on a dataset with 2800 clinical subjects. The proposed model achieves a Precision of 80.87%, Recall of 89.74%, 
and Dice Similarity Coefficient of 84.24%. These results demonstrate the potential of the ST-ConvTransformer 
as a reliable clinical-aided tool for predicting lung tumor growth.
1. Introduction

The precise prediction of future tumor growth trends and struc-
tural changes, such as maximum diameter and edge information, holds 
paramount importance for cancer screening and the development of 
effective anticancer therapy strategies [1]. In clinical practice, lung 
tumors exhibit characteristics of unrestrained and continuous prolif-
eration, infiltrating and disrupting surrounding tissues while mani-
festing exogenous growth. Different types of tumors exhibit distinct 
growth patterns, as shown in Fig.  1, and the clinical treatment methods 
for these tumors also vary accordingly. In the study [2], researchers 
propose that precise tumor growth prediction plays a crucial role 
in guiding appropriate treatment management and surgical planning. 
Evaluating the aggressiveness of these tumors at an early stage is 
essential to ensure that therapeutic toxicity remains within the required 
limits, thereby minimizing adverse effects on patients. Consequently, 
there is a need to develop a reliable and patient-specific method for 
predicting tumor growth, taking into consideration the complexity, 
heterogeneity, and dynamics of tumors [3].

In recent years, a growing body of research has focused on pre-
dicting tumor growth, including mathematical models [4], finite ele-
ment analysis methods [5], cellular automata [6], diffusion reaction 
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equations, and neural networks. Tumor prediction is crucial for the 
early development of appropriate treatment. In response to this, Luian 
et al. [7] proposed a diffusion-reaction coupling system. This system 
first used registered and segmented images to train the parameters in 
the coupled tumor growth model, and then used the trained parameters 
for kidney tumor prediction. Zhang et al. [8] developed a model for 
predicting pancreatic tumor growth from longitudinal patient data us-
ing a convolutional invasion and dilation network fusion model, which 
can effectively capture and learn cellular invasion dynamics and mass 
effects in tumor growth prediction. For glioblastoma tumors, which 
grow expansively, Pei et al. [9] used features such as image intensi-
ties, super-pixel gradients, and grayscale histograms to extract tumor 
features, and then applied a joint label fusion mathematical algorithm 
to model glioblastoma cell growth. In the study of lung tumor growth 
prediction, Ghita et al. [10] used exponential, logistic, and Gompertz 
models to simulate tumor dynamics. With limited data, they developed 
a growth prediction model for lung cancer and a personalized predic-
tion model. Yonn et al. [11] determined the tumor doubling time of 
lung adenocarcinoma by extracting edge-related radiomic features of 
the tumor in CT scans. In addition to these methods, another approach 
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Fig. 1. Examples of changes in pulmonary nodules in different stages. The 
pulmonary nodules of three patients grow in different forms.

involves predicting tumor growth in the next period by calculating the 
optical flow change between tumor pixels in images taken at adjacent 
time points [12]. However, these methods oversimplify tumor growth 
patterns and simulate tumor growth in a simple linear fashion, whereas 
most tumors grow in a nonlinear manner.

Data-driven deep learning presents a promising solution for ex-
tracting features from large-scale tumor data. Importantly, it integrates 
factors that may influence tumor growth as conditions into person-
alized models of tumor growth. This approach aims to characterize 
two fundamental processes: cell invasion and the mass effect of tumor 
growth. To predict the glioblastoma multiform tumor growth, Kamli 
et al. [13] designed a tumor growth predictor using an end-to-end 
convolutional neural network architecture. This model was trained on 
a public dataset from the Cancer Imaging Archive (TCIA) and further 
enhanced by incorporating generated synthetic data, thereby broaden-
ing the training base and potentially improving predictive performance. 
Zhang et al. [14] integrated 3D spatial and temporal properties from 
images with clinical information as input for convolutional long short-
term memory units. The network’s prediction results were effective 
in forecasting the image properties of tumors, including cell den-
sity and relevant diagnostic information. However, in longitudinal 
studies of tumors, the challenge of insufficient longitudinal tumor 
data collection and the extraction of nonlinear representations re-
mains a pressing issue [8]. Addressing this challenge is essential for 
the practical application of deep learning in tumor growth prediction
[15,16].

To bridge these gaps, this work proposes a comprehensive end-to-
end tumor prediction model called the Spatio-Temporal ConvTrans-
former (ST-ConvTransformer). Our underlying assumption is that tu-
mor features at different stages reside on the same high-dimensional 
manifold, and these features can evolve along a specific direction on 
the manifold. The image encoder is employed initially to extract local 
feature maps of the tumor. Simultaneously, a temporal encoder and a 
spatial encoder were designed to extract image features from follow-
up tumor data at multiple time points and the spatial location features 
of the tumor in the image. Concerning patient clinical information, 
a text transformer serves the dual purpose of functioning as both a 
text encoder and a text decoder. Finally, Image-Text Contrastive Learn-
ing is applied to integrate all features for tumor growth prediction. 
This approach aligns visual and textual representations by drawing 
matching image–text pairs closer in the embedding space while pushing 
apart mismatched pairs. The loss function primarily combines pixel-
level mean square error loss and total variation regularization as the 
objective function.

The key advantages of ST-ConvTransformer include: (1) ST-Conv
Transformer effectively harnesses both image models and language 
2 
models. To simulate the nonlinear growth mode of tumors, we also 
incorporated certain clinical information, such as the patient’s smoking 
history, drinking history, and occupation, in tumor growth prediction. 
(2) To fully exploit the information from tumors at different time 
points and spatial locations, ST-ConvTransformer incorporates a tem-
poral feature extractor and a spatial feature extractor. This addition 
enables the comprehensive expression of the continuous temporal and 
spatial characteristics of tumors. (3) Due to the utilization of unimodal 
models and a lightweight ConvTransformer, ST-ConvTransformer is 
more computationally efficient than existing state-of-the-art methods. 
Furthermore, the inclusion of a total variation regularization term in 
the objective function effectively mitigates the generation of artifacts.

2. Methods

All procedures in this study were conducted in strict compliance 
with the guidelines established by the Medical Ethics Committee of 
Shanxi Provincial People’s Hospital, Shanxi University of Finance and 
Economics. All procedures described in this study were conducted in 
strict adherence to the relevant guidelines and regulations. The human 
experiment was conducted in accordance with the protocol approved 
by the Ethics Committee of Shanxi Provincial People’s Hospital (No. 
2022-321 v1.0). Prior to conducting imaging screening, all participants 
or their families signed informed consent forms under the guidance of 
doctors.

2.1. Overview of proposed method

In this study, we designed the ST-ConvTransformer model to inte-
grate longitudinal CT scans with clinical information for the analysis 
of tumor growth. The methodological framework consists of four main 
steps: (1) A feature embedding module performs feature mapping on 
CT slices from multiple time points. The resulting feature maps are 
combined with a location map to identify tumor regions. (2) The 
feature maps with location markers are fed into an encoder to capture 
long-range sequential dependencies across tumor slices from different 
time periods. Simultaneously, patient clinical information correspond-
ing to the image is encoded by a text transformer to obtain feature 
embeddings. (3) Image feature embeddings and clinical feature em-
beddings are fused using a contrastive learning strategy, which aligns 
multimodal representations and integrates information from different 
sources. (4) Finally, the decoder output is projected back to the image 
space through a stack of convolutional layers, producing the predicted 
tumor image, as illustrated in Fig.  2.

2.2. Data preprocessing

Image registration is an essential preprocessing step for ensuring 
the spatial alignment of tumor regions across different time points. It 
involves aligning the tumor regions from longitudinal CT scans into 
a standard coordinate system, thus facilitating the accurate extraction 
of temporal features. This process is the vital for longitudinal tumor 
analysis, as it minimizes the effect of misalignment due to variations in 
patient positioning or scanner settings. To address this challenge, this 
paper initially employs a registration method [17] to align the original 
CT images. The primary focus is to use a single CT image containing 
tumors at various time points as the subject of study.

Cropping is applied to focus the model’s attention on the tumor 
region by removing irrelevant background areas. When utilizing spa-
tial and temporal encoders for tumor prediction, it is essential to 
minimize interference from surrounding lung parenchyma and other 
background tissues in the original CT image, which may affect the 
accuracy of tumor analysis. To achieve this, the study incorporates 
physician-provided annotation information, which labels the tumor 
regions in the CT images. The regions marked as tumors are then 
extracted as the input data, with a fixed size of 56 × 56 pixels, ensuring 



N. Xiao et al. Biomedical Signal Processing and Control 119 (2026) 109858 
Fig. 2. An overview of the proposed ConvTransformer architecture. The ConvTransformer consists of Feature Embedding, Encoder, Decoder, and Prediction 
Network.
consistency in the input for subsequent processing and prediction. 
This approach allows the model to focus specifically on the tumor 
areas, thereby enhancing the accuracy of predictions while reducing 
the influence of irrelevant background features.

2.3. Feature embedding and positional encoding

To extract robust feature representations for efficient subsequent 
learning, tumor features are processed using a 4-layer convolutional 
network with a Leaky ReLU activation function and a specified hidden 
dimension of 𝑑𝑚𝑜𝑑𝑒𝑙. This design ensures that the features are effec-
tively learned while retaining important spatial information. Given 
a sequence of follow-up tumor images 𝐼𝑖(𝑖 ∈ [𝑖, 𝑛]) each image is 
first processed by a shared image encoder to extract low-level spatial 
features, the embedded feature map 𝑓𝑖 serve as the input tokens to 
the subsequent encoder–decoder architecture, the following equation 
as shown: 

𝑓𝑖 = 𝐹 (𝐼𝑖), 𝑖 ∈ [𝑖, 𝑛] (1)

To enable the model to capture the order of tumor sequence slices 
effectively, this paper introduces ‘‘positional encoding’’ at each layer 
before the encoder and decoder. The positional encoding is designed to 
have the same dimensionality as the feature map of each slice, allow-
ing for direct element-wise addition with the extracted features. This 
integration enables the model to recognize and retain the sequential 
relationships between tumor slices, which is crucial for understand-
ing the tumor’s progression and evolution over time. By embedding 
positional information, the model is better equipped to learn the tem-
poral dynamics inherent in the tumor growth process. In this study, 
positional encoding is implemented using sine and cosine functions at 
different frequencies to create distinct positional encodings for each 
slice position within the sequential imaging data. 
𝑃𝑜𝑠𝑝(𝑖,𝑗)(2𝑘) = 𝑠𝑖𝑛( 𝑛

10000
2𝑘

𝑑𝑚𝑜𝑑𝑒𝑙

)

𝑃𝑜𝑠𝑝(𝑖,𝑗)(2𝑘+1) = 𝑐𝑜𝑠( 𝑛

10000
2𝑘

𝑑𝑚𝑜𝑑𝑒𝑙

)
(2)

Where 𝑝𝑜𝑠 is the position marker, (𝑖, 𝑗) represents the spatial position 
of the feature, and the channel dimension is denoted as 2𝑘. That is, 
each dimension of the positional encoding corresponds to a sinusoid. 
The wavelengths form a geometric progression from 2𝜋 to 10000 ∗ 2𝜋.
3 
Given embedded feature maps, the feature with location represen-
tation can be expressed as the following formula: 
𝑄𝑖 = 𝑓𝑖 ⊕ 𝑃𝑜𝑠𝑝(𝑖,𝑗) (3)

where ⊕ operation represents element-wise addition.

2.4. Encoder and decoder

2.4.1. Encoder
Given the tumor at different time points 𝐼1, 𝐼2,… , 𝐼𝑡, the objective 

is to predict 𝐼𝑡+1, the output at the next time(usually time 3). As illus-
trated in Fig.  2, applying the ConvTransformer directly to the temporal 
domain enables the exploration of the two-dimensional change process 
of tumors, facilitating more accurate growth prediction. By leveraging 
the temporal sequence of tumor images, this approach captures the 
tumor’s evolution over time. Additionally, the spatial consistency be-
tween adjacent time points is utilized to establish a correspondence 
between the image from the previous period and the current image. 
This relationship enables the calculation of the optical flow of the 
tumor, facilitating the extraction of precise tumor position information. 
By tracking the movement and changes in the tumor’s location, this 
method improves the model’s ability to predict tumor growth with 
greater spatial and temporal accuracy.

The encoder consists of 𝑁 stacked ST-ConvTransformer blocks. Each 
block follows a residual structure composed of multi-head convolu-
tional self-attention, feed-forward layers, and Add& Norm operations. 
Specifically, the embedded image features are first fed into a multi-head 
convolutional self-attention module, which replaces standard linear 
projections with convolutional kernels to explicitly preserve local spa-
tial structures. This design allows the model to capture tumor morphol-
ogy, boundary details, and local contextual patterns more effectively 
than vanilla self-attention.

To further disentangle spatial and temporal dynamics,two gating 
mechanisms are introduced: a spatial gate 𝑓𝑠 and a temporal gate 𝑓𝑡. 
The temporal gate is employed to extract image features from follow-up 
tumor data at multiple time points, while the spatial gate is primarily 
used to extract the location characteristics of the tumor in CT images. 
The temporal gate is constructed with a stack of two cascaded residual 
blocks. Each block contains 3D convolution layers operating on spatial 
dimensions of feature, followed by temporal convolution along the time 
axis. In contrast, the spatial gate primarily consists of FlowNet [18,19], 
which is a CNN architecture that directly predicts dense optical flow 
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from two input frames. FlowNet consists of three stages: (i) convo-
lutional layers for dimensionality reduction and hierarchical feature 
extraction from each input image, (ii) a correlation layer that computes 
dense correspondence via element-wise multiplication and summation 
across spatial locations, and (iii) an upsampling module that restores 
spatial resolution.

2.4.2. Text transformer
The text transformer used for clinical information encoding is im-

plemented as a lightweight transformer encoder. Clinical variables 
(e.g.smoking situation, working, family cancer) are first mapped to 
discrete tokens using predefined vocabularies. Each category is repre-
sented by a learnable embedding vector of dimension 𝑑. All variable 
embeddings are then concatenated to form a clinical token sequence, 
optionally augmented with a learnable token to capture global clin-
ical context. The resulting clinical embeddings are processed by the 
text transformer to model interactions among different clinical factors. 
The transformer output is subsequently aligned with imaging features 
through the image–text contrastive learning module, encouraging se-
mantic consistency between clinical context and imaging-derived tumor 
representations.

Subsequently, a set of learnable query embeddings is generated as 
input to the text Transformer, and these embeddings are inserted at 
every other transformation block. Within these blocks, the queries first 
interact through self-attention layers, which enhance their contextual 
understanding by capturing intricate relationships among themselves. 
Simultaneously, they engage with corresponding image features via 
cross-attention layers, enabling a seamless fusion of textual and visual 
data that is critical for effective multimodal feature integration.

Specifically, the text transformer consists of 𝐿 stacked transformer 
encoder layers (in our implementation, 𝐿 = 2), each composed of multi-
head self-attention followed by a position-wise feed-forward network 
with residual connections and layer normalization. The attention mod-
ule employs 𝐻 attention heads (𝐻 = 4), and the embedding dimension 
is set to (𝑑 = 256).

2.4.3. Decoder
After the tumor image passes through the encoder, this paper com-

bines the time-series feature map of the encoded tumor, the spatial 
feature map, and the position identification to generate the fused 
feature map. The fused feature map is subsequently fed into the decoder 
for further processing. The decoder mirrors the encoder with 𝑁 stacked 
blocks but introduces masked multi-head convolutional self-attention 
to ensure causal temporal modeling. At each decoding step, the model 
only attends to previous time points, preventing information leakage 
from future scans.

Learned temporal queries 𝑄𝑡−1, 𝑄𝑡,… , 𝑄𝑡+1 are used to guide the de-
coding process, enabling the model to align historical tumor states with 
the prediction target. The decoder integrates encoder outputs through 
attention mechanisms and refines the representations via feed-forward 
layers and residual normalization.

Self-attention is utilized in both the encoder and decoder, as it 
proves highly effective for handling image data. This mechanism en-
ables the model to concentrate on the most relevant regions of the in-
put, enhancing feature extraction and representation. In self-attention, 
the query 𝑄, key 𝐾, and value 𝑉  all come from the same set of input 
features. The attention formula, which is central to this mechanism, is 
given by: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇
√

𝑑
)𝑉 (4)

where 𝑑 represents the dimension of query, 𝐾𝑇  represents the transpo-
sition of 𝐾. This attention mechanism improves the model’s ability to 
capture both local and global relationships within the tumor’s spatial 
and temporal features.
4 
2.4.4. Prediction
After the encoding and decoding calculations, it is necessary to 

consider that the previous series of operations may not fit the com-
plex process well. To address this, the model’s predictive capability 
is further enhanced by introducing a Fully Convolutional Network 
(FCN). Specifically, during the prediction phase, the fully convolutional 
network is constructed based on a 5-layer U-Net architecture. It consists 
of an encoder–decoder architecture with skip connections, allowing 
the model to retain fine-grained spatial information while processing 
the data through multiple layers. By leveraging the U-Net, the model 
becomes more adept at learning complex patterns, thereby improving 
the overall performance of tumor prediction tasks.

2.5. Image-Text Matching and fusion

Image-Text Matching aims to learn the alignment between medical 
images and clinical information feature embeddings. This study utilizes 
bidirectional self-attention, enabling all queries and text to interact 
with each other using masks. Bidirectional self-attention means that 
in the Transformer’s self-attention mechanism, every token can attend 
to all other tokens in the sequence (both left and right). The resulting 
output query embeddings capture multimodal information. Each output 
query embedding is then fed into two linear classifiers to obtain logits, 
and the logits of all queries are aggregated to form the output matching 
score [20].

In Image-Text data, the text corresponds to the clinical information 
associated with each image, and each matched pair of images and 
text description is assigned a distinct label. During text-image fusion, 
image feature embeddings and text feature embeddings are projected 
into a shared embedding space via learned MLPs. During fine-tuning, 
the concatenated image-text embeddings are passed through a fully 
connected layer to predict tumor growth probability.

2.6. Training loss

In this study, the pixel-level mean square error (MSE) loss is chosen 
as the loss function for the ConvTransformer. Additionally, the paper 
incorporates the Total Variation (TV) term [21]. This term enables the 
image to retain its resolution without losing boundary information, 
preventing the generation of apparent staircase effects. 

𝐿 = 1
𝑁

𝑁
∑

𝑖=1
(𝐼𝑖 − 𝑌𝑖)2 + ∫

√

𝐼2𝑖 + 𝑌 2
𝑖 𝑑𝑥𝑑𝑦 (5)

where 𝐼𝑖 represent the original tumor image and 𝑌𝑖 represent the 
predicted tumor image, (𝑥, 𝑦) is pixel in images.

3. Experiment and result

3.1. Research objects and implementation details

Part of the experimental data in this paper is sourced from the NLST, 
while the other part is obtained from a cooperative hospital. This article 
categorizes the images of these lung cancer patients into up to five 
groups based on different disease stages. Therefore, this article uses a 
unique heat vector composed of five elements to represent the period 
of each lung cancer image during training. The final dataset comprises 
2800 patients and 8400 images. This article utilizes cancer detection 
algorithms to crop and calibrate cancer regions, thereby enhancing the 
effectiveness of training.

The algorithm implementation is based on the PyTorch deep learn-
ing framework and the Python programming language. The training is 
conducted on an Intel Xeon system, with 64 GB of memory, and the 
GPU utilized is the NVIDIA GeForce GTX 3090 Ti.



N. Xiao et al. Biomedical Signal Processing and Control 119 (2026) 109858 
Table 1
Comparison of image acquisition parameters between public and private 
datasets.
 Parameter Scanner

manufacturer
Tube 
voltage (kVp)

Slice
thickness (mm)

Radiation
dose (mSv)

 

 NLST GE, Siemens, 
Philips, 
Toshiba

120 1.0–2.5 1–2  

 Cooperative
hospital

GE scanner 120 1.0 1  

3.1.1. NLST
The NLST dataset was collected by the American Institute of Ra-

diological Imaging Network and the Lung Cancer Screening Research 
Group [22,23]. This study selected 2058 participants aged between 55 
and 77 who underwent three consecutive annual follow-up CT scans. 
The male to female male-to-female ratio was 7:6. Cases with missing 
slices, poor image quality, or inconsistent metadata were excluded. 
All scans followed standardized acquisition protocols across multiple 
participating centres, ensuring high consistency in image quality and 
metadata. The effective radiation dose was also maintained between 
one mSv and two mSv. The directions of CT scanning include three 
types: axial, coronal, and sagittal.

3.1.2. Cooperative hospital
The data from the cooperative hospital spans from January 2016 to 

December 2019. Over the four years, the cohort comprised 742 par-
ticipants, including 582 individuals under investigation for suspected 
lung cancer and 160 histologically confirmed lung cancer cases. The 
age range of these participants is between 56 and 78 years old, with a 
male-to-female ratio of approximately 5:3

For the cooperative hospital dataset, CT scans were obtained from 
GE scanner models under routine clinical conditions using spiral scan-
ning. All experiments involving human subjects were conducted with 
prior approval from the relevant institutions of Shanxi Provincial Peo-
ple’s Hospital, and informed consent was obtained from all participants. 
All methods described in this study were performed in accordance 
with the relevant guidelines and regulations. The human experiment 
was conducted in accordance with the human protocol approved by 
the Ethics Committee of Shanxi Provincial People’s Hospital (2022-321 
v1.0).

The NLST dataset comprises scans acquired from multiple insti-
tutions with heterogeneous protocols, while the private dataset was 
collected from our hospital using a single scanner with standardized 
acquisition settings. To better clarify the imaging differences between 
the public and private datasets, Table  1 summarize the key acquisi-
tion parameters, including scanner manufacturer, slice thickness, tube 
voltage, and radiation dose.

3.2. Evaluation criterion

Tumor progression involves temporal changes, and static overlap 
measures may not accurately capture these dynamics Ṫherefore, this 
paper selected Recall, Precision, Dice Similarity Coefficient (DSC), Root 
Mean Squared Error (RMSE) for Intracellular Volume Fraction and 
diff.HU (difference of average HU values) for the CT value between 
predicted and ground truth future segmentations. These metrics more 
directly quantify the model’s ability to predict growth patterns over 
time. Additionally, the Frechet Inception Distance score (FID) [24] is 
employed as a criterion for validating image quality assessment. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(6)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (7)

𝑇𝑃 + 𝐹𝑃

5 
𝐷𝑆𝐶 = 2𝑇𝑃
𝐹𝑃 + 𝐹𝑁 + 2𝑇𝑃

(8)

𝑅𝑀𝑆𝐸 =

√

√

√

√

∑

( 𝐼𝐶𝑉 𝐹𝑝𝑟𝑒𝑑−𝐼𝐶𝑉 𝐹𝐺𝑇
𝐼𝐶𝑉 𝐹𝐺𝑇

)2

𝑇𝑃
(9)

𝑑𝑖𝑓𝑓 .𝐻𝑈 =
𝐻𝑈𝑝𝑟𝑒𝑑 −𝐻𝑈𝑔𝑡

𝐻𝑈𝑔𝑡
(10)

In the formula provided above, 𝑇𝑃 (True Positive), 𝐹𝑃  (False Posi-
tive), and 𝐹𝑁 (False Negative) denote the true positive, false positive, 
and false negative values, respectively, indicating the correspondence 
between the predicted image and the Ground Truth (GT). These met-
rics provide insight into the accuracy and reliability of the model’s 
predictions in comparison to the actual data. Additionally, 𝐼𝐶𝑉 𝐹𝑝𝑟𝑒𝑑
and 𝐼𝐶𝑉 𝐹𝐺𝑇  represent the predicted value and ground truth of the in-
tracellular volume fraction, respectively. Intracellular Volume Fraction 
(ICVF) images, which represent cell density, are normalized within the 
range [0, 100]. (More details about ICVF calculation can be referred 
to [25]). HU represents the average Hounsfield units within a volume. 
Both RMSE and diff.HU are evaluated within the TP.

Furthermore, this study employs the Frechet Inception Distance 
(FID) score as a quantitative measure to assess the feature-level sim-
ilarity between real and generated images. The FID score quantifies 
the feature vector of disparity between a real image 𝑥 and a generated 
image 𝑥̂. It assesses the similarity between two image sets by analyzing 
the statistical resemblance of computer vision features in the original 
images. FID measures the distance between their distributions using the 
mean and covariance matrix. A lower FID score indicates a higher de-
gree of similarity, implying that the generated images closely resemble 
real ones in terms of structure and content. This paper also employs the 
FID as an evaluation metric to assess the predictive performance of the 
method. 

𝐹𝐼𝐷(𝑥, 𝑥̂) = (𝜇𝑥 − 𝜇𝑥̂)2 + 𝑇 𝑟(
∑

𝑥
+
∑

𝑥̂
−2

√

∑

𝑥

∑

𝑥̂
) (11)

𝜇𝑥 and 𝜇𝑥̂ represent the mean values of the real image and generated 
image, respectively. 𝑇 𝑟 is the rank of the image.

3.3. Performance analysis

To validate the effectiveness of the proposed method, this pa-
per conducts a comparative analysis with the Spatial Transforma-
tion (ST) [26], ConvLSTM coordinated longitudinal transformer (LCT-
former) [27], Growth Prediction Generative Adversarial Networks (GP-
GAN) [25], Conditional Recurrent Variational Autoencoder (CRVAE)
[28], Spatio-Temporal Convolution Long Short-Term Memory Net-
work (ST-ConvLSTM) [14], and 3D Contrast-Enhanced Convolutional 
Long Short-Term Memory network (CE-ConvLSTM) [29]. This study 
retrained these methods using the collected dataset and tested them 
on the same test set. Based on tumor images from the first two 
periods, generate predicted tumor growth results using different meth-
ods and compare them with tumors from the third period and real 
tumors. The results are presented in Table  2. This table provides a 
quantitative assessment of each method’s ability to accurately predict 
tumor progression, offering insights into their respective performance 
in forecasting tumor growth patterns.

Based on the results presented in Table  2, the proposed method 
demonstrates superior performance compared to other approaches, 
except for a slightly lower recall rate of 79.13% compared to the 
80.87% achieved by ST-ConvLSTM. Despite this minor difference, our 
method excels in other key evaluation metrics, including precision 
(89.74%), DSC (84.24%), and FID (16.00), indicating a higher degree 
of accuracy and image similarity. Although the recall rate is not as 
good as that of ST-ConvLSTM, it is more suitable for screening some 
high-risk patients to avoid missed diagnosis. Additionally, to ensure 
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Table 2
Comparison results of different methods on the test set.
 Recall (%) Precision (%) DSC (%) RMSE FID diff.HU (%) 
 ST 57.18 ± 0.11 52.22 ± 0.32 75.40 ± 0.67 36.64 27.67 10.61  
 CE-ConvLSTM 67.33 ± 0.21 56.51 ± 0.71 66.04 ± 0.42 30.29 26.84 11.06  
 GP-GAN 65.26 ± 0.58 57.16 ± 0.27 61.27 ± 0.37 33.85 26.68 11.35  
 ST-ConvLSTM 80.87 ± 0.81 75.46 ± 0.33 78.36 ± 0.21 22.21 25.34 10.21  
 CRVAE 79.89 ± 0.18 82.22 ± 0.39 82.49 ± 0.27 27.01 35.94 20.35  
 CE-LCTformer 74.51 ± 0.33 60.90 ± 0.59 80.12 ± 0.43 57.11 21.13 10.33  
 Our method 79.13 ± 0.51 89.74 ± 0.32 84.24 ± 0.65 18.32 16.00 10.05  
the robustness of the results, statistical significance testing was con-
ducted across key performance metrics. Statistical significance was 
assessed using paired two-sided t-tests over five independent runs on 
per-case metrics; comparisons were limited to the proposed method 
versus selected baselines, and no multiple-comparison correction was 
applied. The results indicate that the differences between the proposed 
model and the compared models are statistically significant (𝑝 < 0.05) 
for all evaluated metrics, confirming the reliability and validity of 
the observed improvements. The results indicate that the differences 
between the proposed model and the compared models are statistically 
significant (𝑝 < 0.05) for all evaluated metrics, confirming the reliability 
and validity of the observed improvements.

Upon analyzing the model and experimental outcomes, the ST 
method suffers from weak performance due to the absence of temporal 
and structural modeling. GAN-based approaches enhance visual quality 
but often introduce artifacts, while VAE achieves high recall and preci-
sion at the cost of result ambiguity. Transformer-based methods benefit 
from global dependency modeling and yield high precision, but their 
excessively high RMSE indicates insufficient pixel-level restoration. In 
contrast, the ConvLSTM series effectively leverages temporal depen-
dencies to capture tumor dynamics, significantly improving prediction 
accuracy. Our proposed method further combines convolution for local 
feature extraction with Transformer for global modeling, achieving the 
best overall balance in structural fidelity, detail preservation, and pixel 
consistency. These results suggest that the proposed model effectively 
captures tumor progression patterns, producing predictions that exhibit 
minimal deviation from the ground truth.

3.4. Qualitative results

The visualization results of tumor growth prediction are depicted 
in Fig.  3. In this figure, columns (A), (B), and (C) correspond to 
tumor images of patients at three different time points, capturing the 
progression of tumor growth over time. Column (D) showcases the 
predicted tumor images generated by the ST-ConvTransformer based 
on the first two time points (A) and (B). It is evident from Fig.  3 that 
the proposed method effectively predicts tumor growth, with a minimal 
the disparity between the predictions and the ground truth.

Fig.  3 illustrates qualitative examples where tumor size and shape 
visibly change across time points (columns A–C). These cases exhibit 
apparent progression, defined as an increase in segmented tumor vol-
ume over time. The predicted tumor images exhibit remarkable simi-
larity to the actual tumor states, indicating the method’s accuracy in 
forecasting tumor growth patterns. This visual comparison underscores 
the reliability and predictive power of the proposed approach, show-
casing its potential utility in clinical settings for tumor prognosis and 
treatment planning.

By comparing the predictions with actual outcomes, it was demon-
strated that the tumor growth prediction method proposed in this study 
achieves results that meet clinical expectations. It confirms the signifi-
cant clinical value of tumor growth prediction, as it enables physicians 
to accurately assess tumor progression speed and malignant potential, 
thereby guiding clinical decision-making effectively. It can help doctors 
accurately evaluate the progression rate and malignant potential of 
tumors, thereby guiding clinical decision-making. Through quantitative 
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Fig. 3. Pulmonary nodules future prediction results. The first three columns 
display tumor images at the 1st, 2nd and 3rd (ground truth) time points for 
four patients. The A column represents the initial tumor image, and the B 
column represents tumor image at the second stage. The C column is the actual 
tumor at the third stage. The D column represents the predicted tumor images 
according to the first two stages (A) and (B) using our methods.

analysis of tumor dynamics, clinicians can more effectively identify 
high-risk patients who require closer monitoring or timely intervention, 
thereby avoiding both overtreatment and delays in care. This predic-
tive information supports the development of personalized follow-up 
and treatment plans that consider the patient’s overall health status 
and medical history, enhancing the precision and safety of clinical 
management.

3.5. Ablation study

To validate the effectiveness of the proposed architecture, this 
study conducted ablation experiments on the collected dataset. These 
experiments were designed to systematically evaluate the contribution 
of different model components by selectively removing or modifying 
specific modules and assessing their impact on the final predictive 
performance. By analyzing the changes in key evaluation metrics, we 
can determine the significance of each module in enhancing tumor 
growth prediction accuracy.

The experimental results, as shown in Table  3, indicate that the 
model performs exceptionally well in predicting tumor growth. This 
enhancement underscores the importance of each module within the 
model and demonstrates that the inclusion of all modules contributes to 
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Table 3
The impact of different modules on the prediction results.
 Recall (%) Precision (%) Dice (%) dif.HU (%) 
 ConvTransformer
w/o clinical information

63.79 56.93 67.61 14.32  

 S-ConvTransformer
w/o clinical information

71.22 80.65 74.19 12.34  

 T-ConvTransformer
w/o clinical information

75.13 87.74 76.24 13.24  

 ST-ConvTransformer
w/o clinical information

76.10 88.01 79.34 12.11  

 ST-ConvTransformer
with clinical information

79.13 89.74 84.24 10.05  

Table 4
The impact of loss function on the prediction results.
 Recall (%) Precision (%) Dice (%) 
 MAE w/o total variation 63.88 76.93 72.76  
 MAE & total variation 74.34 88.34 79.41  
 MSE w/o total variation 67.33 78.37 73.41  
 MSE & total variation 79.13 89.74 84.24  

more accurate and reliable tumor predictions. The overall findings con-
firm the efficacy of the ST-ConvTransformer as a robust and effective 
tool for predicting tumor growth.

Compared to the spatial gate, the temporal gate demonstrates supe-
rior prediction accuracy. It can be attributed to the fact that during the 
tumor growth process, the characteristics of the tumor change signifi-
cantly at each time point. At the same time, the spatial position remains 
relatively stable. As a result, the temporal features, which capture the 
dynamic changes in tumor characteristics over time, prove to be more 
effective in predicting tumor growth. In contrast, spatial features are 
less informative for tumor progression as they primarily focus on the 
tumor’s location rather than its temporal evolution. Additionally, the 
integration of clinical information can further enhance the model’s 
ability to predict tumor growth, providing valuable context that helps 
improve overall predictive performance. This additional data enables 
the model to capture patient-specific risk factors and disease progres-
sion patterns that are not discernible from imaging alone. Specifically, 
in the ablation study, deleting clinical information resulted in a de-
crease in prediction accuracy from 79.10% to 76.10%, indicating that 
imaging features alone are insufficient to fully simulate tumor growth 
dynamics. On the contrary, integrating clinical variables significantly 
improves accuracy, confirming that the combination of imaging and 
clinical data enables the model to distinguish between invasive and 
indolent nodules better, ultimately enhancing its predictive reliability.

This article primarily employs pixel-level mean squared error loss 
for tumor prediction, while also incorporating a total variation term to 
encourage smoothness in the predicted tumor images. To assess the ef-
fectiveness of this tumor prediction loss function, this study conducted 
a comparison by using an alternative loss function, namely the mean 
absolute error, for tumor prediction. The results of this comparison 
are summarized in Table  4, where we evaluate the performance of the 
model using both MSE loss and MAE loss in terms of key metrics, such 
as recall, precision, and Dice similarity coefficient. This comparison 
enables us to examine the effect of selecting a loss function on the 
accuracy and quality of tumor predictions.

Adding the total variation term to the original loss function results 
in significant improvements in the Recall, Precision, and Dice similarity 
coefficient (DSC). It demonstrates the effectiveness of the total variation 
term in enhancing the model’s ability to predict tumor growth. The 
total variation term helps reduce noise and preserves the structural 
integrity of tumor images, leading to more accurate predictions and 
better alignment with ground truth data.
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Table 5
Prediction results of different types of lesions.
 Recall (%) Precision (%) Dice (%)  
 Benign Nodules 80.16 ± 0.12 73.25 ± 0.21 85.41 ± 0.37 
 Malignant Tumor 64.43 ± 0.35 87.25 ± 0.20 70.88 ± 0.10 

Furthermore, when comparing the two loss functions, MSE is found 
to be more effective than the MAE in predicting tumor growth. The 
MSE loss function, particularly when combined with the total variation 
term, yields superior performance across all metrics. It suggests that 
MSE is better suited for capturing the underlying patterns of tumor 
progression, especially when pixel-level accuracy is crucial for precise 
tumor prediction.

3.6. Subgroup experiments

Given the significant differences in growth rates and imaging man-
ifestations between benign pulmonary nodules and malignant tumors, 
this study differentiated between the two types of lung lesions within 
the experimental data. Specifically, the dataset includes 2147 images of 
benign nodules and 653 images of malignant tumors. Both sets of image 
data were fed into the proposed method for training and verification. 
The model’s predictive performance on these distinct types of lung 
lesions is evaluated, and the results of the predictions are summarized 
in Table  4. This differentiation allows for a more nuanced analysis of 
the model’s ability to accurately predict tumor growth in both benign 
and malignant cases. The results presented in Table  5 demonstrate the 
method’s effectiveness across various lesion types.

From Table  5, it is clear that the recall rate, accuracy, and Dice 
coefficient for predicting benign nodules reached 80.16%, 93.25%, and 
85.41%, respectively. In contrast, the results for malignant tumors were 
64.43%, 87.25%, and 70.88%, respectively. These results indicate that 
the prediction performance for benign nodules is significantly better 
than for malignant tumors across all metrics.

The primary reason for this discrepancy lies in the growth patterns 
of the two types of lesions. Most benign nodules tend to grow slowly 
and exhibit relatively uniform characteristics, making them easier to 
predict with higher accuracy. On the other hand, malignant tumors 
grow rapidly and often display more irregular features, such as burrs 
and lobulation, which complicate the prediction process. The presence 
of these features increases the variability of tumor appearance, making 
it more challenging for the model to accurately capture the growth 
dynamics of malignant tumors, which results in decreased accuracy and 
overall performance.

To address the relatively weaker prediction performance on malig-
nant tumors, future work will focus on capturing tumor heterogeneity 
through multimodal imaging and employing malignancy-sensitive loss 
functions further to enhance the robustness and accuracy of malignant 
case prediction.

3.7. The relationship between tumor growth and clinical information

In this study, a text transformer is utilized to extract and incorporate 
clinical information into the tumor prediction model. This clinical data 
includes factors such as patient smoking history, family disease history, 
alcohol consumption frequency, and occupational status. By integrating 
this information, the model can not only learn general tumor growth 
patterns but also consider personalized patient characteristics, which 
may significantly impact the progression of lung cancer.

Fig.  4 illustrates the relationship between these four key influencing 
factors and the model’s predictions for tumor growth. This visualization 
provides a clear representation of how each factor contributes to the tu-
mor growth predictions, offering a more comprehensive understanding 
of individual risk profiles. By factoring in these clinical elements, the 
model can tailor predictions based on a patient’s unique characteristics, 
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Fig. 4. THE relationship between the risk factors of patients and nodule progression.
 

providing more accurate and personalized insights into lung cancer 
progression.

Fig.  4 demonstrates the relationship between various clinical fac-
tors and tumor growth, showing that as smoking history and alcohol 
consumption increase, the tumor growth rate also rises. In contrast, 
the work environment is shown to have a significant impact on tumor 
progression, suggesting that occupational exposure plays a crucial role 
in lung cancer development.

The Pearson correlation coefficients provide further insight into 
the relationships between these factors and tumor outcomes. Smoking 
history (C = 0.6531), occupational exposure (C = 0.6400), and family 
cancer history (C = 0.5519) are all strongly correlated with worse 
outcomes, indicating that these factors contribute substantially to more 
aggressive tumor growth. On the other hand, alcohol frequency (C = 
−0.0969) shows a negative correlation with tumor growth, but its influ-
ence is relatively weak compared to smoking and occupational factors. 
It suggests that while alcohol consumption might have some effect, it 
is less impactful on tumor progression than smoking or work-related 
exposures.

Age is not discussed in detail in this study, as the research focuses 
specifically on patients over 55 years old, where age-related factors 
are presumed to have a more uniform impact on tumor progression. 
Therefore, the study does not differentiate age as a separate variable 
within the patient population.

4. Discussion

Prior studies on tumor progression prediction have primarily re-
lied on radiomics-based models or deep learning approaches such as 
CNNs. Radiomics models [30] demonstrated the potential of hand-
crafted features in characterizing tumor morphology, but they were 
often limited by their sensitivity to feature selection and imaging 
protocols. Deep learning methods, particularly CNN- and LSTM-based 
architectures [8,14], have provided improvements by modeling spatial 
and temporal information; however, they tend to emphasize either local 
spatial representations or short-range temporal dynamics, which limits 
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their capacity to capture the whole trajectory of tumor evolution. More 
recently, transformer-based frameworks [16,27] have been introduced 
to model long-range dependencies, but most of these approaches were 
designed for unimodal imaging data and did not fully incorporate 
clinical information.

In contrast, the proposed ST-ConvTransformer integrates longitu-
dinal CT scans with clinical data through a multimodal contrastive 
learning strategy, enabling a holistic representation of tumor evolu-
tion, as shown in Table  3. Our comparative results show that ST-
ConvTransformer achieves consistently higher performance across mul-
tiple metrics, including Dice similarity for morphology, MAE for vol-
umetric changes, and calibration for progression risk. These findings 
suggest that the joint modeling of sequential imaging features and clini-
cal characteristics enables a more precise and robust characterization of 
tumor dynamics. These consistent gains highlight the model’s ability to 
capture both structural evolution and patient-specific factors, thereby 
offering more precise and clinically meaningful predictions.

The proposed architecture integrates multiple modules, each serving 
a distinct purpose while working synergistically to enhance prediction 
accuracy. The spatial gate is designed to filter irrelevant image regions, 
ensuring that the model focuses on tumor-related features, while the 
temporal gate captures sequential dependencies across multiple CT 
scans to model longitudinal tumor progression. The text transformer en-
codes clinical information into a structured embedding, providing com-
plementary patient-specific context beyond imaging data. Contrastive 
learning is introduced to align and fuse the image and text embeddings, 
thereby enhancing cross-modal representation learning. Finally, the 
U-Net-based fully convolutional network decodes the fused features 
into fine-grained morphological predictions of tumor evolution. In this 
framework, spatial and temporal dynamics, clinical information, con-
trast learning, and U-Net interact to provide more holistic and precise 
predictions for tumor progression.

Furthermore, this study leverages a multimodal framework to jointly
model longitudinal CT scans and clinical data, thereby providing a 
more robust and individualized prediction of tumor growth trajectories. 
While imaging data provide detailed morphological and structural 
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Fig. 5. THE visualization of pulmonary nodule predictions using different models based on GRAD-CAM.
descriptions of tumor evolution, they do not fully capture the patient-
specific biological and physiological context. Clinical variables [31,32] 
can significantly influence tumor progression patterns and treatment 
responses.

While previous studies have demonstrated the utility of radiomics, 
CNN/RNN-based models, and transformer architectures for predicting 
tumor progression, each has exhibited limitations in fully capturing 
the complexity of tumor dynamics. By jointly modeling longitudinal 
imaging data and clinical information through multimodal contrastive 
learning, the proposed ST-ConvTransformer addresses these gaps and 
consistently outperforms representative baselines across key evalua-
tion metrics. These findings not only corroborate but also extend the 
current body of literature, underscoring the value of holistic spatiotem-
poral modeling for achieving more precise and clinically actionable 
predictions of tumor progression.

Although the proposed ST-ConvTransformer demonstrates strong 
performance in predicting tumor progression, a significant limitation is 
the limited discussion of model interpretability. In healthcare applica-
tions, explainability is a prerequisite for clinical adoption, as clinicians 
must be able to understand and trust the outputs of AI models when 
making treatment decisions. This study utilized Grad-CAM to elucidate 
the different model’s key focus areas. Specifically, through the model’s 
feature activations, it can intuitively display the image regions that 
different model primarily relies on when predicting tumor progression, 
as shown in Fig.  5.
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As shown in Fig.  5, heatmaps reveal the model’s focus on the 
tumor boundary and surrounding tissues. This visualization not only 
provides explanatory support for the model but also helps clinical 
doctors understand the basis for model decisions, thereby enhanc-
ing the acceptability and credibility of prediction results in clinical 
applications. Additionally, the model could revolutionize follow-up 
care by providing objective, data-driven insights into tumor behav-
ior, allowing clinicians to personalize monitoring schedules. It can be 
observed that the ST and ST-ConvLSTM and CE-ConvLSTM generally 
exhibit dispersed attention distributions, making it difficult for them 
to consistently focus on the core lesion regions of the nodules. Al-
though generative models, such as GP-GAN and CRVAE are able to 
capture certain structural components of the nodules, their saliency 
responses show evident blurring and boundary diffusion, indicating 
limited ability in preserving morphological details and distinguishing 
subtle changes. In contrast, LCTformer enhances the response to lo-
calized abnormal structures to some extent, yet its saliency maps still 
contain noticeable high-frequency noise and unstable focus patterns. 
The proposed ST-ConvTransformer demonstrates the most clear and 
consistent attention patterns across all cases, with saliency strongly 
concentrated along the nodule boundaries and interiors, accurately 
delineating the lesion morphology while also reflecting subtle evolu-
tionary trends over longitudinal follow-up. By maintaining temporal 
coherence in segmentation across longitudinal imaging examinations, it 
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enables accurate quantification of volumetric and morphological tumor 
dynamics, which are critical for assessing therapeutic efficacy and 
disease progression. Moreover, its demonstrated robustness to patient-
specific anatomical variations underscores its suitability for deployment 
in clinical follow-up settings, thereby facilitating reliable AI-driven 
monitoring in tumor imaging practice.

In addition, the model has exhibited some failure cases, particularly 
with nodules that exhibit invasive growth in localized areas, where 
predictions deviated significantly from actual outcomes. These nodules, 
which may indicate a higher malignancy risk, require closer clinical 
attention. While clinical data is considered, the model may not fully 
account for other key patient-specific factors, such as genetic markers, 
that could influence tumor behavior. Future work will focus on incor-
porating additional morphological features and genetic data to improve 
the model’s accuracy and robustness.

5. Conclusion

In this paper, we introduce the Spatio-Temporal Convolutional 
Transformer (ST-ConvTransformer) to address the complex challenge 
of predicting tumor growth. The model is designed to simultaneously 
capture intra-slice structures, inter-slice spatial contexts, and temporal 
dynamics, all of which are essential for precise tumor prediction. By 
effectively capturing both spatial and temporal relationships, the ST-
ConvTransformer provides a more holistic and precise prediction of 
tumor progression. The quantitative results presented in this study 
clearly demonstrate the superior performance of our proposed pre-
diction algorithm in forecasting tumor growth. When compared to 
recent deep learning-based tumor growth prediction models, the pro-
posed model demonstrated superior performance in terms of accuracy, 
AUC, and Dice similarity; it showed slightly lower Recall compared to 
ST-ConvLSTM. Despite this trade-off, the ST-ConvTransformer offers 
substantial clinical utility by providing more reliable predictions for 
patients with high tumor progression risks. Additionally, the ability 
to integrate clinical data, including patient history and risk factors, 
enables the model to generate more personalized and accurate tumor 
growth prediction.

This article primarily focuses on the longitudinal growth prediction 
of tumors during the complete disease course and does not explicitly ad-
dress the issue of missing stage data. In the process of collecting medical 
imaging data, it is often desirable to obtain comprehensive longitudinal 
data to track the progression of diseases over time. However, in real-
world clinical practice, the availability of complete disease course 
data is often limited due to various patient-related subjective factors 
and objective constraints. As a result, a substantial number of cases 
lack complete stage data, leading to a significant number of missing 
samples. Although the current study does not explore this aspect, the 
effective use of incomplete data remains a significant challenge.
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