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Detecting Congestion-Related Attacks via
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Abstract—As modern networks are increasingly demanding
performance, it is crucial to protect network resources from
attack threats. Congestion-Related Attacks (CRAs) have become
a serious threat to network infrastructures, which can cause
severe degradation of network performance. The emerging
programmable switch makes it possible to offload intelligence
to the data plane, providing an opportunity to deploy defense
strategies against CRAs in the data plane. In this paper,
we present the Fine-Grained Queue Diagnosis (FGQD) system
deployed on the programmable switch, capable of real-time
monitoring of the queue and network traffic to defend against
CRAs. Specifically, we propose culprit flows for congestion and
active flows during congestion to track the flows culpable for
congestion formation and those exhibiting abnormal activity
during congestion. To effectively recognize these flows, we design
the approximate data structure Time-Windows to overcome the
resource and operational constraints on the programmable data
plane. Furthermore, we employ an in-network machine learning
model that utilizes queue and packet features to identify malicious
flows of CRAs. Extensive experiments on the software-based
testbed show that FGQD achieves 97.333% detection rate with
remarkably low false positive rates of 0.018% and 0.106%
when detecting Shrew attacks and Optimistic Ack attacks,
outperforming existing methods including Conquest, Henna, and
Hashpipe. Moreover, FGQD responds to Shrew attacks within
5.70 milliseconds, which is orders of magnitude faster than
SDN-based control plane solutions that typically require seconds
to respond. These results conclusively demonstrate FGQD’s
exceptional effectiveness in defending against CRAs.

Index Terms—Congestion-related attack, in-network machine
learning, programmable data plane, queue diagnosis.
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I. INTRODUCTION

W ITH emerging applications such as Internet pay-
ment, online games, online education, and industrial

Internet, the performance requirements for modern networks
are becoming increasingly demanding [1], [2], [3]. Congestion
control is a key component of the Internet, playing a vital role
in ensuring efficient and fair transmission while significantly
influencing network performance [4]. Due to the vulnerability
of congestion control, it is susceptible to being exploited
and compromised by attackers [5], who can launch attacks
that disrupt network link transmission and maliciously create
congestion in the network, resulting in significant damage
and degradation of network performance [6], [7], [8]. In 2015,
NetEase suffered an economic loss of over RMB 15 million
due to a cyber attack on its backbone network that congested
and paralyzed the primary ingress and egress links to its server
farm [9].

In this context, several Congestion-Related Attacks
(CRAs) [10] have emerged, such as Shrew
attacks [11], [12], [13] and Optimistic Ack attacks [14], [15].
Invariably, these attacks cause network congestion, severely
impairing network performance. Unfortunately, despite the
research community’s efforts [16], [17], [18], [19], detecting
and mitigating CRAs still face challenges in effectiveness,
flexibility, and real-time performance. The recent trend
in Software-Defined Networking (SDN) has introduced
programmable switches [20], [21], enabling the offload of
intelligence into the network and providing an opportunity to
defend against CRAs in the switch. Programmable switches
support programming using domain-specific languages like
P4 [22], allowing packet processing with user-defined logic.
In addition, a program can operate in concert between the
control and data planes, enabling flexible and advanced
packet processing. The programmable switch enables line-rate
packet processing with throughput orders of magnitude higher
than the servers [23], [24]. Furthermore, deploying detection
systems in the data plane can avoid communication delays
with the control plane, enabling a timely response to CRAs.
Unlike systems deployed on the host side, systems deployed
on the switch can preemptively see and filter malicious
traffic [25], thus preventing CRAs from harming network
performance. In particular, the visibility of the network
queue is critical for diagnosing network performance issues.
Still, traditional network devices have minimal visibility into
the queue state, making it challenging to analyze and fix
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performance problems. With the advent of programmable
switches, fine-grained and real-time queue monitoring has
become possible [10], [26].

In this paper, we propose the Fine-Grained Queue Diagnosis
(FGQD) system deployed on the programmable switch, capa-
ble of real-time monitoring of the queue and network traffic to
defend against CRAs. We propose culprit flows for congestion
and active flows during congestion to track flows culpable for
congestion formation and flows exhibiting abnormal activity
during congestion, respectively. FGQD monitors the queue in
real-time to identify culpable flows that cause packet backlogs
in the queue to find out the primary culprits that cause network
congestion. Furthermore, FGQD measures the flow’s activity
during congestion based on the intention and behavior of
CRAs to create congestion. Those flows that remain active
during network congestion may be malicious flows attempting
to exacerbate congestion. However, programmable switches
are highly restricted, with low memory available and limited
mathematical operations support [27], [28]. It is not easy to
implement the identification of culprit flows for congestion and
active flows during congestion in the data plane. To overcome
these limitations, we design Time-Windows, a compact data
structure consisting of two windows supporting access and
clean operations, to achieve accurate tracking of culprit flows
for congestion and active flows during congestion. Notably,
benign flows can also become culprit flows for congestion and
active flows during congestion due to network bursts in normal
circumstances [26], [29]. To further reduce false positives for
benign flows, FGQD also leverages packet features to identify
malicious flows. Specifically, FGQD first uses queue diagnosis
to preliminarily identify suspicious flows, and then employs
an in-network Random Forest (RF) model that combines both
queue and packet features to ultimately identify malicious
flows. Generally, our contributions can be briefly summarized
as follows:

• We propose culprit flows for congestion, considering flows
that cause packet backlogs in a queue to be blamed for
congestion, which provides a flow-level analysis of the
reasons for network congestion from a queuing perspective.

• We propose active flows during congestion to track flows
that are abnormally active during congestion based on the
intention and behavior of CRAs to congest the network.

• We design Time-Windows, a compact data structure, to
overcome the limitations on the programmable switch and
implement the tracking of culprit flows for congestion
and active flows during congestion in the data plane.

• We design an in-network RF model that combines queue
and packet features to identify malicious flows, which
can effectively reduce false positives for benign flows.

• We prototype FGQD and use extensive experiments on
the software-based testbed to validate its performance.

The rest of the paper is organized as follows. Section II
introduces the background and motivation. Section III presents
the high-level design of FGQD, with the design details in
Section IV. In Section V, we experimentally evaluate the
FGQD’s performance. Section VI discusses several practi-
cal issues and Section VII reviews related works. Finally,
Section VIII concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first present the threat model of CRAs
(Section II-A), then discuss the limitations of existing defenses
(Section II-B), and finally introduce the programmable data
plane along with its constraints (Section II-C).

A. Threat Model

We refer to attacks that maliciously congest target links
as Congestion-Related Attacks (CRAs) [10], which can be
divided into two categories. The first category involves directly
manipulating protocol flaws to create congestion [5], such
as the Optimistic Ack attack [14], [15]. The second category
consists in generating traffic to create congestion and may
further trigger protocol vulnerabilities to enhance the attack’s
effectiveness, such as the Shrew attack [11], [12]. The attack
methods and tactics of CRAs may be varied, but they share a
common characteristic of congesting network links to impair
network performance.

B. Limitations of Existing CRAs Defenses

Effectiveness shortcomings. CRAs typically exploit vul-
nerabilities in network protocols and congestion control,
making it challenging to combat them. For example, the
Optimistic Ack attack manipulates acknowledgment pack-
ets where the sending host is not compromised. Thus,
systems [30], [31] that rely on IP address-based information
struggle to accurately detect the Optimistic Ack attack.
Another solution is to modify protocol specifications and
implementations, which is practically difficult to imple-
ment [19], and protocols always have unknown flaws that
attackers may exploit [32], [33]. Additionally, CRAs typically
target network links far from the client side, preventing the
client side defenses from obtaining an accurate view. Even if
the systems [34], [35] on the client side effectively counter
the attack, the malicious traffic still traverses the network,
impairing the network’s performance.

Flexibility shortcomings. There may be various CRAs,
each with different strategies and ways. The system designed
for a specific CRA lacks flexibility and is difficult to effectively
scale to address other types of CRAs. For instance, the
techniques [16], [17], [36] for detecting Shrew attacks are
tailored to the pattern of Shrew attacks but cannot effectively
defend against Optimistic Ack attacks.

Real-time performance shortcomings. Most defense
systems deploy in the control plane or middlebox, which
inevitably introduces communication latency and fails to
achieve timely response to attacks, e.g., Softguard [37],
P&F [38], PeakSAX [18], and GASF-IPP [39] deployed in the
control plane have a response delay of seconds or even tens
of seconds, failing to achieve a timely response to attacks.

C. Programmable Data Plane

Implementing new network functions on traditional switches
is an expensive and complex process, so the community
has proposed SDN that decouples the control plane from
the data plane, transferring network intelligence to logically
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Fig. 1. The overview and workflow of FGQD.

centralized controllers to enable fully programmable software-
driven networks [21]. Emerging programmable switches are
programmed using domain-specific languages such as P4 [22]
and support stateful packet processing using user-defined
logic, extending network programmability from the control
plane to the data plane. Despite its many advantages, the pro-
grammable data plane has the following limitations regarding
computing and storage [27], [28].

Limited support for mathematical operations. P4 sup-
ports boolean, shift, addition, and subtraction operations but
not floating-point, loop, division, multiplication, and complex
conditional operations.

Low available memory. The programmable switch has
limited SRAM and TCAM, e.g., only 120MB of SRAM and
6.2MB of TCAM per pipeline in Tofino 1 [27]. Additionally,
as packets traverse the switch pipeline, each register can only
be accessed once.

III. OVERVIEW OF FGQD

In this section, we present FGQD, a Fine-Grained Queue
Diagnosis system deployed in the data plane that leverages
the emerging P4 programmable switch. FGQD utilizes the
queue metadata provided by the switch to measure the flow’s
contribution to the queue backlog and the flow’s activity during
congestion, thus enabling the detection of CRAs. Fig. 1 shows
the five modules of FGQD deployed in the data plane.

Culprit Flow Estimation Module implements the mea-
surement of the culprit flows for congestion. The purpose of
CRAs is to congest the target link, and the malicious flow
involved in the attack is often a significant contributor to the
queue backlog.

Active Flow Estimation Module implements the mea-
surement of the active flows during congestion. Malicious
flows generated by CRAs are typically the perpetrators of
congestion, aiming to congest the target link, and therefore are
active when the network is congested.

In-Network RF Module performs the final identification
of malicious flows of CRAs, which consists of multiple
tree tables and a decision table. Each tree table represents
a decision tree model, where each rule in the tree table
corresponds to a decision path from the root to a leaf node
in the decision tree. The action triggered by the rule depends
on the type of the leaf node in the decision tree. Based on

the decision outcomes from the tree tables, the decision table
makes the final classification.

Reporting Module performs the control plane reporting of
malicious flows. After detecting malicious flows via the in-
network RF module, FGQD reports these malicious flows to
the control plane so that mitigation rules can be issued to the
blacklist table.

Mitigation Module handles the mitigation of CRAs. Based
on the malicious flows submitted by the reporting module, the
control plane instructs the data plane to take mitigation actions
(e.g., marking malicious flows, rate-limiting malicious flows,
deprioritizing malicious flows, dropping the packets, etc.), thus
preventing CRAs.

There are six steps in the FGQD workflow, as shown
in Fig. 1. ①Match blacklist, when a packet arrives at the
switch ingress pipeline, it is first matched against the blacklist
table, and if flow_ID of the packet is found in the blacklist,
mitigation actions are applied to prevent the CRAs. If the
packet does not match any entries in the blacklist table, it is
forwarded normally.

②Perform fine-grained queue diagnosis, since the queue
metadata can only be obtained in the egress pipeline, both
the culprit flow estimation module and active flow estimation
module are deployed in the egress pipeline. Queue diagnosis
monitors the flow’s contribution to the queue backlog and the
flow’s activity during congestion, and if a flow is identified as
being both the culprit flow for congestion and the active flow
during congestion, FGQD initially recognizes the flow as a
suspicious flow for CRAs.

③Recirculate packets of suspicious flows, when the culprit
flow estimation module and active flow estimation module
in the egress pipeline detect the suspicious flow, FGQD
recirculates the packet of the suspicious flow to the ingress
pipeline.

④Recognize malicious flows, when the packets of a sus-
picious flow are recirculated to the ingress pipeline, the
in-network RF model uses the packet and queue features to
match the tree tables and decision table, ultimately identifying
the malicious flows of CRAs.

⑤Report malicious flows, after the in-network RF model
finalizes the malicious flow, reporting module uses digest
messages to report the flow_ID of malicious flows based on
the classification result of the decision table.
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Fig. 2. Demonstration of the queue backlog formation process.

⑥Add entries to the blacklist table, after the control plane
receives the reported flow_ID of the malicious flow, it issues
the entry to the blacklist table through the Runtime API.

IV. DESIGN DETAIL

In this section, we present the design details of FGQD,
including the details of Fine-Grained Queue Diagnosis
(Section IV-A), the design of Time-Windows (Section IV-B),
and the details of in-network RF model (Section IV-C).

A. Fine-Grained Queue Diagnosis

1) Culprit Flows for Congestion: Queue backlog is an
essential reflection of the network conditions. It is a feasible
idea to track the flows culpable for network congestion
based on the process of queue backlog formation [10], [26].
Fig. 2 shows a demonstration of the queue backlog formation
process. Assuming that two packets can pass on the queue
per unit of time (MaxRateout = 2 packets/t). During the
time range t ∈ (0, 6], there are three flows of packets that
have passed through the queue. At the beginning (t = 0), the
queue depth is 0 (q_depth = 0), the queue depth change is 0
(Δq_depth = 0), and there is no packet backlog in the queue.
After t = 3, there are backlogs in the queue, in which within
t ∈ (2, 3] and t ∈ (4, 5], the backlog of packets in the queue
increases to 1 and 3.

To prevent CRAs, it is necessary to identify suspicious flows
from the perspective of congestion formation. More precisely,
we ask: when packets block in a queue, which flows through
the queue are culpable for the backlog?

Definition 1: The flow’s contribution to the queue backlog.
n flows ({flow1, . . . ,flown},n > 0) have passed through
the queue during the time range (ts , te ] (ts < te), where
each flowi consists of mi (mi > 0) packets, i.e., flowi =
{p1, . . . , pmi }. For the time range (tj , tj+1], xj (xj > 0)
packets have passed through the queue. In these xj packets,
the proportion of packets in each flowi is r ji , in which
∑n

i=1 r
j
i = 1. If the change in queue depth over the time

range (tj , tj+1] is Δq_depthj (Δq_depthj >= 01), the
flowi ’s contribution to the queue backlog during (tj , tj+1]

is r
j
i × Δq_depthj . In the total time range (ts , te ], the

flowi ’s contribution to the queue backlog is Eq. (1). Notably,
definition 1 is independent of the packet scheduling algorithm.

contributionflowi
=

te−1∑

tj=ts

(
r ji ×Δq_depthj

)
(1)

Taking the queue backlog formation process in Fig. 2 as
an example, initially each flow’s contribution to the queue
backlog is 0. Within t ∈ (0, 1], the packets of flow2 pass
through the queue, the Δq_depth of the process is 0, and
the contributionflow2

remains 0. Similarly, within t ∈ (1, 2],
contributionflow2

still remains 0. During the time range
t ∈ (2, 3], the packets of flow1 pass through the queue
and the Δq_depth for that process is 1, so contributionflow1

increases to 1. Within t ∈ (3, 4], the packets of flow3 pass
through the queue, and the Δq_depth of this process is 0, so
contributionflow3

remains 0. Within t ∈ (4, 5], the packets of
flow1 and flow2 pass through the queue, where the packets
of flow1 account for 3

4 and the packets of flow2 charge
for 1

4 , and the Δq_depth of this process is 2. Therefore,
contributionflow1

is increased to 2.5 (i.e., 1 + 3
4 × 2) and

contributionflow2
is increased to 0.5 (i.e., 0+ 1

4 × 2). Within
t ∈ (5, 6], the packets of flow2 pass through the queue, the
change of queue depth is negative and the Δq_depth of the
process is 0, and the contributionflow2

remains unchanged.
Thus during the time range t ∈ (0, 6], contributionflow1

is
2.5, contributionflow2

is 0.5 and contributionflow3
is 0.

Definition 2: Culprit flows for congestion. Given a queue
backlog contribution threshold δ, flowi is considered to be
the culprit flow for congestion in the time range (ts , te ] if
contributionflowi

is greater than the threshold δ.
CRAs aim at congesting the target link, so the malicious

flows of the attack typically are the culprit flows for congestion
as well. For the benign flows, the contribution to the queue
backlog will be much smaller than that of the malicious
flows. Per-flow measurements are challenging to implement
due to the constraints on the P4 switch [27], [28]. Therefore,
FGQD applies approximation techniques (Time-Windows in
Section IV-B) to estimate the culprit flows for congestion
within the limitations imposed by the P4 switch and makes a
simplification to accommodate the constraints on the P4 switch
when measuring the flow’s contribution to the queue backlog.
In the culprit flow estimation module, FGQD sets a queue
depth record using the registers. When a packet arrives at the
egress pipeline, FGQD reads and updates the queue depth
record to calculate the Δq_depth ′ between the current packet
and the previous queue depth. The simplified calculation of
the flow’s contribution to the queue backlog is Eq. (2).

contribution ′
flowi

=

te−1∑

tj=ts

Δq_depth ′j (2)

1A negative change in queue depth indicates that the queue backlog is
easing. For this case, we set Δ q_depth to 0.
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Due to the simplification of calculating contribution ′
flowi

,
there will be some errors with the actual contributionflowi

.
The purpose of FGQD is to detect the malicious flows for
CRAs whose contribution to the queue backlog usually be
much more significant than that of most benign flows, so
although there is an error in the actual measurement of
contributionflowi

, it does not affect FGQD’s effectiveness in
detecting CRAs, as will be evaluated in Section V.

2) Active Flows During Congestion: In normal circum-
stances, there may also be bursts in the network traffic that
cause a backlog in the queue [26], [29]. There exists a small
benign traffic whose contribution to the queue backlog will
be a considerable value and thus falsely reported as malicious
by FGQD. In addition, the contribution ′

flowi
calculated by

FGQD is in error with the real contributionflowi
. Therefore,

other aspects of malicious flows need to be measured to further
improve the accuracy of detecting CRAs.

FGQD measures the flow’s activity during congestion to
detect CRAs in terms of the intent and behavior of the attack.
Attackers use CRAs to congest the target link, so the malicious
flows typically show significant activity when the network is
congested. For benign TCP flows, they are limited by the
sender’s congestion control, which reduces the congestion
window (e.g., Multiplicative Decrease) and thus reduces the
sending rate when the sender senses that network congestion is
occurring (e.g., RTO Timeout or Duplicate ACK). Therefore,
the activity of benign TCP flows decreases significantly
during network congestion. Although benign UDP flows aren’t
subject to congestion control, they lack any intent or behavior
to maliciously congest the network. Therefore, benign UDP
flows typically do not behave abnormally active when the
network is congested.

Definition 3: The flow’s activity during congestion. Given
the thresholds τ and γ for determining the congested state,
where the network is considered to be congested when packet
pki of flowi passes through the queue if its queuing time
q_timeki is greater than the threshold τ or the queuing depth
q_depthki is greater than the threshold γ. For each flowi in
the time range (ts , te ], activityflowi

in the congested state is
Eq. (3), where f (·) is Eq. (4).

activityflowi
=

mi∑

ki=1

f (·)× pki (3)

f (·) =
{
1, if

(
q_depthki > γ or q_timeki > τ

)
;

0, otherwise.
(4)

q_timeki and q_depthki are the queuing time and queue
depth of the packet pki of flowi passes through the queue. pki
can be either the packet size or the number of packets. The
flowi ’s activity during congestion is actually the flow size of
flowi in the congested state.

Definition 4: Active flows during congestion. Given a
threshold α, flowi is considered to be an active flow during
congestion in the time range (ts , te ] if activityflowi

is greater
than the threshold α.

As with estimating culprit flows for congestion, FGQD
also uses Time-Windows to identify the active flows during
congestion. The per-packet procedure in egress pipeline is

Algorithm 1: Procedure in Egress
Input: Threshold δ for culprit flow estimation, threshold

α for active flow estimation, congestion
thresholds τ and γ.

1 for packet arriving at Egress Pipeline do
2 timestamp ← queueing metadata;
3 qdepth ← queueing metadata;
4 qtimedelta ← queueing metadata;
5 access_index ← getAccessIndex(timestamp);
6 clean_index ← getCleanIndex(timestamp);
7 cleanWindow(clean_index);
8 last_qdepth ← readRegister(qdepth_record);
9 qdepth_record ← writeRegister(qdepth);

10 Δqdepth ← qdepth - last_qdepth;
11 if qdepth > γ or qtimedelta > τ then
12 f (·) = 1;

13 else
14 f (·) = 0;

15 contribution ← accessWindow(access_index, Δ
qdepth);

16 activity ← accessWindow(access_index, f (·));
17 if contribution > δ and activity > α then
18 recirculate the packet;

19 else
20 forward the packet;

shown in Algorithm 1. The inputs to the algorithm include
a threshold δ for queue backlog contribution, an active flow
estimation threshold α, and thresholds τ and γ for determining
the congestion state. When a packet arrives at the egress
pipeline, first, FGQD gets the queue information using the
queuing metadata provided by the P4 switch to get the
timestamp, queue depth, and queuing delay of the packet as it
passes through the queue. Next, FGQD calculates the index of
Time-Windows based on the timestamp of the packet. Based
on the clean_index, FGQD performs the cleaning operation
on the corresponding window. Then, FGQD reads and updates
the queue depth record to compute the change in queue depth
of the packet. Additionally, FGQD determines whether the
queue is in congestion when the packet passes through, based
on the values of qdepth and qtimedelta, and counts the f (·).
Finally, FGQD reads and writes the corresponding window
based on access_index to measure the flow’s contribution to
the queue block and the flow’s activity during congestion. If a
flow is found as both the culprit flow for congestion and the
active flow during congestion, FGQD uses metadata to carry
the flow’s contribution to the queue backlog and the flow’s
activity during congestion, then recirculates the packet to the
ingress pipeline. Otherwise, the packet is forwarded normally.

The operation details for cleanWindow (line 7) and access-
Window (lines 15-16) are given in Section IV-B. The
conditional statements for determining whether the queue is
congested (lines 11-14), and for identifying whether a flow
is both culprit flow for congestion and active flow during
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Listing 1. P4 pseudocode for f (·).

Listing 2. P4 pseudocode for queue diagnosis.

Fig. 3. The structure of Time-Windows.

congestion (lines 17-20), are implemented using two tables,
whose P4 pseudocode is shown in Listing 1 and Listing 2.

B. Time-Windows

1) The Structure of Time-Windows: Fig. 3 shows the
structure of Time-Windows. Time-Windows consist of two
windows, where one window performs the access operation to
fetch the recorded data and record the data to be measured, and
another window performs the clean operation to prepare for
the next round of access. Time-Windows measure and query
the flow’s information in the time range (ts , te ], and when
it reaches the following time range (te , 2te − ts ], the index
of the windows that perform the access and clean operations
move backward cyclically, thus realizing the continuous mea-
surement of the flow.

The goal of FGQD is to find malicious flows for CRAs
that are not only the culprit flows for congestion in the
queue, but are also active flows during congestion. Therefore,
any approximate data structure that supports write and read

Fig. 4. Per-packet Procedure of Time-Windows.

operations and provides reasonable accuracy can be employed
by Time-Windows to enable the detection of malicious flows.
Sketch [40], [41], as an approximate measurement solution,
provides good estimation accuracy under computational and
memory constraints. To address the memory limitation, we
employ Count-Min Sketch (CMS) [40] in FGQD, since it is
easy to implement in the data plane. CMS may suffer from
overestimation errors due to the hash collision, the margin of
which depends on the size of the chosen structure.

In FGQD, each CMS consists of R register array of length
C, each register with W bit width, and then each CMS will
consume R × C × W bit and a Time-Windows consumes
2 × R × C × W bit registers. To detect malicious flows
for CRAs, FGQD needs to perform the estimation of culprit
flows for congestion and active flows during congestion, using
two Time-Windows to measure the flow’s contribution to
the queue backlog and the flow’s activity during congestion,
respectively, and thus FGQD consumes registers with a size
of 4 × R × C × W bit.

2) Per-Packet Procedure of Time-Windows: To determine
whether a packet is part of a malicious flow for CRAs,
FGQD uses Time-Windows to maintain information about
the flow to which the packet belongs. Fig. 4 shows the per-
packet procedure of Time-Windows. There are five steps
from the time the packet arrives at the egress pipeline to
the time the FGQD completes the recording and querying,
which are: ①Get timestamp from the queueing metadata; ②Get
flow_ID from the packet header; ③Calculate Time-Windows
index; ④Calculate sketch index; ⑤Perform access and clean
operations on sketches.

①Get timestamp from the queueing metadata. To estimate
the culprit flows for congestion and the active flows during
congestion in the time range (ts , te ], FGQD uses the packet’s
timestamp information to determine the time range to which
the packet belongs. Specifically, FGQD uses the queuing
metadata to obtain the packet’s timestamp information. In
bmv2, the packet’s timestamp is measured in microseconds
and is set when the packet first enters the queue.

②Get flow_ID from the packet header. FGQD uses the
five-tuple <srcIP, dstIP, srcPort, dstPort, protocol> from the
packet header as the flow_ID for its corresponding flow, noting
that other fields can also be used as the flow_ID if needed,
such as the three-tuple <srcIP, dstIP, protocol>.

③Calculate Time-Windows index. Time-Windows consist
of two windows, and FGQD uses the timestamp from the
queueing metadata to calculate the window index, determining
which windows are used for access and clean operations. The
index for the access window is (timestamp÷(te−ts)) mod 2,
and the calculation of the index for the clean window is
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Fig. 5. Example of mapping RF model with 3 trees.

(timestamp ÷ (te − ts) + 1) mod 2. Due to the compu-
tation constraint, P4 does not support division and modulus
operations directly. To overcome this limitation, FGQD imple-
ments division via right shift and modulus using bit slicing.
Specifically, FGQD sets the window’s time range te − ts to
be an integer powers of 2 (e.g., 2n ), allowing (timestamp ÷
(te−ts)) to be replaced with (timestamp >> n). Consequently,
access_index is calculated as (timestamp >> n) & 1, and the
computation for clean_index follows a similar approach.

④Calculate sketch index. FGQD determines the slot posi-
tion for performing access operation on the register in the
sketch by hashing flow_ID. Due to hash collisions, different
flow_IDs may be mapped to the same slot, leading to overes-
timation errors.

⑤Perform access and clean operations on sketches. Each
register can only be accessed once as the packet travels through
the switching pipeline [27], [28]. For the access window,
FGQD utilizes a single access register to first read the recorded
data and then write updated data back to the sketch. To
clean the sketch, one approach is to use the Runtime API
from the control plane to clear the registers. However, this
method is challenging to implement effectively in practice
due to operational delays. FGQD addresses this problem by
introducing an additional clean window. Specifically, when a
packet reaches the egress pipeline, a write-zero operation is
performed on each column of the sketch in the clean window.
If the register array forming the sketch has a length of C, the
sketch will be fully cleared after C packets pass through it
within the time range (te − ts).

3) Error Analysis: We now analyze the estimation error of
the Time-Windows due to the hash collision. In FGQD, we use
the CMS [40] with R rows and C columns in a window, where
R = � e / ε � and C = � ln(1/δ) �. For CMS, it can achieve ε
additive error with failure probability δ, which means that with
1−δ probability, a query with ground truth flow size w will return
an estimate w ′ that satisfies w ≤ w ′ ≤ w + εWCMS , where
WCMS is the total size of all the flows inserted into the CMS.

C. In-Network RF

Network traffic is influenced by various factors, such as
user behavior, device type, and application service. During
network traffic surges caused by factors other than malicious
attacks, benign flows may also trigger queue congestion and

Algorithm 2: Procedure in Parser and Ingress

1 for packet arriving at Parser do
2 flow_ID, packet_fea ← packet’s header;

3 for packet arriving at Ingress Pipeline do
4 instance_type ← standard metadata;
5 if instance_type is INGRESS_RECIRC then
6 queue_fea ← metadata;
7 label ← RF(packet_fea, queue_fea);
8 if label is 1 then
9 report flow_ID;

10 else
11 forward the packet;

12 else
13 if flow_ID in blacklist then
14 perform mitigation actions;

15 else
16 forward the packet;

could potentially be identified by FGQD as culprit flows for
congestion and active flows during congestion. Consequently,
detecting malicious flows of CRAs solely based on queue
diagnosis in the egress pipeline may lead to false positives for
benign flows.

To this, we employ the in-network RF model to further
improve the detection accuracy and reduce the false positives
of benign flows, which is deployed in the switch ingress
pipeline and consists of multiple tree tables and a decision
table. Fig. 5 shows an example of mapping RF models with 3
trees. Each tree table represents a decision tree model, where
each rule in the tree table corresponds to a decision path from
the root to a leaf node in the decision tree. The action triggered
by the rule depends on the type of the leaf node in the decision
tree. Based on the decision outcomes from the tree tables, the
decision table makes the final classification. Overall, tree tables
and decision table implement the decision-making process of
the RF model directly within the data plane.

The per-packet procedure in parser and ingress pipeline is
shown in Algorithm 2 and P4 pseudocode for in-network RF
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Listing 3. P4 pseudocode for in-network RF.

is shown in Listing 3. When a packet reaches the switch parser,
FGQD parses the packet’s header to extract the flow_ID and
packet features. Upon arriving at the switch ingress pipeline,
FGQD first determines whether the packet is a recirculated
packet. If it is, the in-network RF model is invoked for
classification. If the classification result identifies the packet as
belonging to the CRAs, its flow_ID is reported. Otherwise, the
packet is forwarded normally. For packets forwarded normally
to the switch, FGQD checks whether the flow_ID is found
in the blacklist. If it is, mitigation measures are applied,
otherwise, the packet is forwarded normally.

V. EXPERIMENTAL EVALUATION

In this section, we present the experimental evalua-
tion of the FGQD prototype, including the experimental
setup (Section V-A), detection performance evaluation
(Section V-B), response time evaluation (Section V-C), and
comparison of different detection systems (Section V-D).

A. Experimental Setup

We prototype FGQD using P4 and Python, and conduct
experiments on the software-based testbed with mininet2 and
bmv2.3

Topology. We set up a dumbbell topology consisting of four
hosts (h1, h2, h3, and h4) and two switches (s1 and s2). h1

2https://github.com/mininet/mininet
3https://github.com/p4lang/behavioral-model

and h2 are connected to s1, h3 and h4 are connected to s2,
and the link between s1 and s2 is the bottleneck link. Due to
the performance limitations of bmv2,4 we set the bandwidth
of the bottleneck link to 50Mbps and the bandwidth of other
links to 100Mbps. h1 sends background traffic to h3 via s1
and s2, and h2 sends attack traffic through s1 and s2 to h4.
The FGQD prototype is deployed on s1, and the queue depths
on s1 and s2 are set to the default value of 64.

Traffic Generation. We utilize the WIDE dataset on
January 22, 2023 as background traffic to emulate normal
network traffic. Since the WIDE dataset does not contain
CRAs, we assume its traffic is all benign. The average rate of
the original traffic is 357.79Mbps [42]. To match the link rate,
we replay the original traffic at a rate of 0.1x using tcpreplay,
so that the background traffic would be approximately 70%
of the bottleneck link’s bandwidth, simulating a busy network
scenario. For malicious traffic of CRAs, we implement a
script using the Python socket to generate attack traffic for
simulating Shrew attacks and use the tool in [43] to simulate
Optimistic Ack attacks.5 To get the training data for the
RF model, we use the first 0–50 seconds of WIDE traffic
combined with simulated malicious traffic of CRAs to emulate
the network and record the traffic data. To evaluate FGQD’s
performance, we use the 50–100 seconds of WIDE traffic
along with simulated malicious traffic of CRAs to emulate the
network traffic.

Threshold Selection. FGQD uses the threshold δ for culprit
flow estimation, threshold α for active flow estimation, and
thresholds τ and γ to indicate queue congestion. These
thresholds are set based on the 95th percentile of the values
under normal network conditions.

Evaluation Metrics. We choose the detection rate (DR),
false negative rate (FNR), and false positive rate (FPR) to
evaluate FGQD’s detection performance comprehensively. The
DR is the proportion of actual malicious flows that the FGQD
correctly identifies. The FNR is the proportion of actual
malicious flows incorrectly identified as benign. The sum of
the DR and FNR is 1. The FPR is the proportion of actual
benign flows incorrectly identified as malicious flows. DR
and FNR are used to evaluate FGQD’s ability to recognize
malicious flows, where the higher the DR and the lower the
FNR, the better the ability of FGQD to recognize malicious
flows for CRAs. FPR is used to evaluate the probability
of FGQD misidentifying benign flows as malicious flows,
where the lower the FPR, the lower the probability of FGQD
misidentifying benign flows as malicious flows.

B. Detection Performance

1) Evaluation for Shrew Attacks: Fig. 6 shows the detec-
tion performance of FGQD for Shrew attacks when
Time-Windows consume different register sizes (1.5KB, 3KB,
6KB, and 12KB). The green curve represents the detection
performance of FGQD, while the yellow curve indicates the
detection performance of queue diagnosis. Queue diagnosis

4https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md
5We collect traces of Optimistic Ack attacks in advance using tcpdump and

replay the collected traffic when evaluating FGQD.
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Fig. 6. The detection performance of FGQD for Shrew attacks.

Fig. 7. The feature importance of RF in evaluation for Shrew attacks.

here refers to utilizing only the culprit flow estimation module
and active flow estimation module in the egress pipeline,
without employing the in-network RF module. When a flow
is identified as both a culprit flow for congestion and an
active flow during congestion, queue diagnosis reports it as a
malicious flow. In contrast, FGQD integrates the in-network
RF module to further validate the suspicious flows identified
by queue diagnosis. The DR and FNR of queue diagnosis
are slightly better than those of FGQD, as the in-network RF
performs additional screening of suspicious flows identified by
queue diagnosis. This verification process may occasionally
result in the unintended omission of malicious flows. However,
compared to queue diagnosis, FGQD significantly reduces
the false positive rate. Beyond identifying malicious flows,
an equally important objective is to minimize the impact on
benign flows. Consequently, the design of FGQD prioritizes
minimizing the false positives of benign flows.

Time-Windows employ sketches to measure the flow’s
contribution to the queue backlog and the flow’s activity during
congestion, which may be prone to overestimation errors.
Such overestimations may inflate these two metrics, potentially
leading to false positives for benign flows. With more registers
consumed by Time-Windows, the lower the FPR of the
queue diagnosis. As seen in Fig. 6(c), FPR is lowest when
Time-Windows utilize 12KB of registers. This is because
an increased register capacity reduces the likelihood of hash
collisions, mitigates overestimation errors, and consequently
decreases the occurrence of false positives. Note that, even
with a low register consumption (e.g., 1.5KB), Time-Windows
manage to maintain a reasonably low FPR, highlighting the
effectiveness and robustness of its design.

Fig. 7 shows the feature importance of the RF model
in evaluating Shrew attacks. The queue features include
the contribution and activity, while the packet features
comprise header fields such as udp_length, tcp_dataOffset,

ipv4_diffserv, and ipv4_ihl. The contribution feature denotes
the flow’s contribution to the queue backlog, and the activity
feature refers to the flow’s activity during congestion. Among
these, the packet feature udp_length has the highest importance
score, with the two queue features also ranking high in
importance. In Shrew attacks, attackers aim to maximize the
destructiveness of the attack while maintaining a low average
traffic rate to enhance stealthiness. To achieve this, they often
use lightly loaded packets to seize network bandwidth, rather
than heavily loaded packets. In contrast, normal traffic, primar-
ily intended to carry information for network communication,
typically has a packet load that is not excessively small.
This distinction explains why the packet feature udp_length
holds a high importance score in the RF model for detecting
Shrew attacks. Furthermore, causing queue congestion is a
critical characteristic of Shrew attacks, which justifies the high
importance scores of the two queue features.

2) Evaluation for Optimistic Ack Attacks: Fig. 8 shows the
detection performance of FGQD for Optimistic Ack attacks
when Time-Windows consume different register sizes (1.5KB,
3KB, 6KB, and 12KB). It can be seen that the detection
performance of FGQD remains well regardless of the amount
of register consumption, maintaining a DR for Optimistic ACK
attacks above 95% and a FPR below 1%, which demonstrates the
effectiveness of FGQD. Additionally, the register size allocated
to Time-Windows has no significant impact on the DR and
FNR for detecting Optimistic Ack attacks. With an increase in
the register size assigned to Time-Windows, the probability of
hash collisions decreases, leading to a reduction in the FPR.

Fig. 9 shows the feature importance of the RF model in
evaluating Optimistic Ack attacks. Among these features, the
queue feature contribution has the highest importance score.
In Optimistic Ack attacks, the receiver forges ACK packets
to deceive the sender to accelerate the data transmission, thus
causing congestion in the network. Thus, the contribution
feature which reflects the congestion condition of the queue
plays a critical role in identifying Optimistic Ack attacks,
which also underscores the effectiveness of queue diagnosis
in detecting Optimistic Ack attacks.

C. Evaluation for Response Time

An essential objective of defense systems is to respond
promptly to attacks to mitigate their impact. The faster FGQD
responds, the less damage CRAs can inflict on the network.
The response time here refers to the interval between FGQD
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Fig. 8. The detection performance of FGQD for Optimistic Ack attacks.

Fig. 9. The feature importance of RF in evaluation for Optimistic Ack
attacks.

Fig. 10. Response latency of FGQD.

receiving the attack traffic and successfully blocking it. To
measure it, we capture traffic as a pcap file and the time
span during which the attack flow appears in the file is
considered FGQD’s response time to CRAs. Considering the
false negatives of malicious flows, we measure only the
duration of malicious flows detected by FGQD in the pcap file.

The response latency to attacks is a critical performance
metric for evaluating the effectiveness of a defense system, and
we assess the response performance of FGQD concerning both
Shrew attacks and Optimistic Ack attacks. Fig. 10 shows the

TABLE I
THE COMPARISON OF DIFFERENT METHOD’S RESPONSE

LATENCY FOR SHREW ATTACKS

response latency of FGQD, where Fig. 10(a) is the response
latency for Shrew attacks and Fig. 10(b) refers to the response
latency for Optimistic Ack attacks. For Shrew attacks, FGQD
responds within a few milliseconds, swiftly blocking the
malicious flow’s packets with an average response time of
approximately 5.70 milliseconds. For Optimistic Ack attacks,
the average response time of FGQD is about 1.93 seconds.
The reason FGQD’s response time to Optimistic Ack attacks
is significantly longer than its response to Shrew attacks lies
in the nature of the Optimistic Ack attacks. In Optimistic Ack
attacks, the traffic initially appears normal and does not cause
network congestion, effectively behaving as benign traffic
during this phase. It is only after the malicious receiver forges
Ack packets that the sender increases its transmission speed,
leading to network congestion. As a result, some time may
pass before FGQD identifies and responds to the malicious
traffic. Note that this does not imply FGQD is slow to respond
to Optimistic Ack attacks, but rather that the attack traffic
behaves as normal traffic in its early stages. Overall, FGQD
demonstrates its ability to respond promptly to malicious flows
of CRAs, effectively mitigating the attacks.

Table I shows the comparison of response latency for
different detection methods for Shrew attacks. Spectral fea-
ture [16] and small signal model [17] perform sophisticated
time-frequency analysis of network traffic using sampling
techniques to detect Shrew attacks, which inevitably results
in considerable response latency. Softguard [37], P&F [38],
PeakSAX [18], and GASF-IPP [39] are systems deployed
in the SDN control plane. In these systems, the controller
is responsible for collecting network traffic, making deci-
sions, and installing defense policies on the switches, which
inevitably introduces significant latency, and the response
latency of these systems is at the level of seconds or even
tens of seconds. Compared to the above methods, FGQD has
a low response latency of approximately 5.70 milliseconds, as
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TABLE II
FGQD VERSUS OTHER SYSTEMS FOR SHREW ATTACKS

it is deployed directly on the data plane, enabling it to quickly
respond to Shrew attacks.

D. FGQD Versus Other Systems

We compare FGQD with Conquest [10], Henna [44], and
Hashpipe [45].

• Conquest [10] employs a snapshot-based data structure to
track the information of queues in the data plane, thereby
identifying flows that make significant contributions to
the queue. We have implemented the Conquest prototype
on the software-testbed, which consumes about 6KB of
register size.

• Henna [44] is an in-network classifier that relies exclu-
sively on packet features. It consists of a hierarchical
two-stage model, with a RF deployed in the ingress
pipeline and a decision tree deployed in the egress
pipeline. The authors have provided the code6 for the
Tofino version, based on which we implement the bmv2
version, where the tree model is implemented similarly
to the tree table of FGQD.

• Hashpipe [45] is a flow size measurement algorithm
deployed on the programmable data plane. Based on
the code7, we have implemented the Hashpipe prototype
on the software-based testbed, which consumes about
51.375KB of register size.

Table II shows the comparison of different systems for
detecting Shrew attacks. In FGQD, Time-Windows utilize
6KB of registers, while Conquest [10] also uses 6KB of
registers, and Hashpipe [45] consumes 51.375KB of registers.
As shown in the table, FGQD achieves a DR, FNR, and FPR of
97.333%, 2.667%, and 0.018%. Conquest [10] has a DR, FNR,
and FPR of 98.000%, 2.000%, and 0.048%, and Henna [44]
has a DR, FNR, and FPR of 71.667%, 28.333%, and 1.070%,
and Hashpipe [45] has a DR, FNR, and FPR of 83.000%,
17.000%, and 0.474%, respectively. Conquest [10] detects
attack flows by identifying significant contributors to the queue
backlog, whereas Shrew attacks create congestion by sending
bursty traffic, hence Conquest [10] can effectively detect these
attacks. The primary pattern of Shrew attacks lies in their
traffic behavior, Henna does not perform well in detecting
these attacks since it uses only packet features. Hashpipe [45]
is mainly used for detecting heavy hitter flows. Although
Shrew attacks send bursty traffic, they exhibit relatively long
silent periods, which also results in suboptimal detection
performance for Hashpipe. In contrast, FGQD utilizes queue
diagnosis, which is similar to Conquest, and thus can achieve
about the same as Conquest’s DR and FNR. Moreover,

6https://github.com/nds-group/Henna
7https://github.com/vibhaa/hashpipe

TABLE III
FGQD VERSUS OTHER SYSTEMS FOR OPTIMISTIC ACK ATTACKS

FGQD further reduces false positives by incorporating packet
features and in-network RF, thereby attaining a lower FPR
than Conquest. Beyond identifying malicious flows, an equally
important objective is to minimize the impact on benign flows.
Therefore, the detection system should strive to accurately
identify malicious flows while reducing false positives for
benign flows. Among the four detection systems, FGQD
achieves the lowest FPR.

Table III shows the comparison of different systems for
detecting Optimistic Ack attacks. FGQD has a DR, FNR, and
FPR of 97.333%, 2.667%, and 0.106%, while Conquest [10]
achieves a DR, FNR, and FPR of 76.667%, 23.333%, and
0.033%. Henna [44] has a DR, FNR, and FPR of 100.000%,
0.000%, and 0.029%. Hashpipe’s [45] DR, FNR, and FPR are
88.000%, 12.000%, and 0.471%, respectively. Among these
four systems, Henna [44] has the highest DR and the lowest
FNR and FPR. In the experiments, we employ a tool to
generate Optimistic Ack attack traffic. The traffic produced
by this tool exhibits relatively uniform packet header fields,
allowing Henna, which relies on packet features, to easily learn
all the header field patterns of Optimistic Ack attack traffic.
This may lead to an overestimation of Henna’s detection
effectiveness. In future work, it will be necessary to identify
real-world datasets for Optimistic Ack attacks or use attack
tools with more diverse patterns for evaluation. Optimistic Ack
attacks occur when a malicious receiver forges ACK packets,
prompting the sender to accelerate its traffic. However, this
increase does not elevate the total traffic volume to heavy hitter
levels, so Hashpipe’s detection performance for it is not very
good. FGQD’s queue diagnosis monitors both Culprit flows for
congestion and active flows during congestion, and therefore
also achieves effective detection of Optimistic Ack attacks.
Overall, FGQD demonstrates strong performance in detecting
both Shrew attacks and Optimistic Ack attacks, proving it to
be an effective and flexible solution.

VI. DISCUSSION

In this section, we discuss the FGQD from three perspec-
tives, which are detection for other CRAs (Section VI-A),
potential integration with AI-based intrusion detection
systems (Section VI-B), and potential application in 5G
networks, Internet of Things (IoT), and cloud security
(Section VI-C).

A. Detection for Other CRAs

Beyond Shrew attacks and Optimistic Ack attacks, other
CRAs include Pulsing DoS attacks [46] and Link-Flooding
Attacks [8], etc. The Pulsing DoS attack methodology
closely resembles that of Shrew attacks, as both leverage

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 02,2026 at 14:29:25 UTC from IEEE Xplore.  Restrictions apply. 



1266 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOLUME 12, 2026

traffic bursts to consume link bandwidth and trigger con-
gestion. Thus, FGQD is well-suited for detecting Pulsing
DoS attacks through similar mechanisms used for identifying
Shrew attacks. Link-Flooding Attacks represent a broader
category encompassing various attack types such as Crossfire,
CoreMelt, and CrossPath attacks. These attacks often employ
sophisticated techniques. For instance, Rolling Crossfire can
dynamically alter target links, resulting in traffic patterns that
appear both legitimate and highly adaptive [8]. Due to this
complexity, effective defense against Link-Flooding Attacks
typically requires more comprehensive protection systems.
Our proposed FGQD scheme shows promise as a valuable
component that could be integrated into such advanced defense
architectures.

Beyond evaluating the detection performance of FGQD
against other CRAs, it is also important to evaluate its
effectiveness in real-world scenarios. However, the scarcity of
public network datasets containing CRAs trace data, and our
lack of access to hardware devices such as Tofino switches,
pose significant challenges. We will further investigate and
validate FGQD’s ability to detect CRAs under real-world
scenarios in future work.

B. Potential Integration With AI-Based Intrusion
Detection System

AI-based Intrusion Detection System (AI-IDS) shifts tra-
ditional rule and signature-based detection into intelligent
models, not only improving its ability to recognize secu-
rity threats but also delivering significant gains in real-time
responsiveness, scalability, and interpretability. As a result,
it has become a cornerstone of modern network security
defenses. Nevertheless, current in-network AI-IDS still faces
challenges such as limited data plane resources, constrained
feature and semantic richness, and the complexity of deploy-
ment and maintenance [27], [47], [48]. FGQD leverages the
most widely adopted in-network machine-learning model
(in-network RF) to reduce false positives on benign flows
effectively. It introduces two novel queue-based features (the
flow’s contribution to the queue backlog and the flow’s activity
during congestion) that extend the analytical feature set avail-
able to in-network AI-IDS. Moreover, FGQD’s Time-Windows
enable efficient recording of flow features within the resource-
constrained data plane. In future work, we will further explore
the prospects and potential of integrating FGQD into AI-IDS.

C. Potential Application in 5G Networks, IoT, and
Cloud Security

In addition to traditional Internet infrastructure, 5G
networks, IoT, and cloud platforms are all vulnerable to CRAs.
IoT devices are particularly susceptible due to their lack of
robust security measures, rendering them ideal entry points
for CRAs. Consequently, defending against CRAs across 5G
networks, IoT, and cloud platforms is an urgent priority. In
future work, we will further investigate the potential and
prospects of applying FGQD within 5G networks, IoT, and
cloud platforms.

VII. RELATED WORK

The detection methods for Shrew attacks can be cate-
gorized into time-frequency analysis methods [16], machine
learning methods [38], and queue analysis methods [49].
Time-frequency analysis methods use time-frequency analysis
techniques to detect attacks. Chen and Hwang [16] proposed
a collaborative detection and filtering method using Discrete
Fourier Transform and Hypothesis Testing for spectral analysis
of network traffic to detect Shrew attacks. Tang et al. [38]
proposed P&F, deployed in the SDN control plane, which uses
machine learning models to detect Shrew attacks and uses
time-frequency analysis to locate the source and victim of
the attack. Queue analysis methods detect Shrew attacks by
analyzing network queues. Yue et al. [49] proposed a feedback
control model to describe the congestion control process and
designed a queue distribution model to extract queue features,
combining a simple distance-based method with an adaptive
threshold algorithm to detect bursts of Shrew attacks.

The detection methods for Optimistic Ack attacks can
be categorized into methods that acknowledge packet
authentication [15] and protocol state monitoring [19].
Sherwood et al. [15] proposed to randomly discard data
segments at the sender and recognize the receiver as a misbe-
having receiver when the sender receives an optimistic ACK
against one of the intentionally discarded segments. Based
on the emerging programmable data plane, Laraba et al. [19]
proposed the Extended Finite State Machine (EFSM) abstrac-
tion to monitor stateful protocols in the data plane to mitigate
TCP protocol abuses including Optimistic Ack attacks.

VIII. CONCLUSION

In this paper, we develop FGQD, a defense system against
CRAs deployed on the programmable switch, capable of real-
time monitoring of the queue and network traffic. Particularly,
culprit flows for congestion and active flows during congestion
enable tracking flows culpable for congestion formation and
flows exhibiting abnormal activity during congestion. The
approximate data structure Time-Windows implement the
monitoring of culprit flows for congestion and active flows
during congestion in the data plane, overcoming resource and
computational constraints on the programmable data plane.
Additionally, the in-network RF can effectively reduce false
positives for benign flows. Experimental evaluation shows that
FGQD has achieved effective detection and rapid response to
CRAs, demonstrating excellence in effectiveness, flexibility,
and real-time performance.
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