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NoSPF: Non-Stationary Long-Term Power
Consumption Forecasting for Servers in Cloud
Data Centers

Ruichao Mo ¥, Weiwei Lin

Keqin Li

Abstract—Accurately forecasting power consumption in data
center servers requires addressing the temporal distribution
shift caused by dynamic resource demands. However, existing
methods rely on global normalization, which cannot capture
short-term localized shift, leading to unsatisfactory performance
when forecasting non-stationary time series. To address this
challenge, we propose a novel bi-level optimization framework for
forecasting non-stationary long-term power consumption, named
NoSPF. The framework employs hierarchical optimization to sep-
arately model the stationary and local non-stationary components
of power consumption time series, offering a flexible, model-
agnostic paradigm for time-series forecasting. Using Discrete
Wavelet Transform (DWT) for multi-scale time-frequency analy-
sis, NoSPF decomposes the series into non-stationary components
driven by short-term fluctuations and stationary components
that capture long-term trends. Furthermore, NoSPF integrates
a lightweight Multi-Layer Perceptron (MLP) to predict the
local non-stationary components, enhancing the framework’s
forecasting accuracy by providing more precise approximations
of the future power distribution. Extensive experiments on real-
world server datasets demonstrate the superior performance and
effectiveness of NoSPF.

Index Terms—Non-stationary time-series, cloud data center,
power data mining, predictive modeling.
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1. INTRODUCTION

ITH the scale of data centers expanding rapidly, their
Wcarbon footprint has increased substantially, now ac-
counting for approximately 30% of global carbon emissions
[1]. This issue has become a pressing concern for major cloud
service providers such as Google and Microsoft, both of which
have committed to ambitious targets for significantly reducing
data center carbon emissions by 2030 [2], [3]. In pursuit of
these goals, data center operators have implemented various
strategies, including optimizing the energy efficiency of non-IT
equipment [4], [5], [6] and integrating renewable energy sources
to power data center operations [7], [8], [9], [10]. Despite these
efforts, the operation of massive servers, often under low uti-
lization, continues to consume substantial amounts of energy,
constituting the majority of total energy consumption in data
centers. This highlights the energy management of servers as a
critical challenge for achieving energy efficiency and reducing
emissions in data center operations.

For optimizing server energy consumption, existing research
is mostly devoted to improving the utilization of computing
resources, such as task scheduling [11], [12] and resource allo-
cation [13], to name a few. Notably, these studies require estab-
lishing the correlation between resource utilization and energy
consumption of the server at first, which serves as the purpose
of power consumption models. Besides, it also plays a crucial
role for data center administrators to learn and understand the
long-term power behavior of servers for overall energy plans of
data centers [14]. This understanding is particularly significant
in the era of large language models, which demand extensive
computational resources and pose additional challenges to en-
ergy planning in data centers [15]. Thus, the power consumption
modeling of servers in data centers has garnered significant
attention in recent years [16], [17].

However, existing research still faces several critical chal-
lenges. On the one hand, most approaches model real-time
server power consumption based on resource utilization by
monitoring current resource usage, but they fail to capture
and analyze long-term power characteristics, limiting their
applicability for long-term energy planning in data centers.
On the other hand, as shown in Fig. 1, highly dynamic re-
source requests introduce significant non-stationary behavior in
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Fig. 1. Example of variation in local mean of power consumption values for different servers (averaged across every 10 time steps). the local mean power

consumption values of different servers exhibit varying degrees of fluctuation over time. Notably, the regions where the local mean power consumption
values undergo significant changes overlap with the high-energy regions of the local non-stationary components. This observation highlights that the local
non-stationary components are the primary drivers of temporal distribution shift. Therefore, mitigating the impact of localized non-stationary components is
key to effectively mining long-term power consumption patterns in time-series data, which is essential for accurate power consumption prediction.

power consumption, known as temporal distribution shift [18].
Addressing this issue requires eliminating the non-stationary
characteristics of power consumption to extract meaningful
long-term patterns from historical data.

Reversible instance normalization methods based on statisti-
cal features (e.g., mean and variance) of time-series data have
recently been introduced as effective solutions for addressing
the challenges posed by temporal distribution shift in long-
term time-series forecasting [19], [20]. These methods mitigate
the impact of temporal distribution shift by removing the non-
stationary components of the input time-series data, enabling
the model to better capture latent power consumption patterns.
Additionally, the inverse normalization of non-stationary fea-
tures applied to the model’s stationary forecasting further en-
hances accuracy. However, these methods typically rely on the
global statistical features of the input time-series, limiting their
effectiveness in handling temporal distribution shifts arising
from locally abrupt variations in statistical properties. Such
abrupt changes are frequently observed in the power consump-
tion patterns of servers in real-world data centers, posing a
significant challenge to the applicability of these techniques in
this context.

To address these challenges, we propose a novel bi-level opti-
mization framework for NOn- Stationary long-term Power con-
sumption Forecasting, named NoSPF. The framework separates
stationary and local non-stationary components of the power
series through hierarchical optimization, providing a flexible
data-driven paradigm independent of specific forecasting mod-
els. Using Discrete Wavelet Transform (DWT) for multi-scale
time—frequency analysis, NoSPF decomposes the series into
short-term non-stationary fluctuations and long-term stationary
patterns. A lightweight multi-layer perceptron (MLP) is then
employed to predict the non-stationary components, which are
integrated with stationary forecasts to better approximate the
true power consumption distribution and improve long-term
prediction accuracy.

The main contributions of this paper are summarized as
follows:

e We propose a novel bi-level optimization framework
for NOn- Stationary long-term Power consumption
Forecasting, called NoSPF. As a model-agnostic
framework, NoSPF offers a flexible data-driven paradigm
that is compatible with various time-series forecasting
models.

e To effectively separate local non-stationary components,
the framework employs DWT for multi-scale time-
frequency analysis, extracting critical stationary compo-
nents to improve the modeling of long-term power con-
sumption patterns.

e Leveraging NoSPF’s powerful decomposition capability,
it employs a lightweight MLP to accurately forecast lo-
cal non-stationary components, achieving an optimal bal-
ance between forecasting accuracy and computational ef-
ficiency.

The remainder of the paper is organized as follows. Sec-
tion II discusses the motivation and problem formulation. Sec-
tion III presents the design details of the proposed framework.
Section IV describes the experimental setup and experimental
results. Section V reviews the related work, and Section VI
provides the conclusion and future work.

II. MOTIVATION AND PROBLEM FORMULATION
A. Motivation

1) Non-Stationary Power Consumption Behavior of Server
Arising from Highly Dynamic Resource Requests: In real-
world data centers, servers execute assigned computing tasks
in accordance with the scheduling strategies defined by the
cluster scheduler. This results in highly dynamic and stochas-
tic resource consumption patterns. Additionally, factors like
workload variations, hardware replacement, and environmental
fluctuations further contribute to changes in the distribution
of server power consumption. Consequently, the power con-
sumption of servers exhibits significant non-stationary behavior
over time, characterized by temporal distribution shift, such as
dynamic changes in statistical properties (e.g., mean, variance).
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(c) Power consumption time-series data processed by DWT.

Examples of server power time-series data processed by different non-stationary removal methods. It is evident that the local non-stationary

components present in the server time-series power consumption data can be effectively reduced by DWT, which explains why DWT is exploited to implement

non-stationary time-series power consumption forecasting.

Fig. 1 illustrates the variation in the average power consump-
tion values across different servers, where larger variations in-
dicate more pronounced temporal distribution shifts. To further
investigate the relationship between local non-stationary com-
ponents and temporal distribution shifts, we first decompose the
time-series power consumption data using DWT, extracting the
high-frequency portion as the non-stationary component, which
captures abrupt local changes. Additionally, we visualize the
correlation between changes in the energy of the non-stationary
component and fluctuations in the local mean. The results show
that regions with higher energy in the non-stationary component
(represented by brighter colors) coincide with areas where the
local mean undergoes significant changes. This emphasizes the
pivotal role of non-stationary components in driving fluctua-
tions in the mean of time-series power consumption data. This
observation underscores that the non-stationary component is
a primary contributor to distribution shift, making it a central
challenge for achieving accurate long-term power consump-
tion forecasting. Addressing the issues arising from these non-
stationary components forms the core motivation of this work.

2) Non-Stationary Separation of Time-Series Power Data
Based on Multi-Scale Time-Frequency Analysis: Currently,
most methods for addressing non-stationary time-series fore-
casting, such as RevIN, are based on the statistical features of
the time series and normalize the global characteristics of the in-
put data. While these methods effectively address global trends
in the input time series, they face significant limitations in han-
dling finer-grained components, particularly when dealing with
server power behavior influenced by short-term workload fluc-
tuations and hardware state changes. As illustrated in Fig. 2(a)
and 2(b), the raw time-series power consumption data and the
corresponding data normalized using RevIN [19] are presented.
While RevIN successfully normalizes the global characteristics
of the time series, it fails to eliminate non-stationary features
arising from short-term power consumption variations.

The multi-scale analysis capability of DWT in the time-
frequency domain can be leveraged to effectively capture short-
term abrupt changes in server power consumption, facilitating
the separation of long-term trends from short-term fluctuations
in the input time-series data. Fig. 2(c) demonstrates the results
of applying the discrete wavelet transform to power consump-
tion data, showing a smoother long-term trend alongside the
successful separation of local short-term fluctuations. These

observations motivate us to implement non-stationary separa-
tion of server power consumption time-series data using DWT.

B. Problem Formulation

Let the server power consumption data collected over T time
steps be represented as X = [21, %2, ..., zT], where z; € R
denotes the power consumption at time step ¢ € T. For any
given time step ¢, suppose that x© denote a input sequence of
length L, specifically,

L Te-1). ey

Similarly, let y/? represent the future sequence of length H,
denoted as,

L
Xy = [‘rt—ln Tt—L+1,--

y,{{ = [xtaxt+17~--7$t+H—1]~ (2)

In the classical univariate time series forecasting task, the
objective is to predict future values based on the historical
sequence x~, which can be expressed as

v =Fy(xp), 3)

where Fp(-) : R — RH represents the forecasting model, and
6 denotes the model parameters. ¥/ denotes the forecasting
values. For simplicity of expression, x; and y; are used below
in place of x/ and y.

Furthermore, the main objective function of unvariate time
series forecasting task is denoted as following:

argmin > L(Fy(x1),y1), “)

xt,yt CXT

where L(-) represents the loss function.

To address the dual requirements of non-stationary power
time series forecasting, eliminating the non-stationary compo-
nents that impair long-term forecasting performance while si-
multaneously enabling accurate long-term forecasting based on
the stationary component of the input data, we reformulate the
classical unvariate time series forecasting optimization problem
detailed in Eq. 4 as a bi-level optimization problem, expressed
as follows:

argmin Z Lsta(9,0%, (Fs(xt),y1)), (5)

¢ x¢,yt EXT

s.t. 6*:arg;m'n Z £shift(¢vev(99(xt)vyt)), (6)

xt,y: CXT
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Fig. 3.  The illustration of the proposed framework NoSPF. NoSPF adopts hierarchical optimization that separates the learning of stationary and non-stationary

components of the input power consumption time-series, resulting in a flexible data-driven paradigm for non-stationary long-term power forecasting. This
design does not depend on any specific time-series forecasting model, allowing for more accurate non-stationary long-term power consumption forecasting

for servers in the cloud data center.

where gy (-) represents the non-stationary components forecast-
ing model. In this bi-level optimization framework, the inner
loop focuses on capturing long-term stationary components
by mitigating the effects of distributional shifts, ensuring the
forecasting model captures latent long-term patterns for reliable
and accurate predictions. Meanwhile, the outer loop focuses
on learning the non-stationary components of the server power
consumption time series, which contribute to temporal distri-
bution shifts. By modeling and predicting these variations, the
framework enhances the model’s adaptability to volatile scenar-
ios. Both optimization levels are easily implemented through
data-driven models, making the approach practical and versa-
tile. This bi-level optimization design delivers a model-agnostic
solution for forecasting non-stationary power time series by ef-
fectively decoupling stationary and non-stationary components.

III. DESIGN OF NoSPF

In this section, we present NoSPF, a framework designed
for non-stationary long-term power consumption forecasting.
The framework addresses the challenges posed by local non-
stationary components in server power consumption, signifi-
cantly improving the accuracy of long-term predictions. NoSPF
operates in three key phases: non-stationary separation, non-
stationary forecasting, and non-stationary incorporation. The
overall architecture of the NoSPF framework is depicted
in Fig. 3, and the complete training process is outlined in
Algorithm 1.

A. Primary Knowledge of DWT

Wavelet transform facilitates the analysis of time-series data
in the time-frequency domain across multiple scales, overcom-
ing the limitations of the Fourier transform, which are restricted
to frequency domain analysis. This makes wavelet transform

particularly effective for analyzing non-stationary time-series
data. Its efficacy depends significantly on the selection of
wavelet basis functions, mathematically defined as:

1 t—p
= (57
where a # 0 represents the scale factor, which controls the
shrinkage of the wavelet basis function, and 3 € R represents
the translation factor.

Discrete Wavelet Transform (DWT) is a specific form of
wavelet transform that discretizes the scale and translation pa-
rameters of the wavelet basis function. It decomposes signals
into approximation coefficients and detail coefficients at differ-
ent scales, making it suitable for analyzing time-series data at
multiple resolutions. For a given time-series data x;, the DWT
can be defined as:

Pa,p(t) = )

“+ o0

Dwnw&a:/' iy n (D)t > 0,k €T, ()

— 00

where j and k denote the scale and translation parameters,
respectively. The scale parameter j controls the level of de-
composition: higher values of j correspond to coarser approx-
imations that capture low-frequency, stationary patterns, while
lower values focus on finer-grained, high-frequency compo-
nents where non-stationary fluctuations typically reside. The
translation parameter %k determines the temporal positioning
of the wavelet basis function, allowing DWT to localize tran-
sient changes in time. The wavelet basis function v, ,(t) is
defined as:

Gix(t) =2"2W(279t — k). 9)
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Algorithm 1: Training Procedure of NoSPF.

Input: Input power series X1 = {x;}.£_;, future
power series Y1 = {y;} L, decomposition
level j of DWT;

Output: Trained model Fy_(-), gg.(-);

Initialization: Initialize parameters ¢, 6;

while not converge do

foreach x; € X, y; € YT do

Decompose x; by Eq.14 to obtain z, and zy;

Zero-padding z,, z,, respectively, to obtain ¢;

and ¢y, ;

Calculate the stationary component Xy,

according to the Eq.15 ;

Calculate the non-stationary component Xgp; f¢

according to the Eq.16;

Predict future non-stationary component ¥ p; ¢

based on Xpp: by go(-);

Update parameters 6 based on loss function

Lsnife()s

end

; // Training of the non-stationary
forecasting model gy(+)

end

while not converge do

foreach x; € X, y; € YT do

Decompose x; by Eq.14 to obtain z, and zg;

Zero-padding z,4, z,, respectively, to obtain c;
and cy, ;

Calculate the stationary component X,
according to the Eq.15 ;

Calculate the non-stationary component Xy ¢
according to the Eq.16;

Predict future non-stationary component ¥ sp; ¢
based on X.pif by go, (-) 3 // Trained
ge. (+)

Predict future stationary component y ., based
on Xgq by Fy(-);

Incorporation ¥, into ¥4 using Eq. 23;

Update parameters ¢ based on loss function

£sta(');

end
; // Training of the stationary
forecasting model Fy(-)

end

Furthermore, x can be expressed as the sum of approxima-
tion coefficients and detail coefficients across different scales j
and translations k. Specifically:

DWTjk(x¢) = Ajr + Djg, (10)

where
e A; . represents the low-frequency approximation coeffi-
cients, capturing the long-term trends in the data.
e D;; represents the high-frequency detail coefficients, cap-
turing localized variations at finer scales.

The coefficients can be computed as follows:

B +oo

Ajp=2"2 / x5 (t)dt, (11)
“+o0

Dj,k:/ XU 1 (t)dt. (12)

Finally, x; can be represented as a coefficient tuple ¢ =
(Aj, D1, Do, ..., D;) after applying DWT. The Inverse DWT
(IDWT) reconstructs x; from its coefficients. The mathematical
expression for IDWT is given as:

%y = IDWT(c) =Y Ajytjn(t) + Y Dix¥;x(t).
ik ik

13)

B. Non-Stationary Separation

To effectively capture both the stationary and non-stationary
characteristics of the input power consumption time series,
NoSPF employs DWT to decompose x;. The decomposition
can be expressed as:

Zg,2q = DWT(xy), (14)

where z, represents the low-frequency component of the in-
put time series, capturing the long-term stationary trends in
the power consumption data. z,; contains the high-frequency
components derived from multiple scales, corresponding to the
non-stationary variations in x;.

In addition, by zero-padding z4, we can obtain the decom-
position coefficient ¢; = [z,, 0], which contains only the low-
frequency components. This enables us to perform IDWT-based
separation to extract the stationary component of the input x;,
denoted as:

Xsta = IDWT(cy). (15)

Similarly, by zero-padding the z, and combining it with
the z4, the decomposition coefficient c;, = [0, z4] is obtained,
which contains only the high-frequency components. Thus, we
can extract the non-stationary component of the input time
series using IDWT, represented as:

)A(shift = IDWT(C}L). (16)

After the separation process, the stationary component of
the input data x; captures the long-term features more effec-
tively, facilitating the use of arbitrary sophisticated time-series
forecasting models to implement F(-) for accurate long-term
power consumption forecasting.

C. Non-Stationary Forecasting

As defined by the outer loop of the bilevel optimization
objective in Eq. 5, our goal is to learn the separated non-
stationary component so that it can subsequently be integrated
into the long-term forecasting results of the stationary compo-
nent. This procedure ensures that the predicted power consump-
tion distribution more closely aligns with the actual distribution.
To this end, we construct a simple yet effective MLP model,
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go(+), which predicts the future non-stationary component
based on Xp;fs.

The choice of an MLP is motivated both by the character-
istics of the non-stationary component and by practical con-
siderations. First, due to the decomposition property of the
discrete wavelet transform, the non-stationary components fed
into gg(-) primarily consist of localized high-frequency fluc-
tuations with limited long-term dependency. Compared to the
global stationary trend, such patterns exhibit lower complexity
and can be effectively captured by a lightweight feedforward
network. Second, the compact architecture of the MLP helps
avoid unnecessary complexity and reduces the risk of overfitting
to transient noise, which is particularly important for short-
term fluctuations. These characteristics make it a practical and
reliable choice for modeling non-stationary power consumption
dynamics in data center environments. The main structure of
go(+) is given by the following equation:

zs = Linear(Xsnift), (17)

z; = W1 * Linear(x;), (18)

z = Concat|zg; z4], (19)

z = Relu(z), (20)
Vsnift = Wa x Linear(z), 2D

where W3 and Wy, are learnable parameters, and Relu(:) is
the activation function. Moreover, inspired by [21], considering
that Xy, includes only partial information from the original
power consumption time series, we concatenate the original
time series x; with non-stationary component to implement
a residual learning for the non-stationary component, further
improving forecasting accuracy.

D. Non-Stationary Incorporation

Based on the stationary component X, derived from Xy,
the future power consumption forecasting can be performed by
Fy(-), denoted as:

ysta = Fq&(xsta)' (22)

Lastly, by performing a simple linear combination of the
future stationary power consumption values predicted by the
backbone model F(-) and the future non-stationary component
predicted by g (), the final predicted values of the server power
consumption can be obtained, denoted as:

y = ysta + S’shift- (23)

IV. EXPERIMENTAL EVALUATIONS
A. Experimental Settings

Dataset. To evaluate the time-series power performance of
servers in real-world data centers and validate the effectiveness
of the proposed method, we utilized two distinct datasets from
the LISA cluster of the Dutch National Infrastructure and the
Seren cluster provided by the Shanghai AI Lab.

The LISA dataset, which serves as a widely recognized
benchmark, contains 327-dimensional server performance data

IEEE TRANSACTIONS ON COMPUTERS, VOL. 75, NO. 1, JANUARY 2026

collected from December 2019 to August 2020 using a range
of performance counters. For our experiments, we selected four
CPU servers (r10n10, rOn12, r12n13, r12n15) and four GPU
servers (r30n5, r31n2, r31n3, r32n5), extracting 40 days of
power consumption data from January 4, 2020, to February 13,
2020, as validation data. This dataset is publicly available, with
further details provided in their repository' and the raw data
accessible at this site”.

To further assess the generalizability of NoSPF, we in-
cluded an additional dataset from the Seren cluster, which
captures the power consumption profiles of high-performance
GPU servers used primarily for LLM development and de-
ployment. Unlike the LISA cluster, which includes a mix of
CPU and GPU servers, the Seren cluster exclusively comprises
GPU servers, each equipped with 8 A100 GPUs, providing
a more homogeneous testbed for evaluating the robustness
of our approach. Data collection for this dataset spans from
May 15, 2023, to August 9, 2023. For our experiments, we
selected eight servers from this cluster, identified by their in-
ternal IP addresses: 10.140.0.147, 10.140.0.166, 10.140.0.246,
10.140.0.254, 10.140.1.78, 10.140.1.90, 10.140.1.103, and
10.140.1.119. For consistency in our analysis, these servers
are referred to as Node-147, Node-166, Node-246, Node-254,
Node-78, Node-90, Node-103, and Node-119. Further details
about this dataset are available in>.

All power consumption data were subjected to z-score nor-
malization to ensure consistent scaling across the servers. It is
important to note that while z-score normalization standardizes
the data, it does not alter the original distribution of the time-
series, and thus does not address challenges related to tempo-
ral distribution shift in long-term forecasting tasks [22]. The
dataset for each server was divided into training, testing, and
validation sets in a 7:1:2 ratio.

Evaluation Metrics. We selected two evaluation metrics,
Mean Squared Error (MSE) and Mean Absolute Error (MAE),
to quantify the performance of the model. These are defined as
follows:

M
1 12
MSE = - mZ:jl (ym = 9)°, (24)
1 M
MAE= > " lym = ¥l, (25)

3
l

where M is the number of test data sample size, y,, is the true
value of server power consumption.

Backbones. Since the proposed NoSPF is model-agnostic,
we selected several existing time series forecasting models
as backbones Fy(-) to predict the long-term stationary com-
ponent of server power consumption. These include DLinear
[23], SCINet [24], TiDE [25], and TSMixer [26]. All of the
above models were implemented based on the releases in this
repository®.

Thttps://github.com/sara-nl/SURFace
Zhttps://zenodo.org/records/3878143#.ZCFNIMpBwQ-
3https://github.com/InternLM/AcmeTrace
“https://github.com/thuml/Time- Series- Library
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Methods for addressing temporal distribution shift. We
selected a range of normalization methods designed to address
temporal distribution shift. These methods are listed as follows:

e Reversible instance normalization (RevIN) [197]°

e Dish-TS [20]°

e Slicing adaptive normalization (SAN) [21]’

e Frequency adaptive network (FAN) [27]®

Additionally, two model focused on long-term forecasting
under temporal distribution shift scenario, were also imple-
mented for comparison, listed as follow:

e Non-stationary Transformer [28] 4

e Koopa [29] 4

Experimental details. All experiments were conducted on
a server equipped with 2x Intel Xeon Silver 4316 CPU @
2.30GHz, 252GB RAM, and 2x NVIDIA RTX 4090 GPU
(24GB). The software environment used is Ubuntu 22.04.4 LTS,
with PyTorch 2.1.1. Besides, Aadm [30] is used as an optimizer
across all the experiments to achieve optimization of the frame-
work. The learning rate is set as 1e—3, and the batch size was
set to 32. The gy(-) has hidden sizes [128, 128, 256]. To ensure
the computational efficiency of NoSPF, we implemented DWT
and IDWT using the GPU-accelerated pytorch_wavelets’. The
DWT was performed with Daubechies-4 (DB4) wavelets. The
DB4 wavelet was chosen for DWT decomposition due to its ef-
fective balance between temporal localization and smoothness.
Its orthogonality supports accurate signal reconstruction, while
compact support enables detection of abrupt, non-stationary
fluctuations of power consumption caused by dynamic work-
loads. Additionally, its two vanishing moments help separate
localized transients from underlying stationary trends without
the temporal smearing typical of higher-order wavelets. These
properties make DB4 particularly effective for separating the
stationary and non-stationary components of server power time
series, which is critical for the NoSPF. The wavelet decom-
position level j is optionally set to {2, 3, 4} according to the
particular prediction task.

B. Experimental Results

To demonstrate the effectiveness of the method proposed in
this paper, we validated its performance from the following
aspects.

1) Comparison of Long-Term Power Consumption Fore-
casting Performance with and Without NoSPF: We first
evaluate the predictive performance of four time series fore-
casting models on the server from the LISA cluster, com-
paring their accuracy under two conditions: with and without
NoSPF support. For this evaluation, the prediction horizon
H € {120, 240, 360, 480}, based on the definition of long-term
forecasting in this context. The input window length is fixed
at 120 for all experiments, ensuring a consistent context length
across all prediction tasks.

Shttps://github.com/ts-kim/RevIN
Ohttps://github.com/weifantt/Dish-TS
7https://github.com/icantnamemyself/SAN
Shttps://github.com/wayne155/FAN
“https://github.com/fbcotter/pytorch_wavelets

The experimental results are summarized in Table I. As in-
dicated, the prediction accuracy of all models generally de-
creases with increasing prediction horizons. However, in most
cases, models that incorporate NoSPF generally show better
performance compared to those without NoSPF, suggesting
that NoSPF offers some advantages in this context. Specifi-
cally, for the DLinear, incorporating NoSPF improves MSE by
16.89% and MAE by 11.93%. For SCINet as the backbone,
NoSPF achieves improvements of 10.86% in MSE and 11.54%
in MAE. Similarly, for TiDE, MSE and MAE are enhanced
by 11.39% and 9.23%, respectively. Notably, TSMixer with
NoSPF demonstrates the highest gains, with MSE improved by
19.32% and MAE by 17.54%. These results highlight the ability
of the backbone combined with NoSPF to address temporal dis-
tribution shifts, leading to enhanced forecasting performance.
Moreover, they demonstrate the flexibility of NoSPF to adapt
seamlessly to various types of backbone.

2) Comparison of Power Consumption Forecasting Per-
formance with Different Normalization Methods: 1In this
subsection, we evaluate the performance of the proposed
NoSPF framework against four normalization methods for non-
stationary time series forecasting, using power consumption
data from two clusters, LISA and Seren. The results, summa-
rized in the Tables II and III, present the average MSE across
all forecasting lengths for different servers in both datasets.
The results suggest that NoSPF tends to outperform the four
baseline methods in most cases, with only minor variations
observed in a few specific scenarios.

Specifically, on the LISA server dataset, NoSPF achieves av-
erage MSE improvements of 9.61%, 4.96%, 18.7%, and 4.47%
over RevIN, Dish-TS, FAN, and SAN, respectively. Similarly,
on the Seren server dataset, NoSPF delivers average MSE gains
of 8.15%, 4.30%, 14.22%, and 1.93% over the same baselines.
Among the baselines, SAN ranks second overall, benefiting
from its localized slice-based normalization strategy, which ef-
fectively captures short-term statistical variations. Dish-TS also
demonstrates competitive performance, leveraging its adaptive
distribution handling to better accommodate input variability. In
contrast, RevIN and FAN, which rely primarily on global statis-
tical features, struggle to accurately forecast long-term power
consumption in server workloads, resulting in comparatively
lower overall performance.

3) Comparison of Power Consumption Forecasting Perfor-
mance with Different Non-Stationary Models: Additionally,
we conducted a comparative evaluation against two models
specifically designed for non-stationary time series forecasting:
Koopa and the Non-stationary transformer. The average results
across all forecasting lengths are presented in Table IV. On aver-
age, NoSPF with DLinear as the backbone tends to outperform
these models across various forecasting tasks, although there
are some variations in specific cases. Specifically, on the dataset
from LISA, NoSPF achieves average MSE and MAE improve-
ments of 14.26% and 3.38% over Koopa, and 14.12% and
4.61% over Non-stationary transformer, respectively. Similarly,
on the dataset from Seren, it achieves average MSE and MAE
improvements of 16.39% and 1.75% over Koopa, and 17.11%
and 0.206% over Non-stationary transformer, respectively.
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TABLE I
COMPARISON OF POWER CONSUMPTION TIME-SERIES FORECASTING PERFORMANCE WITH AND WITHOUT NoSPF. (THE BOLD VALUES INDICATE THE BEST
PERFORMANCE)

Backbones DLinear +NoSPF SCINet +NoSPF TiDE +NoSPF TSMixer +NoSPF
Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
120 | 026167 031974 | 0.23461  0.26764 | 0.26376  0.31476 | 0.23907  0.28254 | 0.24568 030062 | 0.23657  0.26890 | 031874 0.36521 | 0.24964  0.31530
S | 240 | 038607 038434 | 0.33616 0.35153 | 037823  0.42771 | 0.34523 0.36683 | 033641 0.37310 | 0.33168 0.36720 | 0.34334 0.37184 | 0.33993 037717
S| 360 | 042016 044398 | 0.39802 0.40373 | 0.56013 053358 | 0.41692 0.43773 | 0.41069 0.41276 | 0.39490 0.41276 | 0.41887 0.44990 | 0.43760  0.41056
= | 480 | 048717 044710 | 0.43633 0.43704 | 054622  0.54907 | 0.44975  0.46273 | 0.46092  0.49607 | 0.43099 0.45413 | 046275 0.48535 | 0.44709  0.45528
120 | 024825 027927 | 0.22989  0.24046 | 0.24138 026155 | 0.23224  0.24042 | 0.25655 031112 | 0.23137 0.25745 | 030231 0.30704 | 0.23556  0.28824
240 | 039517 043766 | 0.38738  0.37649 | 0.43955 036793 | 0.39493  0.36085 | 0.38701 0.41211 | 039240 0.34860 | 0.41505 041714 | 0.40450  0.35720
S| 360 | 053675 051308 | 0.52743  0.46824 | 055381 0.48023 | 0.54403 0.46731 | 0.52645 0.50109 | 0.53754  0.47624 | 0.56680 0.66513 | 0.54683  0.52163
= | 480 | 072245 055176 | 0.66476 0.54534 | 0.69475 0.56697 | 0.66114  0.52773 | 0.65940 0.60145 | 0.66225 0.54227 | 0.68897 0.64239 | 0.65279  0.60652
120 | 0.16135 021416 | 0.13345 017370 | 0.15243 024165 | 0.13410  0.17433 | 0.14249 020009 | 0.13404 0.16307 | 0.14075  0.18138 | 0.13907  0.17497
D1 240 | 020673 025396 | 018173  0.23957 | 0.19616  0.23309 | 0.17968  0.24476 | 0.18338  0.24001 | 0.18264 0.23919 | 020621  0.28388 | 0.19508  0.23552
& | 360 | 026670 031104 | 022142 029077 | 028515 0.41290 | 0.21560  0.26080 | 0.24385 031149 | 0.22509  0.30510 | 0.24003 031389 | 0.24042  0.28867
= | 480 | 027437 030571 | 0.25647 0.32029 | 026378 0.36419 | 0.24344  0.27550 | 0.27112  0.32415 | 0.25207 0.33669 | 0.48736 056132 | 0.25621  0.34188
120 | 026399 036495 | 0.21546  0.29341 | 025083 0.33962 | 0.22168 0.30704 | 0.26341  0.34357 | 0.21514  0.24679 | 0.25786 035048 | 0.22938  0.30483
2] 240 | 028388 038306 | 0.27171 036237 | 029012 037044 | 027644 037710 | 033734 044989 | 027233 036640 | 029873 039595 | 0.29650  0.39464
& | 360 | 042694 051809 | 033223 0.42399 | 0.39653 050209 | 0.34031 0.37042 | 037586  0.46963 | 0.33109 032146 | 038931 0.51444 | 0.34903  0.44622
= | 480 | 0.41493 050264 | 0.38840 0.46372 | 043433  0.52396 | 0.39913  0.38327 | 0.41670  0.46229 | 0.39381  0.42120 | 0.42250 0.49609 | 0.39743  0.49149
120 | 214586  0.61793 | 1.53121 0.43904 | 1.66413 0.50708 | 1.58143  0.46858 | 1.89798  0.55274 | 1.61977  0.48842 | 1.83444 055700 | 1.60546  0.48417
v | 240 | 254638  0.68067 | 1.61318  0.46741 | 2.03089 0.65887 | 1.67164 0.49763 | 2.11500 0.58320 | 1.68847 0.50697 | 251138 0.75522 | 1.64500  0.49650
S| 360 | 176550  0.53490 | 1.66132  0.47865 | 1.80389  0.53299 | 1.69891 0.50064 | 237985 0.67882 | 1.72150 0.51136 | 1.70620 0.55817 | 1.67165  0.48398
S| 480 | 217964 0.62827 | 1.69388  0.48598 | 2.00656 0.57969 | 1.72179  0.50124 | 1.94696 0.55699 | 1.74146 0.51221 | 1.80766 0.54032 | 1.70703  0.49734
120 | 0.16627 0.25325 | 0.15474  0.23029 | 0.18781  0.28008 | 0.17111  0.25922 | 0.15937 0.24497 | 0.16190  0.23378 | 0.16793  0.26657 | 0.16511  0.24927
o | 240 | 026051 033577 | 024370 030621 | 0.30773 038618 | 0.26678 0.35390 | 0.24428 031286 | 0.24713 031225 | 031362 043422 | 0.26371  0.35294
= | 360 | 029333 035760 | 0.28773 035261 | 046439 0.53321 | 033412  0.43194 | 029744 035869 | 0.29218 0.35392 | 043585 049235 | 0.33468 0.43776
S| 480 | 037337 040774 | 031351 037513 | 057378  0.58436 | 0.36955 0.46839 | 0.34625 038522 | 0.31683  0.37956 | 1.98586  1.08851 | 0.38948  0.48228
120 | 0.19098  0.30437 | 0.14881  0.27377 | 0.16134  0.28342 | 0.17133  0.29870 | 0.15107 0.27437 | 0.15172 028131 | 0.16361  0.29083 | 0.15912  0.28203
| 240 | 023512 035860 | 0.20554 0.32952 | 0.21444 035037 | 022828 0.35201 | 0.20623  0.33641 | 0.21231 034511 | 023022  0.36146 | 0.21836  0.34293
= | 360 | 024907 038184 | 0.23920  0.37029 | 0.25300 0.37368 | 0.25954 0.39308 | 0.29487 0.43678 | 0.25184 0.38727 | 026974 039624 | 0.26192  0.38487
S| 480 | 030200 043253 | 0.26700  0.40080 | 0.24858  0.37617 | 0.29799  0.42537 | 0.26143  0.38211 | 0.27848  0.41487 | 0.29262  0.42855 | 0.26532  0.40095
120 | 0.14288 023062 | 0.13318  0.20154 | 0.14682 0.21629 | 0.13376  0.19685 | 0.13895  0.21308 | 0.14150  0.19708 | 0.14437 020172 | 0.13914  0.20561
v | 240 | 023615 031536 | 0.22366 0.25883 | 0.21869 0.26278 | 0.21637 026961 | 0.22638 0.29874 | 0.22829 0.26642 | 023248 0.27480 | 0.22822  0.25415
| 360 | 0.26055 033246 | 0.26233  0.30345 | 0.25073  0.28523 | 0.26360 0.30487 | 027917 0.31321 | 0.27130  0.29257 | 026818  0.32254 | 0.26280  0.31779
S| 480 | 027770 035588 | 0.25163 030342 | 027627 0.37294 | 0.25792  0.30176 | 0.24591  0.31906 | 0.25724  0.29632 | 0.25446 030710 | 0.25424  0.30541

TABLE 1T

THE AVERAGE MSE PERFORMANCE ACROSS ALL FORECASTING STEPS BY DIFFERENT NORMALIZATION METHODS FOR SERVERS IN THE LISA.(THE BOLD
VALUES INDICATE THE BEST PERFORMANCE, AND THE SECOND BEST RESULT IS UNDERLINED)

Backbones DLinear SCINet TiDE TSMixer
Methods RevIN Dish-TS FAN SAN NoSPF RevIN Dish-TS FAN SAN NoSPF RevIN Dish-TS FAN SAN NoSPF ‘ RevIN Dish-TS FAN SAN NoSPF
r10n10 0.38704 041194  0.41137 036601  0.35128 | 0.40485  0.39195 0.41143 042401  0.36274 | 0.38881  0.39115  0.40959 036008  0.34853 | 0.41855 0.45542 0.41944 037059  0.36856
ri0nl2 051575 046976  0.48591  0.47324  0.45237 | 050902  0.49472  0.48834  0.47210 0.45808 | 0.51915 0.47340 0.48867 0.47051  0.45589 | 0.58460  0.55769  0.49151 047195  0.45992
r12n13 0.19928  0.21215  0.22286  0.21088  0.19827 | 0.22502  0.22001 021898  0.22605  0.19321 | 0.19914  0.21374 022193  0.20888  0.19846 | 0.22984  0.35450 021166  0.20646  0.20770
r12nl5 031385 0.36427  0.33844 031141  0.30195 | 0.31979  0.39646 033473 031849  0.30939 | 0.34556  0.36453  0.33790  0.30188  0.30309 | 0.33100  0.35553  0.36124  0.30763  0.31808
r30n5 1.80739  1.65777  1.86729  1.69091  1.62490 | 1.86367  1.70922  1.81770 1.71416  1.78267 | 1.81249  1.67817 1.83699  1.68715  1.69280 | 2.23863 170649  1.77937 1.73706  1.65729
r31n2 0.28818  0.29172  0.45911  0.26665  0.24992 | 030212  0.33065  0.44321  0.27080  0.28539 | 0.28920  0.28483  0.45681  0.26517  0.25451 | 0.31088  0.29501  0.44782  0.27766  0.28824
r31n3 022785  0.21654  0.26195  0.23144  0.21514 | 0.24327 0.23806  0.26316  0.23429  0.23928 | 0.22665  0.22159  0.26929  0.22885  0.22359 | 0.61766  0.24043  0.25573  0.22712  0.22618
r32n5 0.24069  0.22980  0.24475  0.22414  0.21770 | 0.24486  0.24257 024339  0.22804  0.22780 | 0.24033  0.24068  0.24636  0.22395  0.22458 | 0.27029  0.24937 023978  0.22376  0.22110

4) Comparison of Cross-Server Power Consumption Time-
Series Forecasting Performance: Due to the substantial vari-
ability in resource demands during server operations, Cross-
server power prediction presents additional challenges related
to temporal distribution shifts. To assess the effectiveness of
the proposed method in such contexts, we designed a series
of cross-server prediction tasks using the LISA cluster dataset.
In these tasks, the model is trained exclusively on the data
from one server (source server) and subsequently evaluated
on the data from a different server (target server) without any
retraining. Specifically, we selected six representative servers
from the LISA cluster, resulting in 24 cross-server prediction
tasks. For each task, the model trained on the source server is
directly tested on the target server data, providing a rigorous
evaluation of the model’s ability to generalize across servers.

The cross-server power consumption forecasting perfor-
mance of two baselines, with and without NoSPF, is reported
in Table V. Empirical results show that integrating NoSPF

consistently improves performance across all tasks. In general,
with the help of NoSPF, cross-server power prediction achieves
average improvements of 16.53% in MSE and 19.94% in MAE
for DLinear, and 9.31% in MSE and 14.18% in MAE for
SCINet, compared to direct prediction. These results demon-
strate that NoSPF effectively mitigates temporal distribution
shifts and enhances the generalization ability of forecasting
models in cross-server scenarios.

5) Analysis of NoSPF: In this section, we examine the
effects of varying configurations within the proposed NoSPF
framework on the server in LISA. First, we investigate the
impact of NoSPF with the number of wavelet transform de-
composition level j. The decomposition levels were varied
across j € {2,3,4,5,6} using the DLinear, and experiments
were conducted on power consumption data from the servers
r10On10 and r31n2. The results, depicted in Fig. 4, reveal that
the model’s forecasting performance remains relatively stable
as the decomposition level increases. However, when j > 5,
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TABLE III
THE AVERAGE MSE PERFORMANCE ACROSS ALL FORECASTING STEPS BY DIFFERENT NORMALIZATION METHODS FOR SERVERS IN THE SEREN

Backbones DLinear SCINet TiDE TSMixer
Methods RevIN Dish-TS FAN SAN NoSPF RevIN Dish-TS FAN SAN NoSPF RevIN Dish-TS FAN SAN NoSPF RevIN Dish-TS FAN SAN NoSPF
Node-147 0.95237  0.91966 1.08634  0.90357  0.88482 | 0.95890  0.90730 1.16810  0.90826  0.90406 | 0.95497  0.90138 1.09878  0.90655  0.88239 1.09645  0.90285 1.08105  0.90696  0.89212
Node-166 0.43305 0.42717 043774 041793 0.41606 0.43054 0.42217 0.45255 0.41968 0.40701 0.43062 0.42459 0.44438  0.42493  0.41193 0.44230 0.45957 0.44512 043080 0.42715
Node-246 | 0.64707  0.60187 059550  0.61067 059712 | 0.62584 0.62262 0.65994 0.62400 0.59349 | 0.64420 060703 0.62126 0.61124 059834 | 061914 0.62279 059957 0.62268  0.59905
Node-256 0.91675 0.83068 0.86189  0.84556  0.80669 0.92827 0.83016 0.93943 0.84862 0.80067 091227 0.82946 0.89017  0.84281 0.80458 0.92287 0.85962 0.86879  0.85205  0.85283
Node-78 0.14975  0.20544  0.21289  0.20197  0.20005 | 0.18227  0.21886  0.22860  0.19540  0.21569 | 0.58390  0.55808  0.63485  0.55535 0.54687 | 0.60753  0.58303  0.62494  0.56632  0.58409
Node-90 0.58328 0.54622 0.60938  0.55353 0.54350 0.59032 0.56079 0.67569  0.55643 0.55136 | 0.22572 0.21440 021767  0.19882  0.20029 0.21915 0.22604 021380 022059  0.21351
Node-103 0.80384  0.75261 0.74931  0.73060  0.73564 | 0.80602  0.76196  0.83021  0.72738  0.73337 | 0.79955 0.74803  0.76676 ~ 0.73052  0.71186 | 0.76179  0.76092  0.74659  0.72807  0.72740
Node-119 0.89913 0.80011 0.81282  0.80655 0.78567 0.84641 0.80439 0.89732  0.79528 0.76374 | 0.89869 0.81968 0.84048  0.80060  0.78589 0.85652 0.79537 0.82490  0.79943 0.78142
0. 0.4
TABLE IV
PERFORMANCE COMPARISON ACROSS ALL FORECASTING STEPS FOR ————— 4
N A A
SERVERS IN LISA AND SEREN WITH DIFFERENT NON-STATIONARY MODELS 04 03
U SRR A e =¥ J— VR SIS —m X
w w
. . ¥ 0.3 ¥ 0.2
Dataset | Backbones Koopa Non-stationary transformer | DLinear + NoSPF = A = ) S U -
Metrics MSE MAE MSE MAE MSE MAE ) B — drmemem =T i
rl0n10 | 0.44486  0.40109 | 0.39286 0.37271 0.34994  0.36727 02 0.1 - redjene120
rl0n12 | 057115 041385 | 0.50630 0.40382 045339 0.40928 g e s
ri2n13 | 025870  0.23800 | 0.26259 0.27390 0.19951  0.26052 S e len-as0
LISA rl2nl5 | 033646  0.37763 | 0.35679 0.39018 0.30267  0.37655 0173 3 4 0073 3 4 3
305 175937 050599 | 1.84215 0.47109 1.62490  0.46777 # of level # of level
r31n2 033662 0.37149 | 0.32109 0.36631 0.24992 031606 (a) MSE with different level for r10n10. (b) MSE with different level for r31n2.
31n3 0.24339  0.33804 | 0.28342 0.39537 021514 0.34359
3205 0.26355  0.26013 | 0.24188 0.27027 0.21770  0.26681
Fig. 4. Comparison of forecasting performance with different level for
Node-147 | 1.07682  0.80097 | 1.02669 0.78528 088482 0.76106 76
Node-166 | 0.50640 0.51368 | 0.47143 0.46481 0.41606  0.51469 oorr.
Node-246 | 0.68077  0.65188 | 0.65644 0.60764 0.59712  0.64709
Seren | Node256 | 0.94898 078927 | 0.93614 0.72201 0.80669  0.72077
Node-78 | 0.17828  0.22293 | 0.29592 0.30269 0.20005  0.33590
Node-90 | 0.68675 052841 | 0.65387 0.52513 0.54350  0.52485 0.8 — 12 —
Node-103 | 0.96850 0.79132 | 1.01345 0.78842 073564  0.72810 = ot = s
Node-119 | 0.89750  0.76041 | 0.94108 0.78471 0.78567  0.73800 oo 10 S Nospr
- NoSPF
0.6 0.8
w
4 0
=
TABLE V 04
COMPARISON OF CROSS-SERVER POWER CONSUMPTION TIME-SERIES
FORECASTING PERFORMANCE
0.2 e —
120 10 Inpuf‘l‘eongth 300 360 Pﬂ“‘“‘”t'::,mnqvevﬂ‘"?f\::zn(eumewns\
Backbones DLinear DLinear + NoSPF SCINet SCINet + NoSPF . X - .
Metrics MSE MAE MSE MAE MSE MAE MSE MAE (a) MSE performace with different input length. (b) Efficiency comparsion of NoSPF.
o | rl0nl2 | 026357 0.29759 | 0.22852 0.22986 | 0.28789  0.29905 | 0.24386  0.23009
Z | r12n13 | 017160 026671 | 013564 0.18831 | 0.15559 022348 | 0.13411  0.19241 Fig. 5. Analysis of NoSPF.
S | ri2nl5 | 024977 034201 | 0.21944  0.28806 | 024115 030560 | 0.22913  0.29282
« | 110010 | 027673 032509 | 0.23566 0.27372 | 025319 031948 | 0.23997  0.29193
Z [ r12013 | 018017 026350 | 013714 0.19868 | 018129 027822 | 0.13937  0.19579
S | 112015 | 030108 036472 | 022277 029506 | 024952  0.33690 | 0.22671  0.29935 . . X
[ vion0 | 027618 030127 | 024049 026184 | 026344 o3uss | o2aexz oasess  lorecasting horizon H fixed at 480. The experimental results,
T | rl0nl2 | 025932 025043 | 023644 021719 | 026432 030873 | 0.25491  0.26231 : : :
S| ri2nl5 | 025926 031934 | 021363 027322 | 024615 034144 | 021906  0.28913 presented in Fig. 5(a), demonstrate that the forecasting per-
o | 110010 | 026600 033566 | 0.23365 0.27488 | 024508 031104 | 0.2324 o295  formance of NoSPF remains consistent and does not exhibit
= [ rlon12 | 025584 030978 | 0.22819 024188 | 023605 026196 | 0.23145  0.23830 ionifi . d dati he i 1 h
S| 2013 | 019745 030702 | 013798  0.20601 | 0.17177  0.26393 | 0.13611  0.20553 significant 1mprovement or degradation as the input lengt
L[ B2 | 043118 043163 | 022950 032029 | 032955 037713 | 020075 030247 changes. Additionally, NoSPF consistently outperforms four
2 | r3In3 | 0.60249 0.60331 | 0.24385  0.40294 | 042224 0.51809 | 0.24238  0.40313 . N .
Z | 3205 | 040809 049018 | 0.20280 032504 | 032797 041910 | 0.19826  0.32007 baseline normalization methods across all tested input lengths.
o | ™05 | 191509 050003 | 185589 047289 | 226667 056253 | 182432 052190  This robustness highlights the effectiveness of NoSPF in pre-
2| 3In3 | 016940 031241 | 015408 0.29662 | 0.16896 028750 | 0.15494  0.28366 .. . . . .
2| 3205 | 013756 0.22936 | 0.13147 021735 | 0.14791 021310 | 0.14053  0.21859 dicting power consumption for non-stationary time series under
.| 13005 | 216966 0.57025 | 194810 047074 | 237609 0.53430 | 1.82283  0.48149 varying input configurations.
2| 32 | 020027 025937 | 0.15725 0.22423 | 0.16756 0.24936 | 0.16112  0.23800 : .
C | 3205 | 0.17621  0.23807 | 0.13166  0.19420 | 0.13509 0.20692 | 0.13394  0.20617 To evaluate the computatlonal Complex1ty of the proposed
30n5 | 215155  0.55615 | 192902  0.49053 | 220447 054947 | 2.04111  0.51051 :
2] B2 | 016799 025238 | 015960  0.22851 | 0.17732  0.25628 | 0.16998  0.25586 NoSPF, we conducted both temporal and spatial analyses of a
a . . .
2 | 3In3 | 0.17881 031675 | 0.14826  0.27479 | 0.15451 028125 | 0.13999  0.26521 power forecasting task, using DLinear as the backbone model

and data from the r31n2. The input sequence length L was set
to 360, and the output sequence length H was set to 720. The

the forecasting error starts to increase, indicating that excessive
levels of wavelet decomposition may lead to over-processing
of the input time-series data. This over-processing could result
in the loss of some important long-term features, ultimately
negatively impacting the forecasting accuracy.

Furthermore, we analyzed the performance of NoSPF un-
der varying input sequence lengths L using the r10nl0 server
dataset. The L were set to {120, 180, 240, 300, 360}, with the

results in Fig. 5(b) demonstrate that NoSPF significantly out-
performs methods like SAN and FAN, achieving 19.12% lower
MSE and 18.16% lower MAE, while maintaining a competitive
computational footprint. This performance advantage is primar-
ily attributed to the DWT used in NoSPF for decomposing
power consumption time series, which effectively isolates non-
stationary components. Although DWT introduces additional
computational overhead due to its hierarchical convolution and
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downsampling structure, with a time complexity of O(NlogN),
where NV is the length of the input time series, this cost is justi-
fied by the substantial gains in prediction accuracy. Moreover,
despite the added processing steps, NoSPF maintains competi-
tive inference times, comparable to methods like FAN and SAN.
This efficient runtime, combined with the significant forecast-
ing accuracy improvements, highlights the practical advantages
of NoSPF for real-world deployment, where both precision and
computational efficiency are critical.

In addition, we present prediction showcase on two types
of servers within the LISA cluster, highlighting the alignment
between NoSPF and the ground-truth, as shown in Fig. 6. The
figure demonstrates that the predictions generated by NoSPF
closely to the actual power consumption and effectively capture
its short-term fluctuations. Notably, the divergence between
forecast and observed values did not accumulate significantly
over the forecast horizon, which underscores the stability of the
NoSPF. These qualitative results serve as an intuitive comple-
ment to extensive quantitative experiments, further validating
the robustness of NoSPF in forecasting non-stationary power
consumption.

C. Analysis of Error Sources of NoSPF

To provide a more granular analysis of the primary error
sources within the NoSPF, we examined the training losses
associated with the prediction of its constituent stationary and
non-stationary components. For this analysis, the DLinear was
employed as the backbone for stationary component forecast-
ing. Fig. 7 illustrates the convergence of the training losses for
both the stationary and non-stationary component predictions
on the r10n10 and r10n12.

A key observation from Fig. 7 is the significant disparity
in the converged training loss magnitudes between the two
component predictors. Specifically, the prediction loss for the
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stationary component, modeled by the DLinear backbone, is
substantially higher than that of the non-stationary component,
which is predicted by a lightweight MLP following DWT de-
composition. This disparity suggests that NoSPF’s strategy for
handling non-stationarity, namely, the dedicated MLP applied
to DWT detail coefficients, is highly effective in capturing and
minimizing errors associated with short-term, high-frequency
variations. Conversely, the considerably larger prediction loss
for the stationary component, which represents longer-term
power consumption trends, indicates that this component is the
predominant contributor to the overall prediction error within
the current NoSPF configuration.

Moreover, according to the properties of the DWT, when ap-
plying DWT-based time series decomposition, higher decompo-
sition levels j generate more high-frequency detail coefficients,
thereby increasing the complexity and variability of the non-
stationary components fed into gy. This, in principle, raises
the difficulty of forecasting the non-stationary component. If
the final forecast accuracy were highly sensitive to errors in
the non-stationary prediction, we would expect to observe a
marked deterioration in performance as decomposition depth
increases. However, as shown in Fig. 4, increasing the number
of 7 does not cause a significant degradation in overall fore-
casting accuracy. This result indicates that although the two
optimization levels are coupled, their dependency is relatively
moderate: errors in non-stationary prediction are effectively
contained and do not substantially propagate to the final fore-
cast. The non-stationary predictor primarily serves to capture
transient fluctuations and mitigate high-frequency variations,
thereby stabilizing the overall forecasting process. In this sense,
it acts as a corrective component that enhances robustness,
while the stationary predictor remains the principal determinant
of long-term forecasting accuracy.

In summary, while NoSPF demonstrates a clear advantage
in isolating and accurately modeling the challenging non-
stationary components, the relatively higher error associated
with stationary component prediction highlights a potential area
for further model enhancement. Future improvements could
potentially be achieved by exploring more sophisticated back-
bone architectures or refined strategies for forecasting these
underlying stationary patterns.

V. RELATED WORK

A. Time-Series Power Consumption Forecasting Models

Accurate server power forecasting is vital for energy-aware
optimization and long-term planning in data centers. Extensive
research has explored this domain, as summarized in surveys
such as [31], [32]. Early works primarily utilized statistical and
regression-based models, but recent advances have focused on
learning-based time-series models to capture temporal depen-
dencies more effectively.

For example, Wu et al. [33] developed a power prediction
model based on the Elman neural network, addressing the lim-
itations of traditional regression models with fixed forms and
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limited generalization. Lin et al. [34] introduced an LSTM-
based model for server power forecasting, incorporating fine-
grained CPU, memory, and disk performance analysis under
varying task loads. Similarly, Yi et al. [35] trained an LSTM
model using server performance counter and task arrival tra-
jectories to enhance power prediction accuracy. Motaki et al.
[36] proposed a power forecasting model that treats work-
load and power consumption as random variables, leveraging
non-parametric methods to capture their statistical dependen-
cies. Zheng et al. [37] improved GRU-based power forecast-
ing by incorporating selective state updates and adaptive gra-
dient optimization, effectively mitigating long-term memory
decay. Shen et al. [38] presented a two-stage attention LSTM
model that transforms time-series data into tensors for captur-
ing complex temporal patterns, combining tensor decomposi-
tion, LSTM, and attention mechanisms to predict non-linear
power consumption. Zhou et al. [39] proposed a BILSTM-based
model optimized with an improved resonance optimization al-
gorithm (SLCOA) for data center energy forecasting. Jing et al.
[40] introduced a hybrid CNN-BiLSTM model with attention
mechanisms for power forecasting in heterogeneous computing
servers, demonstrating improved prediction performance. Long
et al. [41] proposed Li-MSA, a few-shot learning approach for
server time-series power consumption forecasting. The method
integrates a linear interpolation module for data augmentation
and smoothing with a multi-head sparse temporal pattern at-
tention mechanism, thereby enhancing the generalization ca-
pability of server power consumption forecasts on small-scale
datasets.

Although these models achieve promising results in specific
server power forecasting scenarios, they commonly rely on the
assumption of stable and periodic consumption patterns. How-
ever, they lack explicit mechanisms to address abrupt fluctua-
tions induced by dynamic workload variations during server op-
eration. Consequently, their long-term forecasting performance
may degrade in the presence of temporal distribution shifts,
limiting their robustness and generalization in real-world data
center environments.

B. Non-Stationary Time-Series Forecasting Methods

To address the challenges posed by temporal distribution
shifts in time-series forecasting models, statistical feature nor-
malization methods have gained significant attention due to
their simplicity and effectiveness. Among these, Passalis et al.
[22] introduced the deep adaptive input normalization (DAIN)
method, which adaptively normalizes input data based on
the distribution of the time-series measurements, enhancing
the model’s ability to handle non-stationary data. Kim et al.
[19] proposed the reversible instance normalization method
(RevIN), which uses learnable affine transformations for sym-
metric normalization and denormalization of time-series data,
significantly improving long-term forecasting performance. Du
et al. [18] approached temporal changes in time-series statistical
features from a distribution perspective, introducing an adaptive

RNN model that reduces distribution mismatch through time-
series distribution matching, thereby enhancing predictive accu-
racy under temporal distribution shifts. Fan et al. [20] developed
Dish-TS, which maps the input sequence to learnable distri-
bution coefficients, effectively addressing distributional shifts
between input and output spaces in time-series forecasting. Ye
etal. [27] proposed the frequency adaptive normalization (FAN)
method, which utilizes Fourier transforms to capture dynamic
trends and seasonal patterns, modeling frequency differences
between input and output sequences to improve forecasting
accuracy. Liu et al. [21] introduced a slice-level adaptive nor-
malization method that handles non-stationarity in local time
slices and independently models the evolution of time-series
statistical features, offering flexibility in managing distribution
differences between input and forecast sequences. In addition to
these instance normalization methods, Liu et al. [28] introduced
the Non-stationary Transformer, which incorporates series sta-
bilization and destabilization attention modules to effectively
remove and recover non-stationary information. Liu et al. [29]
proposed a time-series forecasting method based on Koopman
theory, which separates time-varying and time-invariant compo-
nents, using Fourier filters and Koopman operators to capture
underlying dynamics while addressing the locality of time-
varying dynamics through context-aware operators.

Although the aforementioned methods were not originally
designed for server power consumption forecasting, the core
issue they address, namely temporal distribution shifts, is highly
relevant to the abrupt fluctuations commonly observed in data
center server power consumption. Analyzing the principles,
strengths, and limitations of these methods helps to understand
the challenges that may arise when applying them directly to
power consumption prediction. While reversible instance nor-
malization methods have been shown to be effective in mit-
igating temporal distribution shifts, they often rely on global
statistical features of the input time series. This reliance limits
their ability to handle shifts caused by abrupt, localized changes
in statistical properties. Such sudden variations frequently oc-
cur in server power consumption patterns in real-world data
centers, posing a significant challenge to the applicability of
these methods in such scenarios. These observations naturally
motivate the design of NoSPF, which explicitly models non-
stationary components to improve robustness under real-world
Server power scenarios.

VI. CONCLUSION AND FUTURE WORK

Accurate long-term forecasting of server power consumption
in data centers is essential for improving energy efficiency.
However, the non-stationary nature of power consumption,
driven by dynamic resource demands, complicates forecasting
tasks. Existing methods that rely on global statistical normal-
ization struggle with localized variations, reducing forecasting
accuracy. This paper proposes a framework to implement non-
stationary long-term power consumption forecasting, named
NoSPF. In general, by separating local non-stationary compo-
nents and simplifying the learning of long-term patterns, our
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framework enhances the forecasting of future power consump-
tion. A lightweight but effective MLP module is employed to
predict non-stationary components, thus improving the ability
of NoSPF to approximate the real power data distribution by
integrating the predicted non-stationary components with the
stationary forecasting. Experimental results on real-world data
show that our method outperforms existing approaches in ac-
curacy, offering a practical solution for energy management in
real-world cloud data centers.

In future work, we plan to develop a long-term energy con-
sumption optimization strategy for cloud data center servers,
leveraging accurate power consumption time-series forecasts
from NoSPF. This will enable more efficient dynamic energy
management and energy-saving optimization across multiple
time scales in cloud data center operations.
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