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Abstract—Nowadays, machine learning (ML)-based power pre-
diction models for servers have shown remarkable performance,
leveraging large volumes of labeled data for training. However,
collecting extensive labeled power data from servers in cloud data
centers incurs substantial costs. Additionally, varying resource
demands across different workloads (e.g., CPU-intensive, memory-
intensive, and I/O-intensive) lead to significant differences in power
consumption behaviors, known as domain shift. Consequently,
power data collected from one type of workload cannot effectively
train power prediction models for other workloads, limiting the
exploration of the collected power data. To tackle these challenges,
we propose TGCP, a cross-workload power prediction method
based on multi-source transfer Gaussian process regression. TGCP
transfers knowledge from abundant power data across multiple
source workloads to a target workload with limited power data.
Furthermore, Continuous normalizing flows adjust the posterior
prediction distribution of Gaussian process, making it locally non-
Gaussian, enhancing TGCP’s ability to handle real-world power
data distribution. This method enhances prediction accuracy for
the target workload while reducing the expense of acquiring power
data for real cloud data centers. Experimental results on a realistic
power consumption dataset demonstrate that TGCP surpasses four
traditional ML methods and three transfer learning methods in
cross-workload power prediction.

Index Terms—Cloud computing, large data center, server power
prediction, transfer Gaussian process regression.
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I. INTRODUCTION

A S THE size and number of cloud data centers (CDCs)
continue to expand, their energy consumption is increas-

ing at an alarming rate. According to Data Centers Magazine,
CDCs currently account for 3% of global energy consumption,
a figure projected to rise to 4% by 2025 [1]. This high energy
consumption not only leads to elevated operational costs but
also has significant negative environmental impacts, making
energy efficiency in CDCs a critical issue. Servers, the primary
computing infrastructure within CDCs, exhibit a utilization rate
between 10% and 20%, yet their energy consumption constitutes
42% of a CDC’s total energy consumption [2], [3], [4]. This
discrepancy indicates substantial potential for energy savings
within cloud data centers, underscoring the importance of op-
timizing server resource utilization to achieve these savings.
Consequently, recent research has focused on optimizing en-
ergy consumption through improved server resource utilization
strategies, such as resource scheduling [5], [6], [7] and virtual
machine consolidation [8], [9].

To pinpoint key areas for enhancing resource utilization and
thereby optimize server energy consumption, power prediction
models have received considerable attention [10], [11]. These
models aim to establish a correlation between resource uti-
lization and energy consumption. Currently, server power con-
sumption prediction models primarily rely on various regression
techniques [12]. Notably, several power prediction models have
been developed by harnessing the powerful nonlinear fitting
capabilities of machine learning, significantly improving predic-
tion accuracy [13], [14]. However, these models typically depend
on extensive amounts of independent and identically distributed
power consumption data from servers running diverse workloads
to achieve adequate training. This reliance presents two primary
challenges for the current ML-based power prediction models
when deployed on real servers:

1) Server power prediction with limited data from real work-
load runs: Traditional ML-based power prediction models rely
on extensive power consumption data for training to achieve
superior performance. However, in real CDCs, collecting power
consumption data from actual workloads is often restricted by
privacy constraints and logistical challenges, making the process
both expensive and difficult. This limitation not only hampers
the ability to gather sufficient data but also affects the diversity of
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Fig. 1. Top 10 related features of different workloads for power consumption. These three sub-figures show the resource consumption features during the execution
of each type of workload on the server. It can be observed that, while there are differences in the resource consumption features of different types of workloads,
similar power consumption patterns also exist. This observation motivates us to use transfer learning for cross-workload power prediction.

the data collected, which is crucial for training robust models.
As a result, achieving accurate server power prediction with
only a limited amount of power consumption data remains a
significant challenge. Moreover, the high costs associated with
data collection further exacerbate this issue, increasing the need
for more effective exploitation of the already collected power
consumption data.

2) Cross-workload power prediction: The differences in the
requirements for server hardware resources while running dif-
ferent types of workloads lead to variations in the power con-
sumption behavior of the servers, known as domain shift, as
shown in Fig. 1. However, traditional ML models, which are
usually trained on specific types of workloads, may struggle
to predict power consumption accurately when applied to new,
unseen workloads, making cross-workload power prediction a
significant challenge. For example, the models trained on the
power data from CPU-intensive workloads and subsequently
failed to make effective prediction when the models are being
applied to memory-intensive or I/O-intensive workloads, which
greatly limited the exploitation of the useful knowledge embed-
ded in collected power consumption data.

To address these challenges, we propose a cross-workload
power prediction model based on multi-source transfer GPR,
which is dedicated to transferring useful knowledge from the
substantial quantity of power data possessed by the source
workloads to improve the performance of power prediction for
the target workload while reducing the cost of data collection
required for server power prediction. The primary contributions
are stated as follows:
� We systematically analyze the power consumption fea-

tures and behavior of servers running different types of
workloads. This analysis reveals why existing ML-based
power prediction models fail to achieve cross-workload
power prediction and underscores the necessity of adopting
transfer learning for this purpose.

� The multi-source transfer GPR method is employed to
build a cross-workload power prediction model, called
TGCP, allowing the exploitation of the usable knowledge
from the substantial amount of power data held by multiple
source workloads to enhance the power prediction perfor-
mance for the target workload.

� Continuous Normalizing Flows (CNF) is adopted to ad-
just the posterior prediction distribution of the Gaussian
process so that the transfer GPR posterior is locally non-
Gaussian, further improving the performance of TGCP to
cope with real power data.

� Extensive experiments are conducted on realistic power
consumption datasets, and the results indicate that TGCP
provides better performance of cross-workload power pre-
diction than four traditional ML methods and three meth-
ods based on transfer learning.

The remaining parts of this paper are organized as follows:
Section II provides the motivation for cross-workload power
prediction. Section III details the proposed method. Section IV
elaborates on the experimental results. Section V discusses the
related work. Finally, Section VI presents the conclusion and
future work.

II. MOTIVATION

A. The Performance of Traditional ML-Based Power
Prediction Models Trained With Limited Power Data

Most current power prediction models that rely on regres-
sion are trained on substantial quantities of labeled data to
achieve superior performance in predicting power consumption.
When there is insufficient power data available for specific
types of workloads (e.g., memory-intensive and I/O-intensive
workloads), it becomes challenging for power prediction models
to be adequately trained, thus limiting their effectiveness. Table I
presents the implementation of four widely used power predic-
tion models: Linear Regression (LR), Multi-Layer Perceptron
(MLP), Back Propagation Neural Network (BPNN), and Gaus-
sian Process Regression (GPR). These models are trained on two
workloads, specifically Cache (memory-intensive) and Random
(I/O-intensive), each with a limited dataset of only 50 power data
samples (Target only). The results demonstrate that the power
prediction performance, when trained on such a limited amount
of power data, remains unsatisfactory, indicating overfitting due
to insufficient training data (See Section IV for experimental
setup details).

How can we improve power prediction performance for
servers with limited data from real workload runs? A feasible
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TABLE I
THE PERFORMANCE OF TRADITIONAL ML METHODS TRAINED WITH LIMITED

POWER DATA AND CROSS-WORKLOAD POWER PREDICTION USING THREE

SOURCE WORKLOADS

approach is to expand the training dataset of power data for the
specific workload, but this incurs high data acquisition costs
in real CDCs. In fact, as shown in Fig. 1, despite the differ-
ences in hardware resource requirements for different types of
workloads, there are also similarities in the power consumption
patterns of servers during these operations. These similarities
suggest that there is potential for transferring knowledge be-
tween different types of workloads to improve power prediction
performance. Therefore, we propose a straightforward intuition:
leveraging the large amounts of power data collected from
servers running other types of workloads (referred to as source
workloads) to improve power prediction for workloads with
limited power data (referred to as target workloads), which we
define as cross-workload power prediction for servers in this
paper.

B. The Performance of Traditional ML for Cross-Workload
Power Prediction

To validate our intuition, we construct cross-workload power
prediction tasks by using Cache and Random as the target
workloads and introducing three CPU-intensive workloads as
source workloads (Target + 3 Source). Then, a large amount
of power consumption data from multiple source workloads
and a small amount of power consumption data from the target
workloads are merged to train and evaluate four power con-
sumption prediction models developed using traditional ML.
The experimental results are also shown in Table I.

Compared to the performance of power prediction models
trained solely on limited power data of the target workload, tra-
ditional ML methods fail to leverage the useful knowledge from
the power data of source workloads to enhance the prediction
performance for the target workload. This results in negative
transfer, further deteriorating the power prediction performance
for the target workload. Clearly, such adverse outcomes are
undesirable. In the following subsection, we will analyze the
power performance of servers running different types of work-
loads to understand why traditional ML methods face significant
challenges in cross-workload power prediction.

C. Heterogeneous Power Performance Results From
Differences in the Types of Workloads Running on the Servers

We analyze the features of resource requirements and the
distributions of power data for different types of workloads.
This analysis elucidates why traditional ML methods perform
poorly in cross-workload power prediction and explains why
transfer learning is leveraged to achieve cross-workload power
prediction.

First, we employ XGBoost [15] to highlight the importance of
various features for server power consumption. Fig. 1 displays
the 10 most relevant features for power consumption when
the server executes CPU-intensive, I/O-intensive, and memory-
intensive workloads. Significant differences in resource require-
ments are evident when executing different types of workloads,
primarily reflected in the varying impacts of different server
resources on power consumption. Despite these differences, we
also observe similarities in server resource requirements across
different workloads, which we refer to as domain shift.

Traditional ML methods achieve good prediction perfor-
mance only when both the training and test sets are from the same
distribution. Consequently, they fail to deliver satisfactory per-
formance in cross-workload power prediction. This is why we
employ multi-source transfer GPR, a transfer learning method,
to achieve cross-workload power prediction in this paper.

Additionally, we analyze the probability density functions
(PDF) of power consumption for various workloads running
on the server, a method commonly used to profile the intensity
of continuous random variables [16]. The power consumption
probability distributions for different workloads, fitted with
Gaussian kernel density estimation (GKDE), are shown in Fig. 2.
The noticeable differences in power distributions among work-
loads explain the poor performance of traditional ML methods
in cross-workload power prediction.

Furthermore, Fig. 2 indicates that the power consumption
distribution for different workloads on real servers does not
follow a normal distribution. However, multi-source transfer
GPR, which relies on Gaussian processes, assumes a normal
distribution to facilitate the closed-form computation of the pos-
terior probability function. This assumption limits the flexibility
of multi-source transfer GPR in capturing the complex distri-
butions of real-world data. Therefore, we adjust the Gaussian
process posterior prediction distribution using a conditional nor-
malizing flow (CNF) to make it locally non-Gaussian, thereby
improving its ability to handle real power data distributions.

III. TGCP : MULTI-SOURCE TRANSFER GPR FOR

CROSS-WORKLOAD POWER PREDICTION

A. Preliminary Knowledge

In this subsection, we provide some preliminary knowledge
to facilitate the understanding of our proposed method, TGCP.

1) Gaussian Process Regression: Gaussian process regres-
sion (GPR) is a regression method that is predicated upon
the Gaussian process (GP), a stochastic process that entails a
random variables set. The multivariate Gaussian distribution
characterizes the joint distribution of any finite subset of these
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Fig. 2. PDFs of different workloads running in the server.

random variables.

p(G|x) = N (G|μ, κ), (1)

where G = {g(x1), g(x2), . . ., g(xN )} denotes the mean func-
tion of the GP, which is often initialized to 0. κ(x, x′) represents
the kernel function employed to evaluate the similarity between
x and x′. An effective kernel function has to be positive semi-
definite (PSD) according to Mercer’s theorem. The mean and
kernel functions can determine a GP, so that for any process g(),
which follows the GP denoted by

g(x) ∼ GP(μ(x), κ(x, x′)). (2)

As a nonparametric Bayesian inference method, GP defines
a prior for g(), which in turn allows direct inference of the
distribution, rather than inferring the parametric distribution.
Consider a regression problem is denoted as

yi = g(xi) + γi, i ∈ {1, 2, 3, . . . , N}, (3)

where γi ∼ N (0, σ2
i Ii) is the noise variable. Suppose that g()

with training data {x,y} and testing data {x∗,y∗}, and thus the
joint distribution of y and y∗ is expressed as[

y
y∗

]
∼ N

(
0,

[
κ(x,x) + σ2

nI κ(x,x∗)
κ(x∗,x) κ(x∗,x∗)

])
, (4)

where I represents the identity matrix. Furthermore, the predic-
tive distribution of the g() is denoted as follow

p(y∗|x∗,x,y) ∼ N (μ∗, κ∗), (5)

where

μ∗ = κ(x∗,x)(κ(x,x) + σ2I)−1y, (6)

κ∗ = κ(x∗,x∗) + σ2I− κ(x∗, x)(κ(x,x) + σ2I)−1κ(x,x∗).
(7)

2) Multi-Source Transfer GPR: The multi-source transfer
GPR has gained significant attention in recent years as an impor-
tant yet relatively rare branch of transfer learning for regression
problems. This method greatly enhances prediction performance
by concurrently capturing useful knowledge from several dif-
ferent source domains, thereby effectively dealing with unseen
data from the target domain. Generally, the multi-source transfer
GPR establishes a unified Gaussian distribution across a set ofN
source domains S = {S1, S2, . . . , SN} and a target domain T .

The effective transfer kernel is then formulated to implement rel-
evance evaluation among the source domains and also between
S and T , thereby realizing that usable knowledge is learned
from the source domains to augment the predictive performance
of the model for unseen data from T .

In [17], Wei et al. provided the definition of the transfer kernel
systematically with the basic principle that it can explicitly
capture the relevance of the domain, allowing the transfer GPR
to adaptively regulate the transfer intensity of knowledge. This
distinguishes the transfer kernel from the standard GPR kernel,
which handles all instance pairs equally. In other words, the
lesser the difference between the source and target domains,
the greater its transferability of knowledge. Conversely, the
greater the difference between the source and target domains,
the lower the transferability of knowledge. In [18], Wei et al.
developed a multi-source transfer kernel kms() and provide
detailed theoretical proof that this kernel is PSD, shown in the
following equation

κms(x, x
′) =

⎧⎨
⎩

λ(Di,Dj)κ(Di,Dj)(x, x
′), x ∈ Di&x′ ∈ Dj ,

Di,Dj ,∈ D, i �= j,
κ(Di,Dj)(x, x

′), x&x′ ∈ Di,Di ∈ D.

(8)

where D represents a domain set that contain S and T . And
λ(Di,Dj) ∈ [−1, 1] denotes a learnable parameter to regulate the
degree for knowledge transfer.

3) Continuous Normalizing Flows: Normalizing flows (NF)
transform an arbitrary data distribution into a specific distribu-
tion, such as a Gaussian distribution, by constructing a sequence
of reversible transformations y = fN ◦ · · · ◦ f1(z). NF is gain-
ing popularity in generative models due to their flexibility and
the convenience of being able to optimize training directly using
negative log-likelihood (NLL). The potential variable z with a
specifically known prior p(z) can be mapped by the change
of variable theorem to y in some observation space with an
unknown distribution, which is defined as

p(y) = p(z)

∣∣∣∣det ∂z∂y
∣∣∣∣ = p(z)

∣∣∣∣det ∂f(z)∂y

∣∣∣∣ , (9)

where z = f−1
1 ◦ · · · ◦ f−1

N (y) is a result of the invertible map-
ping. Furthermore, the likelihood function for y is denoted as
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Fig. 3. The workflow of TGCP.

log p(y) = log p(z)−
N∑
i=1

log

∣∣∣∣det ∂fi
∂zi−1

∣∣∣∣. (10)

Finding such an invertible transformation y = fN ◦ · · · ◦
f1(z) that allows the Jacobian matrix det ∂f(z)

∂y to be computed
efficiently while maintaining the expressiveness of the trans-
formation poses a major challenge. CNF [19] can effectively
address this challenge by replacing a series of discrete functions
y = fN ◦ · · · ◦ f1(z) with continuous and time-independent
transformations. Furthermore, a function uβ(z(t), t) =

∂z(t)
∂t

with a parameter β is leverage to model the dynamics of z(t).
And assuming a known a priori initial state z := z(t0), the
difference equation is used to find a strategy y := z(t1). Thus,
the transformation function is expressed as

y = fβ(z) = z+

∫ t1

t0

uβ(z(t), t)dt. (11)

Consequently, the inverse transformation is denoted as

f−1
β (y) = y −

∫ t1

t0

uβ(z(t), t)dt. (12)

Then, the log-likelihood function of y is rewritten as

log p(y) = log p(z)−
∫ t1

t0

Tr

(
∂uβ(t)

∂z(t)

)
dt, (13)

where f−1
β (y) = z.

B. Overview of TGCP

To achieve cross-workload power prediction, we build TGCP
based on a multi-source transfer GPR in this paper. To acquire
a power prediction model that performs excellently on unseen
power data from the target workload, TGCP employs a sub-
stantial quantity of power consumption data from N source
workloads, which we denote as S = {S1, S2, . . ., SN}, and a
smaller amount of data from the target workload, which we
denote as T .

The workflow of TGCP is shown in Fig. 3. First, the source
workload power features XS and target workload power fea-
tures XT are passed through the feature extractor h() to create
their respective latent embeddings. These embeddings are then
modeled using transfer GPR to capture the distribution of the
latent variables z. Then, TGCP applies an ordinary differential
equation (ODE)-based invertible transformation, denoted as f(),
to the latent variables z sampled from the posterior distribution
of transfer GPR. This transformation is carried out through a
series of invertible steps, each step of the transformation maps
the components of the latent variables while being conditioned
on the output of h(). Furthermore, the invertibility of the CNF
guarantees that this transformation can be reversed, ensuring
that the exact likelihood of the real power data can be computed.
This is achieved using the change of variables theorem, shown
in (9), in combination with the Jacobian of the transformation,
enabling efficient density estimation as formulated in (13). By
solving the ODE, the CNF generates a transformed distribution
z(t) at time t that approximates the complex distributions of
the real power data. As a result, TGCP can adjust the posterior
output z, enabling it to model the complex distributions that real
power data y = [yS ;yT ] belong to.

C. Learning of the TGCP

In this section, we introduce the training procedure of TGCP,
in which the main objective is to exploit the knowledge available
from S to improve the prediction performance of the model
coping with unseen power data of T . As a transfer GPR, TGCP
is consistent with the common GPR training optimization ob-
jective, which is to optimize the conditional probability distri-
bution p(yT |XT ,XS ,yS). For subsequent adjustment of the
power data distribution, we consider the feature extractor h()
with parameter φ for feature embedding from the multi-source
workloads feature XS and the target workload feature XT .
Furthermore, for the purpose of efficient knowledge transfer,
we embrace the transfer kernel kms() proposed in [18] for
implementation of TGCP, whose input is the output of the
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extractor h(). Then, the transfer kernel of TGCP is represented
as kms(hφ(·), hφ(·)). The Gram matrix K obtained from the
observation of kms() on XS and XT can be expressed as

K =

⎡
⎢⎢⎣

KS1,S1
. . . λ(S1,T )KS1,T

λ(S2,S1)KS2,S1
. . . λ(S2,T )KS2,T

. . . . . . . . .
λ(T ,S1)KST ,S1

. . . KT ,T

⎤
⎥⎥⎦ . (14)

For easy comprehension, the Gram matrix K is denoted as the
block form

K =

[
K̂S,S K̂T ,S
K̂S,T K̂T ,T

]
, (15)

where K̂S,S and K̂T ,T denote the block matrix for the source
workloads and target workload, respectively. And K̂S,T = K̂T ,S
is the block matrix that combines the source workloads and the
target workload. Thus, p(yT |XT ,XS ,yS) can be expressed as

p(yT |XT ,XS ,yS) = N (μ∗,K∗), (16)

where

μ∗ = K̂T ,S
(
K̂S,S + σ2

S,SIS,S
)−1

yS , (17)

K∗ =
(
K̂T ,T + σ2

T ,T IT ,T

)
− K̂T ,S

(
K̂S,S + σ2

S,SIS,S
)−1

K̂S,T .

(18)

Moreover, the log-likelihood of TGCP can be represented by

log p(yT |XT ,XS ,yS ;φ,Θ)

= −1

2
log |K∗| −

1

2
(yT − μ∗)

TK−1
∗ (yT − μ∗)−

NT
2

log(2π),

(19)

where φ denotes the parameters of the feature extractor h(), Θ
denotes all learnable parameters in the transfer GPR, and NT
represents the amount of power consumption data involved in
training for the target workload.

To enable the adjustment of the power data distribution using
the CNF, the log-likelihood of the TGCP needs to be reformu-
lated in combination with (13), reformulated as

log p(zT |XT ,XS , zS ;φ,Θ, β)

= log p(zT |XT ,XS , zS ;φ,Θ)−
∫ t1

t0

Tr

(
∂μβ

∂z(t)

)
dt, (20)

where f−1(yS) = zS and f−1(yT ) = zT . The flow transforma-
tion is applied independently to the marginal elements of the
power values y = [yS ;yT ] used for training from the multi-
source workloads yS and target workloads yT , that is, f−1(y) =
[f−1(y1), f

−1(y2), . . ., f
−1(yd), . . ., f

−1(yD)]T , where D rep-
resents the aggregate the amount of training data coming from
both XS and XT . And the parameters of f−1() are shared over
all y.

Meanwhile, f−1() is conditional on the information encoded
by the h(), which enables the context information h(xd) related
to the corresponding input value xd to be considered, where

xd ∈ [XS ;XT ].

yd = fβ(zd, hφ(xd)) = zd +

∫ t1

t0

μβ(zd(t), t, hφ(xd))dt.

(21)

The inverse transformation can be easily calculated as follow

f−1
β (yd) = yd −

∫ t1

t0

μ(zd(t), t, hφ(xd))dt. (22)

Finally, the log-likelihood of TGCP can be rewritten by

log p(yT |XT ,XS ,yS ;φ,Θ, β)

= log p(zT |XT ,XS , zS ;φ,Θ)−
D∑

d=1

∫ t1

t0

Tr

(
∂μβ

∂zd(t)

)
dt.

(23)

To efficiently implement the above transformations, we em-
ploy in this paper the CNF model implemented by Ffjord [19],
which performs better on low-dimensional data. Furthermore,
since the CNF is applied independently to each component of
the output of TGCP and shared among them, thus, we do not
have any problem with the computation of the Jacobian matrix,
which corresponds to the first-order derivative of the output [20].

D. Inference of the TGCP

The inference process of TGCP incorporating CNF is
also similar to the common GPR, as we presented in Sec-
tion II. For unseen data {X∗

T ,y
∗
T } of the target workload,

the posterior prediction distribution can be expressed as
p(y∗

T |X∗
T ,XT ,yT ,XS ,yS ;φ,Θ, β). Since the transformation

given by Eq. (21) is independent of the output y. Therefore, we
are still able to estimate the posterior in closed form, denoted as

log p(y∗
T |X∗

T ,XT ,yT ,XS ,yS ;φ,Θ, β)

= log p(z∗T |X∗
T ,XT , zT ,XS , zS ;φ,Θ)

−
N ∗

T∑
n=1

∫ t1

t0

Tr

(
∂μβ

∂zn(t)

)
dt, (24)

where z∗T = f−1
β (y∗

T , hφ(X
∗
T )), zT = f−1

β (yT , hφ(XT )), and
zS = f−1

β (yS , hφ(XS)) are the inverted transformations for test-
ing and training data from S and T , respectively. N ∗

T denotes
the amount of test data from T .

E. Theoretical Analysis

1) Generalization Error Bound Analysis: To analyze how to
ensure transfer performance in the presence of distributional
shift among different workload, we quantify the relatedness
between the source and target workloads by λ(Di,Dj), and derive
the generalized error bounds for TGCP.

Theorem 1 (Generalization error bound of TGCP ): Based
on Proposition 1 in [17] for bound of posterior variance, we
can define the error bound for TGCP on the X∗

T , the upper
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TABLE II
DESCRIPTIONS OF THE WORKLOADS FOR POWER CONSUMPTION DATA COLLECTION

generalization error bound is formulated as:

εt ≤
∫

δ2(1,max
i

(
ε2Si

)
, σ2

T )p(xt)dxt, (25)

where ε2Si
= λ−2

(Si,T )(σ
2
Si

+ η)− η. And η represents the maxi-

mum eigenvalue of K̂S,S .σSi
andσT represent the noise variance

in source and target workloads, respectively. From Therorem 1,
we can observe that the error bound of TGCP is directly related
to λ(Si,T ), while the source-source relatedness, represented by

the eigenvalues of K̂S,S , only affects the performance implicitly.
This indicates that the source-target relatedness has a greater im-
pact on transfer performance than the source-source relatedness.
Moreover, the bound shows that it is a monotonically decreas-
ing function of λ(Si,T ). In general, the higher the relatedness
between the Si and T , the better the transfer performance of
TGCP. The proof of Theorem 1 is provided in the appendix.

2) Complexity Analysis: The computational complexity of
TGCP mainly comes from two parts: feature embedding using
h() for reversible transformations with CNF, and posterior infer-
ence based on transfer GPR. Since h() is simple and the number
of transformation steps of CNF is limited, the complexity of
these parts is negligible. Suppose that the data from N source
workloads is NS . Therefore, the main complexity of TGCP is
dominated by the posterior inference, which isO((NS +NT )

3).
Additionally, since the scale of NT is sparse, the complexity can
be further reduced to O((NS)

3). The inference complexity of
trained TGCP is O((N ∗

T )
2), which is very short. It is important

to emphasize that, compared to the high cost of power data
collection in real data centers, TGCP leverages collected data to
improve prediction performance for unseen workloads, making
the training process both tractable and cost-effective.

IV. EXPERIMENTAL EVALUATIONS

A. Experimental Setup

The proposed TGCP is implemented on a server with i5-
12400 CPU, 32 G RAM, NVIDIA RTX 3060Ti GPU for training
and evaluation.

1) Description of Power Consumption Dataset: To derive the
power consumption data during the implementation of different
types of workloads, we ran three types of workloads supported

TABLE III
CONFIGURATION OF THE BLADE SERVER FOR POWER CONSUMPTION DATA

COLLECTION

by the server energy efficiency benchmark tool (BenchSEE1) on
a blade server. The workload descriptions and server configura-
tion are provided in Tables II and III, respectively.

We also launched a performance monitor counter to capture
the hardware parameters of the server during the workload runs,
collecting 51 system parameters as features for the power pre-
diction model. However, several collected feature values did not
show significant variation, indicating they are not directly related
to the server’s power consumption. Therefore, we performed
pre-processing on the collected power consumption datasets
using principal component analysis (PCA), ensuring that only
parameters directly related to power are retained while irrelevant
features are discarded. For each source workload, 450 power
data samples were randomly selected for training. Meanwhile,
for each target workload, 50 and 400 power data samples were
used for training and testing, respectively.

2) Evaluation Metrics: To demonstrate the performance of
TGCP, Root Mean Squared Error (RMSE) in watts, Mean Abso-
lute Error (MAE) in watts, and Mean Absolute Percentage Error
(MAPE) have been chosen as the evaluation metrics, which are
defined as

RMSE =

√
1

M

∑M

i=1
(p̃i − pi)2, (26)

MAE =
1

M

M∑
i=1

|(p̃i − pi)|, (27)

MAPE =
1

M

M∑
i=1

|(p̃i − pi)|
pi

, (28)

where p̃i and pi are prediction value and ground truth, respec-
tively, and M is number of test data.

1https://www.energylabel.com.cn/benchsee/benchSEE_en.html
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Fig. 4. Comparison of cross-workload power prediction with different traditional ML methods (Lower values for RMSE, MAE, and MAPE indicate better
performance).

3) Comparison Methods: Four traditional ML methods, LR,
MLP, BPNN and GPR are implemented by the Scikit-learn
library.2 Meanwhile, three transfer learning methods are imple-
mented for comparison of transfer performance, listed as follows
� Two-stage TrAdaBoost.R2 (TrAdaBoost.R2) [21]3

� Deep Kernel Transfer (DKT) [22]4

� Multi-source Transfer GPR (TGP) [18]
TrAdaBoost.R2 is a classical instance-based transfer regres-

sion method that effectively handles domain shifts by reweight-
ing source instances, making it suitable for scenarios where
workload characteristics differ across domains. DKT and TGP
are recent advanced models based on Gaussian processes, ca-
pable of capturing complex nonlinear relationships and model-
ing uncertainty in transfer learning settings. Given that cross-
workload power prediction involves distributional shifts and
limited target data, these methods align well with the challenges
of our problem setting. Although they have not been specifically
applied to power prediction tasks, their general-purpose design
and strong performance in other regression-based transfer learn-
ing applications make them appropriate choices for comparison
in this context. For fair comparison, we implemented those
methods with default hyper-parameter settings. Meanwhile, we
followed the TGP for setting up the radial basis function (RBF)
kernel to implement kms() for TGCP.

B. Evaluation Results

Note that since TGCP can simultaneously assess the relat-
edness between source-target workloads and between source-
source workloads, there is no need to pre-select source work-
loads based on their similarity to the target workloads. To verify

2https://scikit-learn.org/stable/modules/classes.html
3https://github.com/jay15summer/Two-stage-TrAdaboost.R2
4https://github.com/BayesWatch/deep-kernel-transfer

the performance of TGCP, we construct source domains with
different numbers of CPU-intensive workloads in the order
shown in Table II to enhance the power prediction performance
for target workloads, which in our experiments, consist of
memory-intensive workload (Cache) and I/O-intensive work-
load (Random).

1) Evaluations of Cross-Workload Power Prediction Com-
pared to Traditional ML Methods: Fig. 4 shows the performance
comparison between TGCP and four traditional ML methods
in achieving cross-workload power consumption prediction.
As the number of introduced source workloads increases, the
performance of traditional ML methods for cross-workload
power consumption prediction deteriorates. This decline occurs
because the introduction of a large amount of source workload
data causes the model to become biased towards learning the
power consumption patterns of the source workloads, thereby
neglecting the power consumption characteristics of the target
workloads. Consequently, the model’s performance worsens
when applied to the target workloads. In contrast, TGCP can ex-
tract useful knowledge from different numbers of source work-
loads, thereby improving the power prediction performance for
the target workloads. This effectively avoids negative transfer
and demonstrates the superior cross-workload power prediction
capability of TGCP.

2) Evaluations of Cross-Workload Power Prediction Com-
pared to Transfer Learning Methods: We conducted an analysis
of the performance based on different numbers of source work-
loads for cross-workload power prediction to better illustrate the
transfer performance of TGCP.

As depicted in Table IV, which presents a performance
comparison with three evaluation metrics for cross-workload
power prediction under varying numbers of source workloads,
TrAdaboost.R2 exhibits the poorest performance. Notably,
the accuracy of TrAdaBoost.R2 noticeably deteriorates as the
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TABLE IV
RESULTS FOR CROSS-WORKLOAD POWER PREDICTION WITH DIFFERENT TRANSFER LEARNING METHODS

number of source workloads increases, indicating a negative
transfer phenomenon, as expected. The multi-source transfer
regression implemented by TrAdaBoost.R2 only considers the
relatedness of samples between the source and target workloads
to tune the learning degree in the source domain, neglecting the
relatedness between source workloads and the target workload,
leading to the inclusion of similar samples that do not necessarily
contain useful knowledge. Similarly, DKT faces similar con-
cerns in implementing cross-workload power prediction, albeit
its performance surpasses that of TrAdaBoost.R2 owing to its
few-shot learning setting and deep transfer kernel.

Conversely, the cross-workload power prediction imple-
mented based on TGP demonstrates robust performance superi-
ority as a multi-source transfer regression method. Regardless of
the workload (Random or Cache), TGP consistently leverages
useful knowledge captured from source domains with varying
numbers of source workloads to enhance predictive accuracy
for the target workload. Unlike TrAdaBoost.R2 and DKT, the
transfer kernel kms() of TGP accounts for the relatedness be-
tween source and target workloads, as well as between source
workloads themselves. This ability enables TGP to adjust the
learning degree based on workload similarity, thereby avoiding
negative transfer. Consequently, the cross-workload power pre-
diction performance of TGP surpasses that of TrAdaBoost.R2
and DKT.

However, as TGP relies on GPR for transfer regression, its
efficacy is limited by the normal distribution assumption and the
closed-form computation of the posterior probability function.
This limitation restricts TGP’s flexibility in capturing complex
distributions of real-world data, as discussed in Section II regard-
ing power consumption distribution, where real power consump-
tion data often deviates from a normal distribution. To address
this, we propose TGCP to further enhance the cross-workload
power prediction performance of TGP for real power consump-
tion data scenarios by using CNF to locally non-Gaussianize the
posterior prediction distribution of TGP. Table IV demonstrates
that TGCP surpasses TGP in most cases across the three metrics,
illustrating its cross-workload power prediction performance.
However, we also observe that TGCP does not consistently
achieve optimal performance, particularly when the number of
source workloads is small, where TGCP performs slightly worse
than TGP. Nevertheless, with an increasing number of source
workloads, TGCP outperforms TGP, indicating room for further
improvement in TGCP’s performance.

3) Analysis of the Influence of Target Workload Data Quan-
tity on Transfer Learning Training: Additionally, we investi-
gated the impact of varying amounts of target workload data
involved in the training of transfer learning methods on the per-
formance of cross-workload power prediction with three source
workloads. We examined the performance of cross-workload
power prediction by setting the target workload power data
amount from 10 to 50, increasing in intervals of 5. Fig. 5
illustrates that as the amount of target workload power data
increases, the prediction errors for all four methods exhibit a
decreasing trend. This result is expected because the growth in
target workload data provides more information about the target
workload, thereby improving prediction performance. However,
it can also be concluded that the performance advantage of trans-
fer learning will eventually diminish as the target workload’s
training data continues to grow.

Overall, the cross-workload power prediction performance
achieved by TGCP and TGP outperforms that of TrAdaBoost.R2
and DKT across different amounts of target workload power
data. Specifically, TGCP outperforms TGP in terms of RMSE,
MAE, and MAPE for Random workloads. For Cache workloads,
TGCP only outperforms TGP in terms of RMSE, while the two
methods perform variably on MAE and MAPE, indicating the
need for further tuning of TGCP’s performance.

The primary reason for these results is that TGCP allows for
similarity estimation between source and target workloads while
controlling the degree of knowledge transfer to different source
workloads. This approach effectively avoids negative transfer
and improves power prediction when only a small amount of tar-
get workload power data is available for training. Furthermore,
the adoption of CNF enables TGCP to better handle the complex
distribution of real power data from different types of workloads
compared to TGP, thereby further enhancing the performance of
cross-workload power prediction.

V. RELATED WORK

A. Power Prediction for Servers in Cloud Data Centers

In recent years, power prediction of cloud servers has become
an attractive field of research, critical for developing energy-
efficient technologies in cloud computing [23], [24]. Recent
reviews have analyzed and discussed power prediction models
from different perspectives [3], [25], [10], [11].
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Fig. 5. Comparison of cross-workload power prediction with different number of target data for training (Lower values for RMSE, MAE, and MAPE indicate
better performance).

Machine learning (ML), in particular, has demonstrated pow-
erful non-linear fitting capabilities, driving the implementation
of server power prediction towards ML methods. Lin et al. [26]
analyzed parameters of servers running different types of work-
loads using data collected by performance monitor counters.
They trained power models using BPNN, ENN, and LSTM on
different workloads, and these well-trained models showed su-
perior power prediction performance. Liang et al. [27] designed
a power feature selection method based on information entropy
theory to identify high-impact features during various work-
loads. They then constructed a power prediction model using
DNN, achieving high prediction performance through training
with sufficient power data. Jing et al. [28] developed a power pre-
diction model based on CNN-BiLSTM, using a one-dimensional
CNN for local feature extraction and dimensionality reduction
of power consumption features, and a BiLSTM network for
high-level feature extraction, incorporating an attention mecha-
nism to filter irrelevant features. This approach enabled power
prediction for heterogeneous servers and workloads. Zhou et
al. [29] presented a power model built on SVM, utilizing random
forests for parameter tuning and a grid search method for hy-
perparameter optimization, achieving accurate power prediction
across different workloads. Moolchandani et al. [30] focused on
power prediction for servers executing multiple GPU-intensive
workloads concurrently, proposing a method for power predic-
tion during the concurrent execution of multiple GPU-intensive
applications. Ferroni et al. [31] identified server working regimes
based on hardware events and constructed power models for each
state, addressing the accuracy degradation problem caused by
workload changes. Given the heterogeneity of server software
and hardware, Bernard et al. [32] proposed a hybrid power
prediction model, Hydra, which dynamically selects the best
power model for given server conditions. Lin et al. [33] proposed
an adaptive workload-aware power prediction method. This
method first classifies workloads using K-means clustering and

then selects an appropriate power model based on the server’s
current workload to achieve accurate power prediction.

While these traditional ML-based power prediction models
exhibit good performance, they still require a substantial amount
of runtime data, imposing high data acquisition costs. Addition-
ally, the assumption of independent and identically distributed
training and test data, which traditional machine learning mod-
els rely on, poses a challenge in handling the domain shift
problem in cross-workload power prediction scenarios. This
limitation makes it difficult for current power prediction models
to adapt effectively when power consumption behavior varies
significantly between different workloads.

B. Transfer Learning for Regression

The principle of transfer learning entails utilising knowledge
gained from a source domain that possesses plenty of labelled
data to a target domain with constrained data. It promotes the
model’s accuracy in predicting unseen data of the target domain
and has exhibited remarkable achievements in classification
tasks, including natural language processing [34], [35] and ob-
ject detection [36]. However, the main research interest in trans-
fer learning focuses on classification problems, while research
on transfer learning for regression problems is comparatively
limited. Typically, AdaBoost-based transfer learning methods
for classification problems [37] have been extended to regression
problems, leading to the proposal of TrAdaBoost [21]. Liu
et al. [38] proposed a deep adaptation method for conditional
distribution in regression problems, reducing the difference in
conditional distribution between source and target domains.
Patacchiola et al. [22] introduced a Bayesian-based deep kernel
transfer method.

Furthermore, transfer learning methods based on GPR have
gained significant attention in recent years. In [39], Cao
et al. designed an effective transfer kernel kλ(), which was also
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theoretically proven to be PSD. kλ() enables a learnable pa-
rameter λ to control the learning degree of the single-source
data, effectively avoiding negative transfer. Recent studies on
single-source domain transfer GPR [40], [41] have enabled
the implementation of a more powerful transfer kernel to deal
with heterogeneous data. Single-source domain transfer GPR,
however, has major limitations since it is only capable of en-
hancing performance for unseen data from the target domain
using information from the single source domain. Then, Wei
et al. [42] proposed a transfer covariance function based on
multi-kernel learning to model the heterogeneous sub-similarity
of domains, achieving regression transfer learning with complete
theoretical proof of effectiveness. To facilitate the retrieval of
valuable knowledge from multiple source domains simultane-
ously, multi-source transfer GPR methods have been explored.
Yang et al. [43] proposed a source-target pairwise segmenta-
tion method, segmenting different source and target domains
into similar parts and extracting the most similar parts from
different source domains for knowledge transfer. Wei et al. [44]
implemented similarity estimation between multiple source and
target domains by introducing a transfer covariance function,
thus preventing negative transfer. To address the challenge of
time complexity in Gaussian models dealing with large-scale
datasets, Yang et al. [45] proposed a sparse GP-based regression
transfer learning method, reducing time complexity for large
datasets. Da et al. [46] proposed an aggregation model for
multi-source domain transfer GPR, enabling parallel training
and testing of models with multi-source data for efficient com-
putation.

To the best of our knowledge, this is the first work to im-
plement cross-workload power prediction for servers in CDCs
via transfer learning. Our method leverages abundant power
consumption data from source workloads to improve the perfor-
mance of target workloads with limited power data, unlocking
the valuable knowledge embedded in collected power data while
reducing the cost of power data collection.

VI. CONCLUSION AND FUTURE WORK

In this paper, we systematically answer why traditional ML
methods cannot enable cross-workload power prediction by an-
alyzing the features and distribution of the collected power data.
To implement cross-workload power prediction, we propose
TGCP based on multi-source transfer GPR, which is dedicated
to exploiting the practical knowledge contained in the massive
power data of source workloads towards improving the power
prediction performance of target workload that have limited
power data, thus significantly reducing the cost for power data
collection required to train power models of cloud servers. In
addition, to enhance the flexibility of the multi-source transfer
GPR to dealing with real power data, CNF is used to adjust the
posterior prediction distribution of the transfer GPR to make it
locally non-Gaussian, further enhancing the performance of the
cross-workload power prediction. The results of experiments
revealed that TGCP delivers a better performance in cross-
workload power prediction than four traditional ML methods
as well as three transfer learning methods.

While TGCP enables efficient knowledge transfer across
workloads and reduces data collection costs, it incurs higher
training-time complexity due to the cubic scaling of Gaussian
processes. To address this, future work will explore sparse
Gaussian process techniques to improve scalability without
compromising accuracy.
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