52024

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 24, 15 DECEMBER 2025

EEG-Based Brain—Computer Interface:
Fundamentals, Methods, Applications,
and Challenges
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Abstract—The electroencephalogram (EEG)-based brain—
computer interface (BCI) is important for Internet of Things
(IoT) applications. EEG data can be used to control IoT devices
for applications such as smart home automation or healthcare
monitoring. EEG-based BCI systems are crucial for recogniz-
ing human brain thoughts and analyzing neurological diseases,
enabling thought visualization, and improving accessibility for
people with disabilities. With the rapid development of machine
learning, including deep learning technologies, as well as the
emergence of wearable and hybrid BCI systems, this field has
progressed rapidly. Researchers have conducted extensive experi-
ments to improve the accuracy of the system. This article provides
a comprehensive review of BCI based on EEG, highlighting
the fundamental principles of EEG signals, common acquisition
devices, feature extraction techniques, and classification models,
with a particular focus on the latest advances in deep learning.
We also summarize available datasets and discuss the latest
applications of EEG-based BCI in human—-computer interaction
(HCI) and neurological diseases. Finally, we highlight the main
findings and explore future directions, offering researchers deeper
insight to foster further progress in this field.

Index Terms—Brain—computer interface (BCI), deep learn-
ing, electroencephalogram (EEG), feature extraction, Internet of
Things (IoT), neurological diseases.

NOMENCLATURE
ALS Amyotrophic lateral sclerosis.
ADHD Attention deficit hyperactivity disorder.
AE Autoencoders.
BCI Brain—computer interface.
CNN Convolutional neural network.
CSP Common spatial pattern.
CWT Continuous wavelet transform.
EC Emotion classification.
ECoG Electrocorticography.
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EEG Electroencephalogram.

ErrP Error-related potential.

FBCSPs Filter bank CSPs.

fMRI functional magnetic tesonance imaging.

fNIRS functional near-infrared spectroscopy.

FT Fourier transform.

FFT Fast FT.

GAN Generative adversarial network.

GCN Graph convolutional network.

GNN Graph neural network.

HCI Human—computer interaction.

ICA Independent component analysis.

IoT Internet of Things.

KNN K-nearest neighbors.

LDA Linear discriminant analysis.

LSTM Long short-term memory.

MEG Magnetoencephalography.

MI Motor imagery.

P300 P300 event-related potential.

PET Positron emission tomography.

RF Random forest.

PSD Power spectral density.

RNN Recurrent neural network.

RNNs Recurrent neural networks.

SBL Sparse Bayesian learning.

SCP Slow cortical potential.

SR Speech recognition.

SNN Spiking neural networks.

SSA Singular spectrum analysis.

SSAEP Steady-state auditory evoked potential.

SSSEP Steady-state somatosensory evoked poten-
tial.

SSVEP Steady-state visual evoked potential.

STFT Short-time FT.

SVM Support vector machine.

WT Wavelet transform.

I. INTRODUCTION

CI is a complete system composed of both hardware
and software. The hardware part includes signal acqui-
sition, signal amplification, data transmission, and control
devices, which are mainly responsible for the acquisition and
transmission of brain signals. The software part covers sig-
nal preprocessing, feature extraction, classification, decoding,
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Fig. 2. EEG-based BCI system in IoT environments.

feedback mechanisms, and user interfaces, mainly for data
processing, decoding, and user interaction. The emergence
of BCI provides a direct communication pathway between
the human brain and external electronic devices, making
it an important interdisciplinary field between engineering
[1] and neuroscience [2]. Only through the collaboration of
hardware and software can the ultimate goal of a BCI system
be achieved—recognizing brain states through brain activity
[3], interacting with devices [4], even communicating and
interacting with digital environments [5], and others [6], [7],
(81, [9].

With the rapid development of the IoT, BCI systems can
achieve seamless connectivity with a wide range of smart
devices through wireless networks. For instance, electroen-
cephalogram (EEG) signals acquired by BCI systems can
be transmitted to the cloud via IoT platforms for remote
processing [10], [11], or applied in intelligent healthcare [12],
[13], and rehabilitation scenarios [14].

According to Lebedev and Nicolelis [15], BCI can be clas-
sified into two types: passive BCI and active BCI. Passive BCI
assesses brain states, such as emotion, attention, or fatigue, by
monitoring brain activity without directly controlling external
devices. Active BCI, on the other hand, allows users to
control devices like prosthetics or wheelchairs using their brain
activity. Furthermore, invasive BCI [4] involves surgically
implanting devices into the brain or its surface, offering high
signal-to-noise ratios but facing risks such as postsurgery
complications and long-term control challenges, which limit
their development. Noninvasive BCI is the most common
method for extracting brain signals, including fNIRS, EEG,
PET, fMRI, and MEG. As shown in Fig. 1, each technique
has certain advantages and disadvantages, and the best choice
depends on the specific project requirements. The integration
of IoT not only enhances the efficiency and flexibility of data
transmission in BCI systems but also opens new possibilities
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for applications in telemedicine, smart rehabilitation, and
intelligent living, as illustrated in Fig. 2.

Recently, due to the inability to capture brain signals
and effectively decode thought signals, BCI research has not
attracted many researchers. Brain activity studies were limited
to exploring brain functions in clinical and laboratory settings.
Meanwhile, signal decoding technologies and devices were
either unavailable or very expensive, resulting in only a small
number of research groups engaging in this area. However,
with the development of science and technology, research in
the BCI field has undergone significant changes over the past
two decades, with major updates in key hardware and the
emergence of large datasets, which have driven BCI system
research. So far, EEG [16], [17], ECoG [18], and single-neuron
recordings [19] appear to be the three effective methods for
BCI systems. These methods provide good control channels
and communication environments using relatively inexpensive
devices. Among them, EEG is the most widely used in BCI
systems because of its noninvasive nature, requiring only
external electrodes placed on the scalp. EEG is a safer option
than other techniques involving invasive procedures, such as
ECoG or intracortical recordings. Its noninvasive nature also
makes it reusable, making it ideal for long-term monitoring
and rehabilitation applications. Furthermore, EEG allows for
real-time monitoring of brain activity, as BCI systems depend
on quickly detecting and interpreting brain signals for direct
communication or control with external devices. This real-
time capability makes EEG especially useful for applications
that require immediate responses, such as controlling assistive
devices. Although acquiring EEG datasets is costly and time-
consuming, they hold significant value. A single publicly
available dataset can serve as the foundation for many different
research projects, leading to broader scientific studies.

BCI systems can use specific EEG patterns to decode user
intent. Song et al. [20] presented a compact convolutional
transformer, namely EEG Conformer, which, by combining
convolutional modules and self-attention mechanisms, is able
to extract both local and global features within an over-
all framework, improving EEG signal decoding, predicting
EEG signal categories, and achieving advanced performance
on three public datasets. Wang et al. [21] proposed a new
approach called SBL for end-to-end Spatiotemporal-filtering-
based single-trial EEG classification for decoding noninvasive
EEG signals. The algorithm integrates spatial and temporal
filters with a classifier into a linear matrix regression model.
It optimizes it within the SBL framework, thereby achieving
end-to-end EEG decoding.

As the accuracy of EEG signal recognition continues to
improve, BCI systems are increasingly being adopted across
diverse domains such as human—computer interaction, rehabil-
itation medicine, industrial applications, and virtual reality. In
robotics, for instance, wearable exoskeletons rely on decod-
ing MI signals to ensure safe and intuitive human—machine
collaboration [22]. In healthcare, BCIs have been applied to
aid stroke and paralysis patients in motor function recovery
through prosthetic control and rehabilitation training [23],
[24], [25], while lightweight deep learning frameworks have
also been developed to classify psychological activities using
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separable CNNs enhanced with attention mechanisms [8].
Moreover, advanced BCI methods can support spinal cord
injury patients in regaining movement capabilities [26], or
assist individuals with severe speech and motor impairments,
such as those with ALS, in communicating via EEG-based
spelling systems [27]. Beyond medical applications, EEG
plays a critical role in monitoring brain activity during
anesthesia to prevent intraoperative awareness [28], and in
entertainment settings, it has been employed to evaluate player
skill levels and analyze neural responses during gaming tasks
[29], [30].

The widespread application of BCI systems across various
fields has increased efficiency and made life more convenient
for people. With numerous research articles concluding that
capturing brain signals through sensors is becoming increas-
ingly common, this technology has significantly driven the
development and progress of brain—machine interface science.
EEG-based BCI is a key trend for future development. As
illustrated in Fig. 3, EEG-based BCI can be broken down
into five steps: signal acquisition, data preprocessing, feature
extraction, model training, and classification.

A. Scope and Objectives of the Article

The studies included in this review were primarily collected
through keyword-based searches related to EEG-based BCls.
Relevant studies from the past seven years were selected by
searching several academic databases using combinations of
keywords such as “EEG-based BCI + speed recognition,”
“ML” “P300,” “SSVEP,” “human—computer interactionHCI,”
“neurological diseases,” and other related terms.

This review provides an in-depth analysis of the state-of-
the-art techniques and methods in EEG-based BCI, including
signal processing (such as denoising and feature extraction)
and classification models, covering both traditional machine
learning and deep learning approaches. Moreover, we com-
pile and summarize currently accessible datasets and models,
offering valuable resources to support further exploration in
this field. In addition, the article discusses the wide range
of application scenarios for EEG-based BCIs across various
domains.

Furthermore, this article identifies and discusses key chal-
lenges currently faced in the field. Based on these challenges, it
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proposes potential future research directions, aiming to provide
essential insights and guidance for the continued advancement
of BCI technology.

B. Comparison to Previous Studies

In the literature, several review papers have been published
in recent years. Many of them have focused on classification
strategies from different perspectives. Table I compares recent
review works, highlighting the main themes and limitations of
each. In contrast, this article specifically emphasizes classifi-
cation methods tailored for EEG-based BCls.

The main contributions of this article can be summarized
as follows.

1) A detailed exploration of advanced technologies and
methodologies employed in EEG-based BCI systems,
including signal processing techniques and classification
algorithms. In addition, we catalog publicly avail-
able datasets and tools, offering valuable resources for
researchers to support innovation and further develop-
ment in this field.

2) An investigation into the diverse application scenarios of
EEG-based BCI across various domains, with particular
emphasis on their significant impact in enhancing HCI
and medical rehabilitation.

3) The identification and comprehensive discussion of key
challenges faced by EEG-based BCI, along with pro-
posed future research directions aimed at addressing
these challenges and promoting continued progress in
the field.

C. Structure of the Article

To provide readers with an intuitive understanding of the
current state of development of EEG-based BCIs and to
address the existing challenges and future directions in HCI
and medical diagnosis, this article reviews and summarizes
recent research achievements. The overall framework is shown
in Fig. 4. Section II highlights the fundamental knowledge
and background. Section III explores the signal acquisition,
preprocessing, feature extraction, and classification methods
of EEG signals. Section IV presents common open-source
datasets. Section V reviews the current applications of EEG
signals. Section VI discusses the challenges EEG signals
face in practical applications and outlines future directions,
followed by the conclusion in Section VII.

II. ROLE OF ELECTROENCEPHALOGRAM IN BCI

EEG control signals can also be understood as decoding
neurophysiological signals to allow the BCI to interpret human
thoughts. These signals encompass a variety of types, includ-
ing SCPs, P300 event-related potentials, MI, SR, ERRPs,
SSVEPs, SSAEPs, and SSSEPs. Among these, MI, P300,
SR, and SSVEP are more commonly utilized. Therefore, we
discuss these in this article.
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TABLE I
COMPARISON TO SOME OF THE EXISTING REVIEW PAPERS

Ref./ Year Focus of the paper Limitations
[31] 2021 -Four Applications of Transfer Learning in  -Has not discussed EEG datasets
EEG Signal Analysis. -Not sufficiently address the issue of negative transfer
[32] 2022 -Use ML techniques and DL approaches to  -Insufficient discussion on other EEG paradigms.
classify EEG-based BCIL. -Lack in-depth discussion on emerging technologies.
[33] 2023 -Explore the latest developments in BCI and  -Effectiveness of the preprocessing techniques has not been
motor control for rehabilitation. explored thoroughly.
-Has not discussed EEG datasets.
[34] 2024 -The application of different GNN architec- - No systematic comparison with other variant graph attention

tures in EEG classification was compared.

[35] Non-Invasive Brain-Computer Interface Con-
trol of External Devices: Clinical, Rehabilita-
tion, and Algorithmic Aspects

networks and graph transformers.

No comparative analysis of advantages across various algo-
rithms

[36] 2025 MI Signal Decoding Techniques, Deep Learn-

ing Algorithms, Clinical/Device Applications
-Collecting devices

-Feature extraction

-Classification models

-Public datasets

-Current applications

-Challenges and future trends

Our

Limited to literature from 2017-2023, without quantitative
exclusion of non-EEG modalities

Scope and Objectives of the Survey
Comparison to previous survey studies
Structure of the Paper

Introductione———@

Motor Imagery

Speech Recognition
Event-Related Potential
Steady-State Evoked Potentials

©——=eThe role of EEG in BCI

Collecting Device

Data preprocessing

Feature Extraction Techniques
Classification Methods

Techniques and Methods &———0

BCI Competitions

Open BCI

Giga DB

Other Valuable Datasets

©———@Public Datasets

Human-Computer Interaction
Neurological Disease

Applicationse———0

Foundations of Ideal HCI
The Ideal State of Neurological Disease Diagnosis
Future Directions

©—— Challenges

Fig. 4. Framework of the article structure.

A. Motor Imagery

MI [37] is a cognitive process where one imagines the
movement of a body part without actually moving that part.
It can alter the neural patterns in the primary sensory—motor
areas, closely resembling actual movement execution. BCI
decodes MI tasks from EEG and aligns them with specific
scalp regions. MI is most strongly influenced by the alpha and
beta frequencies of EEG. As experience with EEG recording
increases, the 10-20 systems [38], depicted in Fig. 5, are
recommended as the standard electrode placement layout. The
movement imagery for the right hand originates from the C3
region of the brain, for the left hand from the C4 region [39],
and for foot movement imagery from Cz [40]. Therefore, the
BCI system can modulate the movement of these body parts
through imagination.

Fig. 5.  Electrodes positions. F: Frontal, C: Central, and P: Parietal, T:
Temporal, O: Occipital.

B. Speech Recognition

SR [41] refers to imagining a sentence in the brain without
actually speaking it, and then converting the physiological
signals into natural language. During experiments, it was
found that the reading phase activated brain regions linked
to language processing, such as the left temporal lobe and
the inferior frontal gyrus [42]. These regions are also engaged
during the imagined speech, exhibiting similar neural repre-
sentations. Therefore, this traditional paradigm demonstrates
a key advantage in signal processing. By constructing deep
learning models, semantic information from the EEG can be
output as the semantic categories of sentences corresponding
to imagined speech.

C. Event-Related Potential (ERP)

ERP is a noninvasive neurophysiological technique recorded
through EEG to study the brain’s real-time response to specific
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stimuli or cognitive events [43], [44]. It involves repeatedly
presenting the same type of stimulus (such as visual, auditory,
or motor tasks) and time-locking and averaging the EEG
signals to extract stable brain components associated with the
event. The core advantage of ERP lies in its millisecond-
level temporal resolution, which allows precise tracking of
dynamic changes in cognitive processes. For example, N170
[45] reflects face recognition, mismatch negativity (MMN)
[46] characterizes auditory deviation detection, error-related
negativity (ERN) [47] is associated with error monitoring, and
P3 [48] involves attention resource allocation and decision-
making. These components, separated by different wave
techniques to isolate overlapping neural activity, serve as
crucial tools for revealing complex brain functions such as
perception, memory, language, and motor control.

D. Steady-State Evoked Potentials

Steady-state evoked potentials (SSEPs) are induced by sta-
ble frequency oscillatory stimuli [49]. SSEP can be classified
into SSVEP, SSAEP, and SSSEP, based on the type of stimulus
(visual, auditory, and somatosensory).

SSVEP-based BCI is triggered by visual stimuli of constant
frequency [50]. When a user fixates on a visual stimulus flick-
ering at a fixed frequency (usually between 3.5 and 75 Hz),
his EEG signal will produce synchronous oscillations at the
stimulus frequency or its harmonics. This characteristic makes
SSVEP an efficient information transfer paradigm in BCIL
For example, in BCI spellers, targets flickering at different
frequencies can be decoded as the user’s selected commands,
allowing for high information transfer rates.

SSAEPs are neural electrical responses induced by repetitive
acoustic stimuli [51], which can be recorded using EEG.
These responses are characterized by steady-state analysis that
captures neural responses in the auditory pathway that are
synchronized with the stimulus frequency.

SSSEPs are steady-state EEG signals induced by applying
specific frequency tactile stimuli (such as vibration) to the
somatosensory system (e.g., fingertips) [52]. By exploiting
the “resonance” characteristics of the human sensory system,
the somatosensory area is continuously stimulated within
a specific frequency range of 17-35 Hz, generating stable
periodic responses in the EEG. The advantage of SSSEP is
that it does not rely on the visual system or voluntary eye
movement control, making it suitable for patients with visual
impairments. By extracting signal features using a phase-
locked amplifier and combining them with LDA, subjects
can actively modulate the SSSEP amplitude through attention,
enabling binary classification control in BCIs. SSSEP provides
a novel control strategy for BCIs based on the somatosensory
channel.

III. TECHNIQUES AND METHODS

A. EEG Collecting Device

To understand the thoughts of Homo sapiens, few places
are more suitable than the brain itself. There are many ways
to detect changes in brain activity, but none are as direct as

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 24, 15 DECEMBER 2025

TABLE I
TYPICAL EEG SIGNAL ACQUISITION EQUIPMENT

Device Communication Channels
EMOTIV MNS8'
BT5 2
Muse S Headband’
- . BT4.2 & USB 4
EMOTIV INSIGHT 2!
BT5.2 & USB-C 5
EMOTIV EPOCX'
BT5 & USB 14
EMOTIV FLEX 2!
BT5 & USB-C 32
NE Enobio DX’
5/ | &
S,
L — —
&1 - .
; % Wi-Fi & USB 8,20,32
NeuroScan Grael®
MDRS0 32,64,128,256

EEG. Therefore, stable and accurate EEG signal acquisition is
the foundation of noninvasive BCI technology.

Table II summarizes common EEG acquisition devices.
Typically, EEG systems process 8 to 64 channels, ECoG
systems process 32 to 192 channels, and single-unit recordings
may handle 100 to 300 channels [53].

When using acquisition devices, the first consideration is
the number of channels. More channels generally mean more
data, which is usually a good thing, but it is not always
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Fig. 6. EEG preprocessing: filtering and artifact removal.

necessary. Additionally, according to the Nyquist theorem, for
any signal to be detected, a sampling rate of at least twice
the frequency of the signal is needed. To detect the fastest
characteristic signals with EEG, a sampling rate of 128 Hz is
usually sufficient. Faster sampling rates generate more detailed
data, so, when conditions allow, it is better to have more
data rather than less. Furthermore, amplifiers are typically the
most expensive part of EEG equipment. They are needed to
amplify the signals recorded from the electrodes, making the
data visible and analyzable. This is one of the key aspects of
EEG equipment that ensures data quality.

B. Data Preprocessing

To provide more precise and more accurate data inputs
for subsequent analysis and modeling, preprocessing is a key
step in ensuring the reliability and accuracy of the results.
Raw signals often contain noise, artifacts, and other unwanted
components, which can interfere with the accuracy of the
analysis. Therefore, the primary goal of preprocessing is to
remove or reduce these interferences, allowing the valuable
signals to stand out and ensuring that the data is suitable for
later analysis or classification tasks as shown in Fig. 6.

EEG signals are inevitably contaminated by physiological
artifacts such as blinking, eye movements, and muscle activity
[54]. To address these challenges, various signal processing
and pattern recognition techniques have been developed to
extract meaningful information from noisy recordings. Classi-
cal approaches include filtering and ICA for artifact removal
[55], while more advanced strategies leverage machine learn-
ing, such as variational AEs (VAEs) for denoising [56]. Signal
transformation techniques also play a crucial role in feature
extraction: WT enables capturing time-domain characteristics
across multiple frequency bands [57], whereas FT converts sig-
nals into the frequency domain to examine power distribution
[58]. Furthermore, event-related analysis segments EEG data
around task-specific stimuli to reveal neural dynamics before
and after the event [59].

Time (s)

Dimensionality reduction techniques such as LDA and prin-
cipal component analysis (PCA) are often employed to reduce
the complexity of signal features, thereby lowering computa-
tional costs and eliminating redundant information. A widely
used spatial feature extraction method is CSPs [60], which
can derive the most discriminative spatial projections from
multichannel EEG signals and have been extensively applied
in BCI research. In recent years, various improved algorithms
have been proposed to enhance their generalization ability
and robustness. For example, Cherloo et al. [61] introduced
the ensemble regularized common spatial spectral patterns
(Ensemble RCSSPs), which integrate ensemble learning and
regularization strategies to reduce the risk of overfitting,
outperforming traditional CSP and other variants. Meanwhile,
FBCSP and its deep learning extensions have also been widely
adopted. Mammone et al. [62] proposed the AE-FBCSP, which
combines filter banks with a deep AE framework to extract
discriminative spatial features from high-density EEG for MI
decoding.

Beyond CSP-based methods, other approaches have been
developed to address diverse EEG decoding tasks. For
instance, Deng et al. [63] proposed the cross-subject dual-
domain fusion network (CSDuDoFN), which integrates task-
related component analysis (TRCA) and task-discriminant
component analysis (TDCA), and has been applied to one-shot
SSVEP (O-S SSVEP) classification for data augmentation.
Ieracitano et al. [64] introduced the CWT, which enables
the extraction of time—frequency features for the automatic
classification of Alzheimer’s disease (AD), mild cognitive
impairment (MCI), and healthy controls. Anuragi et al.
[65] proposed the FBSE-EWT framework, which leverages
enhanced time—frequency representations and has demon-
strated strong performance in seizure detection. ICA remains
one of the most widely used independent-source separation
technique for removing EEG artifacts. Bigdely-Shamloet al.
[66] proposed the PREP pipeline, which, after data resampling,
provides a standardized preprocessing framework to eliminate
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Fig. 7. Feature extraction: raw signal and spectral representation.

line noise, robustly rereference signals to an estimated average
reference, and automatically detect and interpolate bad chan-
nels. By leveraging these representative feature extraction and
preprocessing techniques, EEG decoding performance can be
significantly improved in both BCI and clinical applications.

C. Feature Extraction Techniques

Due to the complexity and nonstationarity of EEG signals,
directly applying them for automatic feature learning may
lead to suboptimal performance. Therefore, appropriate feature
extraction is necessary, as show in Fig. 7. Traditional EEG
signal analysis typically involves three main stages: first,
extracting feature information from the raw signals; second,
selecting and retaining task-relevant features; and third, clas-
sifying the selected feature set by constructing a classifier. In
the feature extraction process, besides the classical frequency
band power and time-domain features, recent studies have
explored other types of features, such as connectivity features
of brain networks and higher-order statistical features [67],
[68]. Moreover, several studies have combined different types
of features to extract more information. For instance, Cai et al.
[69] presented a feature extraction method depending on
window Kullback-Leibler divergence (WKLD) and discrete
wavelet analysis. Additionally, a triple-stream skipped feature
extraction module, combined with a dual-parallel attention
transformer network leveraging both EEG and fMRI modali-
ties, was developed to enhance seizure detection accuracy [70].

In feature selection, besides using filter [71] methods to
eliminate irrelevant features, wrapper [72] methods and rank-
ing algorithms were also developed to optimize the selection
of feature subsets. During the feature classification stage,
efficient methods such as deep learning and Riemannian
geometry were used to boost classifier performance, enhanc-
ing classification accuracy from multiple dimensions [73],
[74]. Notably, some algorithms, such as neural networks and
embedded methods, can perform joint optimization during
feature extraction and classification [75]. In most traditional
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TABLE III
COMPARATIVE ANALYSIS OF FEATURE EXTRACTION METHODS

Average (%)
BCI 1V 2a [78] BCI 1V 2b [79]

Feature Extraction

CSP [80] 50.30 52.00
FBCSP[80] 56.90 59.90
CSP-CNN [81] - 79.9
FFT-CNN [81] - 79.6
STFT-CNN [81] - 81.9
CWT-CNN [81] - 84.1

: Classification

Feature Extraction

(10 (T [ EM [ 1cA )
(wr [ stsT ) ARM | PCA )

&7 HHT [ EMD [wvD | CSE )

Fig. 8. Specific processes of machine learning and deep learning.

approaches, it is usually assumed that the training and test
data share the same distribution, but this assumption is often
difficult to hold in practical applications. This distribution bias
makes the difference between training data and real-world
data significant, leading to high costs in model reconstruction
and data retrieval, which in turn limits the broad application
and deployment of algorithms [76]. Recently, methods such
as global redundancy minimization in orthogonal regression
have been proposed to effectively assess the dependencies
between all EEG features from a global perspective, selecting
a discriminative and nonredundant EEG feature subset for
emotion recognition [77].

A comparative summary of representative feature extraction
methods is presented in Table III. Each method reflects differ-
ent emphases in feature design. For example, CSP and FBCSP
primarily rely on spatial filtering, while FFT, STFT, and CWT
focus on frequency or time—frequency transformations. CNN-
based models, when combined with such transformations,
significantly outperform classical methods on Dataset 2b. This
highlights the critical role of informative and discriminative
feature representations in boosting classification performance
for nonstationary EEG signals.

D. Classification Methods

Based on the features extracted from EEG signals, differ-
ent classifiers can be employed to classify MI, P300, and
SSVEP signals. Over the years, researchers have proposed
various classification methods, such as SVM, KNNs, RF, and
LDA, each demonstrating its own advantages and applica-
bility in different fields and applications. The specific steps
of the classification process are in Fig. 8. Compared to
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traditional machine learning methods, deep learning signifi-
cantly enhances model generalization by learning multilevel
abstract representations of data through multilayer network
models. When using feature-based classifiers such as LDA
and SVM, manual feature extraction is required. In contrast,
deep learning models adopt an end-to-end learning approach,
automatically learning meaningful features from raw data and
directly performing classification or mapping the data into con-
tinuous output sequences. This characteristic has led to deep
learning gaining widespread attention and achieving significant
success in applications such as EEG signal recognition. In
what follows, we introduce commonly used classifiers in
machine learning, such as SVM and KNN, as well as popular
deep learning architectures like CNNs and RNNs.

1) SVM: SVM is a traditional machine learning method
widely used for binary classification tasks, and it still plays
a crucial role in BCI research. SVM is effective in handling
small sample data, exhibits good generalization ability, and
can solve nonlinear classification problems. However, since
EEG signals are complex, nonperiodic time series data, their
data structure differs significantly from traditional linear data,
making the selection of an appropriate kernel function and
penalty parameter (C) challenging in practical applications. If
not chosen correctly, these parameters can significantly reduce
the model’s classification accuracy. Using particle swarm
optimization (PSO) to select the optimal kernel and penalty
parameters has been shown to improve classification accuracy
compared to traditional SVM methods [82].

2) KNN: KNN algorithm is a classification and regression
method based on distance metrics. It predicts the class or
value of a new sample by calculating the distances between
the sample and each training sample, selecting the k closest
neighbors, and using their labels to make the prediction. KNN
is a nonparametric method, meaning it does not assume any
specific distribution of the data, making it very effective for
handling complex data in some cases. Its simplicity makes it
suitable for classification tasks in smaller feature spaces [83]
and can also be used for regression tasks [84].

3) CNN: CNNs are widely recognized in fields like com-
puter vision and SR, and have demonstrated strong potential in
BCI and EEG signal processing. In EEG signal analysis, CNNs
not only effectively extract the spatiotemporal features of EEG
data, but also play a crucial role in BCI applications, driving
the development and application of EEG feature extraction
techniques [85]. CNNs construct deep network architectures
by stacking multiple convolutional layers, pooling layers, and
other components. The introduction of batch normalization and
residual blocks has significantly alleviated the model degra-
dation problem in deep neural networks. These advancements
enable deep networks to scale from dozens to hundreds or even
thousands of layers, greatly improving model performance
and generalization ability, making CNNs suitable for various
datasets and tasks [86].

In EEG signal processing, CNNs have become the dominant
deep learning architecture, widely applied to tasks such as
MI, ERP, P300, and SSVEP. Despite their strong capabil-
ity in feature learning and pattern recognition, CNNs are
prone to overfitting in small-sample scenarios, which can

52031

compromise classification accuracy. To address the challenges
posed by individual variability and data scarcity in EEG-
based BClIs, several end-to-end deep learning frameworks have
been proposed. Autthasan et al. [87] introduced MIN2Net,
which integrates deep metric learning into a multitask AE to
simultaneously learn compact and discriminative latent repre-
sentations while performing classification, yielding significant
improvements in cross-subject performance. Liu et al. [88§]
proposed FBMSNet, which employs a filter bank to construct
multiview spectral representations, combined with multiscale
convolutions and spatial filtering to extract discriminative
features, and further incorporates joint supervision of cross-
entropy and center loss to maximize interclass separability
and intraclass compactness. More recently, to further allevi-
ate cross-subject variability and overfitting risks, Autthasan
et al. [89] subsequently proposed MixNet, which integrates
spectral-spatial feature extraction via FBCSP with the mul-
titask architecture of MIN2Net, and introduces an adaptive
gradient blending mechanism to dynamically regulate the
learning pace of multiple tasks while mitigating overfitting.
Experimental results demonstrated that these methods signif-
icantly outperform existing algorithms across multiple public
datasets, with particularly strong performance in low-density
EEG classification tasks, thereby opening new avenues for
lightweight and portable BCI applications as well as IoT-based
wearable devices.

The powerful feature learning capabilities of CNNs have
enabled state-of-the-art performance in EEG recognition tasks.
With the continuous optimization of network architectures and
the integration of multitask learning and adaptive mechanisms,
CNNs have achieved further improvements in both accuracy
and generalization, providing strong support for the rapid
advancement of EEG analysis and BCI technologies.

4) RNN: RNNs are deep learning models specifically
designed for processing sequential data. Unlike traditional
feedforward neural networks, RNNs have an internal state
(memory) that allows them to use this state to process input
sequences, thereby maintaining memory of previous inputs.
This makes RNNs particularly well-suited for applications
that require context and data sequence understanding, such
as natural language processing (NLP), SR, and time series
forecasting. The design of RNNs enables them to learn tem-
poral dependencies in sequences, meaning the current output
is influenced by previous inputs.

Although RNNs have significant potential, they faced chal-
lenges in practical applications due to the vanishing gradient
problem. To address this issue, LSTM networks were intro-
duced [90], enabling RNNs to effectively learn long-term
dependencies. Additionally, gated recurrent unit (GRU) [91]
offers a simplified version of LSTM, while still maintaining
strong performance. With the advancement of these tech-
niques, RNN architectures have been widely applied across
various fields and continue to push deep learning models
toward more complex tasks. For instance, Roy et al. [92],
Idrees et al. [93], and Mao et al. [94] proposed ChronoNet,
designed to efficiently process EEG data, particularly for diag-
nosing brain-related diseases (such as epilepsy) and detecting
abnormal brain activity.
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5) AEs: AEs [95] are unsupervised learning methods that
extract key features from data by adjusting the hidden layer
weights to make the input and output as close as possible,
similar to PCA. However, traditional AEs tend to simply
copy the input vector to the output during training, leading
to poor model performance, especially when the distribution
of training and test samples is inconsistent. In EEG signal
processing, due to the high dimensionality and correlations
between dimensions, traditional AEs struggle to effectively
extract features.

CNNs overcome this challenge by using local percep-
tion (receptive fields) and parameter sharing to extract
local features from EEG signals. Through convolution and
downsampling, CNNs reduce feature dimensionality while
preserving key features, thus improving model performance.
To address the limitations of traditional AEs, Wen and Zhang
[96] proposed the AE-CDNN model, which combines CNN
and AE techniques. This model iteratively extracts features
through convolution kernels and downsampling, ultimately
reducing the number of features and optimizing feature learn-
ing for EEG signals.

6) Other Valuable Models: The success of Transformers
[116] in the field of NLP can be attributed to their superior
ability to handle long-range dependencies, offering significant
advantages over traditional CNNs and RNNs. This capability
to process long-range dependencies is equally crucial for the
analysis of EEG signals, as EEG signals have clear time-
series characteristics. The EEG Conformer, proposed by Song
et al. [20], combined Transformers with CNNs to capture
global dependencies in the time domain. This approach has
demonstrated exceptional performance in EEG decoding tasks,
effectively enhancing the accuracy of EEG signal recognition.
Xie et al. [117] presented a deep learning framework that
includes five models, combining Transformer models with
CNNs, and achieved high accuracy in MI classification tasks.

Lawhern et al. [85] presented EEGNet, a compact CNN.
Following this, other researchers integrated well-established
frameworks in their respective fields, proposing models that
achieve high accuracy in specific domains. Song et al. [118]
presented a practical end-to-end framework called LSDD-
EEGNet for EEG-based depression detection. Deng et al. [100]
developed the advanced TSGL-EEGNet model for MI-based
BClIs. Schneider et al. [119] suggested the Q-EEGNet model, a
high-energy-efficiency 8-bit quantized parallel implementation
of EEGNet for marginal MI BCIs. Huang et al. [97] presented
an EEG classification network using the Hilbert—-Huang trans-
form (HHT), known as separable EEGNet (S-EEGNet), and a
separable CNN with bilinear interpolation. Ghosh et al. [120]
presented deep oscillatory neural networks (DONNs) and
oscillatory CNNs (OCNN), which integrate Hopf oscillators
to capture the oscillatory nature of EEG signals, offering a
biologically plausible and efficient approach for EEG classi-
fication tasks. These models achieved competitive accuracy
with fewer parameters. Wu et al. [121] presented a multi-
modal learning model for EEG and eye movement signals,
consisting of offset-reconstruction convolution, eye-movement
convolution, and multimodal channel attention dense modules.
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This model simultaneously records EEG and eye movement
signals for image classification and target localization.

It is worth noting that whether models are trained in
a subject-dependent or subject-independent manner is cru-
cial, as this distinction directly affects the generalization
capability and practical applicability of EEG-based BClIs.
Subject-dependent schemes, where training and testing are
performed on data from the same individual, often yield higher
accuracy due to reduced intersubject variability. However, such
approaches have limited practical value, since models may
fail when exposed to unseen subjects. In contrast, subject-
independent training schemes, though typically associated
with lower accuracy, are more challenging yet essential for
real-world deployment, as they evaluate the robustness of
algorithms under cross-subject conditions. This distinction is
particularly relevant in applications such as affective comput-
ing, MI, and clinical diagnostics, where reliable performance
across diverse populations is critical. Therefore, the choice
between subject-dependent and subject-independent training
not only influences reported performance metrics but also
determines the translational potential of the proposed methods.
Table IV presents examples of some of the classification
methods used in recent years.

IV. PUBLIC DATASETS

Public datasets provide standardized benchmarks for eval-
uating the performance of models and algorithms, making
it possible to compare different methods under the same
experimental conditions, thus ensuring the comparability and
consistency of evaluation results. Moreover, public datasets
significantly enhance the reproducibility and transparency of
research, allowing other researchers to conduct validation
experiments based on the same data, which strengthens the
reliability and scientific rigor of the studies. These datasets
typically cover a diverse range of tasks and scenarios, support-
ing comprehensive assessments of a model’s generalization
ability across various conditions.

Public datasets are usually collected and annotated by
authoritative organizations or professional teams, effectively
reducing the data collection costs for researchers, accelerating
scientific progress, and promoting deep collaboration and
technology transfer between academia and industry in Table V.
Through open sharing platforms, researchers can more easily
exchange knowledge and innovate, further advancing break-
throughs in the field.

A. BCI Competitions

The BCI Competitions [123] aim to provide the scientific
community with high-quality neuroscience data, attracting
scientists and scholars from diverse backgrounds and nation-
alities, including both senior experts and students. Participants
drive advancements in the field by evaluating the performance
of algorithms across various BCI tasks. The core goal of all
competitions is to challenge new paradigms, handle complex
data, and foster innovation and development in BCI research.

BCI Competition III [122] includes multiple datasets focus-
ing on brain signal classification and decoding, covering
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TABLE IV
EXAMPLES OF CLASSIFICATION MODELS USED IN RECENT YEARS

Ref./Year Method Dataset Task Training Schemes Accuracy
BCI IV Ila MI (4 classes) Subject-independent 77.9%
[97] 2020 Separable-CNN DEAP EC-Valence (2 classes) Subject-independent 89.91%
EC-Arousal (2 classes) Subject-independent 88.31%
SEED ER (3 classes) Sub!ect—flependen[ 94.24%
. Subject-independent 79.37%
[98] 2020 Regularized-GNN . o
SEED-IV ER (4 classes) Subject-dependent 85.3%
Subject-independent 73.84%
[99] 2020 Temporal-CNN BCI 1V Ila MI (4 classes) Subject-independent 77.35%
BCI IV Ila MI (4 classes) Subject-independent 78.96%
[100] 2021 TCSGL-CNN BCI 1II IIIa MI (4 classes) Subject-independent 85.30%
BCI IV Ila MI (4 classes) Subject-independent 83.73%
(1013 2021 Temporal-CNN HGD MI (4 classes) Subject-independent 94.41%
PhysioNet MI (4 classes) Subject-dependent 93.06%
Subject-independent 88.57%
[102] 2022 Temporal-CNN Subicct-d d 96,24
High Gamma MI (4 classes) U _!ect—' cpendent o
Subject-independent 80.89%
BCI IV IIa MI (4 classes) Subject-dependent 78.74%
Subject-independent 69.64%
[103] 2022 Temporal-CNN .
OpenBMI MI (2 classes) Subject-dependent 71.91%
P S5€S Subject-independent 73.52%
BCI IV Ila MI (4 classes) Subject-independent 78.21%
[104] 2023 IF-CNN OpenBMI MI (2 classes) Subject-dependent 71.22% + 18.85%
Subject-independent 71.23% + 16.05%
[105] 2023 2D-LSTM-CNN BCI IV IIb MI (2 classes) Subject-independent 75.40%
: e Subject-dependent 86.87%
BCL1V lla MI (4 classes) Subject-independent 79.39%
. Subject-dependent 87.26%
[106] 2023 Attention-CNN BCI IV IIb MI (2 classes) Subject-independent 87.81%
. Subject-dependent 87.26%
OpenBMI MI 2 classes) Subject-independent 65.26%
.. BCI 1V Ila MI (4 classes) Subject-independent 74.2%
[107] 2024 Conditional-GAN BCI III [Va MI (2 classes) Subject-independent 89.8%
BCI IV Ila MI (4 classes) Subject-independent 81.05%
[108] 2024 No-Filter-EEG-CNN MI (2 classes) Subject-independent 93.56%
BCI III IIb MI (2 classes) Subject-independent 88.40%
[109] 2024 Transformer-GCN Physionet MI (4 classes) Subject-independent 97.43%
BCI 1V Ila MI (4 classes) Subject-independent 81.79%
. L o Subject-independent 87.12%
[110] 2024 Domain Generalization BCI 1V IIb MI (2 classes) .
OpenBMI MI (2 c ) Subject-dependent 78.37%
pen classes Subject-independent 76.94%
BCI IV Ila MI (4 classes) Subject-independent 83.22%
[111] 2025 Transformer-CNN BCI 1V IIb MI (2 classes) Subject-independent 89.70%
HGD MI (4 classes) Subject-independent 95.89%
[112] 2025 Attention-CNN BCI 1V Ila MI (4 classes) Subject-independent 84.73%
. MI (2 classes) Subject-independent 92.20%
[113] 2025 Multi-model Struct EEG-fNIRS GT (2 classes) Subject-independent 85.30%
BCI IV Ila MI (4 classes) Subject-independent 81.17%
[114] 2025 Attention-CNN BCI 1V IIb MI (2 classes) Subject-independent 89.83%
HGD MI (4 classes) Subject-independent 95.49%
BCI IV Ila MI (4 classes) Subject-independent 80.21%
[115] 2025 Sinc-Attention-CNN BCI IV IIb MI (2 classes) Subject-independent 84.02%
OpenBMI MI (2 classes) Subject-independent 72.70%

MI: Motor Imagery, EC: Emotion Classification, GT: Gripping Tasks, GAN: Generative Adversarial Network, GCN: Graph Convolutional
Network, GNN: Graph Neural Network, LSTM: Long Short-Term Memory.

various subtasks such as MI and P300 speller tasks. These
datasets are applicable to both within-subject and cross-
subject scenarios. For instance, Dataset IVb is used for MI
classification tasks, specifically focusing on uncued classifier
applications.

BCI Competition IV [123] expands on this by including
several subdatasets targeting MI, speller tasks, and brain signal
decoding. For example, Dataset 1 deals with continuous EEG
signal classification, distinguishing MI from resting states.
Dataset 2 focuses on EEG signal classification affected by eye
movement artifacts, with tasks related to MI in different body
parts. Dataset 3 involves classifying wrist movement directions
from MEG signals. Dataset 4 requires fine spatial resolution

for ECoG signal classification, specifically targeting flexion
and extension movements of the five fingers.

B. OpenBCI Datasets

OpenBClI provides a series of EEG datasets generated using
its hardware, including both raw EEG signals and processed
data. These datasets are publicly available and related to
EEG and BCI research, aiming to provide resources for
researchers to develop and evaluate BCI algorithms. The
datasets cover a variety of experimental tasks, EEG signal
types, and application scenarios, making them suitable for
different research needs, such as MI, brain signal decoding,
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TABLE V
AVAILABLE PUBLIC DATASETS FOR EEG

Name Dataset Classes Subjects Trials Channels Download

BCI Competitons IIT 1I (P300 speller paradigm) [122] 36 2 100 64 https://www.bbci.de/competition
Ila (MI, multi-class) 4 3 60 60
IIIb (MI with non-stationarity problem) 2 3 60 2 bipolar
IVa (MI, small training sets) 2 2 280 118
IVb (M1, uncued classifier application) 2 1 210 118
IVe (M1, time-invariance problem) 2 1 210 118
V (Mental imagery, multi-class) 3 3 - 32

BCI Competitons IV I (MI, uncued classifier application) [123] 2 7 - 64 https://www.bbci.de/competition
Tla (MI) 4 9 288 22
1Ib (MI) 2 9 160 3 bipolar

GigaDB MI (EEG-MI dataset) [124] 2 52 100 / 120 64 https://gigadb.org/dataset
OpenBMI [125] 2 54 200 62 https://gigadb.org/dataset
SSVEP (Binocular swap exp.) [126] 40 35 200 9 https://gigadb.org/dataset
SSVEP (Binocular vision exp.) 40 35 200 9
SSVEP (Checkerboard arrangement exp.) 40 35 200 9

SEED IV (Emotion Recognition) [127] 4 15 24 62 https://bcmi.sjtu.edu.cn
V (Emotion Recognition) [128] 5 20 24 62
VII (Emotion Recognition) [129] 7 20 20 62

and attention monitoring. OpenBCI also boasts a large and
active user community, where members share datasets related
to mental state classification, MI, and other BCI tasks, further
fostering collaboration and innovation in the field of BCIL.

C. GIGA DB

GIGA DB is an open academic platform specifically
designed for storing and sharing large-scale biological datasets
[126]. It provides researchers worldwide with a high-quality
environment for data storage, management, and sharing, sup-
porting the upload and access of various data types. GIGA
DB aims to promote the open sharing and reuse of scien-
tific data, fostering innovation and collaboration within the
research community. Researchers can access and analyze large
datasets from different experiments and projects through the
platform, accelerating scientific discoveries and enhancing the
transparency and reproducibility of research.

D. Other Valuable Datasets

Zhang et al. [41] proposed the Chinese Imagined Speech
Corpus (Chisco), which contains high-density EEG recordings
of imagined speech from healthy adults, with over 20000
sentences. Each participant’s EEG data exceeds 900 min,
making it the largest individual neural language decoding
dataset to date. The stimuli used in the experiment include
more than 6000 daily phrases spanning 39 semantic categories,
covering almost all facets of everyday language.

Miltiadous et al. [130] introduced a dataset containing
conventional EEG data, which includes scalp EEG recordings
from AD, frontotemporal dementia, and healthy subjects. The
dataset consists of 36 Alzheimer’s, 23 cases of frontotemporal
dementia, and 29 age-matched healthy individuals, along with
the Mini-Mental State Examination (MMSE) scores for each
participant. The EEG signals were captured using a monopolar
montage. The dataset is provided in the standard BIDS format,
including both raw and preprocessed EEG data. During pre-
processing, common denoising techniques, including artifact
subspace reconstruction and ICA, were applied.

V. APPLICATIONS

EEG plays a vital role in both HCI and neurological disease
diagnosis. In HCI, brain signals are commonly employed in
areas such as SR [131], rehabilitation [132], emotion detection
[133], and user experience evaluation [134]. In neurological
disease diagnosis, EEG has become an important tool for
doctors and researchers in diagnosing brain function disorders,
including conditions like epilepsy [135], [136], cerebral palsy
[137], schizophrenia [138], [139], AD [140], and MCI [141].

A. Human—Computer Interaction

HCI [142] is an interdisciplinary research field that explores
the design and application of computer technology, particularly
the interaction between users and computers. Initially, HCI
focused primarily on the design of computer systems and
user operations. However, with the continuous advancement
of information technology, the scope of HCI research has
expanded to encompass nearly all forms of technological
devices and platforms, including smartphones, virtual reality,
IoT devices, and other embedded systems. The applications
of HCI are illustrated in Fig. 9(a). The goal of HCI is to
enhance the usability, ease of use, and user experience of
technology, enabling technology to better serve human needs
and behaviors.

SR allows latent speech to be expressed as explicit speech,
assisting individuals with special needs. Das et al. [143]
presented a new method to enhance the automatic SR (ASR)
system by suggesting a multimodal framework that integrates
EEG and speech input. This provides a potential solution
for facilitating communication among individuals with speech
disorders and highlights the synergistic potential of integrating
EEG signals with speech data.

Emotion recognition technology reveals emotions that are
intentionally concealed, helping people better understand emo-
tional changes and environmental influences. Xu et al. [144]
presented a novel emotion recognition method using SNNs
called Emo-EEGSpikeConvNet (EESCN). This model not only
improves the performance of EEG-based emotion recognition
but also offers faster operation speeds and lower memory
consumption.
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For patients with muscle and motor system impairments,
EEG provides a new solution for assisting in rehabilitation.
Su et al. [145] found that in MI tasks, stroke patients showed
reorganization in both the contralateral and ipsilateral motor
regions of the brain, providing strong evidence for neuro-
plasticity and offering a new perspective for rehabilitation
treatment.

B. Neurological Disease

The spatial patterns and dynamic characteristics of the brain
play an essential role in diagnosing neurological diseases,
uncovering the complex relationships between brain functions
and structure [146]. Through imaging techniques, researchers
are able to observe the time-varying fluctuations in brain
networks and connectivity, which reflect the brain’s adapt-
ability over time. Each individual’s brain structure is unique,
influencing the spatial distribution of neural activity, which in
turn is reflected in EEG patterns. The nonlinear dynamics of
the brain and cross-regional coordination of activity are critical
for the generation of thoughts and behaviors. Spatial domain
analysis is considered a core tool for understanding brain
function and the changes caused by neurological diseases,
helping to deepen our understanding of the complexities of
these disorders [147].

To diagnose spatial pattern changes caused by neurological
diseases, advanced imaging technologies, such as EEG and
MRI, provide complementary perspectives. EEG is capable
of recording abnormal electrical activities, such as seizures,
which aid in locating the affected areas and analyzing their
impact on brain function. MRI, on the other hand, reveals
the brain’s anatomical structure and activity, supporting the
diagnosis by analyzing changes in brain connectivity patterns.
Fig. 9(b) shows the applications in neurological diseases. For
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example, EEG coherence analysis is applied to accurately
differentiate AD from multi-infarct dementia [148]. In general,
both EEG and MRI play essential roles in the assessment
of neurological diseases [149]. The spatial, topological, and
dynamic data can enhance our understanding of the underlying
mechanisms of diseases and improve clinical diagnosis and
treatment approaches.

VI. CHALLENGES

We reviewed various applications of EEG signals in
machine learning. Based on the experiences from these appli-
cations, the following briefly outlines the challenges faced in
future EEG signal analysis research. A structured overview
of these challenges, along with representative solutions and
prospective directions, is presented in Table VI.

A. Foundations of Ideal HCI

To achieve near-error-free HCI applications, EEG is a
commonly used physiological signal, and an ideal signal
processing method is essential. This not only sets high require-
ments for dataset creation but also presents strict challenges
for the data preprocessing process. With the rapid development
of the 10T, the acquisition, processing, and transmission of
EEG signals increasingly depend on the computing power
and intelligence of edge devices. In real-time BCI systems, in
particular, the efficiency and accuracy of preprocessing directly
impact system responsiveness and user experience.

1) Artifact Removal: 1ICA [150] effectively removes arti-
facts from EEG recordings through independent-source sep-
aration techniques. It can accurately isolate and eliminate
contamination caused by human factors, and compared to
regression analysis and PCA, ICA performs better. ICA can
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TABLE VI
SUMMARY OF IDEAL EEG SIGNAL PROCESSING AND APPLICATION SCENARIOS
Aspect Key Challenges Representative Methods Requirements
Ideal - Non-stationary, noisy EEG signals - Artifact Removal: ICA [150], - Develop lightweight, adaptive
Human-Machine requiring real-time processing. SSA+ICA+SWT hybrid [151]. artifact removal methods for edge
Interaction - Preprocessing efficiency and accuracy - Feature Extraction: CSP, RCSP [153], devices.

impact system responsiveness.
- Limited computing resources on IoT and
edge devices.

CNN-based deep learning.
- Classification: Deep neural networks
[154], lightweight models [20].

- Balance accuracy and
computational cost.

- Improve generalization across EEG
paradigms and platforms.

Ideal Neurological
Disease Diagnosis

- Subject variability and disease stage
complicate EEG patterns.

- Real-time interpretation and automation
needed clinically.

- Epilepsy Detection: 13-layer CNN by
Acharya et al. [155].

- Alzheimer’s: Spectral and nonlinear
analyses revealing reduced coherence,
complexity [156].

- REM-NREM Regulation: Brainstem
flip-flop model [157].

- Develop adaptive, patient-specific
algorithms.

- Enhance real-time analysis and
clinical interpretability.

- Use multimodal data (EEG +
imaging) to improve accuracy.

Future Directions

- Need fine-grained, personalized,
multimodal strategies.

- Challenges in data heterogeneity,
standardization, sharing.

- Real-time, efficient, reliable EEG
acquisition and transmission in
resource-limited IoT environments.

- Cross-disciplinary collaboration:
Neuroscience, engineering, computing,
medicine.

- Multimodal fusion: EEG combined with
fMRI, PET, CT, eye-tracking, ECG, EMG.
- Personalized processing: Subject-specific
models and features.

- Integration with IoT: Lightweight
algorithms and protocols for wearable EEG
devices connected to cloud/edge platforms,
enabling continuous monitoring and

- Build standardized, sharable EEG
databases.

- Develop interpretable, integrative
AI models.

- Enable wearable BCI and health
monitoring in daily life.

- Develop lightweight algorithms and
protocols suitable for IoT-constrained
environments to support brain health
monitoring, early warning, and
personalized interventions.

personalized intervention.

also be employed to analyze brain signals associated with
physiological activities such as blinking. However, while
ICA performs well in multichannel EEG signal processing,
it still faces challenges in single-channel EEG applications.
To address this, Noorbasha and Sudha [151] combined SSA
with ICA, along with stationary WT (SWT), to improve
artifact separation performance. Although hybrid approaches
improve accuracy, their high computational cost limits their
applicability in resource-constrained settings. As EEG systems
increasingly adopt edge-computing architectures under the
IoT paradigm, artifact removal methods must meet stricter
requirements for real-time performance, efficiency, and low
power consumption. This calls for lightweight and reliable
algorithms tailored to edge devices. Moreover, due to the
diverse characteristics of artifact types, more adaptive and gen-
eralizable methods are essential for robust EEG preprocessing
across varied platforms and scenarios.

2) Feature Extraction in BCI: The CSP is one of the
most well-known feature extraction methods in the BCI field
[152], and its efficiency and wide application have been well
established. However, CSP is highly sensitive to noise, which
can lead to overfitting problems. To address this, Lotte and
Guan [153] presented a regularized CSP (RCSP) method,
providing a theoretical framework for improving CSP. Despite
this, selecting the best technique for specific EEG signal
modalities remains a challenge.

3) Deep Learning in EEG Classification: Many stud-
ies have been presented using deep learning methods for
classification in tasks such as language recognition, MI,
P300, and SSVEP. The CNN model has been the most
frequently reported in the literature. However, how to
strike a balance between classification accuracy and com-

putational efficiency—especially on resource-constrained IoT
devices—remains a major challenge when designing models
suitable for real-time applications and rapid calibration.

B. Ideal State of Neurological Disease Diagnosis

EEG is commonly used as an auxiliary signal in detecting
and diagnosing neurological diseases. In the detection process,
accuracy is crucial, especially when automatic detection is
achieved, as it can significantly improve diagnostic efficiency.
Acharya et al. [155] presented a 13-layer deep CNN algorithm
for detecting different categories of normal, preictal, and
epileptic seizures. AD is the most prevalent neurodegenera-
tive disorder, characterized by cognitive decline, intellectual
impairment, and behavioral abnormalities. Jeong [156] found
that, through conventional spectral analysis and nonlinear
dynamic approaches, the EEG of AD patients exhibited
slower average frequencies, reduced activity complexity, and
decreased coherence between cortical regions, providing evi-
dence for the early diagnosis of AD. Similarly, Lim et al. [158]
introduced Cogoland, a lightweight BCI gaming system inte-
grating EEG headbands and real-time feedback, which enables
personalized attention training for children with ADHD. This
innovation illustrates how EEG can extend beyond passive
diagnosis to active regulation, establishing a technological
chain from diagnosis to intervention. Furthermore, Huang et al.
[159] proposed a single-channel wearable BCI system for
efficient attention modulation, offering a lightweight, cost-
effective closed-loop solution that accelerates the transition
of BCI technologies from laboratory settings to daily life
applications.

Despite these advances, EEG in the diagnosis of neuro-
logical diseases becomes more complex due to individual
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differences, the different stages of the disease, and other influ-
encing factors, necessitating the development of more precise
algorithms. Additionally, real-time processing and automated
analysis of EEG signals are critical for clinical applications,
but the current models still need further optimization in terms
of real-time performance and adaptability.

In this context, the integration of EEG-based diagnostic
systems with IoT infrastructures has opened new opportunities
for remote and continuous healthcare monitoring. Wearable
EEG devices, connected via IoT networks, enable the real-
time transmission and analysis of neural data on edge servers
or cloud platforms. This not only facilitates early detection
of abnormal brain activity in daily life environments but also
reduces the burden on clinical personnel. However, achieving
high diagnostic accuracy in resource-constrained edge environ-
ments demands lightweight, low-latency, and energy-efficient
signal processing algorithms.

Finally, interdisciplinary collaboration and the combination
of multimodal data provide opportunities to improve diag-
nostic accuracy. However, research in this area still faces
challenges related to data sharing, privacy protection, and
standardization across devices and platforms.

C. Future Directions

The future development of EEG technology relies heavily
on interdisciplinary collaboration across fields such as neuro-
science, engineering, computer science, and clinical medicine.
By integrating these disciplines, more precise EEG data
acquisition, processing, and analysis can be achieved, which
in turn drives the development of cutting-edge technologies
such as BCI, neurofeedback, and EEG signal decoding. With
the rapid advancement of lightweight deep learning models,
recent studies have demonstrated their great potential in IoT
environments. For instance, Autthasan et al. proposed MixNet
[89], which leverages spectral-spatial features and multitask
learning to enhance MI classification. Remarkably, MixNet
achieves outstanding performance even under low-density
EEG montages, offering promising applications for portable
and wearable EEG devices. Similarly, Chaisaen et al. [160]
introduced AlphaGrad, an adaptive loss blending strategy that
automatically balances multiple loss functions for MI-based
EEG classification. This method delivers substantial improve-
ments in subject-independent tasks and demonstrates strong
adaptability across various BCI paradigms. These innovations
highlight the feasibility of designing models with low latency
and computational efficiency, making them particularly well-
suited for embedded or wearable systems in real-time BCI
applications [161].

In terms of datasets, single EEG data alone is insufficient
to fully reveal the brain’s complex activity patterns. Future
advancements may involve multimodal data fusion, integrating
EEG with other neuroimaging techniques (such as fMRI, PET,
and CT) and physiological signals (such as eye movement,
electrocardiograms, and electromyograms) for comprehensive
analysis. This will provide more comprehensive information
for the early diagnosis of neurological diseases, thereby
improving diagnostic accuracy and reliability. At the same
time, future research will focus more on personalized signal

52037

processing and feature extraction, aiming to achieve more
accurate neurological disease diagnosis and treatment.

Future advancements in EEG-based BCI development can
prioritize the following areas.

1) Interdisciplinary Collaboration: EEG technology will
rely on collaboration across fields such as neuroscience,
computer science, engineering, and clinical medicine
to enhance the accuracy of EEG data acquisition and
analysis and to promote the development of cutting-edge
technologies like BCI.

2) Multimodal Data Fusion: In the future, EEG will be
combined with neuroimaging techniques such as fMRI,
PET, and CT for multimodal data analysis, improving
the accuracy of early diagnosis of neurological diseases.

3) Personalized Signal Processing: Future research will
focus on personalized EEG signal processing and feature
extraction to provide more precise diagnosis and treat-
ment for different patients with neurological diseases.

4) Integration With IoT: In the future, continuous, remote,
and real-time monitoring of EEG signals will be realized
through wearable and implantable devices connected to
cloud or edge computing platforms. Lightweight and
energy-efficient algorithms and communication proto-
cols suitable for resource-constrained IoT environments
will be developed to ensure reliable processing and
transmission of EEG data, promoting brain health
monitoring, early warning of neurological events, and
personalized interventions.

VII. CONCLUSION

This review primarily discussed the basic principles of
EEG-based BCIs and their current applications, focusing on
EEG data acquisition, preprocessing, and feature extraction
methods. Regarding classification methods, with the signif-
icant increase in computational power, traditional machine
learning methods have gradually transitioned to deep learning
architectures, laying both the theoretical and practical foun-
dation for decoding EEG signals and improving BCI system
performance. Additionally, this article briefly introduces sev-
eral public datasets that provide valuable data support for
BCI research and applications. With continuous technological
advancements and the ongoing efforts of researchers, BCI
technology is progressing toward higher precision and effi-
ciency, providing a solid foundation for realizing ideal HCI
models and accurate neurological disease diagnosis in the
future. Breakthrough developments have illuminated the cur-
rent advancements in BCIs and painted a promising blueprint
for future BCI progress.
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