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Resource-Aware Dynamic Scheduling for Tasks With
Deadline Constraints on Edge Computing Systems

Wenbiao Cao, Xiaoyong Tang , Tan Deng , Ronghui Cao , and Keqin Li , Fellow, IEEE

Abstract—The proliferation of various IoT devices has brought
about diverse computing requests. Scheduling delay-sensitive tasks
to edge nodes closer to data sources can help alleviate core network
congestion and improve system quality of service (QoS). However,
with the dynamic computing requirements of changing scenarios
and the imbalanced performance of limited heterogeneous edge
resources, resource competition among multiple tasks has become
increasingly fierce. This resource competition leads to inefficient
services and performance fluctuations in edge scheduling systems.
The key lies in dynamically matching task requirements and limited
heterogeneous resources to improve resource utilization efficiency.
To overcome this challenge, we propose a resource-aware task
grouping scheduling strategy (RATGS) based on our proposed
group-based and shared-state edge scheduling framework, aiming
to improve the overall service quality of edge computing systems.
We perform extensive evaluation on multiple metrics using real-
istic workloads and real-world traces. The experimental results
demonstrate that RATGS improves the task completion rate by
7.56%∼50.1% before the deadline and improves the efficiency
of resource utilization by 17.7%∼94.8% compared with existing
baseline strategies. In addition, RATGS performed second best in
terms of average completion time.

Index Terms—Edge computing, task scheduling, deadline
constraint, resource utilization.

I. INTRODUCTION

W ITH the development of artificial intelligence Internet
of Things (AIoT), multi-access edge computing (MEC)

as a promising paradigm has attracted more attention from
researchers [1], [2]. It migrates some computing requests ac-
cessing the cloud center to edge servers closer to the data
source. This helps to alleviate the congestion of the core network
and ensure the growing quality of service requirements, espe-
cially for applications with low latency and high reliability [3],
[4]. However, the distributed heterogeneous characteristics of
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computing resources, the increasingly diverse dynamic require-
ments, and the limited nature of resources pose challenges to
efficient scheduling at the edge [5], [6].

How to dynamically adapt tasks to limited computing re-
sources is the key to improving edge system performance. First,
edge nodes have obvious heterogeneity in terms of resource
type, performance, and architecture. They usually deploy limited
computing services, such as virtual reality, face recognition,
and object detection [7], [8]. However, applications deployed
at edge usually have strict deadline requirements [9], [10].
The contradiction between the performance differences between
nodes and the deterministic requirements of deadlines may lead
to an imbalance in computing load. Specifically, when there is a
powerful node in the area, the gateways that do not interact with
information will prioritize the tasks to the powerful nodes, which
will affect the overall performance and resource utilization of the
system.

Second, resource competition is widely present in edge net-
works. Tasks from different network links compete for limited
computing resources, which involves the priority of resource
allocation. It is worth noting that cloud edge service providers
provide computing services based on service level agreements
(SLAs) with users. Violating task deadlines will have a negative
impact on the user’s QoE and reflect the QoS of system [11], [12],
[13], [14]. Moreover, this impact will fluctuate with changes in
the computing environment. For example, in computing scenar-
ios related to train stations and high-speed rail stations, violating
the deadline of face recognition tasks during peak hours may
cause greater QoE loss than during idle periods. Therefore,
resources should be prioritized for tasks that are more beneficial
to the current computing environment, aiming to improve users’
long-term satisfaction with system services [15].

Besides, task scheduling should comprehensively consider
task requirements and resource status changes to achieve dy-
namic scheduling under resource constraints [16], [17], [18].
In real-edge scheduling scenarios, the execution information
of tasks is uncertain before they are offloaded to computing
nodes. When multiple tasks with deadline constraints arrive
simultaneously, different scheduling schemes for these tasks will
produce varying results. As shown in Fig. 1, all three scheduling
schemes can meet or miss the deadlines of t1, t2, t3, and t4.
The third scheduling scheme is obviously the best. However,
when tasks go online in chronological order and information is
unknown, it is difficult to find the optimal schedule immediately.
The optimal scheme can be achieved by adjusting the execution
order later, such as from Scheme 1 to 3. Second, the state of
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Fig. 1. An example for multiple tasks scheduling.

resources is constantly changing. As shown in Fig. 2, static
scheduling leads to idle resources in two time periods, while
through dynamic task adjustment, the system can further utilize
resource fragmentation and improve resource utilization.

Overall, our key insight is that improving the efficiency of
resource utilization is more important than simply improving
utilization. The system should complete as many requests as
possible with limited resources. Thus, this paper focuses on how
to effectively schedule deadline-constrained tasks to improve the
service quality of edge scheduling systems. This paper is an ex-
tension of our conference paper [11], and its main contributions
are as follows:
� First, we build a group-based and shared-state resource

management model. The model abstracts heterogeneous
physical resources and logically organizes computing re-
sources into multiple computing groups. Each computing
group provides a similar type of service. The state of com-
puting units is shared among multiple computing groups,
reflecting their collaborative management.

� Second, we mathematically formulate the deadline-
constrained multi-task scheduling problem on multi-
ple machines with resource competition, aiming to
maximize the utilization efficiency of limited resources.

� Third, we propose a resource-aware task grouping schedul-
ing strategy (RATGS). The strategy includes three parts:
task regrouping and priority response model, a resource-
aware greedy scheduling algorithm, and a task adjusting
method.

� Fourth, we employ realistic workloads and real-world
traces to evaluate our strategy. Experimental results show
that RATGS can adapt to the changes of dynamic resource
status and achieve higher overall quality of service for edge
scheduling systems.

The rest of this paper is organized as follows: we summarize
the related work in Section II. We introduce the system model
and problem formulation in Section III. Then, we present our
strategy in Section IV. Experimental evaluation and discussion
of results are presented in Section V, and the related work is in
Section VI. Finally, we conclude this paper in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section first describes the multi-access heterogeneous
edge computing system model and architecture, shown in Fig. 3.
This architecture mainly consists of a Network Model, Edge

TABLE I
EXPLANATION OF NOTATIONS USED IN THIS ARTICLE

Resource Management and Scheduling Model, and Task Arrival
and Execution Model. Then, we present the mathematical for-
mulation of the problem and conduct the complexity analysis.
The key notations used in this paper are explained in Table I.

A. System Model

1) Network Model: We consider a three-layer network archi-
tecture diagram of cloud-edge-end. As shown in Fig. 4, a series
of computing nodes Ei ∈ {E1, E2, . . . , En} such as gateways
(access points), local servers, small data centers, and even high-
performance terminal devices are geographically distributed.
The gateway is bound to the base station or edge computing
node. In this system, the gateway-bound node is defined as the
summary nodes E∗, managing one or more edge computing
nodes in nearby geographical areas. Multiple summary nodes
maintain static routing tables between each other. The bandwidth
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Fig. 2. An example of dynamic resource status and scheduling diagram.

Fig. 3. The multi-access edge computing systems architecture.

Fig. 4. The cloud-edge-end three-layer network architecture.

between edge computing nodes is represented as

B(τ) =

⎡
⎢⎢⎢⎢⎣
b1,1(τ) b1,2(τ) · · · b1,J(τ)

b2,1(τ) b2,2(τ) · · · b2,J(τ)
...

...
. . .

...

bn,1(τ) bn,2(τ) · · · bn,J(τ)

⎤
⎥⎥⎥⎥⎦ , (1)

where, bi,j(τ) represents the bandwidth between Ei and Ej

at time τ . Additionally, the remote cloud Ecloud is regarded as a

special server with sufficient computing resources. By flexibly
launching instances, almost all requests can be responded to
by Ecloud. We assume that executing task in Ecloud is non-
blocking but will suffer from significant communication delays.
Through WIFI, Ethernet, or 4G/5G mobile networks, user device
Dj ∈ {D1, D2, . . . , Dm} can offload computing requests to the
nearest edge access point (AP).

2) Edge Resource Management Model: In this part, we pro-
pose a group-based and shared-state resource management
model. This model constructs a resource shielding layer that
abstracts locally distributed heterogeneous resources into ser-
vice groups based on service types [14] and shares the node
status between local summary nodes [19].

Specifically, we first assume that all edge computing nodes are
equipped with multi-core, multi-threading, and even multiple
heterogeneous resources. This implies that tasks can be pro-
cessed in parallel. The computing resource of Ei can be repre-
sented as Resource(Ei) =< Ec

i , E
m
i , Si, fi >, where Si, Ec

i ,
Ec

i and fi represents the set of services, execution parallelism,
memory capacity, and baseline computing power, respectively.
Then, we redefine the edge computing unit (CU). We logically
divide an edge computing nodeEi into multiple computing slots
based onEc

i . These computing slots are configured with different
operating environments and services and divided into multiple
groups according to their service types, represented as Xh =
{xh,1, xh,2, . . ., xh,k}. The k-th computing unit in h-th comput-
ing group is defined asxh,k =< fh,k,mh,k, sth,k >.fh,k,mh,k,
andsth,k ∈ {0, 1} represent the benchmark performance, the ac-
tual memory required to run the service, and the state of xh,k, re-
spectively. The available resources of the h-th computing group
are represented as Xnum(h) =

∑K
k=1 |xh,k|sth,k=1, ∀xh,k ∈

Xh. Next, we implement a resource shielding layer in each
summary node to isolate the mapping of tasks to underlying
resources while only focusing on the scheduling between com-
puting services and tasks. The underlying resource management
is transparent to task scheduling. Finally, the heterogeneous
computing resources are defined as a two-dimensional logical
resource matrix R∗, represented as R∗ = [X1, X2, . . ., Xh].

Note that edge computing nodes are not interconnected in
pairs. Moreover, an edge computing node may be managed
by two or even more summary nodes, sharing resource states.
Therefore, each summary node only maintains the resource
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Fig. 5. The one-to-one mapping relationship for request-service and one-to-
many mapping relationship for service-computing resource.

matrix of the local edge network. Moreover, the scheduling
scenario and the actual environment are changing dynamically.
Hence, the service set deployed on the edge computing node
will also be adjusted dynamically. Excessive service deployment
adjustment may cause system instability, so periodic adjustment
is necessary. The deployment of service sets between nodes may
overlap, which ensures the reliability of the service. Resource
abstraction also helps to cope with unpredictable changes in
resource status, such as node failures, changes in network load,
etc. Moreover, this approach is highly scalable and can utilize
the idle shared computility of edge devices [20] to improve the
system capacity.

To further improve scheduling efficiency, we adopt a two-
stage scheduling framework. Specifically, we deploy a sub-
scheduler for each computing group and a global scheduling
executor for summary node E∗i . The sub-scheduler maintains
a node performance table for the computing group based on
historical information and is responsible for scheduling requests
assigned to the computing group. The global scheduling execu-
tor is responsible for handling scheduling conflicts caused by
online resource competition and making adjustment decisions
based on the synchronization status information shared from
other nodes. We also deploy a state monitor on each edge
computing node Ei. The state monitor maintains a mapping
table that records the relationship between the summary node
and the instance running on the node. Through this fine-grained
scheduling, we achieve a one-to-one mapping between tasks
and computing services, and a one-to-many mapping between
services and computing units, as shown in Fig. 5. It means that
each computing unit can execute a maximum of one task at
a time. By updating the resource matrix in real-time, we can
adaptively adjust the scheduling plan according to the resource
status.

3) Task Arrival and Execution Model: Multiple user devices
randomly offload computing requests to the edge system. We
assume that these tasks are independent and indivisible modules
of applications, such as speech and face recognition, crowdsens-
ing, and object detection [21]. We set that each E∗i maintains a
dispatching buffer queue, denoted to Q∗i .

Once a task tj arrives atAPi, it will be placed inQ∗i to wait for
a response and then dispatched to an appropriate nodexh,k by the
scheduler on E∗i . Based on the computing requirements of tj , its

execution will be scheduled using a virtual machine or container
as a carrier. The requirement information of tj can be expressed
as Req(tj) =< tkindj , tloadj , tdataj , tarrivalj , tdeadlinej >, where
tkindj , tloadj , tdataj , tarrivalj , and tdeadlinej represent the requested
type of service, the computing amount, the amount of transferred
data, the arrival time, and its expected deadline, respectively. The
resource constraints to running a service are expressed as

H∑
h=1

K∑
k=1

fh,k + fh,k ≤
n∑

i=1

Ec
i fi, ∀xh,k|sth,k=0, h ∈ Si,

(2)

H∑
h=1

K∑
k=1

mh,k +mh,k ≤
n∑

i=1

Em
i , ∀xh,k|sth,k=0, h ∈ Si. (3)

We assume that the edge device offloads tj at time rsj . The
total delay of tj includes three parts: T delay

j = Tup
j + T rsp

j +

T down
j . Here, Tup

j , T rsp
j , and T down

j represent the upload delay,
the response time, and the time of returning the result to the user
device, respectively.

The upload delay includes two parts: Tup
j = α∗j,i + T trans

j .
Here, α∗j,i represents the propagation delay from Dj to the
nearest E∗i . It is related to the transmission distance and envi-
ronment. T trans

j represents the transmission delay, expressed as
T trans
j = tdataj /β∗j,i. β

∗
j,i represents the bandwidth between Dj

and E∗i . The amount of data returned from edge nodes to edge
devices for execution results is usually small, so transmission
delay can be almost ignored. We only consider its propagation
delay and it usually takes a very small average value.

The response time of tj includes three parts: T rsp
j = Twait

j +

T interTrans
j,k

+ T process

j,h,k
. Here, Twait

j includes the time wait-

ing to be dispatched on E∗i and the waiting time executed
on xh,k, which are denoted to Twait

j,∗ and Twait
j,h,k

. T interTrans
j,k

represents the time to send tj from E∗i to xh,k, expressed

asT interTrans
j,k

= tdataj /bi,k(τ), xh,k ∈ Ek.T process
j,h,k represents

the execution time of tj on xh,k.
In addition, if the current resource state of the edge network

cannot satisfy the requirement of tj , tj will be dispatched to a
remote cloud center for execution. We assume that scheduling
tj to the cloud will be executed immediately without waiting
time. Therefore, the total delay of scheduling tj to the remote
cloud center can be expressed as

T delay
j,cloud = 2αcloud + (1 + ρ)

tdataj

βcloud
+

tloadj

fcloud
+ Twait

j,∗ . (4)

Here, ρ is the packet loss rate caused by network jitter during
task transmission. αcloud and βcloud represent the propagation
delay and communication bandwidth from edge to cloud. To
better represent the state of tj , we introduce a variable ϑj ∈
{−1, 0, 1} to indicate the execution status of tj , represented as

ϑj =

⎧⎪⎨
⎪⎩
1, rsj + T delay

j ≤ tdeadlinej ,

−1, rsj + T delay
j > tdeadlinej ,

0, otherwise.

(5)
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We set ϑj = 1 if tj is completed before the deadline, and set
ϑj = −1 otherwise. Besides, we set ϑj = 0 if tj is interrupted
or abandoned.

B. Problem Formulation

Our research focuses on the scheduling of deadline-
constrained tasks in edge computing. A key issue is how to
improve the efficiency of resource utilization, that is, to complete
more requests within a limited time frame and under limited re-
sources, especially prioritizing to complete more urgent tasks to
maximize the benefits of edge computing systems. As mentioned
in the introduction, different users perceive delays differently
and therefore have different tolerances for deadline violations.
Thus, the benefits of the system can also reflect the long-term
satisfaction of users with the system services. The goal of
our research is to maximize the quality of system service and
minimize the loss of user experience.

To more clearly express the overall benefits of the system,
we first introduce the concept of ”penalty” and ”reward” to
express the impact of task completion on user satisfaction with
the system service. Here, the ”penalty” and ”reward” are de-
fined as the influencing factors on the long-term satisfaction of
system service (LTSS). The LTSS is also used to reflect the
QoE. If a task is completed before its deadline, the system will
receive a positive reward. Otherwise, the system will receive a
negative reward (penalty). Then, we set a dynamic processing
urgency for all delay-sensitive tasks. As we mentioned in the
introduction (Section I), the computing task of object detection
is superior to other modules on complex roads. Thus, we define
initial processing weight factors for different types of tasks,
defined as w ∈ {w1, w2, . . . , wh}, which is determined by the
SLAs between service providers and users. Next, to adapt to
the changes in different scenarios, we assume that the weight
factors of tasks are dynamically changing. The benefit of tj in
computing group Xh is expressed as

ϕh
j = wh × exp

(
− T slack

j

tdeadlinej − rsj

)
. (6)

Here, T slack
j represents the slack time of tj from arrival

time to deadline, denoted as T slack
j = tdeadlinej − tarrivalj . In

real scenarios, we can use performance prediction techniques to
predict the computing requirements and the urgency of tasks in
dynamic environments. Meanwhile, we introduce the variable
to represent the allocation of tj , expressed as

yjh,k ∈ {0, 1} , (7a)

H∑
h=1

K∑
k=1

yjh,k ≤ 1, ∀j. (7b)

If tj is assigned to xh,k, yjh,k = 1. Otherwise, yjh,k = 0.
We use a request-resource pair < tj , xh,k > to represent the
allocation result of tj . The task completion reward of tj for
system can be expressed as

rwj = yjh,kϑjϕ
h
j . (8)

Finally, the LTSS of system can expressed as

LTSS =

H∑
h=1

m∑
j=1

rwj . (9)

Note that distributed resources in edge environments and limi-
tations of service deployment increase the overhead of matching
available resources to tasks. This overhead is unacceptable for
some urgent tasks. Therefore, the system should provide dif-
ferent quality of service for tasks. We use the completion rate
before deadline (CRD) to comprehensively express this service
quality. It can be expressed as

CRD =
NC(ϑj)ϑj=1,∀j

NC(ϑj)ϑj∈{−1,0,1},∀j
. (10)

where,NC represents the number of tasks. Through the system’s
scheduling, more tasks that meet their deadlines indicate an
improved user experience, which means that the system’s pos-
itive benefits are higher. Therefore, the optimization process of
maximizing the task completion rate before the deadline (CRD)
includes maximizing the long-term satisfaction of the system
service (LTSS).

Ultimately, the main goal of this paper (optimizing the uti-
lization efficiency of limited resources) can be paraphrased as
maximizing CRD and LTSS as follows.
Maximize

CRD,LTSS. (11)

s.t. Eq.(2) ∼ (3), (5), (7a) ∼ (7b).

C. Problem Complexity Analysis

In this part, we analyze the deadline-constrained multi-task
scheduling problem on multiple machines with resource com-
petition.

Theorem 1: The deadline-constrained multi-task scheduling
problem on multiple machines with resource competition is NP-
hard.

Proof: First, in our model, multiple tasks are offloaded to
the edge system and then assigned to multiple machines. The
problem of assigning multiple tasks on multiple machines under
resource constraints to has been shown to be NP-hard [9], [22].
This scheduling problem is also included in our study. In fact,
optimizing the number of tasks that meet their deadlines is a sub-
problem of optimizing the sum of completion times because it
aims to optimize the completion time of each task within a finite
range to ensure that the total completion time reaches an optimal
range value. Thus, we conclude that the multi-task scheduling
problem on multiple machines with deadline constraints is still
an NP-hard problem.

Second, our study also includes a grouping-based multi-task
scheduling problem to maximize the system service benefits
under resource competition. To prove that this problem is NP-
hard, we derive it from the multidimensional multiple-choice
knapsack problem (MMKP) promoted by 0-1 knapsack [23],
a problem that has been proven to be NP-hard. In the MMKP
problem, the backpack is divided into h backpacks Hi and each
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backpack contains a load-bearing Wk (k = 1, 2, 3, . . ., h). At
the same time, there are n types of items, and each type of item
has severalSi (i = 1, 2, . . .n), eachSi with a non-negative value
Vi,j (j = 1, 2, . . .). There is also a weight constraint here, that is,
each item loaded into a different backpack has a different weight
wi,j,k. Our goal is to select at most one item from each of the
H backpacks while maximizing the total benefits while meeting
system resource constraints of (2) and (3). This problem can be
formalized as

max

h∑
i=1,2,3..

∑
j∈Hi

Vi,jxi,j (12)

Subject to⎧⎪⎨
⎪⎩
∑h

i=1,2,...

∑
j∈Hi

wi,j,kxi,j ≤Wk∑
j∈Hi

xi,j ≤ 1 ∀i,
xi,j ∈ {0, 1} ∀i, j.

The system maps multiple tasks to a computing group. At
the time slot of each system action, each sub-scheduler of the
computing group selects a task to execute in parallel from
the computing group. Then, these tasks are selected to be
assigned to a computing unit and occupy a resource of the
computing unit. Here, because a computing group may deploy
multiple computing services, the allocation of physical resources
in the computing group may overlap at the underlying level.
Therefore, a task can be assigned to multiple heterogeneous
computing nodes, occupying different lengths of computing
resource segments, namely wi,j,k mentioned above. Moreover,
if the status of the current resource cannot meet the computing
requirements of these tasks, we will obtain the current optimal
scheduling plan through task adjustment. At the same time, the
optimization goal of our scheduling is to maximize the reward
of system service. Although rwj after completing each task is
either positive or negative, maximizing long-term satisfaction of
system services for users and maximizing long-term benefits in
MMKP problems still belong to the same optimization problem.
Thus, we deduce that the problem of grouping-based multi-task
scheduling to maximize the long-term satisfaction of system
service also is an NP-hard problem. �

III. RESOURCE-AWARE TASK GROUPING SCHEDULING

STRATEGY

In this section, we propose a resource-aware task grouping
scheduling strategy (RATGS) to solve task scheduling problems
with deadline constraints. Our strategy is divided into three main
parts. The first phase is to develop a task regrouping and priority
sorting model, aiming to balance efficiency and fairness for
the response of tasks, as shown in Fig. 6. Then, we propose
a resource-aware greedy scheduling algorithm. The algorithm
quickly matches the appropriate execution location for the task
based on the resource status. Finally, a task adjusting method is
proposed to solve the online resource competition between tasks
and further improve the resource utilization efficiency. Their
details will be explained in the following sections.

Fig. 6. The process of regrouping and sorting for multiple tasks.

Algorithm 1: Tasks Regrouping and Priority Sorting.
Input:Resource Matrix R∗, Service Set S, A set of tasks T
Output:NewQueue
1: for each i ∈ T do
2: if tkindi ∈ S then
3: Initialize array of p
4: mapping ti into Computing Group Xh from R∗

5: PreQueue← obtain wait queue of Xh

6: for each j ∈ PreQueue do
7: r̄pj ← Calculate r̄pj of PreQueue[j] by (14)
8: p[j]← Calculate p[j] by (13)
9: end for

10: NewQueue← Sort tasks of PreQueue by p
11: else
12: yjh,k = 0
13: Scheduling tj to Ecloud by (4)
14: end if
15: end for

A. Task Regrouping and Priority Response Model

At any time, a summary node may accept multiple computing
requests. To adapt our proposed group-based and shared-state
resource management model, it is necessary to group tasks based
on their computational requirements. This also helps to quickly
match them with available resources. In fact, scheduling tasks
to a service instance for execution may incur cold start overhead
for service startup (this is beyond the scope of our discussion, as
we assume that all service instances at the edge are pre-warmed
in advance). Therefore, scheduling tasks to local ”home” nodes
helps services start quickly without having to pull images from
remote repositories.

To further manage tasks with online random arrival patterns,
we divide tasks into multiple timing groups according to their
arrival timing. The summary node responds to the tasks in a
timing group in turn, and then classifies and maps them to
the computing group Xh. Moreover, considering the different
computing requirements of tasks, it is necessary to prioritize
tasks within Xh.

Specifically, as shown in Fig. 6, we first determine the request
information associated with each task. Then, we subsequently
group them based on their arrival time. Next, we sequentially
classify these tasks in each time series group into the corre-
sponding computing groups. Finally, we calculate their priorities
and insert them into the waiting queue of the corresponding
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computing group. The priority weight of tj is represented as

pj =
rpj

T slack
j (τ)

. (13)

where T slack
j (τ) = tdeadlinej − τ . τ represents the current time.

Due to the heterogeneity of resources, the remaining execution
time of tj cannot be directly and accurately calculated online.
So, we determine the priority of tj by introducing the average
execution time onK slot nodes in the computing group it belongs
to, represented as

rpj =

∑K
k=1 fk

k × tloadj

. (14)

Note that the computing power fk of K slot nodes is obtained
from the historical node performance table maintained by each
sub-scheduler. According to this equation, it is evident that for
tasks with the same deadline, the larger the pj , the less reserved
time for task execution and return, and the more urgent the
response demands.

After regrouping and prioritization, the sub-scheduler of each
computing group schedules tasks to an appropriate node in paral-
lel according to the priority. Algorithm 1 outlines the pseudocode
of the task regrouping and priority sorting.

B. Resource-Aware Greedy Scheduling Algorithm

The computing resources are limited and dynamically change
over time. The replica status of computing resources is updated
in real time. Therefore, the decision of task scheduling should
adapt to the current changes in resource status. In this part,
we propose a resource-aware scheduling algorithm that aims
to improve resource utilization efficiency while ensuring that
tasks are completed before their deadlines. The pseudocode of
the algorithm is shown in Algorithm 2.

First, Each sub-scheduler schedules the first task of each
computation group in parallel. For the scheduling of task tj ,
if there is an idle computing unit directly available and the
resource status satisfies (2) and (3), then tj is greedily scheduled
to the node with the shortest completion time (including internal
transmission delay and processing time) (Steps 2-9 in Algorithm
2). Otherwise, the current resource utilization rate is close to
full load and the state of computing resources is tight. Thus, we
sequentially preallocate tj to each slot node of Xh and calculate
the earliest completion time, expressed as

EFT (xh,k, tj) = EAT (xh,k) + Twait
j,h,k + T process

j,h,k . (15)

Here, we assume that xh,k obtains the next idle time slot
at time EAT (xh,k) and define an array EFT [] to store the
earliest completion time (Steps 10-13 in Algorithm 2). If the
minimum value in EFT [] meets the deadline of tj , we dispatch
tj to a node with the earliest completion time and mark it with
an allocation pair < tj , xh,k > at time eaj . Once the current
resource status meets its deadline, resource allocation follows
the FCFS strategy (Steps 14-16 in Algorithm 2). Otherwise,
if there is no node that meets the deadline, we call Algorithm 3
to try to find a feasible solution. When Algorithm 3 also cannot

Algorithm 2: Resource-Aware Greedy Scheduling Algo-
rithm.
Input:Task tj , Computing Group Xh

Output:Task-Computing node allocation pair < tj , xh,k >
1: Initialize array of AvaNodes, EFT , EAT as ∅
2: for each xh,k ∈ Xh do
3: if xh,k is idle && satisfy (2) and (3) then
4: AvaNodes← add xh,k, Xnum(h) ++
5: end if
6: end for
7: if Xnum(h) 	= 0 then
8: xh,k ← Select Min{T process

j,h,k + T interTrans
j,k } from

AvaNodes
9: Obtain allocation pair < tj , xh,k >, yj

h,k
= 1

10: else
11: EAT ← Update EAT (xh,k) of Xh

12: EFT ← Calculate EFT (xh,k, tj) of Xh by (15)
13: xh,k ← Select a node with Min{EFT []}
14: if EFT (xh,k, tj) ≤ tdeadlinej then

15: Obtain allocation pair < tj , xh,k >, yj
h,k

= 1
16: Dispatching tj to computing node xh,k

17: else
18: Preallocation tj to xh,k and calling Algorithm 3
19: if Algorithm 3 exist a feasible solution then
20: Obtain allocation pair < tj , xh,k >, yj

h,k
= 1

21: Dispatching tj to xh,k and executing task
adjusting

22: else
23: yj

h,k
= 0

24: Scheduling tj to Ecloud by (4)
25: end if
26: end if
27: end if

find a feasible solution, schedule tj to the Ecloud (Steps 17-24
in Algorithm 2).

C. Task Adjusting Method

Due to the possibility of overlapping resource coverage for
each logical computing group, the process of parallelly schedul-
ing multiple tasks is inevitably accompanied by resource com-
petition. Thus, we propose a task adjusting algorithm for this
problem. Task adjusting contains two core ideas: the ”bin pack-
ing” strategy and the power of ”waiting”. The former dynami-
cally allocates resource fragments based on the resource status
to improve resource utilization, while the latter considers the
dynamic changes of resources and balances the availability of
resources with the completion time. The pseudocode of task
adjusting is shown in Algorithm 3.

Specifically, we define the resource allocation plan for a
series of tasks as Scheme. When appending a new task to a
node’s Scheme and its deadline cannot be met, we first try to
insert it into the original scheme without affecting the timely
completion of other tasks. This insertion sacrifices the average
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Algorithm 3: Task Adjusting Algorithm.
Input:Task tj , Original scheme PreScheme on xh,k

Output:an optimal schedule BestScheme
1: Initialize array of RLT as ∅
2: Index← Calculate the position Index of PreScheme
3: Divide PreScheme into AQ(tk) and NAQ(tk) by

Index
4: RST← Calculate RSTtk of PreScheme by (17)
5: if exist a solution satisfying (16) && (18) then
6: BestScheme← Insert tj into Index of

PreScheme
7: else
8: PreCRD← Calculate CRD of PreScheme by (10)
9: PreRW← Calculate LTSS of PreScheme by (9)

10: NewScheme← Insert tj into Index of
PreScheme and reschedule tasks in AT ∗(tk)

11: NCRD← Calculate CRD of NewScheme by (10)
12: NRW← Calculate LTSS of NewScheme by (9)
13: if exist a solution satisfying (19) then
14: Calling Algorithm 4 to reschedule t∗k ∈ AT ∗(tk)
15: BestScheme← NewScheme
16: else
17: Search a appropriate task from NAQ(tk)
18: if exist a solution satisfying (21) then
19: BestScheme←replace the task for

PreScheme
20: end if
21: end if
22: end if

time to complete tasks but completes more tasks before the
deadline. However, when we have to abandon some tasks due to
resource competition, prioritize resources for tasks that are more
beneficial to the LTSS of the system. This algorithm attempts
to obtain a better scheduling scheme (BestScheme) than the
original scheme (PreScheme) from a global perspective. The
BestScheme must satisfy the following two conditions:

Condition 1: BestScheme must complete the same or more
tasks before deadlines than PreScheme.

Condition 2: BestScheme must achieve higher LTSS from
completing tasks than PreScheme.{

CRDBestScheme ≥ CRDPreScheme,

LTSSBestScheme > LTSSPreScheme.
(16)

The algorithm seeks feasible solutions through three methods
in sequence as follows. An example of the three sub-methods is
shown in Fig. 7.

Direct Insertion (DI): As shown in Fig. 7(a), we try to com-
plete more tasks before the deadline by changing the order of
task execution. For a task tj that cannot meet the deadline, we
first use a first-fit bin-packing to find an insertion position for tj
in the execution queue PreScheme that meets the deadline. We
define this insertion as Index. In fact, inserting tj into a certain
position of PreScheme only affects the tasks arranged behind
tj and delays their completion time. Therefore, PreScheme

(a)

(b)

(c)

Fig. 7. The example of task adjusting.

can be divided into two parts: a) the affected queue AQ(tk) and
b) the unaffected queue NAQ(tk). Here, tk represents the tasks
that have been arranged in the order inPreScheme. We assume
that all tasks except tj in PreScheme can be completed before
the deadline. Then, we calculate the remaining slack time of all
tasks in AQ(tk). The remaining slack time is defined as

RST (tk) = tdeadlinek − (eak + rpk). (17)

where, eak represents the earliest time to allocate resources
for tk and rpk represents the estimated remaining execution
time of tk. As shown in (18), if the remaining execution time
of tj is less than the minimum remaining slack time of all
tasks in AQ(tk), there exists an optimal scheduling solution for
executing DI . It means that inserting a task into PreScheme
at position Index only delays the completion time of tasks in
AQ(tk) without violating their deadlines. This solution must
also satisfy Condition 1 and Condition 2. Finally, we update
eak for all tasks in AQ(tk).

rpj ≤ min
{
RST tk∈AQ(tk)(tk)

}
. (18)

Highest Reward Insertion (HRI): If there is no feasible solu-
tion for DI that adheres to (18), we attempt to find a scheduling
solution by adjusting the position of task execution. First, we
calculate the number of tasks completed before the deadline and
the total reward from PreScheme. Then, we try to insert tj into
the position Index of PreScheme. We define NewScheme to
represent the current scheduling plan. Next, we calculate the
number of tasks completed before the deadline and the total
reward fromNewScheme. This kind of insertion will inevitably
lead to some tasks in AQ(tk) not being completed before the
deadline. However, the load of computing nodes is in a dynamic
process of change. It is possible that a node’s resources are still
occupied at the last moment, but are released at the next moment.
Moreover, due to the constraint in (16), an optimization solution
will result in at most only one task is affected. Thus, we can
introduce a rescheduling mechanism to solve this problem. We
useAT ∗(tk) to represent the set of affected tasks in AQ(tk). We
reschedule the affected task inAQ(tk) (Steps 7-15 in Algorithm
3). The algorithm pseudocode of task rescheduling is shown in
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Algorithm 4: Task Rescheduling Algorithm.

Input:Task t∗k, Resource Matrix R∗, pre-allocation yj
h,k

Output:New allocation pair < t∗k, xh,k′ >
1: Initialize array of EFT , AvaNodes as ∅
2: AvaNodes← append all nodes from Xh

3: Remove xh,k from AvaNodes
4: for each i ∈ AvaNodes do
5: EFT [i]← Calculate EFT (AvaNodes[i], t∗k)
6: end for
7: xh,k′ ← Find a node with Min{EFT [i]}
8: TransT ime← Calculate the time from xh,k to xh,k′

9: if EFT (xh,k′ , t
∗
k) + TransT ime ≤ tdeadlinej then

10: Update allocation pair < t∗k, xh,k′ >, yjh,k′ = 1
11: rp∗k ← Calculate rp∗k by by (20)
12: Rescheduling t∗k to computing node xh,k′

13: Update ea∗k of t∗k
14: else
15: yk

∗
h,k′ = 0

16: Scheduling t∗k to Ecloud by (4)
17: end if

Algorithm 4.

⎧⎪⎨
⎪⎩
rpj > min

{
RLT tk∈AQ(tk)(tk)

}
,

CRDNewScheme ≥ CRDPreScheme,

LTSSNewScheme > LTSSPreScheme.

(19)

Note that regardless of whether the rescheduled task finds a
feasible node, NewScheme is still considered a better scheme
because it satisfies both Condition 1 and Condition 2. Thus, if
NewScheme is better than PreScheme, then it satisfies (19),
and we have found an optimized solution. Besides, considering
the heterogeneity of resources, the rescheduling of tj from node
xh,k to node xh,k′ will lead to a change in execution time and
generate a certain transmission delay. The change of rpj is
expressed as

rpj =
fh,k ∗ rpj

fh,k′
. (20)

An example of HRI is shown in Fig. 7(b). We can see that
inserting tj into a position of Index results in a task not
meeting the deadline in AQ(tk). However, the task still meets
the deadline after being rescheduled to another node.

Maximum Reward Replacement (MRR): If there is no feasible
solution for bothDI andHRI , we attempt to replace an ongoing
task or a task in NAQ(tk). Specifically, replacing a task tk to
satisfy the deadline of a new task must meet the Condition 1.
Meanwhile, a feasible solution of MRR also needs to meet the
Condition 2 and another Condition3 as follows:

Fig. 8. The relationship diagram between algorithms.

Condition 3: NewScheme achieves a lower average com-
pletion time (ACT).

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tk ∈ NAQ(tk)

ACTNewScheme < ACTPreScheme,

LTSSNewScheme ≥ LTSSPreScheme,

CRDNewScheme ≥ CRDPreScheme.

(21)

IfNewSchememeets (25), it is conducive to providing more
possible optimizations for subsequent tasks, such as reducing
the total completion time of subsequent tasks and facilitating
the insertion of more small tasks. So it is also a solution that
can optimize overall scheduling performance. Finally, it is worth
noting that task replacement is preemptive. For the replaced task,
we still try to reschedule it to meet its deadline as much as
possible. An example of MRR is shown in Fig. 7(c).

D. Time Complexity Analysis

As shown in Fig. 8, the system first calls Algorithm 1 to
match computing groups for multiple tasks and sort them before
inserting them into their queues. In this process, computing
group mapping can be implemented through key-value pairs, and
the time complexity of searching and sorting n tasks does not
exceed O(n2). Algorithm 2 searches for a suitable node among
m nodes for task tj . Its operations include searching for idle
nodes and iterative calculations, and its time complexity does not
exceed O(n2). Once the current resource load cannot meet the
needs of tj , the system will call Algorithm 3 to adjust the scheme.
Algorithm 3 runs three sequential and mutually exclusive solu-
tion phases in sequence. The most complex operation is iterative
traversal of the queue and search, and its time complexity does
not exceedO(n2). Algorithm 4 is called by Algorithm 3. Its time
complexity is mainly reflected in the iteration of node search and
resource reallocation, and its time complexity does not exceed
O(n2) at most. In summary, the time complexity of the entire
strategy workflow is O(n2).

IV. EXPERIMENTAL SETUP AND PERFORMANCE EVALUATION

In this section, we implement a small prototype system to eval-
uate our proposed RATGS through a testbed and experimental
simulations driven by a real production trace.
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TABLE II
SETTING OF SYSTEM PROTOTYPE

(a) (b)

Fig. 9. Datasets of varying density and distribution.

A. Experimental Setup

1) Testbed Implementation: We develop D-ECCS, an edge-
cloud collaborative scheduling system. This system was de-
ployed on a testbed, which includes user devices, access points,
edge servers, and a remote cloud. The edge device is simulated
by eight task dispatchers. We use a Raspberry Pi 4B and a laptop
with Ryzen 7-6800H (it also acts as an edge server) as access
points and connect to three edge servers independently or not,
as shown in Table II. To further constrain the heterogeneity
of bandwidth, we use traffic control tools to set the network
bandwidth between different machines to 100 Mbps∼ 500Mbps.
Besides, we built a three-node cloud cluster connected to the
edge system. The system architecture is shown in Part A of
Chapter II. To enable our system to capture the different expected
execution times of tasks, we deployed a node performance table
on each sub-scheduler to record the execution time of tasks on
different nodes. By querying this table, the sub-scheduler can
predict the expected execution of tasks. Note that the execution
time of a task can be determined within a small error range based
on its input metadata and hardware configuration. We use Kafka
to decouple scheduling decisions and resource allocation.

2) Workloads: We selected several real applications written
in Python to evaluate our strategy, such as image processing,
ALU logic, float operation, face matching, etc. In addition,
we conduct extensive simulations based on real traces from
Alibaba [24] to fully evaluate our strategy. We set that task
generation have different densities and distributions. Therefore,
By modifying task arrival/end timestamps in the trace, we con-
structed two datasets. The first contains eight subsets with differ-
ent task arrival densities in the range 1∼8, as shown in Fig. 9(a).
Each subset contains approximately 10,000 tasks. The second
contains three subsets with different task arrival distributions, as
shown in Fig. 9(b). Each subset contains approximately 25,000
tasks. Considering resource heterogeneity, the execution time

TABLE III
PARAMETER SETTINGS

range was calibrated from these datasets. Task execution times
were then mapped to the average computing capacity of hetero-
geneous nodes, deriving the mean computational load per task.
Task types were adapted from the trace metadata, with initial
processing weights assigned based on dataset-provided priority
levels, dynamically adjusted during scheduling. The remaining
simulation evaluation parameters are shown in Table III.

3) Evaluation Metrics and Baselines: We utilize four indi-
cators: task completion rate before the deadline (CRD), the
long-term satisfaction of system services (LTSS), the average
completion time (ACT), and the resource utilization to evaluate
our strategy.

We reproduced two scheduling strategies named Dedas [9]
and RTH2S [25] (it is represented as RTH2S in subsequent
analysis). Dedas finds a suitable insertion position for the task
by traversing the node’s schedule in sequence. When a task
cannot be inserted into a position that meets the deadline, the
strategy considers the total completion time as a cost factor to
replace a task to obtain the optimal schedule (Tasks that do not
share link resources cannot be replaced). RTH2S ensures that
tasks are completed before deadlines by layering heterogeneous
nodes, prioritizing tasks using a three-level priority queue and
EDF method, and splitting urgent tagging tasks. Besides, we
construct multiple combined baseline strategies to effectively
compare RATGS, including LSPT (LeastLoad + SRPT), LEDF
(LeastLoad + EDF), and SF (Self + FCFS). The baseline re-
source allocation strategies include EDF (Earliest Deadline
First), SRPT (Shortest Remaining Processing Time) [26], and
FCFS (First Come First Served). The baseline dispatching
strategies include LeastLoad (dispatch tasks to the edge server
with shortest waiting queue) and Self (dispatch tasks to the node
with earliest completion time).

B. Testbed Results

We evaluate the three indicators of CRD, LTSS, and ACT
using real requests on the testbed. Each task dispatcher deploys a
type of application respectively, offloading 0∼ 1 task at intervals
of 50ms ∼ 100ms. Each request includes the metadata of task
input, the expected deadline, and a flag indicating whether the
scenario is expedited. Note that the service is always set to start in
pre-warm mode. Fig. 10(a) shows the performance comparison.
Compared with other strategies, RATGS increases the comple-
tion rate before deadline by 13.5% ∼ 50.1% and achieves the
highest system benefit, which means that RATGS completes
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(a) (b)

Fig. 10. Impact of testbed experiments.

more urgent tasks with the same resource consumption. In
addition, to evaluate the reliability of strategies, we conducted
strategy performance tests under different network conditions,
as shown in Fig. 10(b). Under the same test conditions, when
the bandwidth reaches a certain threshold, the performance of
all strategies tends to be stable.

C. Simulation Results

In this section, we demonstrate the performance comparison
of RATGS and multiple scheduling strategies under four indi-
cators through the evaluation results.

Fig. 9(a).
1) Influence of Task Arrival Density: The arrival density of

tasks affects the probability of resource competition between
multiple tasks, thereby affecting the efficiency of scheduling
strategies. The higher the density level, the more tasks arrive at
the same time, as shown in Fig.

From Fig. 11, we can observe that before the task density
is less than 4, the performance of all strategies on the metrics
remains relatively stable. As the task density increases, the
performance gap of the algorithm begins to manifest. RATGS
outperforms Dedas, RTH2S, LSPT, LEDF, and SF by an aver-
age of 7.77%, 10.12%, 17.04%, 32.9%, and 22.62% in CRD
respectively. In terms of LTSS, RATGS, Dedas, RTH2S, LSPT,
LEDF, and SF achieve system benefits of 3969.6, 2869.5,
3235.3, 2486.9, 269.7, and 1491.3, respectively. In terms of
ACT, RATGS, Dedas, RTH2S, LSPT, LEDF, and SF are 0.43,
0.37, 0.53, 0.51, 0.62, and 0.58, respectively.

The preemptive scheduling strategy obviously has a clear
advantage. When the task density exceeds 4, the performance
degradation rate of non-preemptive strategies is notably faster
than that of preemptive strategies such as LEDF and SF. SRPT
emerges as an excellent resource allocation strategy, capable
of minimizing resource gaps and thus performing exception-
ally well in scheduling small tasks. Consequently, even under
resource-constrained conditions, LSPT maintains robust overall
performance. RTH2S achieves higher system completion effi-
ciency by aligning tasks of varying urgency levels with suitable
resources; however, its approach of splitting urgent tasks leads
to an increase in ACT. Meanwhile, Dedas outperforms all strate-
gies in terms of ACT, likely due to its proactive discarding of
”blocking” tasks, which effectively improves ACT.

2) Influence of Task Distribution: To more realistically re-
flect the performance impact brought about by changes in task

arrival patterns, we conduct experiments based on three task
distributions, as shown in Fig. 9(b).

Fig. 12 shows the comparison of CRD performance over time
under three distributions. Our proposed RATGS continuously
optimizes the scheduling scheme through the dynamic percep-
tion of resources and performs best in CRD indicators. Fig. 13
shows the overall results on CRD, LTSS and ACT indicators.
RATGS outperforms Dedas, RTH2S, LSPT, LEDF, and SF by an
average of 7.56%, 6.4%, 11.1%, 34.59%, and 33.89% in terms of
CRD, respectively. In terms of LTSS, RATGS, Dedas, RTH2S,
LSPT, LEDF, and SF achieve the average system benefits by
7731.9, 5831.8, 6462, 5515.6, -2150.5, and -1918.7, respec-
tively. In terms of ACT, RATGS, Dedas, RTH2S, LSPT, LEDF,
and SF are 0.51, 0.39, 0.59, 0.54, 0.69, and 0.65, respectively.
RATGS lags behind Dedas ACT indicator but outperforms other
strategies. This may be because RATGS sacrifices the ACT of
tasks to meet more deadlines, which is an effective and meaning-
ful trade-off. EDF is an intuitive offline non-preemptive single-
machine scheduling algorithm that only considers deadlines.
In contrast, the RTH2S strategy combines the EDF approach
with preemption to achieve better performance. Besides, SF is
a simple and stable, but it cannot capture the dynamic matching
of resources and task requirements. In contrast, Dedas adapts
to the state matching of resources and computing requirements
through ”out-of-order insertion” and replacement. However,
Dedas always tries its best to traverse the search, which in turn
limits the performance upper limit of scheduling.

3) Influence of Number of Edge Servers: The number of edge
servers is another key factor affecting the quality of service and
the performance of scheduling strategies. Fewer computing units
may lead to a higher deadline miss rate, which can be expressed
as 1-CRD. As computing units increases, tasks can be scheduled
to more locations, which will ease resource competition and
reduce the deadline miss rate. Thus, we add computing units to
the system one by one to observe the performance changes of
the strategy.

We can observe from Fig. 14 that the deadline missing rate
of all scheduling strategies decreases as the number of comput-
ing units increases. In contrast, the deadline miss rate of our
proposed RATGS decays the fastest. With 22 computing units,
RATGS completes 99.9 percent of tasks before deadlines, while
all other strategies require more computing units. There are two
points worth noting here. First, SF also completed 99.9 percent
of the tasks before deadlines when computing unit increased to
22. This is because as resources become abundant, the selfish
scheduling strategy begins to show advantages. Second, the
strategies with load-balancing, such as LSPT and LEDF, can
only complete about 80 percent of the tasks before deadlines,
regardless of the increase in computing units. The reason may
be that resource heterogeneity causes a mismatch between the
computational requirements of tasks and resource performance.
This also proves that resource heterogeneity is a key factor
affecting scheduling performance.

Figs. 15 and 16 show the performance comparison on LTSS
and ACT. When the number of computing units reaches 30,
the performance of each scheduling strategy tends to be stable,
but when it is less than 22, the performance of RATGS is
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(c)

Fig. 11. Impact of task arrival dentisy.

(c)(b)(a)

Fig. 12. Impact of task distribution on CRD over time.

(a) (b) (c)

Fig. 13. Impact of task distribution.

(a) (b) (c)

Fig. 14. Impact of computing units on deadline missing rate under three task distributions.
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(a) (b) (c)

Fig. 15. Impact of computing units on LTSS under three task distributions.

(a) (b) (c)

Fig. 16. Impact of computing units on ACT under three task distributions.

(a) (b) (c)

Fig. 17. Resource utilization rate under different distributions.

(a) (b) (c)

Fig. 18. Resource utilization efficiency under different distributions.

better than all strategies in LTSS indicator. Dedas still maintains
overall optimality in ACT indicator. However, as the number of
computing units exceeds 30 and gradually increases, RATGS
begins to perform slightly better on ACT than Dedas. This is
because the increase in computing units provides greater space
and choices for task adjustment to achieve optimal scheduling.

4) Resource Utilization: Resource utilization rate (RU ) is
also a key indicator to reflect the performance of scheduling
strategies in resource-constrained edge computing. We advocate
using resource utilization efficiency (RUE) to evaluate the

performance, which represents the number of tasks completed
before the deadlines by a percentage unit of resource utilization,
as shown in (22). The higher RUE indicates that the strategy is
more efficient in utilizing limited resources.

RUE(τ) =
CRD(τ)

RU(τ)
. (22)

As shown in Figs. 17 and 18. load-balancing strategies (e.g.,
LSPT and LEDF) achieve the highest overall RU, maintaining
an average rate exceeding 80% across all three task distributions.
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RTH2S exhibits strong performance in RU and RUE due to its
effective matching of heterogeneous tasks to resources. Notably,
RATGS demonstrates near-unity RU during high task-arrival
density periods but the lowest RU during low-density intervals
(Fig. 17(a)–(c)). However, Fig. 18 reveals that RATGS achieves
the highest RUE precisely in these contrasting phases such
as 0 ∼ 60in Fig. 17(a), 180 ∼ 190in Fig. 17(b), and 80 ∼
120in Fig. 17(c). It proves that RATGS effectively leverages
limited resources to complete more tasks with less resource
consumption.

V. RELATED WORK

The optimization problem of edge task scheduling has been
widely studied in recent years. These studies mainly focus on
offloading from devices to edge servers, task dispatching among
edge servers, and resource allocation on edge servers.

Task Dispatching and Scheduling in Edge. Han et al. first
proposed an online task dispatching and scheduling algorithm
OnDisc based on a general model [27]. Considering the fluctua-
tions of the network, Meng et al. first considered the management
of network resources and proposed an online dispatching and
scheduling algorithm called Dedas to reduce the loss rate of
deadlines [9]. Yuan et al. proposed an online task dispatching and
fair scheduling algorithm OTDS [28] to cope with the dynamic
characteristics of network and server loads. The uncertainty of
request dispatching also reflects the dynamic characteristics of
server load. To solve the ”load evacuation” problem, Deng et al.
proposed a staged task scheduling strategy [29]. Meanwhile,
the utility function of task scheduling also shows diversity.
Therefore, Zhang et al. proposed an online job dispatching and
scheduling strategy O4A [30] under the heterogeneous utility
coexistence. However, these studies usually set the processing
time of tasks to a specific value without considering the dynamic
computing requirements. The increasingly diverse computing
requests also bring new challenges. Priority-based scheduling
is an intuitive approach to deal with this problem. Peng et al.
proposed a decentralized method DoSRA [31] that considers
task diversity and priority. Besides, some research [32], [33]
[34] have extensively studied the priority of task diversity in
different scenarios such as vehicle edge computing (VEC) and
unmanned aerial vehicles (UAVs), etc.

Heterogeneous Scheduling with Deadline Constraints. Zhu
et al. considered a multi-user and multi-server scenario, jointly
considered resource heterogeneity and task deadlines, and pro-
posed two approximate algorithms LoPRTC and LoPRTC-
MMD [35]. Kaur et al. considered the hierarchical heterogeneity
of fog node resources and task deadlines and proposed a real-
time heterogeneous hierarchical scheduling algorithm RTH2S
[25]. Azizi et al. proposed two semi-greedy strategy-based algo-
rithms PSG and PSG-M to address the challenges of executing
heterogeneous and delay-sensitive IoT tasks [36]. Gedawy et al.
studied a cluster edge scheduling system RAMOS. The system
adopts a multi-objective, resource-aware task allocation and
scheduling strategy to minimize latency and improve energy
efficiency [37]. Nevertheless, most of these studies adopt static
resource allocation methods, without considering the impact of

online resource competition between tasks on the performance
of scheduling.

Resource-aware dynamic task scheduling. Considering the
dynamic nature of computing demand, Ma et al. proposed a
dynamic task scheduling algorithm WiDaS based on Lyapunov
optimization technology [17]. Xu et al. studied the problem of
dynamic computing power and task coordination scheduling
between edge nodes and proposed an adaptive mechanism. The
mechanism uses a greedy decision-making method to optimize
task scheduling and dynamically adjust computing resources
according to changes in user requests [18]. Zhao et al. proposed
a three-stage iterative resource allocation strategy to address
the challenge of multi-task competition for communication re-
sources in edge computing [3]. However, they cannot guarantee
the ”optimal loss” when resource competition cannot be avoided
and causes a loss of system service quality. Game theory may
be an excellent solution to resource competition. Niu et al. de-
scribed resource competition in heterogeneous edge computing
as a non-cooperative stochastic game problem and proposed
a multi-agent meta-PPO algorithm using meta-learning [38].
In addition, using deep reinforcement learning theory to op-
timize edge task scheduling is also a popular solution [39].
Han et al. designed a scheduling framework called Kais based
on multi-agent deep reinforcement learning to improve the
long-term throughput of request processing [40]. Wei et al.
used a reinforcement learning algorithm to solve the joint op-
timization problem of resource placement and task scheduling
in the dynamic state of edge servers to improve the QoS of
mobile users or maximize the platform utility [41]. Tuli et al.
proposed a real-time scheduler based on A3C to adaptively
make dynamic decisions [42]. Nonetheless, most of these studies
rely on offline models to guide scheduling decisions, which
cannot timely reflect the actual dynamic changes in edge com-
puting and the impact of the joint changes of resources on the
scheduling strategy. Thus, they are only suitable for specific
scenarios.

VI. CONCLUSION

Nowadays, edge computing has attracted more attention from
researchers in various fields. A key challenge lies in enhancing
the overall service quality of resource-constrained edge comput-
ing systems. Considering the more complex edge computing en-
vironment than cloud computing, we propose a resource-aware
task grouping scheduling strategy (RATGS). This strategy con-
siders resource competition among multiple tasks and dynamic
changes in the computing environment, aiming to enhance the
overall quality of service in edge systems. We conduct extensive
comparative experiments. The results demonstrate the effec-
tiveness of our proposed RATGS, especially in the resource-
constrained edge computing environment. In particular, RATGS
achieves higher efficiency of resource utilization rather than a
simple resource utilization rate. Although our proposed RATGS
is proven to be effective, our work also has some limitations. The
main limitation is that our scheduling strategy currently does not
consider the dependencies between tasks. The second limitation
is that we ignore the energy consumption caused by hot starts of
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service instances during task adjustment and the service delay
caused by cold starts in actual environments.
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