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 A B S T R A C T

In security-critical applications within Artificial Intelligence of Things (AIoT) systems, ensuring robust defense 
against adversarial attacks is paramount for both security and privacy. Although Adversarial Training (AT) 
is widely recognized as an effective strategy to enhance network robustness, empirical evidence reveals a 
significant disparity in feature activation between adversarial and natural examples. Current AT techniques, 
while partially addressing these discrepancies, generally offer only moderate improvements in robustness—
often at the expense of accuracy on natural examples. In this work, we introduce the overlap ratio (OR), a novel 
metric that quantitatively assesses differences in feature activation between adversarial and natural inputs. 
Building on this insight, we propose a Fine-Grained Activation Alignment (FGAA) strategy that operates at an 
individual feature level, effectively reducing activation discrepancies while maintaining high model accuracy. 
By integrating FGAA with conventional defense methods, our approach minimizes activation differences and 
significantly bolsters overall model robustness. This enhancement is critical for secure, privacy-preserving AIoT 
deployment. Extensive experiments on three datasets and multiple models demonstrate that FGAA reduces 
activation frequency discrepancies by 29.69% and achieves an improvement of up to 39.84% in robustness 
compared to standard adversarial training alone. Notably, on the SVHN dataset, FGAA achieves a natural 
accuracy of 94.01%, nearly 10% higher than the 84.10% attained with AT, underscoring its potential to 
advance the state-of-the-art in deep neural network robustness for secure AIoT-enabled smart societies.
1. Introduction

Deep Neural Networks (DNNs) have become a cornerstone in ar-
eas such as image recognition, autonomous driving, healthcare, and 
finance, often achieving performance levels that surpass human ca-
pabilities [1–3]. Despite their success, numerous studies have demon-
strated that DNNs are susceptible to adversarial attacks—small, care-
fully crafted perturbations to input data that can lead to incorrect 
predictions. This vulnerability is particularly concerning in the context 
of Artificial Intelligence of Things (AIoT) systems, where security and 
privacy risks can have severe consequences [4,5]. In AIoT-enabled 
smart societies, intelligent devices and sensors interact with AI-driven 
models, making them prime targets for adversarial manipulation. In 
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such environments, adversarial examples can be exploited by attack-
ers to manipulate sensor readings, override control signals, or com-
promise data integrity, which may result in equipment malfunctions, 
unauthorized access, cascading failures, significant data breaches, and 
substantial economic and reputational losses [6–8]. In response to these 
threats, the research community has developed robust attack strategies 
that expose the vulnerabilities of DNNs, along with corresponding 
defense mechanisms designed to mitigate these weaknesses [9–11]. 
Adversarial Training (AT) is widely recognized as one of the most effec-
tive defense techniques [12–14]. However, a significant trade-off exists: 
while AT improves the robustness of models against adversarial attacks, 
it often reduces accuracy on natural (unperturbed) examples [15,16]. 
This trade-off between enhancing adversarial robustness and preserv-
ing generalization performance is a major challenge, especially for 
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security-critical AIoT applications where both security and accuracy are 
crucial.

1.1. Motivation

In AIoT-enabled smart societies, where vast amounts of sensitive 
data are generated, processed, and exchanged, the susceptibility of 
DNNs to adversarial attacks poses a serious threat to security and pri-
vacy. Attackers can inject adversarial examples during training or test-
ing phases, leading to abnormal model behavior and potentially com-
promising the integrity of smart city infrastructures, healthcare mon-
itoring systems, and industrial control networks. Studies have shown 
that adversarial and natural examples exhibit distinct activation pat-
terns in feature maps. For example, [17–19] focus predominantly on 
visual assessments of these differences without providing a detailed 
quantitative analysis. Therefore, it is crucial to rigorously analyze these 
differences and design defense strategies that optimize both robustness 
and accuracy in AIoT environments.

1.2. Our work

Building on these insights, we conducted a series of experiments 
to examine the impact of adversarial and natural examples on network 
activations, as detailed in Section 3.1. In a typical neural network layer, 
feature maps are three-dimensional, consisting of height (𝐻), width 
(𝑊 ), and depth (𝐶). The depth dimension corresponds to channels, 
while the height and width define the spatial layout. Based on our 
analysis across spatial and channel dimensions, we introduce the over-
lap ratio (OR) to quantify differences between the feature-activation 
distributions of adversarial and natural examples. Our results show 
that adversarial examples consistently exhibit higher activation mag-
nitudes compared to natural examples, indicating that certain features 
are prone to over-activation. Although AT helps narrow the gap in 
activation magnitudes between adversarial and natural examples, a 
significant discrepancy remains. Motivated by this observation, we 
systematically explored a range of alignment strategies — including 
channel-only, spatial-only, combined spatial-channel, and feature-wise 
approaches — to further mitigate these differences (see Section 4.4 
for details). Our experiments indicate that the Fine-Grained Activation 
Alignment (FGAA) strategy, which operates at the feature level, is the 
most effective in enhancing model robustness by minimizing the dis-
crepancies between feature activation distributions. The FGAA module 
can be seamlessly integrated into existing neural network architectures 
and combined with adversarial training to achieve optimal robustness.

In the context of AIoT security, perception systems frequently en-
counter perturbations such as compression artifacts, sensor noise, or 
environmental interference, which can cause shifts in internal feature 
activations and degrade decision reliability. The proposed FGAA ad-
dresses this issue by more stably aligning task-relevant features, thereby 
reducing the influence of perturbation-sensitive activations. Moreover, 
its modular design enables flexible adaptation to the resource budgets 
of edge devices, making FGAA a practical component for AIoT-enabled 
smart systems.

1.3. Main contributions

We summarize our contributions as follows:

• Quantitative Analysis of Feature Activation Differences: We 
identify significant differences in the feature activation distribu-
tions between adversarial and natural examples across spatial and 
channel dimensions. To measure these differences, we introduce 
the OR metric, demonstrating that these discrepancies adversely 
affect model robustness, particularly as adversarial training does 
not fully eliminate differences in channel activation.
2 
• Development of the FGAA Module: We propose the FGAA mod-
ule, which aligns features during adversarial training through 
a three-step process: establishing relationships between feature 
maps and categories, evaluating feature importance based on map 
weights, and applying fine-grained alignment guided by these 
importance measures.

• Extensive Evaluation Across Models and Datasets: We inte-
grate the FGAA module with various adversarial training tech-
niques and evaluate its performance on multiple models and 
datasets. Our results show that FGAA not only improves the 
alignment of feature activation distributions between adversarial 
and natural examples but also enhances overall model robustness. 
Notably, on the SVHN dataset, FGAA reduces the negative impact 
of adversarial training on natural example accuracy.

The rest of the paper is organized as follows. Section 2 reviews 
related work on two classes of defense augmentation methods based on 
adversarial training. In Section 3, we describe our proposed FGAA strat-
egy in detail and provide a formal description of the problem. Section 4 
presents a comprehensive experimental analysis and validation of the 
FGAA module across multiple models and datasets. Finally, Section 5 
summarizes the paper and discusses future work.

2. Related work

In this section, we will first discuss the inherent limitations of AT 
defense methods. We will then provide a brief overview of research 
focused on improving the effectiveness of existing AT methods, with 
an emphasis on two key aspects: network structure optimization and 
feature activation adjustment.

2.1. Network structure optimization

To address the limitations of AT, various strategies have explored 
optimizing model structures by combining model pruning or struc-
tural design with traditional AT methods to enhance robustness. For 
instance, some approaches utilize model compression as a constraint 
objective for AT [20], while others combine stochastic activation prun-
ing with AT to defend against adversarial attacks [21]. Additional 
efforts have focused on designing training schemes based on model 
compression to address security issues in specific domains, such as 
recurrent neural networks in natural language processing [22]. Other 
methods employ single pruning and model fine-tuning, reducing de-
pendence on AT [23], or guide pruning techniques to extract robust 
sub-networks from large, non-robust models [24]. However, because 
efficiency optimization is also a core goal of these methods, their focus 
on efficiency often limits the extent to which their defensive capabilities 
can be improved.

2.2. Feature activation adjustment

In parallel with network structure optimization, a number of studies 
have focused on improving model robustness by refining feature acti-
vations. These methods explore how adversarial perturbations alter the 
activation patterns of neural networks and propose corrective mech-
anisms to bridge the gap between adversarial and natural examples. 
Bai et al. [18] identified two key characteristics in channel activations 
when comparing adversarial and natural examples: adversarial exam-
ples not only exhibit higher activation magnitudes but also display 
more uniform activation frequencies. Based on these observations, they 
introduced the Channel-wise Activation Suppression (CAS) method 
to mitigate redundant activations and enhance robustness. Building 
upon CAS, subsequent work proposed the Channel-wise Importance-
based Feature Selection (CIFS) [19] strategy, which specifically targets 
the suppression of negatively correlated channels that are dispropor-
tionately amplified in adversarial examples. However, both CAS and 
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CIFS primarily focus on channel-wise activations, neglecting the spatial 
dimension of feature maps, and their evaluations are largely quali-
tative. Consequently, over-activated features induced by adversarial 
perturbations are not comprehensively addressed, limiting the overall 
defensive effectiveness. More recently, Wu et al. [25] proposed RSA, a 
comprehensive defense method that integrates feature refinement, ac-
tivation suppression, and alignment modules. RSA employs consistency 
constraints and knowledge distillation to maintain predictive perfor-
mance on natural examples. Nevertheless, the incorporation of multiple 
auxiliary components results in a cumbersome and computationally 
expensive framework. Similarly, the StayFocused framework [26] em-
ploys spatial hyper-spherical constraints and channel-adaptive prompt 
calibration to improve adversarial robustness. While effective, its re-
liance on multi-head training and modular integration introduces addi-
tional complexity and overhead. Furthermore, many of these methods 
are evaluated only under standard attacks and lack generalization 
assessments against adaptive or unforeseen adversaries.

2.3. Technical challenges

Although prior works have attempted to improve model robustness 
through network structure optimization and feature activation adjust-
ment, several technical challenges remain unresolved. First, coarse-
grained alignment strategies dominate current approaches, which 
typically operate at the channel level and fail to account for the 
nuanced spatial patterns critical for distinguishing adversarial from nat-
ural inputs. Second, robustness–accuracy trade-off remains a persis-
tent issue: improving defense performance often compromises natural 
accuracy, and balancing this trade-off effectively is non-trivial. Third,
limited adaptability to diverse and adaptive attack types undermines 
the generalizability of many methods, which are often tuned for specific 
threat models. Finally, structural complexity and poor deployability
hinder practical use in real-world IoT settings—many existing methods 
rely on deep, multi-branch, or task-specific modules that inflate model 
size and computational demands.

To address these limitations, we propose the FGAA framework, 
which enables fine-grained feature alignment across both spatial and 
channel dimensions in a modular and easily integrable design. FGAA 
evaluates the contribution of individual features to correct predictions 
and selectively suppresses those that are overly sensitive to adversarial 
perturbations, preserving accuracy on natural data. Unlike the CAS 
method, which applies coarse and uniform structured suppression at the 
channel level for features vulnerable to adversarial activation, FGAA 
offers a more fine-grained and unstructured suppression strategy at the 
individual feature value level. This enables differential treatment of fea-
tures, leading to better robustness-accuracy trade-offs. Moreover, FGAA 
is designed as a lightweight module built on simple fully connected 
layers, making it easily integrable into existing convolutional neural 
networks with negligible inference overhead. As shown in Tables  3 and
11, FGAA not only enhances robustness but can, in some cases, also 
improve natural accuracy, demonstrating its potential to strengthen 
model generalization beyond adversarial defense.

3. Fine-grained activation alignment

3.1. Empirical feature activation analysis

Our work focuses on analyzing feature activation patterns within 
neural networks. Table  1 summarizes the notation used in this paper. 
Feature maps in a layer are defined by three dimensions: width, height, 
and depth. The spatial dimension encompasses width and height, while 
the channel dimension corresponds to depth. We define a threshold 
as Threshold = MAX ⋅ 𝑒−2, where 𝑀𝐴𝑋 is the largest value of the 
space/channel magnitude. Here, MAX corresponds to max𝑗 𝑔𝓁,𝑗 (𝒙) af-
ter global average pooling (GAP), so the threshold is consistent with 
𝜏 (𝒙) = (max 𝑔 (𝒙))𝑒−2 in Eq. (1). After performing a GAP operation, 
𝓁 𝑗 𝓁,𝑗

3 
Table 1
Overview of notation and definitions.
 Notation Definition  
 𝒙,𝒙′ Natural input and its adversarial counterpart  
 𝓁 (𝒙) Activation tensor at layer 𝓁  
 𝑔𝓁 (𝒙) Channel-wise global-average-pooled vector at layer 𝓁  
 𝜏𝓁 (𝒙) Per-sample threshold for selecting active channels  
 𝓁 (𝒙) Active-channel index set at layer 𝓁  
 OR𝓁 (𝒙,𝒙′) Overlap ratio (IoU after thresholding) between active-channel sets 
 𝜖stab Numerical-stability constant  
 𝐶,𝐻,𝑊 ,𝑁,𝐿 Channels, height, width, batch size, number of classes  
 𝑂𝑐 [𝑚, 𝑛] Local convolutional response for channel 𝑐 at spatial index (𝑚, 𝑛)  
 𝑆 Batch of input feature maps to an FGAA module  
 𝑆̃ Aligned feature maps  
 𝐹 Filter  
 𝜃 Network parameters  
 𝑃 (𝒙; 𝜃) Network output logits  
 (𝒙; 𝜃, 𝐹 ) FGAA readout logits used in 𝐹𝐺𝐴𝐴  
 𝜆 Weight of the FGAA loss term  
 𝛤 Number of FGAA modules; 𝛾 ∈ {1,… , 𝛤 } indexes modules  

a spatial or channel unit is considered activated if the magnitude 
exceeds this threshold. We examined the spatial and channel activation 
frequencies and magnitudes for both adversarial and natural examples. 
We use RT to denote regular training and SAT to denote standard 
adversarial training. A comparison between the RT (bird) and SAT 
(bird) rows in Fig.  1 (and likewise for frog) shows that the activation 
distributions across spatial and channel dimensions are more aligned 
under adversarial training. Specifically, this convergence is evidenced 
by the alignment of the activations of the adversarial examples towards 
the activation distribution of the natural examples. After adversarial 
training, the overlap between the blue (natural) and red (adversar-
ial) regions increases, as evidenced by the expanding purple region 
representing their intersection. To quantitatively characterize this con-
vergence, we introduce the overlap ratio (OR), a metric that measures 
the similarity between activation patterns of natural and adversarial 
inputs. A formal definition follows.
Formal definition of OR. For layer 𝓁 with activations 𝓁(𝑥) ∈
R𝐶×𝐻×𝑊 , let 𝑔𝓁(𝑥) = GAP(𝓁(𝑥)) ∈ R𝐶 (GPA over 𝐻 ×𝑊 ) and 𝜏𝓁(𝑥) =
(

max𝑗 𝑔𝓁,𝑗 (𝑥)
)

𝑒−2. Define the active-index set 𝓁(𝒙) = { 𝑗 ∶ 𝑔𝓁,𝑗 (𝒙) ≥
𝜏𝓁(𝒙) }. Given an adversarial example 𝒙′, the layer-wise overlap ratio 
(IoU after thresholding) is 

OR𝓁(𝒙,𝒙′) =
|

|

𝓁(𝒙) ∩ 𝓁(𝒙′)||
|

|

𝓁(𝒙) ∪ 𝓁(𝒙′)|| + 𝜖stab
, (1)

where 𝜖stab = 10−8 is a numerical-stability constant independent of the 
PGD budget 𝜖.

As shown in Fig.  1(a), (d), or (g), (j), both distributions nearly 
double their OR on channel activation after adversarial training. In Fig. 
1(b), (e), or (h), (k), which depicts the spatial activation perspective, 
both distributions exhibit nearly the same magnitude of spatial activa-
tion post-adversarial training. A similar pattern is observed for channel-
level activation frequencies. Overall, the adversarially trained model 
shows closer alignment in both spatial/channel activation magnitude 
and channel activation frequency compared to the model without AT.

3.2. Framework of FGAA

Our empirical observations, as detailed in Section 3.1 and further 
validated in Section 4.5, indicate that the OR of the feature activation 
distributions between natural examples and adversarial examples is 
closely related to the robustness of the model. In particular, a lower 
overlap ratio tends to signify a higher vulnerability to adversarial per-
turbations. We devised the FGAA at the feature level to further enhance 
the defensive effect of adversarial training and improve the adversarial 
robustness of neural networks. FGAA operates at a fine-grained feature 
level to address discrepancies caused by adversarial activations. The 
architecture of FGAA is shown in Fig.  2. First, FGAA determines the 
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Fig. 1. Penultimate-layer activations on CIFAR-10 with ResNet18 (PGD-20; classes bird, frog) under natural and adversarial inputs. Each triplet shows three 
panels in left-to-right order: channel-wise average activation magnitude (Ch. Mag.), spatial-wise average activation magnitude (Spat. Mag.), and channel activation 
frequency (Act. Freq.). Magnitudes are sorted in descending order; frequency is ranked by adversarial inputs. Methods: RT (regular training) and SAT (standard 
adversarial training).
importance of features by constructing relationships between these 
features and the ground-truth or predicted labels. Specifically, the 
weight corresponding to a feature map represents the importance of 
the feature on that map. The original feature values activated by 
adversarial examples are then fine-tuned and aligned based on the 
importance of the features. Next, the intermediate outputs in FGAA, 
which carry detailed feature information, are used to set the adversarial 
training loss function, thereby improving the model’s robustness. As 
the network layers deepen, the extracted information becomes more
4 
complex and abstract. Embedding the FGAA module in the deeper 
layers of a model helps establish a direct relationship with the target 
category and suppress non-robust high-level features. Finally, the out-
put features of the FGAA module are passed to the Fully Connected (FC) 
layer of the base model, thus completing the embedding of the FGAA 
module into the target model. It is important to note that the FGAA 
module can be integrated into most neural network models, enabling 
them to perform adversarial training and enhance the original model’s 
robustness.
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Fig. 2. The framework of the FGAA: (1) Establish the correspondence between the feature maps and the category labels. (2) Select the weights corresponding 
to the labeled categories to assess the importance of the feature values. (3) Perform fine-grained alignment of the raw feature activations based on the feature 
importance. Different colors distinguish various categories, while the shade of each color indicates the importance of the feature value for classifying a particular 
category.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.3. Feature importance acquisition

Taking epoch data as an example, let 𝑆(𝑁,C𝑖𝑛,𝐻,𝑊 ) represent the 
input feature map size of the FGAA module. By using a convolution 
kernel to perform feature transformation, we can obtain: 

𝑂𝑈𝑇𝑃𝑈𝑇
(

𝑁𝑖, 𝐶𝑜𝑢𝑡𝑗

)

=
𝐶𝑖𝑛−1
∑

𝑘=0
𝑆
(

𝑁𝑖, 𝑐
)

∗ 𝐹
(

𝐶𝑜𝑢𝑡𝑗 , 𝑐
)

, (2)

where 𝑁 and 𝐶 denote the batch size and channel count of the activa-
tion feature maps, respectively. The indices 𝑖 and 𝑗 refer to the batch 
and channel positions, respectively. Here, 𝐹  represents the convolution 
kernel parameters, and ‘‘∗’’ denotes the convolution operation, which 
in practice corresponds to the cross-correlation operation [27].

Specifically, for the 𝑐th input feature map 𝑆 ∈ R𝐻×𝑊 ×𝐶 , with a 
kernel size of 𝐴×𝐵, the indices 𝑎 and 𝑏 represent specific feature values 
within the convolution kernel. The values of the output feature indexed 
by (𝑚, 𝑛) are calculated as follows: 

𝑂𝑐 [𝑚, 𝑛] =
𝐴−1
∑

𝑎=0

𝐵−1
∑

𝑏=0
𝑠𝑐 [𝑎 + 𝑚, 𝑏 + 𝑛] × 𝑘𝑐 [𝑎, 𝑏]. (3)

In our implementation, this convolution operation is equivalently 
realized through an FC layer that serves dual purposes: it generates 
classification logits while simultaneously providing feature importance 
weights. The size of the convolution kernel matches the input feature 
map size (𝐴 = 𝐻,𝐵 = 𝑊 ), which allows the feature maps to be 
transformed into a one-dimensional output corresponding to the num-
ber of predicted categories. This design establishes a direct connection 
between the FC layer’s weight matrix and feature importance.

The FC layer processes the feature tensor to produce classification 
logits: 
𝛾 (𝒙) = FC𝛾 (flatten(𝑆𝛾 )), (4)

where the flatten operation reshapes 𝑆𝛾 ∈ R𝑁×𝐶×𝐻×𝑊  appropriately for 
the FC layer to produce logits 𝛾 ∈ R𝑁×𝐿. Here, 𝛾 indexes individual 
FGAA modules within the network. The FGAA module design is highly 
flexible and can be integrated into most neural network architectures 
in arbitrary quantities. We denote the total number of FGAA modules 
as 𝛤 , with each module indexed by 𝛾 ∈ {1, 2,… , 𝛤 }. The specific value 
of 𝛤  varies depending on the network architecture and performance 
requirements—for instance, we typically employ 𝛤 = 2 modules in 
ResNet18 for CIFAR-10, while deeper networks or more complex tasks 
may benefit from additional modules. Each 𝛾th FGAA module operates 
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independently with its own FC layer parameters, processing its input 
features 𝑆𝛾 to produce module-specific outputs 𝛾 .

During the training phase, the ground truth labels of the data are 
readily available. We use the weight values 𝐹 𝑙 =

[

𝐾𝑑
1 [𝑎, 𝑏], 𝐾

𝑑
2 [𝑎, 𝑏],… ,

𝐾𝑑
𝑐 [𝑎, 𝑏]

] corresponding to the category 𝑦𝑙 of the ground truth labels 
for subsequent activation alignment. In the testing phase, we use the 
weight values corresponding to the predicted label category 𝑦̂𝑙. In our 
design, the convolutional kernel index 𝑑 is directly matched to the label 
index 𝑙, such that 𝑑 = 𝑙, where 𝑑, 𝑙 ∈ {1, 2,… , 𝐿}, and 𝐿 denotes the 
total number of ground-truth categories. For instance, in the CIFAR-10 
dataset, where 𝐿 = 10, we define 𝑑 = 𝑙 = 1, 2,… , 10. This one-to-one 
correspondence ensures that each kernel is explicitly associated with a 
unique semantic class, thereby identifying the features that contribute 
most to the category.

3.4. Feature activation alignment

The next step is to perform adversarial activation alignment on 
the output of the ReLU layer. Assuming that the output of the ReLU 
layer (the input feature map of the FGAA module) is denoted 𝑆 ∈
R𝑁×𝐶×𝐻×𝑊 , we can align the activation of adversarial examples on the 
feature maps based on the feature importance obtained in Section 3.3:

 Alignment 𝑆̃ =

⎧

⎪

⎨

⎪

⎩

𝑆 ⊙ 𝐹 𝑙
𝑦 ,  (training phase) 

𝑆 ⊙ 𝐹 𝑙
𝑦̂ ,  (test phase) .

(5)

Here, ⊙ denotes the Hadamard product operation. Feature align-
ment depends on feature importance 𝐹 𝑙. In practice, each FGAA module 
operates through a coordinated sequence: it first generates classifica-
tion logits 𝛾 for loss computation, then extracts the corresponding 
feature importance weights 𝐹 𝑙 from its FC weight matrix. These weights 
are applied via element-wise multiplication 𝑆̃𝛾 = 𝑆𝛾 ⊙ 𝐹 𝑙 to align the 
features, which are subsequently propagated to the next layer.

Unlike CAS and CIFS that only consider channel-level activation, 
FGAA performs feature alignment in a more fine-grained manner 
(feature-wise) across both spatial and channel dimensions. This pre-
serves valuable spatial information while selectively modulating feature 
activations based on their importance to classification.

3.5. Loss function for FGAA with AT

Network models with the FGAA module can integrate with existing 
AT techniques (e.g., SAT [12], TRADES [28], and MART [29]) to 
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enhance model robustness. During AT, the FGAA module dynamically 
aligns features activated by adversarial examples that do not contribute 
to the classification of natural examples, thereby improving the robust-
ness of the original model. Let 𝑃 (𝒙; 𝜃) ∈ R𝐿 denote the network output, 
and (𝒙; 𝜃, 𝐹 ) ∈ R𝐿 denote the FGAA readout logits. We use cross-
entropy on logits: logits

𝑐𝑒 (𝑧, 𝑦) = − log
(

sof tmax(𝑧)𝑦
)

. Let 𝒙′ denote the 
adversarial example. The alignment loss of the FGAA module can be 
expressed as: 
𝐹𝐺𝐴𝐴(𝒙′, 𝑦; 𝜃, 𝐹 ) = logits

𝑐𝑒 ((𝒙′; 𝜃, 𝐹 ), 𝑦). (6)

In summary, the overall AT loss function of the model, using SAT 
as an example, is: 

𝐴𝑇 (𝒙′, 𝑦; 𝜃, 𝐹 ) = logits
𝑐𝑒

(

𝑃 (𝒙′; 𝜃), 𝑦
)

+ 𝜆
𝛤

𝛤
∑

𝛾=1
𝛾
𝐹𝐺𝐴𝐴(𝒙

′, 𝑦; 𝜃, 𝐹 𝛾 ) . (7)

𝜆 denotes the weighting factor of the FGAA loss component, which 
controls the degree of feature alignment enforced during training. 
Larger values enforce stronger alignment, and we tune 𝜆 empirically. 
𝛤  denotes the total number of FGAA modules. Dividing by 𝛤  averages 
the FGAA loss across modules, so 𝜆 controls the per-module alignment 
strength regardless of how many modules are used. For instance, when 
deploying FGAA in ResNet18, the parameters are configured as follows: 
𝜆 = 2 (alignment strength), and 𝛤 = 2 (number of FGAA modules used). 
The training procedure for the neural network with FGAA is outlined 
in Algorithm 1.

Algorithm 1 FGAA with Robust Training
Input: Dataset ; network  with FGAA modules {𝛾 = 1,… , 𝛤 }; 

epochs 𝑇 ; batch size 𝜏; PGD steps 𝜅; step size 𝛼; 𝓁∞ budget 𝜖; loss 
weight 𝜆.

Output: Robust model  (𝜃).
1: for 𝑡 = 1 to 𝑇  do
2:  for each mini-batch (𝒙, 𝑦) of size 𝜏 do
3:  Adversary generation (PGD): initialize 𝒙′ ← 𝒙 +

Uniform(−𝜖, 𝜖).
4:  for 𝑠 = 1 to 𝜅 do
5:  𝑔 ← ∇𝒙′ 𝐴𝑇 (𝒙′, 𝑦; 𝜃,𝐅) ⊳ maximize Eq. (7) w.r.t. input
6:  𝒙′ ← 𝛱𝐵𝜖 (𝒙)

(

𝒙′ + 𝛼 sign(𝑔)
)

; 𝒙′ ← clip(𝒙′, 0, 1)
7:  end for
8:  FGAA forward with alignment:
9:  for each FGAA module 𝛾 = 1,… , 𝛤  do
10:  compute class-wise logits 𝛾 (𝒙′; 𝜃, 𝐹 𝛾 ) ∈ R𝐿 ⊳ FGAA 

readout logits
11:  pick importance weights 𝐹 (𝑙) from the module FC 

weights,
 where 𝑙=𝑦 in training and 𝑙=𝑦̂=argmax𝑃 (𝒙′; 𝜃) in testing

12:  element-wise alignment 𝑆̃𝛾 ← 𝑆𝛾 ⊙ 𝐹 (𝑙)  and propagate 
𝑆̃𝛾 to next layers

13:  end for
14:  compute main logits 𝑃 (𝒙′; 𝜃) ∈ R𝐿

15:  Loss: 𝐶𝐸 ← logits
𝑐𝑒

(

𝑃 (𝒙′; 𝜃), 𝑦
)

16:  𝐹𝐺𝐴𝐴 ← 1
𝛤
∑𝛤

𝛾=1 
logits
𝑐𝑒

(

𝛾 (𝒙′; 𝜃, 𝐹 𝛾 ), 𝑦
)

17:  𝐴𝑇 ← 𝐶𝐸 + 𝜆𝐹𝐺𝐴𝐴 ⊳ matches Eq. (7)
18:  update parameters (𝜃,𝐅) by gradient descent on 𝐴𝑇
19:  end for
20: end for

Although FGAA introduces a slight increase in training time, its 
inference-time overhead is negligible, as it operates through feature-
level alignment without adding substantial parameters or complexity. 
Importantly, FGAA is modular and can be selectively applied to specific 
layers, enabling a flexible trade-off between robustness and efficiency. 
Furthermore, its internal structure, composed of simple fully connected 
layers, is compatible with common model compression techniques such 
6 
Table 2
Hyperparameters used for training FGAA_ResNet18 on CIFAR-10 and SVHN.
 Parameters FGAA_SAT FGAA_Trades FGAA_Mart 
 batch_size 128 128 128  
 epoch 200 100 120  
 lr e−2 e−2 e−2  
 weight_decay 2𝑒−4 2𝑒−4 2𝑒−4  
 FGAA_beta 2 2 2  
 num_steps 10 10 10  
 epsilon 8/255 0.031 0.031  
 alpha 2/255 0.007 0.007  
 beta – 4.0 5.0  

as pruning, quantization, and knowledge distillation, making it suitable 
for deployment in resource-constrained IoT environments.

4. Experiments

4.1. Experimental setup

Models & Datasets. The FGAA module is designed for flexible inte-
gration into various neural network architectures. In our experiments, 
we incorporated FGAA into ResNet18, VGG16, and WideResNet34-10, 
denoted as FGAA_ResNet18, FGAA_VGG16, and FGAA_WideResNet34-
10, respectively. These models were trained on three widely used image 
classification benchmarks: CIFAR-10 [30], SVHN [31], and Fashion-
MNIST [32]. These datasets are extensively used in adversarial robust-
ness research due to their diversity, varying levels of visual complexity, 
and the availability of well-established baselines, making them suitable 
for controlled and reproducible evaluation of defense mechanisms.

While these datasets are not explicitly tailored for IoT applica-
tions, they provide a representative and practical foundation for as-
sessing the fundamental behavior of our method. FGAA is modular and 
model-agnostic, and its design allows seamless adaptation to resource-
constrained models typically deployed in IoT settings. In future work, 
we plan to further validate FGAA’s effectiveness using IoT-specific 
datasets — such as those featuring low-resolution imagery, embedded 
sensors, or edge-device benchmarks — to demonstrate its real-world 
applicability in constrained environments.

For adversarial training, we adopted three well-known AT methods: 
SAT [12], TRADES [28], and MART [29], using their official parameter 
settings whenever available. Table  2 details the key hyperparameters 
for training FGAA_ResNet18 on CIFAR-10.
Attacks Methods. To evaluate the contribution of FGAA in improving 
model robustness, we employed a variety of strong adversarial attacks, 
including FGSM [33], PGD-20 [12], 𝐶𝑊∞ [34], Avg-PGD-100 [35] and 
AutoAttack [14]. The FGSM, PGD-20, 𝐶𝑊∞, and Avg-PGD-100 attacks 
used to challenge the FGAA-based defense strategy are based on Eq. (7). 
In contrast, AutoAttack retains its official settings.1 For comparison, 
we also included the CAS defense strategy. Unless otherwise specified, 
robustness evaluation is conducted using the model obtained from the 
last epoch. The code is available at.2

4.2. Robustness evaluation

4.2.1. White-box attack
The models compared are the final AT epoch (last) and the AT 

checkpoint that achieves the highest robust validation accuracy
under PGD-20 (best). The defense results are reported in Table  3. Our 
proposed FGAA method achieves nearly the same natural accuracy as 
the CAS method, but with significantly higher robustness on CIFAR-10 

1 https://github.com/fra31/auto-attack.
2 https://github.com/wenxinkuang/FGAA.

https://github.com/fra31/auto-attack
https://github.com/wenxinkuang/FGAA
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Table 3
White-box robustness (%) of the best and last checkpoint of ResNet18 with the FGAA module, 
obtained through AT on the CIFAR-10 and SVHN datasets. (best = highest validation robust acc 
under PGD-20; last = final epoch.)

Dataset Defense Natural FGSM PGD-20 𝐶𝑊∞

Best Last Best Last Best Last Best Last

CIFAR-10

SAT 83.70 83.60 61.81 59.52 49.50 54.50 49.22 46.78
CAS_SAT 86.16 86.24 61.75 59.27 53.53 46.56 64.11 51.70
FGAA_SAT 86.31 86.19 61.53 60.84 62.73 62.18 86.67 86.62
Trades 84.04 84.52 64.08 64.78 54.12 53.09 52.06 51.86

CAS_Trades 85.50 85.50 64.59 65.23 53.04 53.02 56.31 56.18
FGAA_Trades 81.97 82.06 61.46 60.79 58.21 57.45 75.79 75.45

Mart 80.90 82.31 64.74 65.34 56.17 55.16 52.11 51.61
CAS_Mart 86.41 87.07 63.73 63.80 59.50 55.52 71.64 65.16
FGAA_Mart 85.53 85.83 61.40 60.61 59.59 58.16 83.60 83.59

SVHN

SAT 89.40 89.41 67.52 67.27 53.06 53.21 48.53 48.43
CAS_SAT 86.90 93.96 93.42 73.57 30.26 56.34 51.06 59.52
FGAA_SAT 93.59 93.57 72.98 72.85 61.32 61.26 85.94 86.56
Trades 91.78 91.31 73.68 73.36 60.00 59.98 55.46 55.24

CAS_Trades 91.99 91.99 74.22 73.85 59.81 59.72 58.06 58.06
FGAA_Trades 92.66 92.21 74.31 73.38 61.54 61.09 78.40 80.13

Mart 84.10 88.17 72.80 71.50 67.98 65.60 66.85 64.79
CAS_Mart 93.71 94.28 74.38 74.91 62.58 60.93 68.23 66.49
FGAA_Mart 94.01 93.97 73.61 73.51 65.24 65.30 87.65 87.85
and SVHN. The channel suppression method CAS suppresses channels 
activated by adversarial examples to a certain extent, but it also 
suppresses features that are important for the prediction of natural 
examples. In contrast, FGAA aligns features activated by adversar-
ial examples in a more fine-grained manner, significantly reducing 
the gap between the feature distributions of adversarial and natural 
examples. Consequently, FGAA effectively defends against more ag-
gressive attacks such as PGD-20, Avg-PGD-100, and 𝐶𝑊∞, showing 
great potential particularly against 𝐶𝑊∞ attacks. This is because FGAA 
employs a finer-grained feature-level weighting rather than the uniform 
channel weighting used by CAS. The alignment provided by FGAA is 
more precise. After the original feature maps pass through the FGAA 
alignment module, features that correctly classify adversarial examples 
are amplified while those that misclassify are suppressed, effectively 
purifying adversarial examples and preventing misclassification. It is 
worth noting that models integrated with the FGAA module do not 
always outperform all baselines under every attack scenario. Specif-
ically, under the FGSM attack, FGAA-equipped models may exhibit 
slightly lower robustness compared to some baseline defenses. This 
phenomenon can be attributed to the nature of FGSM itself. FGSM 
is a single-step attack that introduces relatively coarse perturbations. 
Many defense methods (e.g., adversarial training) are more effective 
against fine perturbations from multi-step attacks. This does not imply 
the defense methods are ineffective, but rather that they are designed 
to handle better complex attacks (like PGD) rather than simple single-
step FGSM perturbations. Thus, the performance drop under FGSM 
reflects the nature of the attack, not a limitation of FGAA. Moreover, 
on datasets like SVHN, the FGAA not only demonstrates improved 
robustness but also achieves higher natural accuracy than the baseline 
adversarial training (AT), illustrating FGAA’s potential to boost both ro-
bustness and generalization. Additional results on other architectures, 
including VGG16 and WideResNet34-10, as well as broader dataset 
evaluations, are provided in Section 4.7.

4.2.2. Stability analysis
Compared with RT, AT is prone to overfitting [36]. During AT, the 

robust accuracy on the training data and test data will show opposite 
trends after a certain epoch: one continues to increase steadily while 
the other decreases. Therefore, many studies [12,18,19,36] favor eval-
uating the final (last epoch) model obtained from AT rather than the 
best model obtained at a certain epoch. Nevertheless, the best model is 
an important reference. As shown in Table  3, the CAS strategy exhibits 
a significant gap between the robustness accuracy of the last and best 
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Table 4
Robustness (%) of FGAA combined with different adversarial train-
ing (AT) methods under the AutoAttack benchmark on CIFAR-10 
using ResNet18.
Defense method Natural accuracy (%) AutoAttack accuracy (%)
SAT 83.60 56.20
CAS_SAT 86.24 59.34
FGAA_SAT 86.19 62.68
Trades 84.52 60.77
CAS_Trades 85.50 60.94
FGAA_Trades 82.06 62.41
Mart 82.31 58.74
CAS_Mart 87.07 57.31
FGAA_Mart 85.83 63.61

models obtained under all three AT methods, indicated by underlined 
values in the table. The last and best models obtained in CAS_SAT 
mode have a robustness gap of up to 9.93% in defending against 𝐶𝑊∞
attacks, whereas FGAA maintains this gap within approximately 1%. 
This indicates that the CAS strategy cannot consistently capture robust 
features during training. Consequently, further training after reaching 
the peak robust model at a certain epoch is largely unproductive. In 
contrast, the model trained with our proposed FGAA module demon-
strates greater stability. The primary reason for the poor model fitting 
with the CAS strategy is its direct suppression of features across the 
entire channel.

4.2.3. AutoAttack
AutoAttack is currently the most widely used method for evaluat-

ing robustness. AutoAttack integrates three white-box attacks (APGD-
CE, APGD-T, and FAB-T) and one black-box attack (Square Attack). 
The results of FGAA against AutoAttack are shown in Table  4. The 
FGAA strategy, when combined with different AT methods, consistently 
achieves impressive robustness results. While FGAA does not always 
yield the highest natural accuracy (e.g., CAS_SAT slightly exceeds 
FGAA_SAT, and CAS_Trades outperforms FGAA_Trades in clean accu-
racy), it consistently achieves the strongest robustness under AutoAt-
tack. This reflects FGAA’s design emphasis on stabilizing task-relevant 
features against perturbations, leading to robustness gains at the cost 
of marginal reductions in natural accuracy. Overall, FGAA provides 
a favorable robustness–accuracy balance compared with baseline and 
CAS methods.
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Table 5
Robustness (%) for different 𝜆𝑎𝑡𝑡𝑎𝑐𝑘 values. The values of 𝜆𝑎𝑡𝑡𝑎𝑐𝑘 indicate the 
locations of the attack target within the model. 𝜆𝑎𝑡𝑡𝑎𝑐𝑘 = 0 indicates that the 
attack is launched against the last layer of the model, 𝜆𝑎𝑡𝑡𝑎𝑐𝑘 = ∞1 indicates that 
the attack targets the first FGAA module of ResNet18, 𝜆𝑎𝑡𝑡𝑎𝑐𝑘 = ∞2 indicates 
that the attack targets the second FGAA module, and 𝜆𝑎𝑡𝑡𝑎𝑐𝑘 = ∞ indicates that 
the attack is directed solely against the entire FGAA module. The base model 
is ResNet18, and the data is CIFAR-10. 
 Defenses 𝜆𝑎𝑡𝑡𝑎𝑐𝑘 Natural FGSM PGD-20 𝐶𝑊∞ Avg-PGD-100 
 CAS_SAT 0 86.24 88.62 89.79 89.73 89.65  
 0.1 – 61.67 60.72 85.25 62.67  
 1 – 59.63 49.33 58.18 51.27  
 10 – 59.22 44.56 48.12 44.55  
 100 – 59.14 44.02 47.67 43.87  
 ∞1 – 59.01 43.40 46.08 40.89  
 ∞2 – 88.47 89.65 88.95 89.83  
 ∞ – 59.14 44.27 47.65 43.67  
 FGAA_SAT 0 86.19 90.24 92.34 92.17 92.19  
 0.1 – 66.82 69.05 89.95 69.55  
 1 – 61.88 62.83 86.83 64.48  
 10 – 60.16 60.55 86.30 62.39  
 100 – 59.58 59.48 86.36 61.57  
 ∞1 – 56.99 40.92 44.81 38.48  
 ∞2 – 90.41 92.75 91.49 93.24  
 ∞ – 59.48 58.88 86.15 60.70  

4.3. Adaptive attack

FGAA enhances the robustness of the original model by incorpo-
rating FGAA modules into the base model and integrating it with 
conventional AT. Assuming full awareness of FGAA’s defense strategies, 
we design adaptive attacks specifically for FGAA. Specifically, we gen-
erate intensified adversarial examples using an adaptive loss function 
derived from Eq. (7). This loss function comprises two components: 
the conventional AT loss 𝑐𝑒 and the FGAA loss 𝐹𝐺𝐴𝐴. The attacker 
can adjust the parameter 𝜆 to control the relative weight of these 
components. 𝜆 takes values from the set {0, 0.1, 1, 2, 10, 100,∞}. For 
𝜆 = 0, the loss focuses only on 𝑐𝑒, while larger values progressively 
increase the influence of 𝐹𝐺𝐴𝐴. Table  5 presents the adaptive attack 
results under different 𝜆attack values. We report results using 𝜆attack = 2, 
balancing both loss components effectively.

4.4. Alignment patterns and effects

Due to the significant discrepancies between the activation dis-
tributions of adversarial and natural examples in both spatial and 
channel dimensions, we aimed to narrow this gap through various 
alignment strategies. We selected four types of alignment strategies: 
CAS_SAT for channel-wise activation alignment, essentially a channel-
wise feature alignment method; SAA_SAT for spatial dimension activa-
tion alignment; CSAA_SAT, which involves alignment from the channel 
perspective followed by spatial dimension activation alignment; and 
FGAA_SAT, a FGAA, which offers a more granular alignment in both 
spatial and channel dimensions. To ensure a fair comparison, we re-
placed the last block of the base model with the respective alignment 
module.

Table  6 indicates that solely aligning from the spatial dimension 
negatively affects the semantics of channel dimension features, leading 
to a notable decrease in the model’s prediction accuracy for natural 
examples and its ability to defend against adversarial example attacks. 
This suggests that the correlation between spatial dimension features 
is weaker compared to that between channel dimension features. How-
ever, it is essential to consider the semantics of the spatial dimension; 
for instance, the defense effect of solely suppressing the channel di-
mension (CAS_SAT) is less effective than aligning both spatial and 
channel dimensions simultaneously, as demonstrated by CSAA_SAT and 
FGAA_SAT. This demonstrates the existence of an activation discrep-
ancy between adversarial and natural examples in the spatial dimension 
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Table 6
Robustness (%) of different activation alignment 
strategies. The base model is ResNet18, and the 
dataset used is CIFAR-10. The strategies include 
CAS for channel-wise alignment, SAA for spatial 
alignment, CSAA for channel followed by spatial 
alignment, and FGAA for fine-grained feature-level 
alignment.
Defenses Natural FGSM PGD-20 𝐶𝑊∞

CAS_SAT 86.24 59.27 46.56 51.70
SAA_SAT 64.31 42.89 41.40 45.53
CSAA_SAT 86.50 63.04 59.94 83.00
FGAA_SAT 86.19 60.84 62.18 86.62

and highlights the potential for enhancing model robustness by mitigat-
ing this discrepancy. Among the alignment strategies, FGAA, offering 
a more fine-grained alignment, exhibits superior defense against more 
potent attacks such as PGD-20 and 𝐶𝑊∞.

4.5. Empirical feature activation analysis of FGAA

The OR (see Eq. (1)) quantifies the similarity of internal feature 
activations between natural and adversarial inputs. Intuitively, a higher 
OR suggests that adversarial perturbations have a more limited in-
fluence on the model’s internal representations, potentially indicating 
stronger adversarial robustness. To empirically assess this hypothesis, 
we examine the correlation between OR values and adversarial robust-
ness across multiple defense strategies on the CIFAR-10 dataset along 
three dimensions: channel magnitude, spatial magnitude, and channel 
frequency.

As illustrated in Fig.  3, models trained via RT exhibit the lowest OR 
values across all three dimensions. These low OR values correspond 
to poor robustness (e.g., 49.50%), indicating that unstable internal 
activations are associated with model vulnerability. This observation is 
consistent with the findings of Bai et al. [18], who reported that adver-
sarial examples tend to induce larger and more uniformly distributed 
activations compared to natural examples. However, their analysis was 
predominantly qualitative and lacked a precise quantitative metric. In 
contrast, our use of the OR metric provides a clear and explicit means 
of quantifying activation consistency.

Compared to RT, conventional adversarial training methods (SAT, 
TRADES, and MART) consistently yield higher OR values. Among them, 
TRADES achieves the highest OR values across all three dimensions, 
as shown in Fig.  3(m), (n), and (o). This result aligns with TRADES 
also exhibiting the strongest robustness and highest natural accuracy 
among the three, reinforcing the view that adversarial training helps 
align internal feature representations between natural and adversarial 
inputs, thus improving robustness under moderate perturbations.

Notably, across all nine evaluated defense methods, models trained 
with adversarial strategies consistently exhibit more aligned activation 
patterns — especially in spatial magnitude and channel frequency — 
compared to RT. These methods collectively promote a gradual conver-
gence of adversarial activation distributions toward those of natural in-
puts, thereby reducing their divergence and enhancing robustness. This 
supports the notion that improving activation distribution alignment is 
central to effective adversarial defense.

In contrast, CAS-based methods display inconsistent OR perfor-
mance. While they achieve relatively high OR values in the spatial 
magnitude dimension, their alignment in channel magnitude and fre-
quency is notably weaker. This partial alignment limits robustness gains 
and introduces instability. For example, CAS_SAT achieved the best 
robustness of 53.53% on the PGD-20 dataset, but the robustness of its 
last model was only 46.56%—lower than all other evaluated defense 
methods. These results highlight that spatial activation consistency is 
necessary but not sufficient: strong performance in a single dimension 
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does not guarantee overall robustness. For instance, although CAS_SAT 
outperforms FGAA_SAT in spatial magnitude OR, FGAA exceeds CAS 
by approximately 17% in channel alignment and ultimately achieves 
superior robustness.

Our proposed FGAA method achieves consistently high OR values 
across all dimensions, leading to the most substantial and stable im-
provements in robustness. Specifically, the best model robustness of 
FGAA_SAT is 62.73%, and the last model robustness is 62.18%. FGAA 
effectively promotes the convergence of adversarial activation distri-
butions toward those of natural inputs, thereby reducing distributional 
discrepancies and progressively increasing OR. Our activation analysis 
confirms that as adversarial activations increasingly resemble those of 
natural inputs, the model’s robustness improves significantly. While 
CAS effectively reduces spatial activation magnitude discrepancies, it 
also causes near-complete suppression of certain channels, as shown 
in Fig.  3(g) and (i). As a coarse-grained channel suppression method, 
CAS risks discarding important discriminative features. By contrast, 
FGAA employs a fine-grained, feature-level alignment strategy that se-
lectively suppresses adversarially exaggerated features while preserving 
critical activations from natural examples. As shown in Fig.  3(l), FGAA 
provides a more comprehensive regulation of activation distributions, 
particularly in channel frequency. This targeted regulation substan-
tially reduces the gap in activation frequency between adversarial and 
natural inputs, leading to enhanced model robustness.

In summary, our analysis demonstrates a strong empirical link 
between activation distribution alignment and adversarial robustness. 
Models that maintain high OR across multiple activation dimensions 
exhibit superior resilience to adversarial perturbations.

4.6. Ablation study

4.6.1. Effectiveness of the FGAA
There is a significant discrepancy between the activation feature 

distribution of adversarial and natural examples within neural net-
works. AT is widely acknowledged as one of the most effective methods 
for enhancing model robustness. However, while AT mitigates this 
bias to some extent, it often comes at the expense of the accuracy of 
natural examples. The primary objective of our FGAA module is to 
address the limitations of AT and further reduce the activation bias. 
To rigorously evaluate the efficacy of the FGAA module independently, 
we decouple it from AT. We investigated whether FGAA could enhance 
robustness without being integrated with AT. The strategies include RT, 
channel-wise activation suppression with regular training (CAS_RT), 
fine-grained activation alignment with regular training (FGAA_RT), 
adversarial training (SAT), and fine-grained activation alignment com-
bined with adversarial training (FGAA_SAT). The results are presented 
in Table  7.

Without adversarial training, FGAA_RT attains 57.47% robust ac-
curacy under PGD-20, markedly above typical RT levels. This gain 
does not result from an explicit suppression of adversarially sensitive 
activations. Instead, FGAA’s fine-grained activation alignment empha-
sizes task-relevant activations in both spatial and channel dimensions. 
This emphasis reduces the influence of perturbation-sensitive, less rel-
evant features on the final prediction. As a result, the model shows 
meaningful robustness even under RT.

The base ResNet18 model, when trained with RT, shows signifi-
cant vulnerability to adversarial attacks, evidenced by 0% robustness 
against PGD-20 attacks. When adversarial training is applied (SAT), 
the robustness improves dramatically compared to RT. Embedding the 
CAS module, which aligns activations from the channel perspective, 
provides some enhancement in robustness. For instance, the CAS_RT 
model shows slight improvement in defending against adversarial ex-
amples, achieving a 6.8% robust accuracy against the Avg-PGD-100 
attack. However, this improvement remains modest. In contrast, the 
FGAA module shows substantial improvement in robustness, even with-
out AT. The FGAA_RT demonstrates significant adversarial robustness, 
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Table 7
Robustness (%) of different activation alignment strategies with 
regular and adversarial training. The base model is ResNet18, and 
the dataset is CIFAR-10. The strategies evaluated include: ResNet18 
with RT, ResNet18 with a channel-wise activation suppression mod-
ule under RT (CAS_RT), ResNet18 with a fine-grained activation 
alignment module under RT (FGAA_RT), ResNet18 with SAT, and 
ResNet18 with a fine-grained activation alignment module combined 
with SAT (FGAA_SAT).
Defenses Natural FGSM PGD-20 𝐶𝑊∞ Avg-PGD-100

RT 94.21 8.70 0.0 24.39 0.0
CAS_RT 94.25 38.59 13.57 33.01 6.80
FGAA_RT 93.37 69.28 57.47 45.44 32.93
SAT 83.61 59.21 45.50 46.73 42.75
FGAA_SAT 86.19 60.84 62.18 86.62 63.45

Table 8
Robustness (%) of the FGAA strategy against PGD-20 under 
various perturbation strengths. The base model is ResNet18, and 
the dataset is CIFAR-10.

𝜖 2/255 4/255 8/255 16/255 32/255

CAS_SAT 79.15 70.26 48.88 16.64 2.48
FGAA_SAT 81.24 74.88 61.95 51.33 36.43
CAS_Trades 80.09 72.69 55.99 27.94 5.10
FGAA_Trades  77.22 71.06 57.36 35.02 15.91
CAS_Mart 81.01 73.56 54.37 20.49 2.19
FGAA_Mart 80.69 74.22 58.50 41.56 27.10

comparable to models that employ AT. Notably, the FGAA_RT model 
outperforms the SAT model in defending against several basic attacks 
such as FGSM and PGD-20. The experimental results indicate that the 
FGAA module inherently enhances robustness. When combined with 
adversarial training (FGAA_SAT), the model achieves maximal robust-
ness, effectively defending against powerful attacks such as PGD-20, 
𝐶𝑊∞ and Avg-PGD-100.

Our observations confirm that RT leaves models highly susceptible 
to adversarial attacks. The introduction of AT significantly improves 
robustness. However, the most substantial gains are observed when 
employing the FGAA module, both in isolation and in conjunction 
with adversarial training. This approach not only boosts inherent ro-
bustness but also maximizes the model’s defensive capabilities against 
sophisticated adversarial attacks.

4.6.2. Robustness under different 𝜖 settings
In general, a larger value of 𝜖 indicates a stronger attack and results 

in lower robustness accuracy of the attacked model. We evaluate the 
robustness of FGAA with ResNet18 under different attack strengths 𝜖
using PGD-20 as an example. 𝜖 represents the level of perturbation, 
which is typically set to 8/255 empirically, as shown in Table  2. The 
evaluation results are presented in Table  8. It can be observed that the 
robustness of FGAA consistently outperforms CAS, regardless of the in-
crease in attack strength. Even when the perturbation strength reaches 
32/255, FGAA can still defend against the adversarial examples.

4.6.3. Robustness under different 𝜆 settings
In the FGAA module, we use 𝜆 to control the strength of feature 

alignment. To test the robustness of the FGAA training strategy under 
different alignment strengths, we varied 𝜆 values to 0.5, 1, 2, 5, 10, and 
20, where larger 𝜆 values indicate greater alignment strength. Table  9 
presents the model’s robustness under white-box attacks for different 
alignment strengths, using the same 𝜆 values for both training and at-
tacks. The results demonstrate that the presence of alignment generally 
enhances the model’s robustness. However, excessive alignment causes 
the model to overly rely on the FGAA module, thereby neglecting the 
base model’s original classification loss. This results in a significant 
drop in both robust accuracy and the prediction accuracy for natural 
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Fig. 3. Penultimate-layer activations for airplane on CIFAR-10 with ResNet18 (PGD-20) under natural and adversarial inputs. Triplets show Ch. Mag., Spat. Mag., 
Act. Freq. (as in Fig.  1). Methods: RT, SAT, CAS_SAT, FGAA_SAT, TRADES, CAS_TRADES, FGAA_TRADES, MART, CAS_MART, FGAA_MART.
examples. For ResNet18, the model achieves the best balance between 
robust accuracy and natural example prediction accuracy when 𝜆 = 2.

4.6.4. Attack different target modules
To further test the robustness of the FGAA defense strategy, we 

conducted an ablation study. We attacked the final layer and the 
FGAA/CAS layers of the model embedded with the FGAA/CAS module, 
respectively. The results are shown in Table  10. The FGAA defense 
strategy demonstrated greater robustness compared to the CAS defense 
strategy, regardless of whether the attacker targeted the final layer 
of the trained model or a specific FGAA/CAS layer. Furthermore, the 
10 
robustness of FGAA exhibited minimal fluctuation with changes in the 
target attack module. In contrast, under the CAS defense strategy, the 
robustness will show a decreasing trend once the attack is directed 
against its specific CAS module.

4.7. More experimental results

4.7.1. FGAA_VGG16 results on CIFAR-10
VGG16 consists of five blocks containing convolutional layers. Sim-

ilar to FGAA_ResNet18, we replaced the convolutional layers within 
the last block with FGAA modules. Since there are three convolutional 
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Fig. 3. (continued).
layers in the last block, VGG16 includes three FGAA modules, and 
𝛤 = 3. We trained the VGG16 embedded with FGAA modules using 
SAT, Trades, and Mart. The robust accuracy results of the trained 
models are shown in Table  11. The natural example prediction accuracy 
and adversarial robustness accuracy of the three models trained with 
only adversarial training are less than satisfactory. However, with the 
addition of the FGAA training strategy, the loss in natural example 
prediction accuracy is significantly compensated for each AT method. 
For example, the natural example prediction accuracy of FGAA_Mart 
is improved by 10.73% compared to the model trained using only 
Mart. Additionally, FGAA enhances the model’s robustness. Notably, 
FGAA combined with Trades proves to be the most effective, with 
11 
FGAA_Trades achieving an improvement of up to 22.65% in adversarial 
robustness accuracy against 𝐶𝑊∞ attacks compared to Trades alone.

4.7.2. FGAA_WideResNet34-10 results on CIFAR-10
When integrated with the network structure of WideResNet-34-10, 

the FGAA module replaces the convolutional layer in its final convo-
lution block. Thus, two FGAA modules are embedded in WideResNet-
34-10 with 𝛤 = 2. The robust results of FGAA_WideResNet-34-10 are 
shown in Table  12. It is observed that among the three different mod-
els, the FGAA strategy provides the most significant improvement in 
natural example prediction accuracy for the simpler, straight-type VGG 
network. The enhancement in robustness for relatively more complex 
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Fig. 3. (continued).
Table 9
Robustness (%) at different 𝜆 values in FGAA 
module. The base model is ResNet18 and the 
dataset is CIFAR-10.
𝜆𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 Natural FGSM PGD-20 𝐶𝑊∞

𝜆 = 0.5 86.01 59.16 58.58 84.90
𝜆 = 1 86.11 60.46 60.88 85.62
𝜆 = 2 86.19 60.84 62.18 86.62
𝜆 = 5 85.47 61.10 58.86 81.99
𝜆 = 10 84.50 59.27 53.59 76.37
𝜆 = 20 9.99 9.99 9.99 9.99

Table 10
Robustness (%) of FGAA_SAT and CAS_SAT under different 
attack targets. The left side of the ‘‘/’’ symbol refers to 
attacking the final layer of the trained robust model, while 
the right side of the ‘‘/’’ symbol indicates attacks directed 
at the specific FGAA/CAS layers.
Defenses FGSM PGD-20 𝐶𝑊∞

CAS_SAT 60.07/60.18 46.31/44.75 50.63/47.96
FGAA_SAT 60.84/59.45  62.18/58.82 86.6/86.09

models like WideResNet-34-10 is not as pronounced as for VGG16 and 
ResNet18. However, the FGAA strategy consistently offers substantial 
improvements against 𝐶𝑊∞ attacks across all models and datasets. This 
is because FGAA leverages labeling information to guide the alignment 
of activation features, increasing prediction margins and thus achieving 
the greatest success in defending against margin-based 𝐶𝑊∞ attacks.

4.7.3. FGAA_ResNet18 results on Fashion-MNIST
In addition to validating the FGAA training strategy on CIFAR-10 

and SVHN, we further conducted experiments on Fashion-MNIST. Table 
13 lists the training parameters used for the experiments on Fashion-
MNIST. The results are shown in Table  14. Overall, across all models 
and datasets, adversarial training Mart results in the greatest loss of 
prediction accuracy on natural examples. However, our FGAA training 
strategy consistently compensates for this loss. On the simpler Fashion-
MNIST dataset, models have difficulty creating stronger adversarial 
12 
Table 11
Robustness (%) of VGG16 models with and without the 
FGAA module at the best and last checkpoints obtained 
through AT on CIFAR-10.
𝑙𝑎𝑠𝑡_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 Natural FGSM PGD-20 𝐶𝑊∞

SAT 76.81 58.05 46.70 45.85
FGAA_SAT 81.99 54.00 42.54 53.04
Trades 79.03 57.17 45.79 45.52

FGAA_Trades 81.67 59.53 53.24 68.17
Mart 71.29 57.39 49.56 45.21

FGAA_Mart 82.02 56.64 45.70 51.60

𝑏𝑒𝑠𝑡_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 Natural FGSM PGD-20 𝐶𝑊∞

SAT 74.05 57.43 48.14 46.59
FGAA_SAT 78.90 57.25 52.04 65.45
Trades 78.92 56.87 45.98 46.29

FGAA_Trades 78.34 58.45 55.37 69.16
Mart 71.61 57.84 50.21 45.09

FGAA_Mart 77.53 57.10 51.31 59.50

Table 12
Robustness (%) of WideResnet34-10 models with and 
without the FGAA module at the best and last check-
points obtained through AT on CIFAR-10.
𝑙𝑎𝑠𝑡_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 Natural FGSM PGD-20 𝐶𝑊∞

SAT 85.94 62.14 48.83 52.26
FGAA_SAT 84.65 62.09 60.93 78.44
Trades 86.97 62.11 50.34 54.70

FGAA_Trades 84.73  67.03 54.81 68.01
Mart 85.97 63.27 52.98 51.95

FGAA_Mart 86.43 66.01 53.24 74.44

𝑏𝑒𝑠𝑡_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 Natural FGSM PGD-20 𝐶𝑊∞

SAT 86.81 65.70 53.20 53.26
FGAA_SAT 85.06 61.07 60.47 79.44
Trades 85.90 61.86 50.19 54.82

FGAA_Trades 84.37 67.16 56.98 67.73
Mart 83.27 63.31 53.46 54.11

FGAA_Mart 83.49 66.41 57.84 73.81
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Table 13
Hyperparameters used for training FGAA_ResNet18 on Fashion-MNIST.
 Parameters FGAA_SAT FGAA_Trades FGAA_Mart 
 batch_size 128 128 128  
 epoch 200 100 120  
 lr e−1 2e−1 e−1  
 weight_decay 2𝑒−4 5𝑒−4 2𝑒−4  
 FGAA_beta 2 2 2  
 num_steps 10 10 10  
 epsilon 8/255 0.031 0.031  
 alpha 2/255 0.007 0.007  
 beta – 4.0 5.0  

Table 14
Robustness (%) of ResNet18 with and without the 
FGAA module at the best and last checkpoints obtained 
through AT on Fashion-MNIST.
𝑙𝑎𝑠𝑡_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 Natural FGSM PGD-20 𝐶𝑊∞

SAT 92.00 88.26 86.01 86.04
FGAA_SAT 92.32 88.08 87.02 88.28
Trades 92.60 89.79 88.57 88.54

FGAA_Trades 92.02 89.39 88.22 89.60
Mart 87.17 84.47 83.32 83.10

FGAA_Mart 92.68 87.76 87.44 91.82

𝑏𝑒𝑠𝑡_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡 Natural FGSM PGD-20 𝐶𝑊∞

SAT 92.44 89.90 88.85 88.80
FGAA_SAT 92.13 89.60 89.05 90.39
Trades 92.52 89.94 88.58 88.60

FGAA_Trades 92.07 89.46 88.66 89.90
Mart 87.31 84.78 83.78 83.56

FGAA_Mart 92.55 88.10 88.01 91.74

examples, as evidenced by the adversarial robustness accuracy almost 
always exceeding 80%. Even in this scenario, where the potential 
for improvement is limited, adding FGAA still enhances the model’s 
robustness. For instance, on the Fashion-MNIST dataset, FGAA provides 
the most significant improvement for Mart, with a maximum increase 
of 8.72% in robustness accuracy.

5. Conclusion

There are significant deviations in the feature activation distri-
butions of neural networks for adversarial versus natural examples, 
whether analyzed from a spatial or channel perspective. Although AT 
can reduce these discrepancies, it often does so at the cost of natural 
example accuracy, which is especially problematic in security-critical 
AIoT applications where both robustness and precision are paramount. 
To address this challenge, we propose the FGAA module, which aligns 
feature activations at the single-feature level. By integrating the FGAA 
strategy into existing defense methods, we can significantly reduce 
the activation discrepancies between adversarial and natural examples, 
thereby enhancing overall model robustness—a crucial requirement 
for secure and privacy-preserving AIoT-enabled smart societies. Our 
study contributes to the development of deep learning techniques for 
security-critical domains, particularly in the context of smart infras-
tructures where the reliable processing of sensitive data is essential. 
Through this research, we aim to provide new insights and solutions 
for the security and privacy challenges in AI-driven IoT-enabled smart 
societies, thereby fostering further advancements in this field.

Nevertheless, FGAA is not without limitations. First, while our 
module suppresses redundant activations, it does not eliminate them, 
leaving room for further model compression and optimization. Second, 
although our empirical results and the OR metric offer strong evi-
dence of FGAA’s effectiveness, a formal theoretical framework remains 
lacking. In future work, we will explore margin-based generalization 
bounds and feature-manifold alignment theories to provide a rigorous 
foundation for FGAA and to guide the development of even more 
13 
efficient and provably robust defenses. Beyond theory, we will also 
validate FGAA in AIoT-specific settings such as edge vision sensors, 
TinyML models, and federated learning, where resource constraints and 
adversarial threats intersect, to further assess practical robustness and 
deployment feasibility.
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