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ABSTRACT With the considerable growth of cybersecurity risks in modern automobiles, cybersecurity
issues in the in-vehicle network environment have attracted significant attention from security researchers
in recent years. Enhancing the cybersecurity ability of in-vehicle networks while considering the computing
resource and cost constraints become an urgent issue. To address this problem, a novel information entropy-
based method is proposed in this paper, which uses a fixed number of messages as sliding windows.
By improving the sliding window strategy and optimizing the decision conditions, the detection accuracy is
increased and the false positive rate is reduced. Experimental results demonstrate that the proposed method
can provide real-time response to attacks with a considerably improved detection precision for intrusion
detection in the in-vehicle network environment.

INDEX TERMS Controller area network (CAN), cybersecurity, information entropy, in-vehicle network,
intrusion detection system (IDS).

I. INTRODUCTION
A. BACKGROUND
Automotive electronic systems are distributed systems that
consist of various electronic devices such as electronic con-
trol units (ECUs), actors (e.g., engine, motor, brakes, and
steering wheel), and sensors (e.g., LIDAR, GPS, position
estimator, RADAR, and cameras), which are interconnected
with an in-vehicle network such as controller area net-
work (CAN), LIN, and FlexRay. Currently, the number of
deployed ECUs in a modern high-end automobile is more
than 100 to implement various functionalities [1]. With the
continuous improvement in the complexity and connectivity
of modern vehicles, the cyber security risks of automobiles
have become increasingly prominent [2], [3]. Nevertheless,
the vehicle has existed as an independent system for a long
time, and existing in-vehicle networks do not provide mes-
sage encryption and authentication mechanisms during the
protocol design phase.

Currently, cyber security attacks in vehicles have increased
and have been reported in several papers [2], [4], [5]. For
example, Koscher et al. in [4] successfully controlled a wide
range of automotive functions, such as disabling brakes and
stopping the engine. This attack led to a recall of 1.4 million
cars by manufacturers. Attacks on vehicles usually include
a series of operations, such as sniffing and fuzzing of CAN
bus and reverse engineering the firmware of ECU. Given that
an automotive electronic system is safety-critical, its design
needs to strictly follow the desired standard specifications,
such as ISO 26262 [6]. The cyber security threat to safety
function systems is threat to not only information security and
privacy but also the user’s life and property safety. To avoid
serious damage caused by hacking, the intrusion detection
capabilities of the in-vehicle networks should be improved.

Countermeasures have been proposed to enhance security
performance of in-vehicle networks [7]–[9]. However, secu-
rity enhancement methods such as message encryption and
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authentication are limited by cost and resource [10]–[13].
The ever-evolving attack techniques are difficult to block
with firewalls [14] because network attacks are becoming
increasingly diverse and intelligent during automobiles’ life
cycle (generally more than 20 years). In order to prevent
reverse engineering from attackers, existing protection tech-
nologies cannot deal with these attacks effectively. Therefore,
intrusion detection is currently considered a good option for
enhancing in-vehicle network cyber security owing to its cost
effectiveness and high compatibility. In this study, a sliding
window optimized information entropy analysis method for
in-vehicle network’s intrusion detection is proposed. This
means a strategy that uses the optimal fixed number of
messages as the sliding window.

B. MOTIVATION
Recently, several studies to detect attacks targeted on
vehicles are proposed in [15]–[18]. The recently released
SAE J3061 guidebook for cyber-physical vehicle systems
focuses on designing cyber security aware systems in close
relation to the automotive safety standard ISO 26262.
The studies related to the current work mainly include
[19] and [20].

Previous information entropy-based studies have the fol-
lowing shortcomings. First, the monitoring strategy with
fixed time as the sliding window is used in [19] and [20].
Because the CAN bus is an event-triggered in-vehicle net-
work. The information entropy under this monitoring strategy
cannot avoid the huge impact of the non-periodic CAN
messages and different transmission rates (e.g., 125 and
250 Kbps), thereby resulting in high false positive rate.
Second, the size of the sampling window greatly influences
the information entropy, but how to determine the size
of the sampling window has not been carefully studied in
the previous studies. To improve the detection accuracy of
the intrusion detection system (IDS) for the in-vehicle net-
work environment, an intrusion detection method with high
accuracy and low response time is needed.

C. MAIN CONTRIBUTIONS
To the best of our knowledge, compared with the existing
information entropy-based intrusion detection system design,
this study is the first to use an observation strategy that utilizes
the fixed number of messages as the sliding window. The
proposed intrusion detection method does not need to change
the existing CAN protocol. Therefore, it can be compatible
to existing vehicles on the market. The main contributions of
this study can be summarized as follows.

1) We propose a fixed number of messages based sliding
window strategy to avoid information entropy interference
caused by different baud rate and aperiodic CAN messages.

2) We propose a heuristic algorithm based on simulated
annealing. According to this algorithm and the real-life in-
vehicle network communication data set [21], we can get
the best sliding window parameters for intrusion detection
system design in this kind of vehicle.

3) We conduct evaluation experiments based on real-life
vehicle data sets, and the results demonstrate that the pro-
posedmethod compared with existing entropy-basedmethod,
which can improve the accuracy of intrusion detection with
low response time and false positive rate.

The rest of the paper is organized as follows. In Section II,
we introduce the background knowledge and attack model
and scenarios. Section III presents our proposed detection
mechanism. In Section IV, we describe the proposed algo-
rithms in detail. In Section V, we demonstrate the experi-
ments and evaluation results. Section VI presents the related
works. Finally, we elaborate the conclusions in Section VII.

II. PRELIMINARIES
A. CAN OVERVIEW
CAN protocol was invented by Robert Bosch GmbH to meet
the specific requirements of in-vehicle environment, such
as real-time processing, strong robustness, and cost effec-
tiveness. CAN is a commonly used communication network
in current in-vehicle environment, which is a priority-based
non-preemptive communication network with a maximum
data rate of 1 Mbit/s. At the data link layer, CAN protocol
uses broadcast communication to transmit messages. Figure 1
shows the basic data frame structure of CAN 2.0. The blue
line in the figure indicates transmission waveform on the
CANphysical bus.WhenNode 3 obtains the bus transmission
permission, the other nodes will stop sending and wait until
the network is idle again. Once the CAN network is illegally
accessed, this arbitration mechanism will be vulnerable to
high-priority denial-of-service (DoS) attacks.

FIGURE 1. Standard CAN message frame.

CAN is a de facto standard communication network proto-
col used in automobiles and industry equipment for 30 years,
which is often connected by multiple safety-critical systems.
Nevertheless, this component is vulnerable to attack due to
its lack of security mechanism design. Therefore, this study
focuses on the intrusion detection technology suitable for
CAN environment.

B. CAN VULNERABILITY
According to the characteristics of the CAN protocol,
the vulnerability of CAN can be described to the next four
points [22].

• Broadcast Transmission: On the data link layer,
the CAN protocol uses broadcast communication to
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transmit messages, thereby suggesting that all nodes on
the bus can receive the messages simultaneously.

• No Authentication:Message transmission on CAN bus
lacks a design authentication mechanism. The attacker
can compromise one or multiple ECUs and restrict them
from sending few or all messages.

• No Encryption: CAN message lacks an encryption
mechanism, and adding encryption technology for CAN
will cause additional delay and will reduce the effective
utilization rate of network due to the constraints of band-
width and payload resources.

• ID-based Priority Scheme: The arbitration mechanism
of CAN is that the message with high priority can con-
tinue to transmit data without affecting the bus collision
decision time, whereas the low priority message must
wait for the next idle state. Therefore, hackers can easily
use high-priority IDs to launch DoS attacks.

Figure 2 shows the vulnerabilities of in-vehicle network,
the attacks adopted by researchers, and the corresponding
countermeasures [7]–[9], [15]–[18]. As shown in Figure 2,
an effective countermeasure for frame injection and DoS
attacks is to develop an intrusion detection system based
on anomaly detection, such as the method proposed in this
study. It should be pointed out that the security enhancement
system’s countermeasure against DoS attacks is limited, espe-
cially for high-priority DoS attacks. This means that detection
of DoS attacks is easy, but preventing DoS attacks is very
difficult.

FIGURE 2. In-Vehicle network attacks and corresponding
countermeasures.

C. ATTACK HYPOTHESES
1) THREAT MODEL
In our threat model, we assume that attackers can access
the CAN bus. Access points include but are not limited to
Bluetooth, OBD_II, Wi-Fi, physical access, and USB ports.
Once an attacker gains access to the CAN, the attacker can
conduct sniffing, spoofing, andDoS attacks. In this study, two
attack types are detected in in-vehicle networks. One is DoS
attack, and the other is injection attack.

2) ATTACK SCENARIOS
We present two types of attack scenarios based on the
threat model. In Figure 3 and Figure 4, the white-box is

FIGURE 3. Diagram of the DoS attack on the CAN.

FIGURE 4. Diagram of the injection attack on the CAN.

illustrated as the legitimate messages from the legitimate
ECUs. The red-box is illustrated as the spoofing messages
from an attacker. Then, the X-axis is the time of message
transmission.
DoS Attack: As shown in Figure 3, an attacker can inject

high-priority messages in a short cycle on the bus. DoS attack
against CAN bus can be divided into two categories. One is
to corrupt legitimatize messages by an error-frame sending
from attackers (such as jamming). The CAN controller can
filter out messages that are not received by the ECU because
it has a filter and a sub-net mask register. Therefore, sending
a specific ID attack to a specific ECU can disable a certain
function. Another method is the higher priority messages
such as CAN-ID equals to zero. CAN is a broadcast-based
bus network based on priority arbitration. Thus the launch of
the above-mentioned type of DoS will cause direct CAN bus
corruption.
Injection Attack: As shown in Figure 4, an injection attack

indicates that the attacker re-sends the latest receivedmessage
from the node. This type of attack can cause the abnormal
high utilization rate of CAN bus to drop back contents of the
target signals by injection attacks. The change in the contents
of the data segment can invalidate the previously sent mes-
sages. The types of injection attacks for CAN networks are
divided into two cases. One is the replay attack, which means
that the attacker saves the legitimate messages in advance and
injects this messages. Another one is the fabrication of the
messages in run-time systems.

III. METHODOLOGIES
To improve the detection performance and effectiveness of
intrusion detection system design. In this study, we mainly
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FIGURE 5. Diagram of proposed intrusion detection method.

focus on the optimization design of the sliding window.
We define some features for our detection model as follows.
Definition 1: A window is used to monitor the network

information entropy, and it can be fixed time or fixed number
of messages. Time and number of messages serve as window
parameters. We define it as the sliding window.
Definition 2: The time between the start of attack and its

detection by IDS can be defined as response time of attack
detection Rt = At − Dt , where At represents the start time
of attacks, and Dt represents the time when the attack is
detected. In this study, the attack start time At is obtained by
inserting attack blocks with time tags.

A. PROBLEM DESCRIPTION
The automotive electronics system is a safety-critical system,
and its correctness requires not only correct action but also
response at the right time. Therefore, the response time to
intrusion attacks is also an important evaluation index of
intrusion detection systems. The main concern of this study
is how to implement intrusion detection with low response
time in the vehicle network environment. The research prob-
lem can be described as how to implement a high-precision,
low-latency intrusion detection design in the in-vehicle net-
work environment. The in-vehicle network environment has
the following characteristics: resource constraints (including
computing, storage, and network bandwidth resources),
cost-sensitive, and security-critical.

B. FRAMEWORK OF THE PROPOSED METHOD
As shown in Figure 5, the framework of our proposed method
is mainly divided into two phases. One is the off-line training
phase. The Simulated Annealing sliding algorithm is used to
get an optimal sliding window parameter. The second phase
is the on-line detection phase. According to the parameters

obtained in the training phase, an intrusion detection system
is set up to detect abnormal intrusions.

1) OFF-LINE TRAINING PHASE
The training phase of the method mainly includes the
following steps.
• Step 1: add attack block (carrying tags for evaluation)
to the test data set. More details on the generation of
data sets used in the training phase are described in the
following Section V.

• Step 2: extract the CAN message IDs from the test data
set to get a new IDs set.

• Step 3: use the sliding window as an information
entropy sampling window to analyze the information
entropy of the message IDs captured within the sliding
window.

• Step 4: compare the information entropy obtained in
Step 3 with the range of normal information entropy to
determine whether there is an attack block.

• Step 5: compare the attack result obtained in Step 4 with
the tag of the added attack block, and obtain the initial
detection accuracy data.

• Step 6: select the new sliding window size and normal
range for the next iteration. The whole training pro-
cess uses simulated annealing algorithm and repeats the
above Step 1 to Step 6 to obtain the best sliding window
size and decision conditions with the highest detection
accuracy.

2) ON-LINE DETECTION PHASE
This phase mainly includes the following repeated steps.
• Step 1: read the CAN network message online and
store in the cache. After the number reaches the set
sliding window size, information entropy calculation is
performed.
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• Step 2: compare the information entropy obtained in
Step 1 with the normal information entropy range to
obtain the intrusion detection result.

• Step 3: update system intrusion detection logs and trig-
ger an alert if an attack is detected.

It should be emphasized that each intrusion detection
method can only aim at a specific attack model. The method
proposed in this study is mainly aimed at attack models that
cannot be handled with other security enhancement methods,
and it is also a common attack model in in-vehicle networks.
Future research can consider adding the third phase, which
is the runtime-monitoring/adopting phase. In this phase,
the sensitivity of the intrusion detection system can be auto-
matically adjusted based on false positive confirmation.

C. ENTROPY EVALUATION MODEL
In order to detect the information entropy of in-vehicle net-
work, it is necessary to establish a model of information
entropy based on the characteristics of CAN bus. The CAN
messages have low entropy, with average 11.436 bits [23].
We calculated message ID’s entropy according to Shannon
entropy definition. Assuming system X , its limited set of
possible states is {x1, x2, ..., xN }, then the information entropy
of system X is

H (X ) = −
N∑
i=0

p(xi) log p(xi), (1)

where p(xi) is the probability of system X in state xi.

1) ENTROPY OF CAN IDS
For the evaluation of the information entropy of CAN IDs,
a CAN system model can be represented by 8 = (I ,W ),
where I = {id1, id2, id3..., idn} is a set of different IDs
appearing within sliding windows size W . Subsequently,
the information entropy value of CAN IDs in sliding windows
size W can be expressed as

H (I ) = −
∑
id∈I

pid log pid . (2)

Since this paper determines the network state by detecting
and monitoring the in-vehicle network, the total number of
messages in the sample window is determined, and the total
number of messages Ntotal in sample window W can be
obtained by Equation (3):

Ntotal =
n∑
i=1

Countidi . (3)

The number of idi appears in W is obtained by counting.
Then the probability of idi appears in W can be represented
as

P (idi) =
Countidi
Ntotal

. (4)

Obviously
∑n

i=1 P(idi) = 1, P(idi) > 0 (i = 1, 2, ..., n).
The uncertainty of defining idi is its self-information.

The self-information of idi is

Uidi = log
1

P(idi)
= log

Ntotal
Countidi

. (5)

Then, in the sampling windows W , the entropy of IDs on
the in-vehicle network is

H (I ) = E[U (idi)] =
n∑
i=1

Hidi , (6)

where

Hidi = P(idi)U (idi) =
Countidi
Ntotal

× log
Ntotal
Countidi

. (7)

D. INTRUSION JUDGMENT
To determine whether the network is under attack status,
we set the following parameters: ue means average informa-
tion entropy, σe is the corresponding standard deviation. For
each sliding window sizeW , the detection algorithm compute
H (I ) according to Equation (6). IfH (I ) is not in normal range
[ue − kσe, ue + kσe], it is considered to have been attacked,
where k is used to set the sensitivity of the deviation σe,
0.001 ≤ k ≤ 2.
The change of setting of the sliding window has a signifi-

cant influence on the information entropy. This study focus on
how to obtain the best sliding window parameters, the sliding
window size W , and deviation σe. A simulated annealing
based algorithm is used to obtain the best parameters in this
study. More details are introduced in Section IV-B.

IV. ALGORITHMS DESCRIPTION
Our goal is to obtain a high-precision real-time intru-
sion detection method for in-vehicle networks that can be
deployed on the current in-vehicle gateway node with a low
amount of efforts. For this purpose, the proposed intrusion
detection method can be deployed as a software plug-in in a
vehicle gateway platform or as a hardware node to be loaded
onto an existing CAN bus. First, we design an information
entropy-monitoring algorithm based on the fixed number of
messages as the sliding window. Second, we use a simulated
annealing algorithm to optimize the parameter settings of the
sliding window.

A. INFORMATION ENTROPY-BASED INTRUSION
DETECTION ALGORITHM
In brief, the entropymeasurement algorithm can be expressed
as monitoring of the information entropy of CAN bus traffic
flow in a single sampling period. The complete design flow
of the proposed entropy measurement algorithm is depicted
in Algorithm 1. The false negative and false positive rates are
main indicators of intrusion detection system, which are mea-
sured following [24] in this study. RA indicates the detection
rate of attack packets (detection accuracy), given as,

RA(%) =
DA
TA
× 100, (8)
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and RN indicates the detection rate of normal blocks (false
positive rate), given as,

RN (%) =
DN
TN
× 100, (9)

where TA is the number of total attacking blocks, and DA is
the number of attacking blocks detected by the IDS, TN is
the total number of normal blocks, and DN is the number of
normal packets detected by the IDS. An attack block consists
of a continuous CAN message from the attack node.

Algorithm 1 Information Entropy-Based Intrusion Detection
Algorithm ()

Input: Test_Data, I ← {id1, id2, id3..., idW }, k, σe,W
Output: RA, RN , Rt

1. IDs← Test_Data{id1, id2, id3..., idW }
2. while I in Test_Data do
3. while idi in I do
4. Calculate H (idi) according to

Countidi
Ntotal

× log Ntotal
Countidi

;
5. end while
6. Calculate H (I ) according to

∑n
i=1Hidi ;

7. if H (I ) not in normal range [ue− kσe, ue+ kσe] then
8. Calculate RA and RN , based on Equation (8) and

Equation (9), respectively
9. Rt ← Currenttime − Attacktime
10. Write Attack_log
11. end if
12. return Detection accuracy RA, false positive rate RN ,

maximum detection response time Rt
13. end while

The main idea of Algorithm 1 is to calculate the infor-
mation entropy of all the message IDs that appear in the
sliding window, where the Test_Data consists of time-line
of CAN messages set which has the attack blocks, Rt means
the response time of attack detection. Then, the network
is monitored in real time against the intrusion in units of
sliding windows. The fixed number of messages W is used
as the sliding window in this study. The details of entropy
measurement algorithm are explained as follows:

1) In Line 1, we specify the input and output parame-
ters of the algorithm. The input Test_Data is real messages
data from CAN bus received by the monitor node within a
sample window [21]. The output is the detection accuracy and
response time under this parameter.

2) In Lines 2-6, we calculated the information entropy
for each ID in the sliding window. Then get the information
entropy of the entire sliding window.

3) In Lines 7-10, we judge whether the entropy is within
the normal range, and get the detection result.

The main time complexity is presented in Line 4. The time
complexity of Algorithm 1 is O(|W | × log |N |).

B. IMPROVED ENTROPY MEASUREMENT ALGORITHM
When designing an intrusion detection system for in-vehicle
network environment, the RA (detection accuracy rate) should

be as high as possible, whereas the RN (false positive rate)
should be as low as possible. We employ a Simulated Anneal-
ing (SA) algorithm (i.e., Algorithm 2) to optimize parameters
used in Algorithm 1, and propose the following energy func-
tion for the SA,

E() = C1 × RA(%)− C2 × RN (%)− C3 × Rt , (10)

where E() is the energy function representing the detection
accuracy and efficiency of the proposed model. This function
is based on Algorithm 1 and is in accordance with Equa-
tion (8) and Equation (9). Three weighted parameters C1, C2,
and C3, are used to assess the characteristics of the proposed
intrusion detection system, where these parameters are fixed
in the training phase. These parameters can be adjusted to
obtain different characteristics of intrusion detection sys-
tems. Considering that the vehicles are safety-critical, we set
C1 = 1, C2 = 0.5, and C3 = 1, respectively.
The main idea of Algorithm 2 is to quickly determine

the best sliding window size W and deviation σe by simu-
lated annealing to achieve high-precision and fast intrusion
detection. (σe,W )_set_0 is an initial solution that is randomly
generated, where σe is the deviation, k is the sensitivity of
the deviation, and ue is the average information entropy.
The goal of Algorithm 2 is to obtain the parameter settings
(σe,W )_set_best in the case of maximizing E().

Algorithm 2 Sliding Window Optimization Algorithm by
Using Simulated Annealing ()

Input:Data_set_with_attacks, Tmax
Output: (σe,W )_setbest

1. k_best ← k0
2. σe_best ← σe0
3. W_best ← W0
4. ebest ← E((σe,W )_set0)
5. T ← 0
6. while T < Tmax and e < ebest do
7. (σe,W )_setnext ← neighbor((σe,W )_set)
8. enext ← E((σe,W )_setnext ),

Calculated by Algorithm 1 with (σe,W )_setnext input
9. if random() < P(e, enext , temp(T/Tmax)) then
10. (σe,W )_set ← (σe,W )_setnext ; e← enext
11. if e > ebest then
12. (σe,W )_setbest ← (σe,W )_set; ebest ← e
13. end if
14. end if
15. T ← T + 1
16. end while
17. return (σe,W )_setbest

The sliding window optimization algorithm is described in
Algorithm 2, neighbor()is a neighbor function that generates
the candidates of (σe,W )_set randomly. The main time com-
plexity of Algorithm 2 is presented in Line 7. Because the
time complexity of Algorithm 1 is O(|W |× log |N |), the time
complexity of Algorithm 2 is O(|T | × log |N | × |W |).
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V. EXPERIMENTS AND EVALUATION
Using the described attack scenarios and detection algorithm,
we conduct the following three experiments to evaluate and
illustrate the effectiveness of our method. In Experiment 1,
we analyze the effects of different sliding window strategies
on information entropy analysis. In Experiment 2, the impact
of sliding window size on intrusion detection performance,
including response time and detection accuracy, is tested and
analyzed. In Experiment 3, the effect of attack detection
in real-life automotive network traffic test data under the
best sliding window parameters is determined according to
Algorithm 2.

A. TEST DATA SET
The diversity and uncertainty of automotive attacks bring
difficulty in obtaining a data set for the in-vehicle cyber secu-
rity research. In this study, we use the real-life automotive
environment CAN bus network data set provided in [21].

Table 1 shows the data set features. The DoS attack data set
in the table is generated by inserting CAN message blocks
with ID = 0x000 into the real-life normal vehicle data
set. One of the attack blocks refers to a continuous attack
message. The attack block size setting range is 5-70. To gen-
erate a data set containing an injection attack for simulation,
we copy the message block from the CAN message sent by
the legitimate ECU to the normal vehicle data set and then
inject it into the test data set. Considering the uncertainties
of car attacks, 1000 DoS attacks and 1000 injection attacks
appear in Gaussian distribution throughout the entire test
data set.

TABLE 1. Test data set description.

B. EXPERIMENT 1: ANALYSIS OF DIFFERENT SLIDING
WINDOW STRATEGIES
To evaluate the information entropy analysis effect under dif-
ferent sliding window strategies, we perform two information
entropy observation experiments under different strategies.
Figure 6 shows the two monitoring results. The X-axis in the
figure represents time (the X-axis is uniformly converted to
time for comparative analysis), and the Y-axis represents the
information entropy value in single sliding window. In Exper-
iment 1, two data sets are used to analyze the effects of dif-
ferent sliding window strategies on information entropy. The
data set 1 is the real-life in-vehicle network communication
data set [21]. Based on data set 1, data set 2 is generated after
adding DoS attack block.

In previous studies, the observation of the bus information
entropy is accordance with the fixed time window [19], [20].
Figure 6 (a) shows the entropy analysis when the sample
window is set as 100ms. CAN bus is an event-triggered

network. Thus, the fixed number of messages is used as the
observation window in this study. The average number of
messages in 100ms sample windows in our test data set is
50 messages. Therefore, a sliding window size of 50 mes-
sages is used in the comparison, as shown in Figure 6 (b).
Figure 6 (a) and Figure 6 (b) show the entropy analysis results
of the message ID under normal network conditions, and
Figure 6 (c) and Figure 6 (d) show the entropy analysis results
under attack, where information entropy value in one sliding
window is obtained based on Algorithm 1.
Observation: From the comparison of the information

entropy analysis experiments under different sliding window
strategies (fixed time and fixed message number based),
we can draw the following observations:

1) When the fixed time is used as the sliding window,
the information entropy of the entire CANmessage fluctuates
greatly, even if information entropy evaluation is performed
on normal data. This strategy of sliding window with a
fixed time is not conducive to the intrusion detection of the
in-vehicle network.

2) When the fixed number of messages is set as a sliding
window, the information entropy of the entire test data set
fluctuates slightly when the normal data is analyzed. When
analyzing the data set containing the attacks, the information
entropy began to fluctuate. As described in Table 2, the aver-
age information entropy is 2.987 and the maximum deviation
is 2.637.

3) The information entropy drops sharply because the num-
ber of messages is insufficient in the last sliding window (end
of Figure 6 (b)).

The results of Experiment 1 demonstrate that different slid-
ing window strategies greatly impact the intrusion detection
effect. We find that using the fixed number of messages as the
sliding window, which is conducive to the analysis of intru-
sion detection design based on information entropy analysis.
Compared with the previous method that uses fixed time as
the sliding window, the strategy that uses the fixed number
of message can effectively reduce information entropy per-
turbation caused by aperiodic messages. Therefore, a sliding
window using the fixed number of messages is adopted in this
study to reduce detection interference and improve detection
accuracy.

C. EXPERIMENT 2: ANALYSIS OF SLIDING WINDOW
SIZE COMPARISON
We attempt to analyze the effect of different size of sliding
window on information entropy. We measure the information
entropy under different size of sliding window use a real in-
vehicle network message data set [21]. The largest intrusion
detection response time is the window in which the maximum
time is exaggerated. Figure 7 shows the influence of different
sliding window sizes on information entropy.
Observation: From the measurement of the information

entropy of real-world vehicle data set in different sliding
window size, we draw the following observations:
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FIGURE 6. Comparative analysis of information entropy monitoring under different sliding window strategies. (a) Entropy analysis of
data set without attacks (based on a fixed-time sliding window strategy). (b) Entropy analysis of data set without attacks (sliding
window strategy based on fixed number of messages). (c) Entropy analysis of data set including DoS attacks (based on a fixed-time
sliding window strategy). (d) Entropy analysis of data set including DoS attacks (sliding window strategy based on fixed number of
messages).

TABLE 2. Influence of different sliding window strategies on information entropy.

1) The size of the sliding window plays a major role in
reducing the data resource and increasing accuracy. Large
observed sliding window corresponds to smooth change in
the obtained information entropy and large average value of
the obtained information entropy.

2) Large sliding window size corresponds to small infor-
mation entropy value. Meanwhile, the maximum response
time to intrusion detection will be large. As described in
Table 3, the maximum response time for intrusion detection
gradually increase from 0.054 ms to 0.189 ms.

3) We obtain the best sliding window parameters for the
test data set using Algorithm 2. The size of the sliding win-
dow in the proposed intrusion detection system is 60 CAN
messages to realize a trade-off between response time and
instruction accuracy.

The results of Experiment 2 demonstrate that the sliding
window parameters are important to the performance of intru-
sion detection system, which will affect the accuracy and
response time. As described in Table 3, the sliding window
size affects not only the detection accuracy but also the
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FIGURE 7. Comparison of information entropy monitoring under different message value sliding window. (a) When the sliding window
size is set to 25. (b) When the sliding window size is set to 50. (c) When the sliding window size is set to 100. (d) When the sliding
window size is set to 200.

TABLE 3. Influence of different size of sliding windows on information entropy.

maximum response time of intrusion detection. The maxi-
mum response time refers to the start of the attack in the
sliding window until it is detected.

D. EXPERIMENT 3: INTRUSION DETECTION
EXPERIMENTS
The best design parameters of sliding window for testing its
actual effect are derived using Algorithm 2. Considering the
diversity and uncertainty of car attacks, the data set we used
in Algorithm 2 is the real-life in-vehicle network communi-
cation data set [21]. The sliding window size in the proposed
intrusion detection system is 60 CAN messages, σe is 0.52,
and ue is 4.186. In accordance with the attack scenario men-
tioned in Section II-C, we design two attack tests, which are

DoS and injection attack on CAN bus. On the basis of the test
data set mentioned in Section V-A, we develop the following
experiments. The sliding window optimal parameters given
in this study are for the test data set used in this study.

First, we select an analysis of the DoS attack data for
illustration. Figure 8 shows that, when an attack on the CAN
network occurs, the attack data will cause the network state to
change. This change is reflected in the information entropy.
As shown in Figure 8, when the information entropy value in
the sliding window is detected to be out of the normal range,
the system will make an intrusion warning.

Then, we simulate the data collection under two attack
scenarios to evaluate the effectiveness of our method. Two
types of attack data (DoS and Injection attacks) are generated.
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FIGURE 8. When the information entropy value in the observation
window is detected to be out of the normal range, the system will
make an intrusion warning.

The attack data in the entire data set are in Gaussian dis-
tribution. To simulate the DoS attack scenario, we consider
the uncertainty of the DoS attack. We add high-priority DoS
attacks to the real-life vehicle network data set given the
Gaussian distribution. In order to generate the Injection attack
scenario, we employ the replay attack, which fabricates the
previously sending CAN messages. Subsequently, we con-
duct intrusion detection on the two attack scenarios.

The experimental results as shown in Figure 9. The
X-axis in the figure represents the sensitivity of the deviation
k , and the Y-axis represents the information entropy value
in single sliding window. During the experiment, we find
that the setting of the sensitivity of the deviation k greatly
influences the detection accuracy, we can draw the following
observations.

FIGURE 9. Comparative analysis of detection accuracy on DoS and
injection attacks under different sensitivity of the deviation k .

Figure 9 shows that the effect of the proposed method on
the DoS attack rapidly increase when the sensitivity of the
deviation k is 0.5, whereas the same situation occurs for the
injection attack when the sensitivity of the deviation k is 0.8.
In addition, when the sensitivity of the deviation k increases
to a certain extent, the detection accuracy does not increase

after reaching a certain value. In Figure 9, we also can see
that the detection accuracy of the injection attacks reaches its
maximum value requires that the value of k is 1.1, however,
the value of k is required to be smaller than 1 for the case of
DoS attacks detection. Therefore, considering the unknown
type of attack, how to determine the appropriate k value is an
unresolved issue in this study, and will serve as an important
issue for our future research. The best intrusion detection
results of our method are described in Table 4, the detection
accuracies of the proposed method for DoS and injection
attacks are 100% and 92.3%, respectively. And, the false
detection rate is 0% in both cases.

TABLE 4. Detection accuracy.

Lastly, for the same experimental conditions, where the
sensitivity of the deviation k is 0.6, σe is 0.52, and ue is
4.186.We implemented the entropy-based intrusion detection
method proposed in [20], which used a fixed time as sliding
window. Consider the average interval of 60 CAN messages
in the data set is 0.11S. Therefore, we used 0.11S as the size
of the sliding window in the comparison experiment. We gen-
erated test data with different attack block sizes, the intrusion
detection effect of the two methods is shown in Figure 10.
Observation: From the detection accuracy comparison

experiment under different sliding window strategies (fixed
time [20] and our fixed message count based), we draw the
following observations:

1) As described in Figure 10 (a), for the DoS attacks, when
the attack block is greater than 60 CANmessages, ourmethod
and the method of [20] have higher detection accuracy.

2) As described in Figure 10 (b), for the Injection attacks,
when the size of the attack block is greater than 30, our
method achieves the detection accuracy (92.3%). The method
of [20] achieves the detection accuracy (91.0%) when the
attack block is greater than 50.

3) The experimental results show that the method of [20]
has obvious effect when the attack block is large, and the
detection result is not ideal for the smaller attack block.

4) In terms of algorithm computational complexity, since
they are all information entropy-based, the two sliding win-
dow strategies have the same algorithm complexity. However,
in the real-life operation process, it is considered that the
CAN network is an event-triggered network, that is, the mes-
sage distribution in the network in the time domain is
not uniform. Therefore, the fixed-time based sliding win-
dow strategy will include some invalid periodic calculations,
and our sliding window strategy can more efficiently uti-
lize computing resources to analyze message information
entropy.
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FIGURE 10. Comparative analysis of detection accuracy on DoS and injection attacks under different attack block sizes. (a) Comparison of
the DoS attacks. (b) Comparison of the Injection attacks.

Summary: From the intrusion detection experiments simu-
lated for two attack scenarios, we find that the optimized slid-
ing window strategy improves the accuracy of the intrusion
detection system based on information entropy. Compared
with existing intrusion detection methods for in-vehicle net-
works [20], Ourmethod has high intrusion detection accuracy
for attacks of different size of attack blocks. The accuracy of
intrusion detection is 100% for DoS and 92.3% for injection
by our method. We also highlight that our intrusion detection
method does not require large response time during our exper-
imental evaluation. Therefore, an intrusion method of low
cost, high compatibility, and low response time is particularly
suitable for abnormal intrusion detection in the automotive
network environment.

VI. RELATED WORKS
The security enhancement methods for in-vehicle network
mainly include message encryption and authentication, fire-
wall, and intrusion detection. Compared with other methods,
intrusion detection method can save valuable bandwidth
effectively, and is compatible to a large number of existing
vehicles on the market. Researchers in [25] and [26] showed
that when an attacker injects legitimate messages to perform
a spoofing attack or a DoS attack, the frequencies will
increase. Such detection methods are possible with good
accuracy and low false positive rate, but only works for
periodic traffic. Other popular designs for anomaly detection
for in-vehicle networks are based on fingerprint information
[18], [27], [28].

Machine-learning-basedmethods have also been applied to
intrusion studies of in-vehicle networks [24], [29]. However,
the high demands on their computational performance lead to
the inapplicability to the current in-vehicle environment. The
method based on information entropy has the characteristics
of low cost and strong compatibility. Thus, this method is
considered to be suitable for abnormal intrusion detection in

the vehicle network environment. The more relevant previous
research related to this study is [19] and [20].

In [19], Muter and Asaj introduced the concept of entropy-
based attack detection for in-vehicle networks for the first
time. They focused on messages with the same ID instead
of considering all CAN traffic data. The advantage of this
approach is that the ID can be accurately attacked to deter-
mine the specific attack type. The disadvantage is that it can
easily influence the information entropy of the messages with
the same ID due to the change in the operating state of the
automobile; thus, it is erroneously detected. The CAN is an
event-triggered network. Thus, messages often have different
periods (ranging from 0.01 ms to a few seconds), which may
result in disappearance of some messages in the observation
window.

In [20], Marchetti et al. evaluated the effectiveness of
information-theoretic anomaly detection algorithms applied
to networks included in modern vehicles. They found through
experiments that the direct use of information entropy-based
anomaly intrusion detection to all CAN messages is only
effective in the case of a large number of forged CAN
message.

Our method, which considers the characteristics of the
CAN and the situation of the automobile electronic system
environment, can be applied to periodic and aperiodic CAN
environments to solve the shortcomings of existing solutions.
The accuracy of intrusion detection is effectively improved
and setting the optimal sliding window reduces the response
time.

VII. CONCLUSION
Intrusion detection method based on information entropy,
which considers the constraints of automotive costs and
computing performance and the diversity and uncertainty of
attacks on automotive networks, has the characteristics of
low cost and strong compatibility. Through analyzing the
characteristics of CAN network, this study improves the
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analysis methods of previous information entropy-based IDS,
and improves the accuracy of detection against in-vehicle
network attacks with low response time. Parameters such as
the best sliding window size, standard deviation, and cor-
responding sensitivity are obtained by a simulated anneal-
ing method adopting a sliding window design based on the
fixed number of messages. The detection performance of the
proposed approach is evaluated through experiments carried
out in accordance with the real CAN traffic data set. The
experimental results demonstrate that the proposed method
can effectively improve the accuracy and effectiveness of
intrusion detection for DoS and injection attacks on in-vehicle
networks. The research that can be considered in the future is
mainly to consider the influence of the state of the vehicle
operating state on the information entropy.
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