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Abstract—The rapid development of satellite technology has
significantly enhanced satellite computing service capabilities, par-
ticularly in terms of its application potential for complex tasks such
as hyperspectral image (HSI) processing. Satellite edge computing
(SEC) substantially improves processing efficiency by transferring
task processing to the satellite. At the same time, intelligent re-
flective surfaces (IRS) reduce the pressure on ground service cen-
ter communication resources by optimizing communication links
between satellites on the ground. However, existing works mainly
optimize general computing tasks, resulting in limited performance
when processing HSI tasks. This paper proposes an IRS-assisted
HSI processing SEC system to achieve the optimal balance between
HSI processing accuracy and system energy consumption. We
formulate an optimization problem as a joint task covering HSI
offloading, band selection, and IRS phase shift optimization to
achieve optimal overall performance. To address the problem, we
propose the joint feature iterative optimization (JFIO) framework
for HSI processing, which generates optimized task offloading
solutions through graph attention networks, utilizes multi-feature
attention capsule networks to achieve efficient band selection, and
combines this with IRS modules to optimize communication link
conditions. Extensive experiments on various datasets demonstrate
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that the proposed framework achieves an excellent balance between
accuracy and energy consumption, with its performance signifi-
cantly outperforming other baseline methods.

Index Terms—Band selection, hyperspectral image processing,
intelligent reflective surface, satellite edge computing, task
offloading.

I. INTRODUCTION

A. Background and Motivation

ITH the rapid development of satellite computing, low
W Earth orbit (LEO) satellites have become key players in
communications, navigation, meteorology, and environmental
monitoring. The number of LEO satellites is projected to reach
12,000 by 2027 [1], [2], [3], [4], [5], [6], with nearly half
dedicated to Earth observation. Hyperspectral imaging (HSI),
in particular, is widely used in agriculture, ecology, and envi-
ronmental monitoring due to its ability to capture fine-grained
spectral information. However, the surge in data volume has
outpaced improvements in onboard processing and transmis-
sion, causing congestion and delays [7], [8], [9], [10]. Each
satellite generates large volumes of high-resolution HSI data,
yet typically communicates with ground stations only 3—5 times
per day, with a maximum transmission rate of 7.5 Mbps. This
mismatch between data generation and downlink capacity leads
to backlogs and limits real-time responsiveness. Energy and
bandwidth constraints further hinder timely data delivery [11],
[12], [13], [14].

To address the challenges of limited communication band-
width and energy resources and to meet the demand for efficient
data processing and real-time response services, satellite edge
computing (SEC) has emerged as a key research direction. Mod-
ern satellites serve as relays and undertake onboard data pro-
cessing tasks [15], [16], [17], [18], [19]. For example, SpaceX’s
Starlink constellation is already in the public testing phase, while
Lumen Orbit is about to launch satellites equipped with GPUs to
enable real-time data processing. Although in-orbit HSI process-
ing offers significant advantages in data efficiency and real-time
performance, it also introduces challenges not present in ground-
based processing, such as limited computational resources, strict
power constraints, and thermal management issues [20], [21],
[22]. The massive amount of data generated by hyperspectral
imagers requires powerful processing capabilities, so optimizing
the use of computational resources under limited satellite space
and power consumption is crucial.
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Currently, SEC research focuses on single satellite process-
ing tasks without considering task distribution to neighboring
satellites. Researchers have proposed various approaches to
address this problem. Song et al. developed energy-efficient
computation offloading and resource allocation algorithms using
fractional planning and Lagrangian dyadic methods [23]. Mei
et al. combined high-altitude platforms and satellites to pro-
vide computation services on the ground and optimize energy
consumption through intelligent algorithms [24]. Sthapit et al.
used deep reinforcement learning to comprehensively consider
the energy consumption, latency, and cost in order to max-
imize the performance of the system [25]. Li et al. focused
on the battery sensing energy optimization and proposed an
online energy scheduling algorithm to extend battery life [26].
However, existing studies mostly focus on isolated satellite
processing, overlooking the potential benefits of multi-satellite
collaborative computing. The lack of cooperative strategies
leads to resource underutilization, especially when one satellite
is overloaded while others remain underused. Multi-satellite
cooperative computing through inter-satellite links (ISL) can
significantly enhance resource utilization and load balancing.
Mayorga et al. constructed a real-time earth observation frame-
work by distributing data through ISL and optimized image
distribution to reduce energy consumption [27]. Zhang et al.
proposed a multi-hop peer offloading scheme to reduce sys-
tem latency and energy consumption [28]. Wu et al. solved
the offloading problem in task migration based on the dueling
double deep Q network (D3QN) algorithm to minimize system
latency [29]. Cui et al. performed LEO and geostationary earth
orbit satellites for communication and computational resource
optimization [30]. Tang et al. established a dual time-scale
hierarchical framework to optimize the satellite network and
QoS [31]. While these studies highlight the potential of SEC,
they do not sufficiently address the specific challenges of HSI
data processing and the unique characteristics of satellite net-
works, such as limited contact windows and dynamic resource
availability.

HSIs contain rich band information and typically require
dimensionality reduction, such as band selection, before trans-
mission to retain essential semantic and spectral features. Im-
plementing band selection at the satellite side is crucial to
alleviate data transmission pressure and enhance the efficiency
of onboard processing. With the development of SEC technol-
ogy, transferring these preprocessing operations to the satellite
side is essential. This enables the satellite to prioritize the
information-rich bands within a limited contact window and
thus transmit more hyperspectral data. Cai et al. applied graph
convolutional networks to the band selection model, signifi-
cantly improving the performance of traditional methods [32].
Li et al. proposed a representative band selection method in
a local context by fitting spectral curves and efficiently iden-
tifying the desired bands through sorting and iterative updat-
ing [33]. In addition, Zhu et al. proposed a two-layer collab-
orative processing framework MaHSI, which treats frequency
selection as a utility problem and considers energy, communi-
cation, and delay factors to achieve good accuracy and inference
speed [4].
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Although processing at the satellite end improves data trans-
mission efficiency, satellite-to-ground communication still suf-
fers from signal attenuation, propagation delay, and transmission
instability, especially in dynamic orbital environments [34],
[35]. Therefore, introducing intelligent reflective surface (IRS)
technology is critical, as it significantly improves communica-
tion between satellites and ground service centers by optimizing
the reflection and transmission paths of signals. Studies have
shown that precise manipulation of the reflective elements in IRS
can optimize signal strength and improve wireless communica-
tion capabilities and transmission speed. For example, Zheng
et al. proposed an IRS-based low-orbit satellite communication
architecture that significantly reduces signal attenuation [36].
Liu et al. introduced IRS phase shift vectors and proposed a
low-complexity beam fouling algorithm to ensure the quality of
service [37]. Shaik et al. combined airborne and ground-based
IRS nodes to perform a comprehensive performance analysis of
a satellite network, aiming to maximize spectral efficiency [38].

However, traditional HSI band selection methods do not
adequately address the complex dynamic constraints of satel-
lite edge networks. These methods often assume stable links
and abundant computing resources, which are impractical in
dynamic satellite environments. Therefore, it is imperative to
propose novel methods tailored to hyperspectral imaging and
satellite edge computing challenges.

B. Solution Approach and Contributions

This work proposes an IRS-assisted SEC system for opti-
mized HSI processing, where collaboration between satellites
and the ground service center enhances data transmission and
processing efficiency. The system consists of a local LEO satel-
lite and multiple neighboring satellites equipped with edge com-
puting systems to process HSI. The IRS significantly empowers
satellites by precise phase control of reflective elements. In par-
ticular, IRS enables dynamic adaptation to environmental con-
ditions, maintaining robust communication between satellites
and the ground service center. Unlike traditional methods that
optimize only one aspect of satellite edge computing, we propose
a novel joint feature iterative optimization (JFIO) framework,
which jointly optimizes task offloading, HSI band selection, and
IRS phase control to maximize system efficiency. JFIO does
not treat these components separately; instead, it dynamically
integrates them, ensuring adaptability to changing satellite net-
work conditions. Through continuous feedback loops among
task allocation, feature selection, and communication enhance-
ment, JFIO achieves synergistic improvements in processing
performance, energy efficiency, and communication quality.

At the core of JFIO, a graph attention network (GAT) is
employed to generate task offloading scenarios based on satellite
resource availability, followed by a multi-feature attention cap-
sule network (MACN) for selecting the most informative bands.
While GAT has been applied in various domains, its role here
is not an independent innovation but an essential component
within the iterative optimization process. The outputs of GAT
and MACN further guide the IRS phase optimization module,
adjusting channel conditions to improve communication quality.
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These interconnected modules form a dynamic feedback loop,
ensuring continuous adaptation to network states and improving
system flexibility and resource utilization. The main contribu-
tions are summarized as follows:

® We propose the JFIO framework, which optimizes task
offloading, hyperspectral band selection, and IRS phase
shift adjustment together, achieving superior system per-
formance.

® We formulate an optimization problem to achieve an opti-
mal trade-off between task processing accuracy and system
energy consumption in the SEC system by integrating
HSI task offloading, band selection, and IRS phase shift
optimization.

® The formulated problem is a mixed-integer nonlinear pro-
gramming (MINLP) problem. To reduce the problem’s
computational complexity, we present the JFIO frame-
work, which iteratively refines its decision-making by
leveraging the interdependencies among task allocation,
feature selection, and communication enhancement rather
than treating them as independent processes.

e Extensive experiments on real datasets show that the pro-
posed framework achieves an excellent balance between
task accuracy and energy consumption, and its perfor-
mance significantly outperforms other baseline methods.

The rest of this paper is organized as follows. We first in-

troduce the proposed system model and formulate the utility
maximization problem in Section II. Section III describes the
proposed JFIO framework. Section V introduces the experimen-
tal setup. Section IV analyzes the experimental results. Finally,
Section VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first describe the proposed SEC system
and show the operation of the SEC system. Following this, we
provide a detailed description of the coverage time model, the
computing model, and the communication model. Finally, we
formulate the optimization problem aimed at maximizing the
overall utility of the system.

A. The Proposed SEC System

Fig. 1 represents our IRS-assisted HSI processing SEC sys-
tem. First, an HSI feature classification model is trained on the
ground and deployed on an airborne edge computing system. A
LEO satellite in the system, called the local satellite, is equipped
with a hyperspectral imager to capture HSI. It is surrounded
by M — 1 neighboring satellites, all of which are denoted as
M ={1,2,...., M}, where listhelocal satellite. Each satellite
carries an onboard edge computing system for band selection and
a communication system for HSI transmission. Meanwhile, the
satellites are equipped with solar panels to harvest solar energy
and deploy an IRS on the back of the satellite, which consists
of K reflective primitives, denoted as £ = {1,2,...., K'}. The
IRS is used to assist satellite communications by reconfiguring
the wireless channel propagation through the precise adjustment
of phase shifts across reflective elements, thereby improving the
signal quality and transmission speed.
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Fig. 1. The proposed IRS-assisted HSI processing SEC system.
TABLE I
KEY NOTATIONS
Symbol Description
M Set of all satellites, {1,..., M} (1: local)
N Set of HSI tasks, {1,..., N}
an,m Offloading decision: 1 if task n is assigned to satellite m
T Band selection decision for band [ in task n
P Phase shift of the k-th IRS element
D, Data size of task n
Ch Required CPU cycles for task n
Smrgﬁ) CPU frequency of satellite m for task n
tfsgn Computation time of task n on satellite m
comp Computation energy for task n on satellite m
m(n)
iTz:En) Transmission time from local to satellite m
E{Tsﬁn) Transmission energy
Z((l:) ,  Downlink transmission time to ground
Efg%l)’g Downlink energy consumption
m,g Downlink data rate from satellite m
An Classification accuracy of task n
Un Utility of task n (performance vs. energy)
T&”(‘f) Max contact duration of satellite m for task n

The system operates as follows: Before satellite launch, a
band selector is trained on the ground using historical HSI data
and deployed on the onboard edge computing system. After
the satellite launches and reaches its orbit, the local satellite
performs imaging and stores the captured HSI locally, denoted
as N ={1,2,...,N}. The local satellite then assesses the
availability of computing resources and the HSI content to
determine an optimal offloading strategy. Based on this analysis,
the local satellite transmits the HSI data or selected bands to
neighboring satellites to maximize processing efficiency and
balance computational load. During the contact window, the
satellite transmits the selected frequency bands via downlink to
the ground receiving station, where the data is further processed
by the ground service center, depending on system conditions.
The key notations used in the paper are listed in Table I.

B. Coverage Time Model

Unlike ground-based edge computing network, LEO satellites
orbit the earth at lower altitudes, resulting in faster movement
and larger orbital inclinations. Effective communication and
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wide-area coverage can only be maintained when the relative
position between the satellite and the ground service center
is relatively fixed. The ground service center is located at the
coordinates [, = (0, 0, 0), with R representing the earth’s radius
and h,,, 4 denoting the height between the ground service center
and the satellite’s orbit. The arc length of the communication
link between the satellite and the ground service center within
the satellite’s orbit is represented by I,,, 4, while s, 4 denotes
the direct distance between the satellite and the ground ser-
vice center. The satellite’s position is given by the coordinates
Ly = (0, Ym, 2m). The distance d,, , from satellite m to the
ground service center can be expressed as

dm,g = \/R2 + (R A+ hipg)?

where v, represents the azimuth angle of the satellite coverage,
denoted as

2R(R + hp,g) cOSap,, (1)

- coS 6177,) — B, 2)

Ay, — ArCCOS L
" R+ hm g

where [3,,, represents the elevation angle between the ground
service center and the satellite m, denoted as

R+hpyg .
B, = arccos (+’g - sin am> . 3)
Ay g
The communication arc length between satellite m and the
ground service center is given by
lm,g =2 (R + hm,g) ' Bm (4)

The maximum communication duration between satellite m
and the ground service center while processing HSI n is

lm,g
mar __ > 5
m(n) 'Um,n ) ( )

where v,,, , represents the satellite’s motion speed relative to the
ground.

C. Computing Model

Next we present the computational model of the system,
where the variable a,, ,, € {0,1} denotes the offloading deci-
sion. Specifically, a,, ,, = 1 indicates that task n is offloaded
for processing on satellite m, whereas a,, ,, = 0 means the task
is not assigned to that satellite. The content of different HSI
tasks is ®,, = {D,,, C,, }, where D,, denotes the size of the task
and C,, denotes the number of CPU cycles required to process
the task. When the HSI is processed on satellite m, the band
selector on the onboard edge computing system starts working.
The computation time ¢,,(,,) for processing HSI on satellite m
is
Crmax {1,3, cnnm}

Sm,(n)

comp __
m(n) —

) (6)

where S,,,(,) denotes the CPU clock speed at which satellite
m processes HSI n. The term max {1, Gy} models the
workload of satellite m, ensuring that the computational latency
dynamically adjusts based on the number of concurrent tasks

being processed. Therefore the energy Efrf(mn ])D consumed for
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processing the HSI on the onboard edge computing system is
given by

BT = Z 0y g =1], (D)
where p,, denotes the energy consumption of satellite m per
CPU clock cycle, and Ifay,,, = 1] is an indicator function
that takes a value of 1 if a,, ,, = 1. After processing the HSI
onboard the satellite, the selected bands are represented by
the vector €, = .1, Tn2s - - -, Tn ], Where z,, ; € {0,1} and
1 €{1,2,..., L}, with L being the total number of bands in the
original HSI.

We use A to describe the performance of the transmitted HSI
with respect to the analysis of the results of its selected bands,
and the metric A,, denotes the overall accuracy of the different
model treatments, i.e [4]

An :A(fc(mnydnx?jn)a (8)

where f. denotes the different model classifiers, d,, denotes the
original HSIs data, and vj,, denotes the true classification of d,,.

D. Communication Model

This section describes the system’s communication link,
which involves two key components. The local satellite com-
municates with neighboring satellites through the ISL in the
Ka-band. Additionally, the satellite transmits the processed
HSI data to the ground service center via the downlink, also
in the Ka-band. In the ISL, the ground service center sends
task assignment commands to the local satellite, directing it to
transmit data to neighboring satellite m. The channel gain A4 .,
for this transmission is expressed as

him =1/ (4ndy i f /), )

where f is the carrier frequency and c is the speed of light.
d1.m 1s the distance between the local and neighboring satellites,
denoted as

dl,'m - \/O + (ym - y1)2 + (Zm, - 21)2-

Thus the transmission data rate between ISL is obtained

as [38]
h m 2
T1,m = B1,m logy <1+pg| 12 | >7

where B ,, is the channel bandwidth, p is the transmit power
of the local satellite, g is the antenna gain of the local satellite,
and o2 is the Gaussian noise of the corresponding link. Then the
time consumed by local satellite to transmit data ¢ to neighboring
satellite m is

(10)

(1)

D
thran | = i . (12)
1,m(n) Zme/\/l T1m 1 [an’m =1]
Similarly, the energy consumed is defined as
iy = P A 13)
where pi"@" represents the energy consumed per second by

the local satellite; in the downlink, the system employs two
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methods to transmit data to the ground: (1) direct transmission
of processed data from the satellite to the ground; and (2)
transmission of satellite-processed data to the ground using
IRS redirection. These two methods are used simultaneously
to enhance transmission efficiency. In the case of direct data
transmission, the channel gains h,,, 4

c —j2nfd,
ho.g = .
g <47deg) P ( c

where j is the imaginary unit and K (f) denotes the absorption
coefficient of the transmission medium. In the case of data redi-
rection transmission via IRS, IRS is deployed as a transmission
mediator on the local satellite, which is located in the Y — Z
plane, and K, and K, denote the number of reflector units
along the Y and Z axes, respectively. The whole number of
reflector units is K = K, x K. We identify the first position
in the lower left corner of the entire IRS reflector plate as the
starting coordinate, denoted as IRy = (0,IR,,IRy), and the
k-th reflector element coordinate I Ry, is

_K(Zf )d9> . (14

IR, = (0,IR, + (K, — 1)y, IRy + (K, — 1)), (15)
where 7, and 7y, denote the reflection unit spacing length. The
transmission vector Ary ., from the first reflection element / Ry
to the satellite m is denoted by

—IR; = — IR,z — IRy).

(16)

ATlm - m, ( s Ym

The difference Arj, between the first reflection element and
the k-th reflection element is defined as

Ary =1R, — IR = (0,(K, — 1)y, (K, —1)y.). (17)
Therefore, the phase difference between the signals reflected by
the first reflection unit and the k-th reflection unit original in the

IRS 07" is
27rf ArT

n_Apr m

‘ATH Bk

B 27Tf
B |Arg| e

+ (zm = IRy) (k2=1)72) .

O =

((Ym — IRq) (ky — 1) vy

(18)

Meanwhile, the transmission vector Arj, from the first
reflection unit of the IRS to the ground service center is:
Arig=1R, -1y = (0,IR,, IR.).Similarly, the phase differ-
ence between the first reflector element transmission and the
k-th reflector element transmission to the ground service center
signal

2’7Tf ArT
g __ k
k- |AT1€|ATLQ
2T
L (TRu(Ky — 1)y — IRY(EK. — 1)7).  (19)
" Argc
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over the IRS

Therefore, the cascaded channel gain h;, ,

connection is defined as
B = c ox _jzﬂ'fdlm,g + (f)dlm N
m,g 8 /7T3fd;,n7g . p c 2 9
(20)

where d,, . = ||Aryll2 + [|[Arp [|2, where [|Arg|[2 denotes the
distance between the ground service center and the first reflector
unit of the IRS, and ||Ar,,||2 denotes the distance between the
first reflection unit of the IRS and the satellite m. Therefore, the
channel gain h'/r/n, o for transmitting data through IRS is defined

as

h’{r/n g hlm,gemlpkega (21)
where e, = (exp(jO7"),exp(jb5'),...,exp(jby")), €4 =
(exp(j07, exp(j03, . . ., exp(j67))", = diag(exp(ji1,
exp(ja, ..., exp(jig, ) denotes the phase shift diagonal

matrix of reflection units, where 5 denotes the phase shift
of the w-th reflection unit. Thus, the rate R, , at which the
satellite m transmits data to the ground service center is denoted
as

Rony = Bumlogs <1+p d = ‘>, 22)

where B,, denotes the channel bandwidth allocated to each
satellite, p,, denotes the transmission power of satellite m,
gm denotes the antenna gain of satellite m. The time ti" ((177;)
consumed to process the data on satellite m and transmit the
selected features back to the ground is denoted as

bZleﬁ‘T”al
2omem Bon,g - Hanm = 1]
where b denotes the size of a single feature with a fixed shape.

Meanwhile, the energy consumed by the downlink EZ% g is
denoted as

tran _
b(n).g =

(23)

tran
m(n),g

Etran

m(n),g

=DPm -t (24)

E. Problem Formulation

In the whole system, the local satellite transmits the HSI to
different neighboring satellites, the individual satellites process
the data, and finally transmit the selected features to the ground,
so the energy consumption E/°*% belonging to the HSI n is
denoted as

B = B + Foe) + B

During the satellite contact window, the system aims to min-
imize energy consumption while optimizing the classification
performance by assigning the HSI data to different satellites for
processing and transmitting the processed HSI data to the ground
center. Therefore, the utility function U, for processing HSI n
is defined as

(25)

total
Un:wlAn_ En0a7

(1 — wl)wg (26)

where w1 (0 < wy < 1) is a weight factor that balances the data
classification performance with the energy consumption of the
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system, and ws is a factor used to map the energy consumption to
the same level as the classification performance. Our optimiza-
tion objective is to maximize the sum of utilities of all HSIs by
selecting appropriate satellite allocation schemes and suitable
subsets of bands, considering constraints such as energy and
resources. Thus, the optimization problem can be formulated as

max Z Z U,

a,r
T meMneN

st. (Cl): anm € {0,1},Yn,m,

M
(C2): Z apm =1,
m=1

a

3) : xn7l € {07 1},Vn,l,
P Ay > A9 v,
10 < <27, VE,

M
t > apmBm < B,Vn,

m=1

N
: Z an,’rnSm(n) < Frruvmv
n=1

N
D B < C oy T Ym,

n=1

(C8)

tfﬂff)’ + t'irf::zn) + thran < T;;L%,Vn, m.

The optimization problem seeks to determine the optimal
task allocation a,, ,,, HSI band selection x,, ;, and IRS phase
shift 1),,, aiming to minimize system energy consumption and
maximize classification performance. The problem is subject to
several constraints ensuring system feasibility and efficiency.
Specifically, constraints (C1) and (C2) ensure that each HSI
task is assigned to exactly one satellite, which can be either the
local satellite or one of the neighboring satellites. Constraints
(C3) and (C4) optimize feature subset selection x,,; to meet
the target classification performance A*"9¢, The IRS phase
shift v, as specified in (C5), is constrained within [0, 27].
Constraint (C6) ensures the total bandwidth for each task does
not exceed the system’s capacity B, while (C7) ensures satellites
have sufficient resources F},, for their tasks. Considering the
limited solar energy harvesting capability and energy constraints
of LEO satellites, constraint (C8) strictly limits the total energy
consumption to within the harvested energy during the contact
window, which is fundamentally different from conventional
ground-based systems that have relatively stable power supplies.
Finally, constraint (C9) ensures that the total delay, including
transmission and processing time, does not exceed the maxi-
mum allowable latency T;;,’LL(%, which is particularly challenging
given the short contact window of LEO satellites, where rapid
and efficient data processing is crucial to maintaining reliable
communications. This problem belongs to the NP-hard MINLP
problem, which is difficult to be solved effectively by traditional
optimization methods.

(C9) : 27)
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III. THE JFIO FRAMEWORK
A. JFIO Framework Overview

As shown in Fig. 2, the proposed joint feature iterative
optimization (JFIO) framework consists of three alternating
phases. First, to enhance the robustness of task offloading under
dynamic network conditions, we introduce a long short-term
memory (LSTM)-based link prediction module before the graph
attention network (GAT). The LSTM model predicts future link
quality based on historical SNR, azimuth and elevation angles,
and recent bandwidth measurements, providing estimated data
rates as additional features for the GAT input. The GAT model
then analyzes satellite resource distribution and task conditions
to generate an optimal task offloading scheme. Second, the
offloading scheme is fused with HSI data in the feature fusion
module to construct enriched feature representations fed into the
multi-feature attention capsule network (MACN) for sub-band
selection. Finally, the outputs of GAT and MACN are processed
through a shared representation layer to guide IRS phase-shift
optimization. By integrating a feedback mechanism and joint
loss function, the system iteratively optimizes task allocation,
spectral feature selection, and IRS configuration to enhance
overall performance. A detailed description is provided in the
following section.

B. Offloading Scheme Generation

In this subsection, we discuss the task offloading scheme. The
input information to the GAT model consists of an adjacency
matrix A; € ROM+D*(M+1) and a vector of feature representa-
tions of the nodes H = {hy, hy, ..., hyri n}, h; € RF, where
M denotes the number of satellites, N denotes the number of
HSIs, and the total number of nodes is M + N. The feature
dimension of each node is F'.

To enhance the accuracy and robustness of task offloading
decisions under dynamic network conditions, we integrate a
long short-term memory (LSTM) based link prediction module
before the GAT model [4]. The LSTM model takes historical
link quality data, specifically the signal-to-noise ratio (SNR), as
input and predicts the future link quality Q,. These predicted
values are treated as additional features and combined with the
existing satellite and task features to form comprehensive input
representations for the GAT model. The input to the LSTM
prediction network contains key parameters such as the azimuth
angle, elevation angle at each time step, and recent bandwidth
measurements, allowing the model to capture temporal depen-
dencies and fluctuations in link quality. The output of the LSTM
model is the predicted SNR, which is then transformed into
the corresponding data rate R; according to the communication
model. By incorporating these predicted data rates as features,
we improve the resilience of the task offloading strategy against
varying environmental conditions and unpredictable link fluctu-
ations.

For satellite nodes, h; encodes crucial information such as
computational resources, communication bandwidth, energy
availability, and the predicted link quality obtained from the
LSTM model. For HSI task nodes, h; encapsulates details
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Fig. 2.  The structure of the proposed JFIO Framework.

such as processing demand, data volume, and bandwidth re-
quirements, ensuring a comprehensive representation of system
constraints and requirements. This integration significantly im-
proves the task offloading decision-making process, as it allows
the model to proactively adapt to changing link conditions while
maximizing the overall system utility.

First, the model captures the feature relationship between each
node and its neighbors through local structure learning. For each
node i, its features are mapped to a new feature space Wh;
by linear transformation, where W € R¥"*¥ is the learnable
weight matrix and F” is the transformed feature dimension.
This transformation enables the model to learn higher-level
representations, facilitating more effective task assignment. The
nonlinear function is then used to compute the attention coef-
ficients e;; of node 4 and its neighbor node j. The attention
coefficients of all neighboring nodes are normalized using the
softmax function

exp (e;5)

= (28)
Zlex\f(i) exp (eir)

Qi

where A/ (i) denotes the set of neighbor nodes of node i. Then
all the neighboring nodes are subjected to feature aggregation

Z Oéijhj ;

JEN (1)

h =0 (29)

where o is the ReLU activation function. This aggregation
mechanism effectively captures the dependencies among nodes,
allowing each node to dynamically adjust its feature represen-
tation based on its local neighborhood. When all the nodes
have undergone the above operation, the first-order neighbor-
hood structure feature representation matrix is obtained H' =
{h},hy,....hi} € RM+D*F" This representation not only
encodes localized interactions between task nodes and satellite

nodes but also serves as a crucial input for subsequent global
attention learning.

After local learning, the global structure is learned through
the multi-head attention mechanism. A 2-layer graph attention
network is employed to capture both local and high-level graph
representations. Each GAT layer utilizes 4 attention heads, and
the outputs are concatenated to retain comprehensive multi-head
attention information. For each node i, its feature vector h; is
converted into query, key, and value representations. For the z-th
attention head

Q7 = W5'h, K = Wik, V7 = WiPh,,  30)

where W(Z),W%), Wg,z) € R¥»*F" are the learnable projec-
tion matrices for query, key, and value mappings. The attention
(2)

coefficient e

;; between nodes is computed as

¢ _ (@)K

This global attention mechanism enables long-range depen-
dencies to be captured, ensuring that task allocation decisions
are informed by a holistic view of the network. The attention
coefficients of all neighboring nodes are then normalized, and
the features of neighboring nodes are aggregated using the
weighted sum

e €1Y)

' = Y gV, (32)

JEN (D)

where ij ) is the normalized attention coefficient of node

j with respect to node 7, and V;Z) is the corresponding

value vector. The outputs from all attention heads are then
concatenated, forming a richer feature representation h}’ =

Concat(h'"" h{®", . nf").
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Finally, the concatenated features are mapped to the output
space through a linear transformation: H*" = W, h!’, where
H" represents the final feature dimension output. Next, the
global feature representation is inputted into an MLP, which
consists of one input layer, five hidden layers, and one output
layer. The output is the task assignment probability of each
node, transformed into a probability distribution matrix via
the softmax activation function. The probability distribution
matrix is then used to obtain the optimal allocation scheme
matrix A. Specifically, for each task n, the satellite m with the
highest assignment probability is selected

if m = arg max,, pi.m,

1
Un,m = {0 otherwise. (33)

This decision-making process ensures that each task is allocated
to the most suitable satellite based on learned feature repre-
sentations and global attention mechanisms. By traversing the
allocation matrix, we obtain the final optimal allocation decision
a

n,m:-

C. Band Selection Optimization

In this subsection, we discuss the HSI band selection model.
To perform satellite band selection of HSIs, the features of the
task offloading scheme and the HSI features must first be mapped
to the same feature space. The HSI data is represented as a
three-dimensional tensor X € RE*W*B \where H and W are
the spatial resolution, and B is the number of spectral bands.
Each pixel contains spectral information from multiple bands.

The offloading scheme feature matrix A is transformed to
the same feature space as the HSI data by a linear mapping:
A’ = ReLU(W_.A) € RHT*Wxd \where d is the mapped feature
dimension and W, € R**¢ s the mapping matrix. The features
A’ and X are fused along the channel dimension via pixel-wise
concatenation

X'(i,7,:) = concat(X(i, j,:), A'(4, 7,:)). (34)

The resulting tensor X' € R¥*W*(B+d) contains both HSI
band and task offloading decision information, which is input
to the MACN. The MACN consists of three key modules: a
convolutional feature extraction module, a multi-feature atten-
tion module, and a capsule network. The convolutional module
extracts low-level features to generate the feature map F. €
RHxWexde \where H, = 8, W, = 9, and d. = 256.

In the multi-feature attention module, we adopt the con-
volutional block attention module (CBAM) [39] to enhance
feature discrimination by jointly modeling spectral and spatial
dependencies. CBAM sequentially applies channel and spatial
attention to refine feature representations. Specifically, the chan-
nel attention module computes channel-wise attention weights
M., by applying both average and max pooling operations to
the input feature map F', followed by a shared multi-layer per-
ceptron (MLP). These weights emphasize informative spectral
bands and are used to reweight Fec. Subsequently, the spatial
attention module enhances the localization of salient spatial
features by performing average and max pooling along the
channel dimension of the reweighted features, followed by a
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7 x 7 convolution to generate spatial attention weights Mg,,.
The final refined feature map, denoted as Fop4pr € R8*9%256,
captures both spectral and spatial importance and is fed into
subsequent capsule layers for feature abstraction.

The feature map F o pans from the CBAM module is passed
into the capsule network, which consists of three components:
the main capsule layer, dynamic routing, and the classification
capsule layer. First, the main capsule layer generates multi-
dimensional capsule vectors for local regions in the feature
map. This is done through a convolutional operation applied
to the input feature map F o5 4, resulting in a capsule matrix
Vp c R8x9><dp'

To improve feature representation accuracy and robustness,
we utilize dynamic routing to adjust the connection weights be-
tween capsules [40]. The connection weights ¢, ; ;. are computed
using the softmax function

bik N exp(bi )

where b; ;i 18 the initial coupling score between the capsules,
which is refined during the routing process.

Finally, the classification capsule layer generates a d.-
dimensional capsule vector v,, for each sub-band class. The
band selection is determined based on the length of the capsule
vector v,,,. If the length exceeds a predefined threshold ¢, the
corresponding band is selected

1 if vl > e
Tnt = {0 otherwise ’ (36)

(35)

where x,, ; indicates whether the [-th spectral band is selected.
The selected bands are then utilized to guide the subsequent IRS
phase shift optimization.

D. IRS Phase Shift Optimization

After obtaining the optimal allocation scheme a,, ,, and
selected features x,,;, we proceed with IRS phase shift opti-
mization using the Hippo Optimization (HO) algorithm [41].
We choose the HO algorithm for its efficient balance between
exploration and exploitation. HO mimics defensive and devel-
opmental strategies, allowing it to escape local optima while
maintaining computational efficiency. In the context of IRS
phase shift optimization, where the problem is non-convex
and high-dimensional, traditional gradient-based methods often
suffer from slow convergence and suboptimal solutions. HO’s
adaptive mechanism makes it particularly suitable for this prob-
lem. The phase shift angles of the IRS cells are treated as indi-
vidual solutions. Initial phase shifts are randomly generated and
updated iteratively based on the exploration phase, where phase
shifts are adjusted if performance fails to improve, mimicking a
defensive strategy to avoid local optima

t+1 t t
]i ) = ]E.)+7"(Dbest_ ](g))’

(37

(t) (t+1) .
where ;" and 9, are the current and updated phase shift
angles, r is a random number, and Dy is the optimal IRS
configuration.
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Algorithm 1: Joint HSI Processing With JFIO in the Contact
Window.

Input: Set of satellites M, set of HSIs AV, IRS
configuration /C, satellite and HSI features H, historical
link quality data Q, maximum number of iterations 7.

Output: Optimized task offloading strategy A, selected
hyperspectral bands X, IRS phase shifts 0.

1: Initialize: ¢t + 0, A, X, ¥g.

2: Predict future link quality using LSTM.

3: for each satellite m; € M do

4 Extract historical link quality data Q.

5 Predict future link quality Q; + LSTM(Q;).

6: Transform predicted SNR to data rate R;.

7: Augment satellite feature embedding h; < [h;, R;].
8.
9
0
1

end for
while ¢ < T do
for each satellite m; € M do
Extract satellite feature embedding
h; «+ 1D-Conv(H;).

12: for each HSI n; € NV do

13: Compute attention score ¢;; between m; and n;.
14: end for

15: Aggregate task information for m;.

16:  end for

17: Update task offloading strategy A () with GAT.

18:  Perform band selection X(*) «+— MACN(X, A(®).

19:  Optimize IRS phase shifts ¥(*) based on A(") and
X®.

20: Compute loss £ and update:

AW X® 9  Update(L).
21: Update variables: Ag < A®), X4 + X®),

Uy U,
22: if convergence criterion met then
23: Break.
24 end if
25: Increment iteration: ¢ <— ¢ + 1.

26: end while

If the defensive strategy does not improve performance, the
system enters the development phase, where local search is
applied to fine-tune phase shifts and achieve better coordination
with the optimal allocation scheme a,, ,, and selected band z,, ;.

To ensure that the predicted allocation schemes are progres-
sively close to the optimal scheme, we introduce a scheme update
strategy where GAT is trained under unsupervised conditions,
i.e., it does not rely on pre-labeled data samples. The optimiza-
tion objective and constraints determine the loss function. We
wish to satisfy all constraints simultaneously by minimizing
the system’s total energy consumption. Therefore, we design
a hierarchical loss function [42], the loss function contains two
parts: the optimization objective loss and the constraints loss

L'(0) = anm B+ 35219:(fo(A(n), H(n)).  (38)
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For constraints (C6) — (C9), g, is a penalty constraint, g, =
SM_ max(0, "N 4y by — B) where z = 1. For the re-
maining constraints (C7) — (C9), similar penalty functions are
applied, ensuring all constraints are simultaneously enforced.
The parameter 6 is optimized using the Adam optimizer to
refine the predicted allocation scheme iteratively, ensuring its
convergence to the optimal solution.

To improve classification performance, we design an objec-
tive function based on cross-entropy loss to measure the error
between the predicted results and the actual labels. Specifi-
cally, let y,, denote the predicted classification confidence score
for HSI task n, which represents the probability that the se-
lected band features lead to a correct classification. This value
is obtained from the MACN and can be expressed as y,, =
o(f(xn;0racn)), where f(+;0p 40n) denotes the function
implemented by 0 ac v, o (+) is the softmax activation function,
ensuring that the output is a probability value between O and 1.
Meanwhile, to satisfy the (C4) constraint, we introduce a penalty
function and control the selection of bands by regularization to
prevent selecting too many or too few bands. Its expression is

N L
L'0) ==Y dylogyn, + Yz, max(0, AT — A,).
n=1 =1

(39)
Then, the combined loss function of the whole is constructed
as

£(0) = 61£'(0) + (1 — 1) L"(6), (40)

where 97 is the weight parameter used to balance task assignment
and band selection optimization objectives. The problem is
solved by minimizing £, optimizing the offloading scheme and
the band selection scheme step by step, and finally combining the
IRS phase shift obtained by the HO algorithm. The pseudo-code
of JFIO is given in Algorithm 1.

E. Computation Complexity Analysis

The computational complexity of JFIO differs between the
training and inference phases, as the former requires iterative
optimization and backpropagation, while the latter involves
only forward computations. During training, the computational
complexity is significantly higher due to the iterative updates
of model parameters. The task offloading step using GAT in-
volves computing attention scores and aggregating information
across satellites and tasks, with a complexity of O(Lg (M NF +
MF?)) per forward pass, where L¢ is the number of GAT
layers, M is the number of satellites, NV is the number of HSI
tasks, and F' is the feature dimension. Since backpropagation
doubles the computations, this step alone incurs a complexity
of O(2Lg(MNF + MF?)) per iteration. Similarly, MACN
performs feature extraction and selection with a complexity of
O(2LcCd?), where L is the number of routing iterations,
C' is the number of capsules, and d is the feature dimension.
Additionally, IRS phase shift optimization involves iterative
updates, contributing a complexity of O(KI;rg), where K is
the number of IRS elements and I ps is the number of iterations
required for convergence. Given that JFIO undergoes multiple
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TABLE II
DETAILS OF THE HSI DATASETS

Dataset Size Number of Classes
Indian Pines [45] 145 x 145 x 200 16
Botswana [45] 1476 x 256 x 145 14
HyRANK Dioni [46] 250 x 1376 x 176 14
HyRANK Loukia [46] 249 x 945 x 176 14

optimization steps over 7' iterations, the total training com-
plexity is O(T(2Lg(MNF + MF?) + 2LcCd? + K1rs)),
making training computationally expensive [4]. In contrast,
the inference phase does not require backpropagation or it-
erative parameter updates, reducing the overall computational
burden. Task offloading through GAT requires only a single for-
ward pass, leading to a complexity of O(Lg(M NF + M F?)),
while MACN performs feature selection with a complexity of
O(LcCd?). The IRS phase shift optimization step, which is
precomputed or determined through a lightweight closed-form
solution, contributes a minimal complexity of O(K’). Con-
sequently, the total inference complexity is O(Lg(MNF +
MF?) + LcCd? + K), which is significantly lower than the
training complexity since no gradient computations or iterative
updates are involved.

IV. EXPERIMENTAL SETTINGS
A. Evaluation Setup

Our simulation uses network data from the JPSS with Ka-band
satellite links [43], [44], incorporating parameters like elevation
angle, signal strength, and signal-to-noise ratio. We account
for path loss and atmospheric attenuation, adjusting the ideal
communication model to achieve a dynamic data rate fluctuating
between 1 and 10 Mbps. For realistic satellite edge computing
simulation, we selected four real HSI datasets. The detailed
information of the datasets is summarized in Table II. To ad-
dress the inconsistency in spatial and spectral dimensions across
different datasets, we applied a unified preprocessing strategy.
Specifically, all datasets were resized or padded with zero-filled
sub-bands to a consistent shape of 150 x 150 x 200, ensuring
compatibility during joint training and evaluation.

B. The Execution of JFIO

We implemented the JFIO framework using PyTorch 1.9, with
70% of the dataset allocated for training and 30% for testing. The
experimental environment consisted of an RTX 4070 Ti GPU, an
Intel i7-13700 CPU (3.4GHz), and 64GB of RAM. The trained
JFIO is deployed on Jetson TX2. With a power consumption of
only 7.5W, itis suitable for deep learning tasks at the edge of low-
orbit satellites with limited energy [4]. To ensure the effective
integration of the task offloading and band selection modules, we
unified their training hyperparameters: a learning rate of 0.001,
a batch size of 32, and 50 iterations. The task offloading module
utilizes a GAT with four attention heads and a Dropout rate
of 0.5 to mitigate overfitting. Meanwhile, the band selection
module employs a MACN with ten capsule units and a custom
hybrid loss function, where the parameter §; = 0.5 balances
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the task classification loss and energy efficiency optimization.
Both modules are optimized using the Adam optimizer to ensure
stable convergence. In addition, weight factors wy, ws = 0.5 are
used to balance the contributions of the task offloading and band
selection modules during optimization.

Additionally, a memory buffer was incorporated into the joint
optimization module to store the system performance metrics
from previous iterations, which aids in hyperparameter tuning
and loss function refinement. To address the no-timeout con-
straint for HSIs, a penalty of 100 is applied to the total energy
cost for any HSI that exceeds its allocated processing time. The
IRS phase shift is optimized using the HO method, with a pop-
ulation size of 10 and 50 evolution rounds. Candidate solutions
are generated through random phase shift angles, which are
iteratively adjusted based on the optimal solution to enhance
system performance.

In order to validate the effectiveness of the JFIO framework,
we compared it with multiple benchmarking schemes.

1) Random: HSI data is randomly allocated to satellites,
ten random offloading decisions are generated, and the
decision with the highest utility is selected as the baseline
performance.

2) Greedy: HSI data allocation is optimized using a greedy
algorithm that selects the HSI with the longest processing
time and assigns it to the satellite with the fastest process-
ing speed to improve local efficiency.

3) OEC-TA [13]: Optimize HSI task allocation based on
greedy strategy step by step, dynamically adjust edge com-
puting resources to improve performance and utilization.

4) FullBand: Transmit all HSI data to ground for processing
without band selection as an inefficient processing strat-
egy. This serves as a reference for evaluating the benefits
of onboard band selection.

5) EGSSR [32]: EGSSR combines graph convolutional
networks to perform robust band selection using non-
euclidean structural information and identify informative
subsets of bands through ranking and clustering strategies.

6) MaHSI [4]: Based on multi-agent reinforcement learning,
MaHSI models band selection as a utility maximization
task to improve analytical accuracy and inference effi-
ciency in dynamic environments.

V. EXPERIMENTAL RESULT
A. Overall Utility Comparison

In this experiment, we evaluated the effect of different num-
bers of LEOs on the HST utility of the JFIO model processing by
calculating the combined utility over the entire contact window.

Fig. 3 illustrates the average normalized sum of HSI utility
for different methods. The results show that JFIO outperforms
the other models with significant utility gains, particularly as the
number of LEOs increases. For instance, JFIO achieves a 104%
utility increase when the number of LEOs rises from 3 to 15. In
contrast, the utility gains for the other models are smaller, with
MaHSI increasing by 102% and EGSSR by only 90%. Specifi-
cally, at 6 LEOs, JFIO’s utility is 20% higher than that of MaHSI,
and at 9 LEOs, JFIO significantly outperforms the average of the
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other methods. Notably, at 15 LEOs, JFIO leads MaHSI by 4%
and surpasses EGSSR by 12%. This superior performance can
be attributed to JFIO’s integrated design that jointly considers
task offloading, band selection, and IRS phase optimization.
As the number of LEOs increases, the available computational
and communication resources grow, which JFIO can effectively
leverage due to its adaptive allocation mechanism. In contrast,
MaHSI and EGSSR optimize only a single module and thus
struggle to coordinate resource allocation holistically.

B. Classification Performance

With the number of LEOs fixed at 15, we compare the
classification performance of JFIO against other band selection
methods. Overall, JFIO achieves an average improvement in
classification accuracy of 3%-6% across all datasets. Fig. 4
illustrates the average test accuracy across five experiments, with
the solid curve representing the performance of each method.
JFIO consistently outperforms the sub-optimal methods, ex-
hibiting an accuracy improvement of 3.2%-3.6%. Moreover,
the accuracy curve for JFIO shows a smaller shaded region,
indicating lower variance and higher consistency across multiple
experiments, which suggests a more stable learning process. The
classification advantage comes from JFIO’s attention-guided
capsule network, which better preserves spatial-spectral features
after band selection. Additionally, its joint optimization strategy
ensures that selected bands are not only energy-efficient but also
highly informative for classification.

C. Network Cost

We evaluate the average energy and time costs associated
with HSI processing across different datasets. Fig. 5 illustrates
that JFIO consistently outperforms all other methods in terms of
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energy efficiency, reducing energy consumption by 15% to 53%
compared to traditional fixed bandwidth selection approaches.
In scenarios with poor network conditions, JFIO demonstrates
its capacity to effectively mitigate high energy consumption
through intelligent bandwidth allocation and task optimization,
achieving nearly a 50% reduction in energy expenditure com-
pared to the FullBand strategy. This energy advantage is largely
due to JFIO’s dynamic task allocation mechanism, which avoids
overloading any single node and reduces redundant transmis-
sions. Furthermore, JFIO reduces energy overhead by 15%
to 35% compared to adaptive methods such as Greedy and
OEC-TA, showcasing its superior ability to dynamically adjust
resource utilization in response to varying network conditions.

As shown in Fig. 6 in terms of time consumption, JFIO
also exhibits significant improvements, achieving a reduction
of 20% to 45% in time cost, particularly when compared to
the FullBand strategy, with reductions of approximately 40%
across different datasets. Even when compared to other advanced
bandwidth selection methods, JFIO manages to reduce time
consumption by 15% to 30%, underscoring its effectiveness in
optimizing time overhead in both high-load and stable network
environments. This time efficiency is critical in real-time HSI
processing applications, where rapid decision-making and data
transmission are essential.

D. Inference Time Measurement

To evaluate the inference efficiency of the proposed JFIO
framework, we conducted 10 experimental runs on the Jet-
son TX2 and recorded the average inference time for various
HSIs [4]. As shown in Fig. 7, JFIO consistently outperforms
OEC-TA, EGSSR, and MaHSI, achieving a reduction of ap-
proximately 17% to 22% compared to OEC-TA, 10% to 15%
compared to EGSSR, and 8% to 13% compared to MaHSI. The
error bars in the figure indicate the standard deviation obtained
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from 10 independent runs, reflecting JFIO’s stability and ro-
bustness even under fluctuating network conditions. Moreover,
JFIO’s model size is only 21.3 MB, making it lightweight and,
therefore, particularly suitable for deployment on satellite edge
devices with limited computational resources.

E. IRS Analysis

We evaluated JFIO’s performance under various IRS condi-
tions by calculating the combined utility for processing all HSI
data within the contact window. Fig. 8 shows the results for
different configurations: JFIO(NIRS), representing direct HSI
transmission without IRS; JFIO(NOIRS), lacking phase shift
optimization; and JFIO(RandomIRS), using randomly set IRS
phase shifts. The results demonstrate that JFIO significantly
outperforms JFIO(NIRS), achieving a 50%—-58% improvement
in utility, especially in low-density networks with fewer LEOs,
where IRS optimization has a substantial impact. Even as the
number of LEOs increases, JFIO maintains a 30%-39% utility
advantage over JFIO(NIRS). Compared to JFIO(NOIRS), JFIO
consistently shows a 20%-31% utility gain across all LEO con-
figurations. While JFIO(RandomIRS) exhibits some fluctuation
in utility depending on the LEO count, it slightly outperforms
JFIO(NIRS) but remains well below the optimized JFIO. With
15 LEOs, phase shift optimization still results in a 20% utility
increase. The utility gains stem from the IRS’s ability to enhance
transmission directionality and signal strength. JFIO’s adaptive
IRS controller optimizes reflection coefficients based on the joint
feature representation, thereby improving throughput and reduc-
ing interference. Additionally, the error bars in Fig. 7 reflect
the variability across multiple trials, highlighting the stability
and consistency of JFIO’s performance, particularly when IRS
phase shift optimization is employed. These results demonstrate
that JFIO improves utility and enhances transmission stability,
making it highly effective across varying network densities and
resource conditions.
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Fig. 11. Impact of memory buffer size on HSI utility.

F. Sensitivity Analysis

Fig. 9 illustrates the variation in utility value as a function of
the weight parameter. Specifically, when the number of LEOs
is limited, some HSIs are not processed within the available
contact window, leading to increased energy consumption and,
consequently, a reduced utility value. This effect is particularly
pronounced at lower values of w;, where the system’s perfor-
mance is more sensitive to the imbalance in resource allocation.
As the number of LEOs increases, however, the utility value
stabilizes, indicating improved system efficiency and stability.
This leveling off of the utility curve suggests that the system
becomes better adapted to the task processing demands, with
increased LEOs ensuring more effective resource utilization and
task completion within the optimal timeframe.

Fig. 10 illustrates the effect of varying loss function weight-
ing coefficients on the model’s training performance, with the
vertical axis representing the average utility of HSI processing.
At lower coefficients, such as §; = 0.3 or 6; = 0.4, the model
converges quickly, achieving higher utility early on. Medium-
weight coefficients, such as §; = 0.5, yield the highest final
utility, striking a balance between task classification and energy
efficiency optimization. Higher coefficients, such as §; = 0.7 or
01 = 0.8, result in slower initial convergence but are better suited
for energy-efficiency tasks, supporting long-term sustainability.
Overall, medium-weight coefficients offer the best trade-off,
optimizing both classification accuracy and energy efficiency.
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Fig. 11 illustrates the impact of varying memory buffer sizes
on model training, with the vertical axis representing the average
utility of HSI processing. The model achieves optimal perfor-
mance at a memory buffer size of ”1x” (i.e., the memory size
equals the batch size), where utility is consistently the high-
est. This configuration efficiently utilizes memory resources,
avoiding computational inefficiencies and resource wastage. As
memory size increases from 0.5x to 1x, utility improves signifi-
cantly. However, beyond 2x, the rate of utility gain diminishes,
indicating that the model reaches an optimal memory config-
uration at 1x. Further increases in memory size yield min-
imal performance improvements and may introduce over-
heads due to inefficient resource allocation and data cache
expansion.

VI. CONCLUSION

In this paper, we propose a novel IRS-assisted SEC system
optimized for HSI processing, addressing the challenges of lim-
ited communication bandwidth, constrained onboard resources,
and dynamic inter-satellite conditions. Our system leverages
the cooperative capabilities of a local LEO satellite and mul-
tiple neighboring satellites, each equipped with edge comput-
ing units, to form a distributed computing network. The HSI
processing task is formulated as a utility maximization prob-
lem that jointly considers task offloading, band selection, and
communication efficiency. To effectively address this complex
problem, we introduce the JFIO framework to process HSI tasks
efficiently. The JFIO framework integrates a GAT for dynamic
task offloading, a MACN for HSI band selection, and IRS
phase shift optimization. Extensive experiments demonstrate
that JFIO significantly outperforms traditional state-of-the-art
methods in terms of task processing efficiency, adaptability,
and energy consumption. The modular and extensible nature
of JFIO provides a valuable reference for future research in
multi-satellite cooperative computing, adaptive HSI processing,
and intelligent satellite network design.
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