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Enhancing Recommendation Performance Using
Attribute-Aware Message-Passing and
Augmentation GCN

Yan Wang ", Yifan Ren

Abstract—Graph Convolutional Networks (GCNs) have shown
great promise in recommender systems due to their ability to
capture complex relationships and generate high-quality represen-
tations, especially under sparse data conditions. However, stacking
multiple GCN layers often leads to oversmoothing, where node
embeddings become indistinguishably similar. This problem is
exacerbated when target items gather noisy or irrelevant informa-
tion from high-order neighbors during message propagation. To
address this, we propose AMP-GCN, an Attribute-aware Message-
Passing GCN that mitigates oversmoothing by clustering items with
similar attributes into subgraphs. High-order propagation is then
performed within each subgraph, effectively filtering out irrelevant
signals and preserving semantic consistency. To further enhance
embedding learning, we introduce AMPA-GCN, which integrates
item-item correlation signals into the AMP-GCN framework by
modifying the adjacency matrix. This design strengthens direct
and indirect item relations, leading to more robust representa-
tions. Extensive experiments on four public benchmark datasets
demonstrate that our proposed models consistently outperform
state-of-the-art baselines.

Index Terms—Augmentation, graph convolution networks,
message-passing strategy, recommendation, subgraph.

1. INTRODUCTION

ECOMMENDER systems have become essential tools for

mitigating information overload by providing personal-
ized suggestions to users based on their historical behaviors [1],
[2]. These systems aim to predict user preferences from inter-
action data such as clicks, purchases, and ratings. Collaborative
filtering (CF) [3], [4] is a classical recommendation approach
that assumes users with similar past behaviors tend to prefer
similar items. CF-based models, including matrix factorization
(MF) [5], [6], learn latent user and item embeddings and predict
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preferences through operations like a dot product. These meth-
ods have been extensively explored in the literature [7], [8], [9],
[10], [11]. In recent years, the field has seen a shift toward more
expressive models, including deep learning frameworks [12],
[13], [14], reinforcement learning strategies [15], [16], and
large language models (LLMs) [17], [18], which have further
improved the accuracy and generalization of recommendation
systems.

On social media platforms, it is often necessary to recommend
news, friends, communities, and other items to users. In these
application scenarios, the relationship between users and items
is usually represented as a graph structure. Graph Convolutional
Networks (GCNs) have gained attention from researchers for
recommending items to users on social media platforms. This
is because GCNs have demonstrated excellent performance in
data with graph structures, such as social networks and knowl-
edge graphs. In recent years, there has been a surge in the
use of GCN-based models [19], [20], [21], [22], [23] for CF
in recommendation systems, establishing them as the current
leading approaches. In GCN-based recommendation systems,
these models leverage GCNs to learn powerful user and item
embeddings from non-Euclidean structures. By aggregating fea-
ture information from their neighbors, GCN-based models have
shown the ability to capture collaborative signals and address the
sparsity issue in recommendation tasks. For instance, in [23], the
author introduced NGCF, which utilizes high-order connectivi-
ties in the user-item bipartite graph to enhance recommendation
performance and mitigate sparsity challenges. In this paper, we
will utilize GCN to enhance recommendation systems for social
media platforms. This choice is motivated by the advantages
offered by GCN-based recommendation systems over other
approaches, such as reinforcement learning recommendation
systems and LLMs recommendation systems. These advantages
include better incorporation of graph structures, efficient infor-
mation aggregation, scalability, and interpretability.

However, despite their success, most GCN-based models
achieve optimal performance by stacking a limited number of
layers, typically 2 or 3 layers. This limitation results in an in-
ability to capture deep collaborative signals effectively. In order
to address this issue, these GCN recommendation models [19],
[24] typically employ a few layers of graph convolution to gather
collaborative signals from a larger number of neighbors. This
facilitates the learning of node embeddings by incorporating
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more information. This assumption is based on the belief that
collaborative signals from high-order neighbors contribute to
embedding learning. However, in reality, not all information
from high-order neighbors is beneficial for learning embeddings.
This is because high-order item neighbors in the user-item inter-
action graph may possess attributes that are completely unrelated
to those of the target item. For instance, if cosmetics are aggre-
gated with high-order neighboring items that have basketball-
related attributes, it could negatively impact the embedding of
cosmetics. Consequently, as more graph aggregation layers are
added, there is an increased risk of indiscriminate aggregation of
messages from all high-order neighbors in current GCN-based
recommendation models. This indiscriminate aggregation can
lead to an oversmoothing problem, where the performance
of the GCN-based models declines as the network’s depth
increases.

In recent years, several GCN-based recommendation mod-
els [25], [26], [27] have been developed to address the over-
smoothing problem mentioned above. One such model is IMP-
GCN [25], which clusters users with common interests and
their interacted items into the same subgraph. This facilitates
high-order graph convolution within each subgraph. By effec-
tively filtering negative information during high-order convo-
lution operations, IMP-GCN successfully tackles the challenge
of oversmoothing, resulting in improved performance. However,
we argue that IMP-GCN overlooks the interaction between items
and distributes them into multiple subgraphs. Performing graph
convolution operations on item nodes across multiple subgraphs
can be detrimental to item embeddings. This approach may lead
to oversmoothing, causing the embeddings of different items
to become excessively similar and lose their distinctiveness.
To address this issue, our paper leverages collaborative signals
derived from analogous items (i.e., items with similar attributes)
to construct subgraphs. Based on these constructed subgraphs,
we propose the AMP-GCN model, which employs high-order
propagation within these subgraphs to effectively reduce noise
accumulation and mitigate oversmoothing.

Item-item correlations [28], [29], [30] play a significant role
in defining the relationships between items within a recom-
mender system. This is because items are often interconnected
rather than independent [31], [32]. For example, an Apple Mac
computer and an Apple iPhone 15 belong to the categories of
“computer” and “phone”, respectively. A customer who pur-
chases an Apple Mac is likely to consider buying an iPhone
15 because both items share the attribute of being products
from Apple Inc. However, many GCN-based recommendation
models often overlook item-item correlations in the bipartite
adjacency matrix A. Notably, models such as IMP-GCN [25] and
LightGCN [19], along with others mentioned earlier, do not take
into account these correlations. Although high-order collabora-
tive signals can capture item-item correlations, recent research
has indicated that long-distance message-passing can lead to
the issue of oversmoothing [33]. In this paper, we address the
oversight of item-item correlations by incorporating them into
the adjacency matrix A to reconstruct attribute subgraphs. This
approach allows us to develop the Attribute-aware Message-
Passing and Augmentation GCN (AMPA-GCN) model, which
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aims to improve recommendation performance while mitigating
the problem of oversmoothing.

In summary, this article makes the following major

contributions:

* To mitigate the adverse effects of information propaga-
tion during high-order graph convolution operations, we
introduce a subgraph generation module that clusters items
with similar attributes into the same subgraph. This module
allows us to filter out irrelevant information and focus
on collaborative signals among items that share common
attributes.

® Building upon the subgraph generation module, we pro-
pose the AMP-GCN model. This model employs an
attribute-aware message-passing strategy to learn embed-
dings within subgraphs during high-order propagation. By
utilizing this approach, the AMP-GCN model can effec-
tively capture and utilize attribute-specific collaborative
signals for improved embedding learning.

e Recognizing the importance of item relationships in em-
bedding learning, we propose an enhanced version of
the AMP-GCN model called AMPA-GCN. In AMPA-
GCN, we augment the item embeddings by incorporating
item-item correlations into the adjacency matrix A. This
augmentation allows us to reconstruct attribute subgraphs
and learn more informative embeddings that capture the
underlying relationships between items.

® We performed empirical investigations on four benchmark
datasets to assess the performance of our models. The
results indicate that by stacking more layers, AMP-GCN
can be further improved, leading to better learning of user
and item embeddings. Additionally, AMPA-GCN effec-
tively leverages the relationships between items, resulting
in superior item embeddings.

II. RELATED WORK

A. GNN-Based Recommendation Systems

In recent years, GNNs have became a dominant paradigm
in recommendation research due to their strong capability in
modeling high-order user-item interactions. A broad spectrum
of application scenarios has been investigated. For general col-
laborative filtering, representative works such as NGCF [23],
LightGCN [19], and UltraGCN [27] simplified or redesigned
propagation schemes to improve efficiency while mitigating
oversmoothing. Knowledge-aware models, such as KGAT [22]
and attribute-aware GCN [20], integrated external knowledge
graphs or side information to enhance recommendation ac-
curacy and interpretability. Social recommendation methods,
including GraphRec [34], Neural Influence Diffusion [35], and
NGAT4Rec [36], leveraged user-user relations to capture social
influence. Sequential and session-based approaches, such as
SR-GNN [38] and LESSR [39], constructed session graphs to
better capture short-term dynamics. More recently, contrastive
learning techniques have been widely adopted in works such as
Self-supervised GNN [40], NCL [41], and Graph Augmenta-
tion CL [43], providing robustness through graph perturbations
and representation discrimination. In addition, multimodal and
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TABLE I
COMPARISON OF REPRESENTATIVE GNN-BASED RECOMMENDER SYSTEMS ACROSS DIFFERENT APPLICATION SCENARIOS
(ALL REFERENCES FROM EXISTING BIBLIOGRAPHY)
Scenario Representative Works Key Idea Strengths / Limitations
General Collaborative ~ NGCF [23], LightGCN [19], Ul-  Propagate userCitem interactions via Strong performance on CF
Filtering traGCN [27] graph convolution, simplified aggrega-  tasks; risk of oversmoothing in
tion deep layers
Knowledge-aware Rec- KGAT [22], Attribute-aware Integrates knowledge graph / attribute  Improves explainability; higher
ommendation GCN [20] information into GCNs complexity due to external KG
Social Recommendation =~ GraphRec [34], Neural Models userCuser social influence and  Captures social signals; vulner-
Influence Diffusion [35], diffusion with GNNs able to noisy links

NGAT4Rec [36], CENTRIC [37]

Sequential / Session-
based Recommendation

SR-GNN [38], LESSR [39]

Builds item transition/session graphs to
capture sequential dynamics

Good for short-term preference;
less effective on long sequences

Contrastive  Learning
for Recommendation

Self-supervised GNN [40], N-
CL [41], GCE-CL [42], Graph
Augmentation CL [43]

Uses contrastive objectives and graph
augmentations to improve embeddings

Enhances robustness; sensitive
to augmentation design

Multimodal
Recommendation

MMGCN [9], LLMRec [44], In-
teraRec [17], KELLMRec [18],
DM-FedMF [45]

Combines multimodal/LLM features
with graph-based recommendation

Leverages rich content; higher
computational cost

LLM-enhanced recommenders, including MMGCN [9], LLM-
Rec [44], and InteraRec [17], combined content-rich signals
with graph-based learning to address sparsity and improve per-
sonalization. These developments collectively demonstrated the
versatility of GNN-based recommendation and highlighted the
need for general frameworks capable of adapting across diverse
tasks, as summarized in Table 1.

B. Model-Agnostic Desmoothing Frameworks

Beyond architecture-specific solutions, recent studies have
explored general strategies to mitigate oversmoothing in
a model-agnostic manner. DGR [46] introduced a general
desmoothing framework that combined global perturbations
with local structure-aware loss, which was applicable across
multiple GCN recommenders to counteract embedding ho-
mogenization. Phase-wise attention GCN [47] dynamically
reweighted neighbors at different stages and empirically demon-
strated that careful neighbor selection alleviates oversmoothing
in recommendation tasks.

Graph augmentation is also widely adopted as a generic
strategy. DropEdge [48] and its adaptive variants [49] randomly
removed edges during training to reduce neighborhood
redundancy, while MixHop-based propagation [50], [51]
aggregated signals from multiple hops within a single layer
to capture long-range relations without requiring deep stacks.
Xu et al. [43] extended this paradigm by proposing graph
augmentation empowered contrastive learning, which leveraged
semantic-preserving augmentations and adaptive contrastive
objectives to mitigate oversmoothing across recommendation
tasks. Beyond conventional GNNs, augmentation strategies
are also coupled with large language models (LLMs) to form
hybrid frameworks. For example, Wei et al. [44] proposed
LLMRec, which integrated graph augmentation with pretrained
LLMs and showed that semantic reasoning from language
models complemented structural signals, thereby enhancing
representation richness and alleviating oversmoothing.
Collectively, these works constituted a diverse set of
model-agnostic desmoothing methods, spanning perturbation-
based frameworks, augmentation-driven learning, contrastive

objectives, LLM-empowered hybrids, normalization schemes,
and adaptive aggregation. They provide flexible tools that
could be integrated into various recommender GCNss to address
oversmoothing.

C. Theoretical Advances and Propagation Redesign

Recent theoretical progress offered stronger foundations for
oversmoothing mitigation. Residual connections and normaliza-
tion layers are provably shown to prevent or significantly delay
oversmoothing [52], [53]. In [54], the authors demonstrated
that with high-variance initialization, GCNs operate in a non-
oversmoothing phase. Zhuo et al. [55] further proved that GNNs
with properly learned weights entirely avoid oversmoothing
even under infinite propagation.

In parallel, propagation schemes are redesigned to achieve
better trade-offs. For instance, generalized Personalized
PageRank with GCN [56] enables effective high-order prop-
agation without requiring deep stacks, while spectral pruning
methods [57] simultaneously alleviates oversmoothing and
over-squashing by selectively pruning graph structures. These
advances bridged empirical remedies with theoretical guaran-
tees, thereby enriching the understanding of oversmoothing and
paving the way for more robust graph learning paradigms.

D. Positioning of Our Work

Unlike prior solutions, our approach explicitly targets the item
side. AMP-GCN constructs attribute-aware item subgraphs,
ensuring that high-order propagation aggregates signals only
from semantically similar items. Building on this, AMPA-GCN
incorporates item—item correlations into the adjacency ma-
trix, enriching subgraphs with stronger collaborative structure.
Together, these designs address oversmoothing through both
message filtering and structure augmentation. Compared with
model-agnostic frameworks (e.g., DGR) and theoretical reme-
dies (e.g., residual or initialization-based strategies), our contri-
bution provides a structural and attribute-aware solution that is
practically interpretable and complementary to recent advances.
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III. PRELIMINARY

In this section, we begin by introducing the notations em-
ployed in this article, followed by an overview of the GNN-based
recommendation framework.

A. Notations and Definitions

Consider the user-item bipartite graph G = (U, Z, £), where U
represents the set of users and Z represents the set of items. The
set of edges is denoted as £ C U x Z. An edge e,; € & is the
interaction between user u# and item i. To construct the user-item
interaction matrix R € RV*M where N and M are the number
of users and items, respectively, we utilize the binary entries
a.; € R, which indicate whether user © € I/ has interacted
with item ¢ € 7. Thus, we can obtain the adjacency matrix: A

= [ROT o |» Where A € RVAM)x(N+M) To incorporate this

information into the GCN model for the purpose of learning user
and item embeddings, we represent the user and item embed-
dings as a matrix E € RWAM)xd \where d denotes the latent
dimension of the embeddings. The user and item embeddings
in matrix E are then fed into the GCN model where they go
through aggregation and propagation processes.

B. GCN-Based Recommendation

In this paper, we select LightGCN as an illustrative example
of a GCN-based recommender model due to its outstanding
performance and lightweight design. In LightGCN, the ID
(0)

embeddings of item i and user u are represented as e; ' and

e&o), respectively. Then, the graph convolution operation can be

described as follows:

ueN;

1)

ka’

e (1)

(k

where e( ) and ey, ) denote the embeddings of item i and user
u after k layers of propagation, respectively; N; represents the
set of users that interact with item i, and A\, represents the set
of items that interact with user u; The symmetric normalization
terms, denoted by ——L—— | prevent the scale of embeddings
VAN A g

from growing significantly during graph convolution operations.
The final representations e; and e,, are formed by combining the
embeddings generated at each layer in LightGCN, up to K layers
of graph convolution, as follows:

K K
ei=> aelie, = arell, )
k=0 k=0

where o > 0 is a hyper-parameter that represents the sig-
nificance of the k-th layer embedding in the final embedding.
For more details on LightGCN, please refer to the work by He
etal. [19].

From (2), we observe that all features obtained from the high-
order neighbors are aggregated for the target node. Higher-order
neighbors represent nodes in a graph that are more than 1 hop
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away from the target node. However, this aggregation process
may lead to the inclusion of negative features, such as item
features with dissimilar attributes from high-order neighbors.
This can result in performance degradation and the oversmooth-
ing issue. To address these issues, the following two important
aspects should be considered.

1) Group items with similar attributes into subgraphs and
then perform graph convolution operations inside each
subgraph. To address this challenge, this paper presents a
novel model called attribute-aware message-passing GCN
(AMP-GCN) model.

2) Introduce the item-item correlations into the bipartite ad-
jacency matrix to perform graph convolution operations.
To achieve this goal, we propose an augmentation GCN
model based on AMP-GCN model.

IV. METHODS

In this section, we first propose the AMP-GCN model, which
focuses on learning high-quality embeddings for users and
items by capturing and distinguishing collaborative signals dur-
ing high-order propagation. Next, we present the AMPA-GCN
model, which aims to improve item embeddings by incorporat-
ing item-item correlations.

A. Amp-Gcen Model

In this subsection, we will describe our proposed AMP-GCN
model, which aims to solve the oversmoothing problem of in-
discriminate aggregation from high-order neighbors. To achieve
this goal, AMP-GCN groups items with similar attributes into
subgraphs and then performs graph convolution operations in-
side each subgraph.

1) The Framework of AMP-GCN Model: Anoverview of our
proposed AMP-GCN is shown in Fig. 1. The whole process
is triggered with embeddings of user and item at each graph
convolution layer. It consists of three major parts: a first-order
graph convolution layer, a high-order graph convolution layer,
and the layer combination operation. To reduce the aggregation
of negative features, the convolution operations in the high-order
graph convolution layer are different from those in the first-order
graph convolution layer. In the first-order graph convolution
layer, the inputs take the ID embedding of the entire graph to
generate the first layer embedding. In contrast, the high-order
graph convolution layer in AMP-GCN performs graph convo-
Iution operations inside subgraphs to update the embeddings
of users and items. After K layers of graph convolution, a
layer combination operation is performed to formulate the final
representations.

Before providing a detailed illustration of the AMP-GCN,
let’s first discuss how to construct the subgraphs. This is impor-
tant because the convolution operations in the high-order graph
convolution layer require the embeddings of each subgraph as
inputs.

Unlike IMP-GCN, which clusters users based on interac-
tion behavior, our proposed AMP-GCN focuses on item-side
modeling by grouping items based on their semantic attributes.
This distinction is non-trivial for two main reasons. First, items
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Fig. 1.
the high-order propagation operates within the subgraphs.

typically possess richer, more diverse, and more stable attribute
information (e.g., category, brand, price), making them more
suitable for subgraph generation in sparse datasets. Second, item
attributes often reflect domain-specific semantics that can guide
the construction of attribute-aware subgraphs, thereby leading
to more meaningful high-order message propagation.

Furthermore, while prior methods such as ClusterGCN and
IMP-GCN utilize unsupervised clustering techniques (e.g., k-
means or user co-interest patterns), AMP-GCN leverages a
learnable subgraph generation module that integrates both ID
embeddings and first-layer graph embeddings. This allows
AMP-GCN to perform end-to-end optimization of subgraph
assignments, aligning the item grouping process with the final
recommendation objective.

We empirically demonstrate in Section 4.3.1 and Section 4.3.2
that AMP-GCN consistently outperforms IMP-GCN across
datasets. This performance gain stems from our shift to item-
centric modeling, which provides more discriminative subgraph
structures and reduces message noise during high-order propa-
gation.

2) Subgraph Generation Module: In AMP-GCN, the sub-
graph generation module is used to group items with similar
attributes. Given an input graph G, the AMP-GCN employs the
subgraph generation module to construct Ns subgraphs. The
item grouping process is formulated as a classification task,
where each item is classified and assigned to a subgraph Gs
with s € {1, ..., Ns}. The users directly connected to these
items are then added to the corresponding subgraph, resulting in
the construction of a user-item bipartite subgraph. Specifically,
the subgraph generation module combines the ID embedding
and the first layer embedding to generate a new item feature
vector:

Fi = U(Wlel(-o) + Wgel(-l) + W3 (650) ) ez(-l))), (3)

An illustration of AMP-GCN model architecture with two subgraphs. In the AMP-GCN, the first-order propagation operates on the entire graph, while

Here, F'; is the item feature representation after feature fusion.

egl) represents the item embedding after the first layer propa-
gation, which aggregates information from its local neighbors.
Wi, Wy, W3 € R¥™9 are trainable weight matrices; and o
represents the activation function (e.g., LeakyReLU [58]) for

handling non-linearities. The element-wise product eﬁ‘” ® egl)

is utilized to capture the affinity between e§°) and el(-l). This
operation enhances the information contained in the item feature
vector F'; and facilitates better grouping of items (evidence in
our experiments Section V-C3). To group the items into different
subgraphs, the subgraph generation module uses a 2-layer neural
network to obtain a prediction vector by inputting the item
feature F';:

I, =0(W4F;+by),

I, =WsI}, +bs, “)

where I, is exploited as a prediction vector to determine which
subgraph an item belongs to. This is determined by the position
of the maximum value in the I, vector. W, € R¥>4 W ¢
R*Ne represent the trainable weight matrices, and by € Rixd,
bs € RN represent the bias vectors.

The dimension of the prediction vector I, is a hyper-parameter
that represents the number of subgraphs. Based on (4), items
that have similar embeddings will produce similar prediction
vectors, indicating that they will be clustered into the same
group. Based on the original user-item graph and the results
of item grouping, the subgraph generation module can construct
an interaction matrix that represents the user-item interactions
in each subgraph. The matrix of each subgraph only contains
similar items and their interacting users, which filters out noise
and alleviates the over-smoothing issue.

Optimization and Training: The subgraph generation module
is trained jointly with the rest of the AMP-GCN framework in
an end-to-end fashion. As shown in Algorithm 1, the model first
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Algorithm 1: Subgraph Generation and Joint Optimization
in AMP-GCN.
Input: User-item graph G = (U, Z, £); number of
subgraphs N; propagation depth d; temperature 7
Output: Final user and item embeddings
1: for Each item ¢ € 7 do
2: Retrieve ID embedding e
o)
3:  Fuse features:
F, = U(Wlego) + Wgegl) + Wg(ego) O] el(-l)))
4:  Compute subgraph logits: I, = MLP(F;)
5:  Apply Gumbel-softmax: z; = GumbelSoftmax(I,, )
6: Assign i to subgraph s = arg max(z;)
7
8

(0)

i

and 1st-layer embedding

: end for
: Construct subgraphs {G,}*, based on item
assignments and their linked users;
9: for Each subgraph G, do
10:  Perform d-layer GCN to obtain subgraph-specific
embeddings
11: end for
12: Aggregate embeddings across subgraphs for each
user/item;
13: Predict recommendation scores and compute loss L;
14: Backpropagate L to update all parameters including
subgraph MLP;
return Final user/item embeddings

fuses the ID embedding ego) and the first-layer GCN embedding
egl) to form an enriched item feature vector F;. This vector
is passed through a two-layer MLP to produce a subgraph
membership logit I,.

To maintain differentiability during training while approx-
imating discrete subgraph assignments, we apply the Gumbel-
softmax trick as shown in Eq. 5 to obtain a soft assignment vector
z;. This allows item-to-subgraph assignments to be optimized
via backpropagation. The discrete subgraph label for each item
is determined by arg max(z;) at inference time.

o ep((logL? +g.)/7)

= , s=1,..
SN exp((log IV + gi) /1)

o Ns (5

Here, g, ~ Gumbel(0, 1) is noise sampled from the Gumbel
distribution, and 7 is a temperature parameter (we set 7 = 0.5
during training). During inference, we use the arg max over I,
to obtain a one-hot assignment to a specific subgraph.

Based on the predicted subgraph memberships, the input
graph G is partitioned into Ny subgraphs {G,}. Each subgraph
undergoes independent GCN propagation, after which user and
item embeddings from all subgraphs are aggregated. The final
recommendation scores are predicted and used to compute the
loss £, which is backpropagated through the entire AMP-GCN
pipeline, including the subgraph MLP parameters W4, W5.
This enables the model to learn adaptive, task-specific item
clustering that enhances performance.
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To provide a more rigorous interpretation of how subgraph
number N affects model performance, we define the total
expected error F,. as the combination of two key components:
noise-induced error F,, and oversmoothing error Fg. These
terms correspond to concrete behaviors in graph learning mod-
els.

In the original user-item graph, given an item % € Z, its
effective neighborhood M(d) within d layers of message passing
is constrained by the subgraph it belongs to. As N, increases,
subgraphs become smaller, reducing the size of M(d) and thus
weakening aggregation, which induces oversmoothing error due
to insufficient receptive field:

E, (i)

Co Co - NS
V@

Here, M(d)| is the number of nodes in the d-hop neighborhood
of item ¢, which reflects how many neighbors contribute infor-
mation during message passing. As subgraphs become smaller

with higher Ny, \/\/i(d)\ decreases. Also, |Z| denotes the total
number of items in the dataset, so ]\é‘ roughly estimates the
inverse of average subgraph size. The constant ¢y captures model
sensitivity to neighborhood shrinkage, influenced by depth d and
architecture.

On the other hand, increasing /N, enhances item homogeneity
in each subgraph and eliminates irrelevant interactions (edges
between dissimilar nodes), which reduces label noise and im-
proves signal clarity. Based on feature variance within each
subgraph, the noise-induced error can be approximated by:

En(i) ~ Var(/\/;(O)) ~ L
N
Here, c; represents the total feature variance of the full graph
before subgraph separation. It encodes the initial noise level in
item representations.
Therefore, the total expected node-level error is:

N _ € ¢ Ng
B (i) < <L
UEN

Taking the average over all items gives:

C1 cg - Ny
FE, < —
=N

This expression now directly reflects model behavior: the trade-
off between information denoising and neighborhood shrinkage.
Moreover, the above expression can be interpreted under a
graph generalization framework. Generalization error in GCNs
is influenced by neighborhood size and graph spectral norm,
both of which are implicitly controlled by V.

To minimize FE,., we derive the optimal number of subgraphs
NP

oFE, c1 Co
_ a9 gy
oN, — Nz s o

Cy - |I|

This formulation not only provides a formally derived expres-
sion for the optimal subgraph number, but also connects it to
dataset size and model behavior. In Section V-C2, we conduct
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experiments to verify this theoretical insight and demonstrate
that model performance indeed exhibits a U-shaped curve with
respect to N, validating the existence of the trade-off.

3) Attribute-Aware Message-Passing Strategy: The con-
struction of subgraphs ensures that collaborative signals orig-
inate from high-order item neighbors within each subgraph,
which is beneficial for the embedding learning of a target item.
In other words, the objective of the AMP-GCN model is to
effectively eliminate the propagation of negative information
during the graph convolution operation. In order to accomplish
this, we propose an attribute-aware message-passing strategy
that utilizes item subgraphs for performing graph convolution
during high-order propagation. With the subgraph generation
module, items with similar attributes are grouped into the same
subgraph. Each itemis exclusively assigned to a single subgraph,
while a user can be linked to several subgraphs. In the attribute-
aware message-passing strategy, the graph convolution opera-
tion is conducted separately in each subgraph to filter out noise.
However, the first-order neighbors carry the most significant and
trustworthy information for item attributes and aggregation, as
they directly interact with the user-item pair. Thus, the first-order
convolution operation is relevant to the first-order neighbors
of the entire graph, while the attribute-aware message-passing
strategy primarily focuses on high-order propagation. During
high-order propagation, nodes in a subgraph can only leverage
information from their neighbors within the same subgraph for
embedding learning. This is because all the users interacting with
an item are present in the subgraph associated with that item,
allowing the item to receive information from all its connected
users.

In first-order graph convolution layer, let e§0> and e&o) repre-
sent the ID embeddings of item ¢ and user u, respectively. The
first-order propagation is defined as follows:

o _

ei 7(10)7
Z rr
=Y AN o, ©)
i€Ny,
(1) (

where e;”’ and eu) denote the first layer embeddings of the
target item ¢ and user u, respectively.

In the high-order graph convolution layer, for a user node, its
direct item neighbors may exist in multiple subgraphs. There-
fore, for each user, we need to learn its embedding from each
subgraph that includes the user. The high-order propagation in
AMP-GCN is denoted as:

QD) _ Z

useN;

1
1w,
\/INA\/ Nl ™

ekt

3 NN e, (7)
ze/\/g

is the embedding of user u in subgraph Gs after k
layers of graph convolution. e( ) represents the feature that user
u learns from item features in the subgraph G's. After k layers of
embedding propagation, we obtain the embedding of user v from

k
where eq(”)
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different subgraphs. We can then obtain the final representation
of user u by combining these embeddings:

el = > el ®)

seNs

where s indexes the subgraphs that user u belongs to. In this
way, we ensure that the embedding of a target item is positively
influenced by its item neighbors in a subgraph, thereby avoiding
the introduction of noisy information.

After propagation and convolution operations, the AMP-GCN
model formulates the final representations as (2) by combining
the embeddings obtained at each layer. In the equation, we uni-
formly set o, = 1/(K+1) to obtain the final representations. This
choice is made to avoid unnecessary complexity and maintain
the simplicity of AMP-GCN.

With the learned embeddings of items and users, the predic-
tion of user preference towards an item can be calculated using
the inner product:

Fui = ele;. )

The prediction will be used as the ranking score for recommen-
dation generation.

Compared to other GCN algorithms, the proposed AMP-GCN
introduces additional computational costs due to subgraph con-
struction. Constructing N, subgraphs from the original graph
has a time complexity of O(Ny - n - L - h?), where n represents
the number of nodes in each subgraph, L is the number of layers
in the MLP used for subgraph generation, and h denotes the size
of the hidden layer. To mitigate this computational overhead,
the AMP-GCN model generates subgraphs only once using
the subgraph generation module. This module processes the
ID embeddings and first-layer embeddings to create fixed sub-
graphs, which are then utilized for high-order graph convolution
operations within the subgraphs. By avoiding re-generation of
subgraphs in subsequent layers, AMP-GCN balances computa-
tional efficiency and performance.

B. AMPA-GCN Model

In the AMP-GCN model, nodes in a subgraph can only utilize
their neighbors within the same subgraph for embedding learn-
ing, which leads to the neglect of item-item correlations. There-
fore, we propose an enhanced version of the AMP-GCN model
called Message-Passing and Augmentation GCN (AMPA-GCN)
model, which aims to enhance recommendation performance by
adding item-item correlations in the bipartite adjacency matrix
A.

Asiillustrated in Fig. 2, the AMPA-GCN model can be divided
into two main steps: pre-train and enhancement. In the pre-train
process, we input the ID embeddings of users and items into
a graph encoder to obtain user and item embeddings. In the
enhancement step, we utilize the item embeddings E*) to
identify the top-k similar items and construct an augmented
bipartite matrix. This augmented matrix is then fed into the graph
encoder for re-training, resulting in the final representations.

The AMPA-GCN model utilizes the graph encoder twice. The
first graph encoder, during the pre-training process, uses the
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Fig. 2. The workflow diagram of AMPA-GCN. The AMPA-GCN consists of
two steps: 1. pre-train step: users and items embeddings are inferred using a
graph encoder; 2. Enhancement step: The inferred embeddings are utilized to
generate the top-k similar item neighbors, which form the enhanced adjacency
matrix. This matrix is then used to re-train a graph encoder.

original adjacency matrix A to obtain user and item represen-
tations. The second graph encoder, in the AMPA-GCN model,
uses the enhanced matrix to obtain the final representations. It
is important to note that the AMPA-GCN model employs the
AMP-GCN model as the graph encoder to obtain representa-
tions. The subgraph generation module plays a vital role in the
second graph encoder of the AMPA-GCN model. It ensures that
the subgraphs in the second graph encoder include item-item
correlations, which improves the quality of item embeddings
and also helps alleviate the over-smoothing issue. Next, we will
describe in detail how to obtain the enhanced bipartite matrix.

In the scenario of a recommender system dataset where the
item-item interactions are unknown, the traditional adjacency
matrix A representation would consist entirely of zeros for the
item-item interactions. However, as item-item correlations are
important for learning item embeddings, we propose augment-
ing the adjacency matrix A with the item-item adjacency matrix
‘W1 to enhance its representation. To avoid adding noise, for
each item ¢ in the matrix W, we only select k items that are
most similar (top-IIk) to it for association. To achieve this, we
extract the top-IIk similar items with largest values of e?E(IK)
for each item . The specific formula is as follows:

(K)

e/ E;", (10)

arg max
{iri2,irn, €T}

where E%K) represents the output item embeddings. I controls
the number of similar items to be chosen. Thus, W[, ;] = 1
for iy, € {i1,42,...,4s1, }. For example, if I} is set to 7, then
the 7 most similar items for each item will be selected.

By selecting the top-I/j similar items from all items to
conductembedding learning on the targetitem 7, we create an en-
hanced bipartite adjacency matrix that includes item-item corre-

0 R
RT W; ,} :
Subsequently, the enhanced bipartite adjacency matrix A is sent
to the graph encoder to learn user and item embeddings.

lations. This enhanced matrix is represented as A= [
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C. Optimization

Our proposed models primarily target top-n recommenda-
tions, which involve suggesting a set of n high-ranking items
that are likely to be of interest to the target users. In line with
previous work [23], [59], we adopt a widely-adopted BPR loss
for optimization:

Loss = Z —Ino (fu; — Fuy) + )O3
(u,i,5)€0

(1)

Here, O represents the set of pairwise training data. u rep-
resents a user, ¢ represents an item that has been positively
interacted with by user u (i.e., (u,4) € RT), and j represents
an item that has been negatively interacted with by user u (i.e.,
(u,j) € R7). R represents the set of observed interactions,
where each element is in the form of (u,:). It indicates the
positive interactions between users and items. On the other
hand, R~ represents the set of unobserved interactions, where
each element is in the form of (u, j). It indicates the negative
interactions between users and items, meaning that user u has
not interacted with item j. In the equation, o(-) is the sigmoid
function; additionally, A and © refer to the regularization weight
and the model parameters, respectively. In this paper, we employ
L, regularization to prevent overfitting.

D. Propagation Rule in Matrix-Based Approach

To provide a comprehensive overview of embedding propa-
gation and facilitate batch implementation, we implement our
proposed AMP-GCN and AMPA-GCN models using a matrix-
based approach. This allows us to efficiently handle large-scale
graph data and simplify the implementation process. In our
models, we adopt the same propagation rule as employed in [25].
Let E(9) represent the original embedding matrix for users and
item IDs. Additionally, E®) denotes the user/item embedding
matrix at the k-th layer of propagation. In our models, the
first-order graph convolution can be defined as:

EY = LEO®), (12)
where £ denotes the Laplacian matrix for the user-item graph.

For high-order propagation, we only perform the graph con-
volution operation within subgraphs. Therefore, we combine all
embeddings from different subgraphs to obtain the final embed-
ding for each layer of propagation. Let Egk) denote the user
and item representations at the k-th layer within the subgraph
G's. Denoting the Laplacian matrix for the subgraph G as Ly,
the graph convolution operation of the first (k — 1)-th layer in
subgraph G5 can be described as:

E(Y = £, EF?), (13)

where k£ > 2. The embeddings of the (k-th) layer on the user-
item interaction graph can be derived by propagating the em-
beddings from the (k-1)-th layer using the following approach:

E® — E¢D, (14)
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Note that £ denotes the Laplacian matrix derived from the
global item-item correlation graph, which is shared across all
subgraphs. Hence, it is not indexed by subgraph s.

To obtain the final embedding of the k-th layer, we aggregate
the k-th layer embeddings Egk) of all subgraphs. Thus, the final
embedding propagation of the k-th layer is:

E® =Y " E®.

seGg

15)

In the final step, similar to LightGCN, we combine the embed-
dings from all the layers to obtain the final embedding matrix as
shown in (16). This aggregation process enables us to capture
a comprehensive representation of the graph and effectively
leverage the information from different layers in our model.

E=oE® + ,EY + ... 4 arEBE), (16)

E. Time Complexity

We analyze the time complexity. The projection of features
has a time complexity of O(|U U I| x d), where U and I are
the number of users and items, respectively. d is the number
of embedding dimensions. In the subgraph generation module,
using MLP for classification costs O(I * L « H x d) and gener-
ating N's subgraph costs O(FE x Ns), where L and H are the
hidden layers and the number of neurons in each hidden layer,
respectively. F is the average number of edges in subgraphs.
The GNN for propagation and combination operation has a time
complexity of O(Kd(|U U I|+ N,;)), where N, ; is the av-
erage number of neighboring nodes. Thus, the time complexity
of AMP-GNC is O([UUI|xd+ I« L+« Hxd+ E* Ns+
Kd([UUI|+ N,;)). The time complexity of AMPA-GCN is
twice that of AMP-GCN.

V. EXPERIMENTS

This section presents experiments to demonstrate the effec-
tiveness of the proposed models, AMP-GCN and AMPA-GCN.
We aim to answer the following research questions (RQs):
RQ1: Do AMP-GCN and AMPA-GCN achieve better recom-
mendation performances than existing baselines? RQ2: What
is impact of Layer Numbers in AMP-GCN? RQ3: What are
the effects of subgraph numbers in AMP-GCN? RQ4: Do the
different components of the subgraph generation module affect
the recommendation performances? RQS: Does the item-item
correlation enhance the learning of item embeddings? RQ6:
What are the effects of parameters in AMPA-GCN?

A. Experimental Setup

1) Datasets: To demonstrate the effectiveness of AMP-GCN
and AMPA-GCN, we conduct extensive experiments on four
commonly used benchmark datasets: Amazon-Kindle Store,
Gowalla, Yelp2018 and Loseit. Gowalla and Yelp2018 datasets
have been widely employed in recent GNN-based CF mod-
els [19], [23], [24], [36], [40], [41], [60]. The Amazon-Kindle
Store and Loseit datasets were used in the work IMP-GCN [25]
and CAGCN [42], respectively. For all datasets, we filter out
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TABLE II
STATISTICS OF THE BENCHMARK DATASETS

Dataset #User #Item #Interactions Density

Kindle Store 68,223 61,934 9826,618 0.02%
Gowalla 29,858 40,981 1,027,370 0.084%
Yelp2018 31,668 38,048 1,561,406 0.130%

Loseit 5334 54,595 230,866 0.08%

users and items with fewer than 10 interactions. The statistics of
four datasets are shown in Table II.

2) Baselines: To showcase the effectiveness, we conduct a
comparative analysis between our proposed AMP-GCN and
AMPA-GCN with the following existing methods:

e MF [61]: This method models the personalized ranking
process using a probabilistic framework, utilizing the BPR
loss to predict the individual user preference rankings of
items.

e NeuCF [8]: This method adopts multi-layer neural net-
works to replace the simple inner product operation in
matrix factorization. It aims to enhance the accuracy and
efficiency of recommendations by learning the nonlinear
interaction features between users and items.

e [LR-GCCF [24]: This method removes non-linearities to
enhance recommendation performance and introduces a
residual network structure.

e NGCEF [23]: This model captures the collaborative signals
from the user-item interaction graph by embedding the
graph structure into the user-item interactions.

e LightGCN [19]: This recommendation model is a
lightweight variant of GCN. It simplifies the traditional
GCN architecture by eliminating the nonlinear activation
modules and feature transformation, making it a more
streamlined and efficient model.

e IMP-GCN [25]: This model employs high-order graph
convolution within user interest subgraphs to learn user and
item embeddings. By minimizing noise in the embeddings,
it aims to mitigate the impact of negative information and
enhance recommendation performance.

e UltraGCN [27]: This method proposed an Ultra Simpli-
fication of GCN by approximating regularization weights
through infinite layer message passing.

e GTN [26]: This model introduced a principled graph trend
CF method, which effectively captures the adaptive relia-
bility of interactions.

e CAGCN [42]: It introduces the Common Interacted Ratio
(CIR) and CAGCN* as methods to selectively aggregate
information from neighboring nodes based on their CIRs.
This approach significantly enhances the model’s capacity
to capture collaborative patterns during the recommenda-
tion process.

® ClusterGCF [62]: This model conducts high-order graph
convolution within cluster-specific graphs, leveraging
shared user interests and their diverse preferences.

3) Evaluation Metrics: In our evaluation, we utilize two
commonly used metrics: Recall @K and Normalized Discounted
Cumulative Gain (NDCG@K) [19], [23]. Recall@K is a com-
mon metric for evaluating predictive accuracy, indicating the
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TABLE III

THE EVALUATION AND COMPARISON OF THE OVERALL PERFORMANCE OF AMP-GCN, AMPA-GCN, AND OTHER COMPETING METHODS

Model Kindle Store Gowalla Yelp2018 Loseit
Recall@20 NDCG@20 | Recall@20 NDCG@20 | Recall@20 NDCG@20 | Recall@20 NDCG@20

MF 0.0427 0.0145 0.1291 0.111 0.0436 0.0353 0.0452 0.0331
NeuMF 0.0496 0.0206 0.1399 0.1211 0.0451 0.0364 0.0506 0.0387
LR-GCCF 0.0845 0.048 0.1518 0.1284 0.0558 0.0342 0.0528 0.043
NGCF 0.0796 0.0482 0.1565 0.1324 0.0577 0.0473 0.0574 0.0442
LightGCN 0.1027 0.0633 0.1825 0.1547 0.0648 0.0528 0.0589 0.0421
IMP-GCN 0.1071 0.0673 0.1861 0.158 0.067 0.055 0.0615 0.0443
UltraGCN 0.0981 0.0599 0.1864 0.158 0.0674 0.0552 0.0621 0.0446
GTN 0.1012 0.0599 0.187 0.1588 0.0678 0.0554 0.0605 0.0442
CAGCN* 0.1059 0.0677 0.1878 0.1591 0.0678 0.0554 0.0636 0.0461
AMP-GCN 0.1086 0.0685 0.1874 0.1589 0.0678 0.0561 0.0637 0.0451
AMPA-GCN 0.1127 0.0708 0.1886 0.1594 0.0679 0.0562 0.0645 0.0468

percentage of relevant items within the top-K recommendations.
NDCG focuses on ranking quality, giving greater weight to
correctly recommended items that appear at higher positions
by accounting for their ranks. The default value for K is set
to 20. It is worth noting that higher values of Recall@K and
NDCG@K signify better recommendation performance. The
average metrics are reported for all users in the test set.

4) Parameter Settings: To ensure the reproducibility and
transparency of our results, we performed all experiments on
a server equipped with an NVIDIA Tesla V100 GPU (32 GB
memory), Intel Xeon Silver 4210 CPU (10 cores, 2.2 GHz), and
128 GB of RAM. The experiments were conducted on Ubuntu
20.04 using Python 3.8.10. We implemented our model using
TensorFlow 1.15.5, which is widely recognized frameworks
for deep learning and graph neural networks. We optimized
our methods using Adam [63] in a mini-batch fashion, with
learning rate of 0.001 and mini-batch size of 1024. We search
for the Lo regularization coefficient A within the range of
{1e%,1e7®,...,1e~2}. The parameter I1}, is searched within
the set {0, 3, 5, 7, 9}. Additionally, to facilitate reproducibility,
we maintained the same experimental settings and hyperparam-
eters across all baselines and carefully tuned their parameters
to ensure optimal performance for fair comparisons. Unless
otherwise specified, the number of subgraphs N is set to 3,
and the number of GCN propagation layers is fixed at 2. For
AMPA-GCN, we use [I;, = 0.1 as the default weight for the
item-item correlation term. These values are consistent across
all datasets unless explicitly varied in parameter sensitivity
experiments.

B. Performance Comparison (RQ1)

We begin by comparing the performance of all recommen-
dation methods. Table III showcases an overall performance
comparison across four datasets using the Recall@20 and
NDCG @20 metrics. The best results are highlighted in bold,
while the runner-up results are underlined. Based on the findings,
we have made the following key observations:

e Qur proposed AMPA-GCN is robust and outperforms all
the baselines across all datasets in terms of all evaluation
metrics. Our proposed AMA-GCN outperforms all the
baselines across all datasets in terms of all evaluation

metrics except for CAGCN model on dataset Gowalla.
And, their performance is very close to that of the CAGCN
method on dataset Gowalla, demonstrating the high effec-
tiveness of our models with their simple yet reasonable de-
signs. To conduct a more detailed comparison, we focus on
LightGCN as it achieves state-of-the-art performance. In
terms of Recall@20, AMP-GCN achieves improvements
of 5.74%, 2.68%, 4.63%, and 6.79% over LightGCN on
the Kindle store, Gowalla, Yelp2018, and Loseit datasets,
respectively. Similarly, AMPA-GCN achieves improve-
ments of 9.74%, 3.34%, 4.78%, and 8.15% on the same
datasets. Regarding NDCG @20, AMP-GCN outperforms
LightGCN by 8.21%, 2.71%, 6.25%, and 7.13% on the
same datasets, while AMPA-GCN achieves improvements
of 11.85%, 3.04%, 6.44%, and 8.31%. These results un-
derscore the importance of performing higher-order graph
convolution operations in subgraphs through the grouping
of items with similar attributes. Moreover, the observed
improvements validate the rationale behind our designed
subgraph generation module. In summary, the aforemen-
tioned findings not only demonstrate the significant po-
tential of the attribute-aware message-passing strategy but
also emphasize the importance of item relationships in
recommender systems.

In all evaluated cases, AMPA-GCN consistently out-
performs AMP-GCN in terms of the Recall@20 and
NDCG@20 metrics. This improvement clearly demon-
strates the effectiveness of incorporating item-item correla-
tions into the bipartite adjacency matrix. By including these
correlations, AMPA-GCN enhances the recommendation
performance, highlighting the significance of considering
item-item relationships in the recommendation process.
In our experiments, we observed that MF yields rel-
atively poor performance for recommendation tasks.
This suggests that the performance of MF is limited
due to its inability to effectively capture the intricate
relationships between items and users using the inner
product. On the other hand, NeuMF outperforms MF in
terms of Recall@20 and NDCG @20 metrics in all cases.
This improvement can be attributed to NeuMFs ability
to capture intricate relationships between items and users
through nonlinear feature interactions. However, NeuMF
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falls short in modeling the connectivity between items and
users, which can be crucial for accurate recommendations.
GCN-based models employ GCN to improve recommen-
dation performance by learning embeddings of users and
items. These models have shown superior competitive-
ness compared to MF and NeuMF models. Among the
GCN-based models, LightGCN achieves even better per-
formance than NGCF and LR-GCCF by simplifying NGCF
through the removal of non-linear activation modules and
feature transformation. However, these three models all
encounter an over-smoothing issue as the number of graph
convolutional layers increases, resulting in a decline in
performance. In contrast, IMP-GCN, UltraGCN, GTN,
CAGCN, and ClusterGCF achieve better performance
compared to traditional GCN-based recommendation mod-
els as they effectively mitigate the over-smoothing issue
from different perspectives. Among the aforementioned
GCN-based recommendation models, CAGCN achieves
the best performance by selectively aggregating neighbor-
ing nodes information based on their CIRs. Compared to all
the aforementioned GCN-based recommendation models,
our proposed model AMP-GCN outperforms all the other
previously proposed model except for CAGCN on dataset
Gowalla. Although AMP-GCN performs slightly worse
than CAGCN for dataset Gowalla, when considering the
item-item correlations, our proposed model AMPA-GCN
surpasses CAGCN. Among all GCN-based models, our
proposed model AMPA-GCN exhibits the best perfor-
mance on all four datasets. These comparisons demonstrate
the effectiveness of our approaches in alleviating the over-
smoothing issue in GCN-based recommendation systems,
leading to superior performance.

The performance of the AMP-GCN model is better than
that of the IMP-GCN model in all scenarios. This is pri-
marily because users’ interests are generally broader than
items’ attributes [64]. Moreover, items often possess more
distinguishable and diverse features compared to users.
AMP-GCN operates on the item side, where the diversity in
item attributes enables the subgraph generation module to
group similar items more effectively. Additionally, the sub-
graph generation method in AMP-GCN enhances the infor-
mation contained in the item feature vector F}, facilitating
better grouping of items. In summary, AMP-GCN consis-
tently outperforms IMP-GCN due to its ability to leverage
the diversity and richness of item features while effectively
managing over-smoothing through item-focused subgraph
generation. These design choices make AMP-GCN better
aligned with the inherent properties of user-item graphs,
resulting in more accurate and robust recommendations.
To align the experimental settings with ClusterGCF, we
increased the mini-batch size to 2048 on the Gowalla
dataset. The comparison between our proposed AMP-
GCN, AMPA-GCN, and ClusterGCF is presented in
Table IV. AMPA-GCN demonstrates superior performance
on the Kindle Store dataset and achieves comparable results
on Gowalla. The strong performance of AMPA-GCN on
Kindle Store can be attributed to the dataset’s high sparsity
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TABLE IV
PERFORMANCE COMPARISON OF AMP-GCN AND AMPA-GCN WITH
CLUSTERGCF
Model Kindle Store Gowalla
Recall@20 NDCG@20 | Recall@e20 NDCG@20

ClusterGCF 0.1110 0.0703 0.1900 0.1612
AMP-GCN 0.1086 0.0685 0.1886 0.1595
AAMP-GCN 0.1127 0.0708 0.1903 0.1608

and diversity of item attributes, which align well with
AMPA-GCN’s ability to group items effectively and lever-
age collaborative signals. On Gowalla, where user-item
interactions are denser, the advantage of AMPA-GCN is
less pronounced, likely because the dataset’s lower sparsity
reduces the impact of its subgraph generation mechanism.
In contrast, ClusterGCF employs an unsupervised and
optimizable soft node clustering approach, which faces
challenges in accurately classifying user and item nodes
into meaningful clusters. This shortcoming limits its ability
to effectively capture users’ diverse interests, especially in
datasets like Kindle Store, where sparsity and heterogene-
ity are more pronounced.

C. Study of AMP-GCN

1) Impact of Layer Numbers (RQ2): We conducted exper-
iments to evaluate the performance of our AMP-GCN model
in comparison to LightGCN by incrementally increasing the
number of network layers from 2 to 7. This comparison aimed
to demonstrate the effectiveness of our model in deep networks.
Fig. 3 illustrates the experimental results, where AMP — GCNy
and AMP — GCN3 represent AMP-GCN with 2 and 3 sub-
graphs, respectively. IMP — GCNy and IMP — GCN3 is the
IMP-GCN with 2 and 3 subgraphs. To accommodate space
limitations, we only display the results for the Gowalla and
Kindle Store datasets. The experimental findings reveal several
key observations regarding the performance of our proposed
AMP-GCN model in comparison to LightGCN as the number
of network layers increases:

1) LightGCN achieves its optimal performance when using 3
or 4 layers, but further increasing the depth leads to a sharp
decline in performance. This significant drop emphasizes
the presence of the over-smoothing issue, which occurs
when blindly aggregating information from all nodes in a
deep network.

2) When stacking more than 3 or 4 layers, AMP-GCN con-
sistently outperforms LightGCN and IMP-GCN in both
the Kindle Store and Gowalla datasets. This observation
suggests that our models uses attribute-aware message-
passing strategy for graph convolution operations allows
it to learn superior representations, thereby resulting in
improved performance.

3) AMP-GCN demonstrates improved performance as the
network depth increases, highlighting its ability to miti-
gate the over-smoothing issue. This improvement can be
attributed to the subgraph generation algorithm, which
facilitates the classification of items with similar attributes
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and enhances the models capacity to make accurate rec-
ommendations. However, as the number of layers reaches
5 or 6, performance begins to decline. This degradation
occurs due to over-aggregation, where nodes have already
accumulated information from almost all other nodes in
the graph. At this stage, further aggregation not only fails
to provide additional meaningful information but also
introduces noise, adversely affecting the quality of the
learned embeddings.

4) The results also reveal that dataset characteristics signif-
icantly influence performance trends. Compared to the
Kindle Store dataset, Gowalla contains fewer users and
items, causing the performance of AMP-GCN to de-
cline earlier (at around 5 layers). Moreover, while the
performance on the Kindle Store dataset shows greater
fluctuations in its upward trend, the increase on Gowalla
is relatively stable. This can be attributed to Gowalla’s
higher density of user-item interactions and lower spar-
sity, which facilitate more effective learning of node
features and reduce the risk of information loss during
propagation.

Overall, the experimental results validate the effectiveness
of our proposed AMP-GCN model in addressing the over-
smoothing issue and improving the performance of deep GCN-
based recommendation systems.

2) Effect of Subgraph (RQ3): To investigate the impact of
the number of subgraphs on the performance of the AMP-GCN
model, we conducted experiments with different numbers (i.e.,
2, 3) of subgraphs. The results are presented in Fig. 3. Here are
the observations from the results:

1) When the number of stacked layers does not ex-
ceed 3, the performance of AMP-GCN with 2 sub-
graphs (AMP — GCNy) is superior to that of AMP-
GCN with 3 subgraphs (AMP — GCN3). This is because
AMP — GCNy can receive information from a larger
number of nodes within a shorter distance, allowing for
more effective updates to the node embeddings due to its
fewer subgraphs.

2) When the number of stacked layers exceeds 3,
the performance of AMP — GCNg3 surpasses that of
AMP — GCNs. Previous research [25] has demonstrated
that beyond 3 layers of graph convolution, there is a
substantial increase in the number of nodes participat-
ing in the process of embedding propagation. Each node
in AMP — GCNj can aggregate information from more
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nodes compared to the nodes in AMP — GCNj3. How-
ever, both AMP — GCN3 and AMP — GCNj3 experience
performance degradation at the 5th layer on the Kindle
Store dataset. This suggests that noise still exists in the
embedding propagation process, which negatively affects
the performance.

3) Inadeep network (i.e., with 6 or 7 layers), AMP — GCNy
performs better than AMP — GCN3 on Gowalla, while
the results are reversed on the Kindle Store. We argue that
the number of subgraphs can influence the final perfor-
mance of the model for datasets with varying sizes and
sparsity levels. With more subgraphs, AMP — GCN3 can
distinguish items with similar attributes more finely, mak-
ing the item attributes within each subgraph more similar
and providing useful information for item embeddings.
However, this also results in more connections being cut
between items, and these connections might have provided
positive information for the embedding learning of the
itemnodes. Therefore, itis crucial to choose an appropriate
number of subgraphs to ensure that AMP-GCN achieves
the best performance.

4) From Fig. 3, it can also be observed that our proposed
AMP-GCN outperforms the IMP-GCN algorithm when
two subgraphs are used. We further compare AMP-GCN
and AMPA-GCN against IMP-GCN configured with 3
subgraphs. Our models consistently achieve better per-
formance across all datasets, validating that the improve-
ments are not solely due to subgraph quantity but also
the quality of the attribute-aware structure and learnable
grouping. This indicates that utilizing the subgraph gen-
eration module on the item side is more effective than
employing it on the user side.

Furthermore, based on a previous research by Liu et al. [25],
we discovered that when stacking 6 graph convolution layers, an
item node becomes interconnected with nearly all other nodes
in the entire graph. Importantly, AMP-GCN achieves the best
performance in a deep network, indicating that it successfully
gathers positive information while filtering out negative infor-
mation, effectively mitigating the over-smoothing issue. This
further demonstrates that message passing within a subgraph
has a positive impact on the embedding learning of items within
that subgraph. These findings provide further evidence of the
effectiveness of our AMP-GCN model.

3) Ablation Study (RQ4): In this subsection, we focus on
validating the roles of the different components of the subgraph
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TABLE V
PERFORMANCE OF AMP-GCN WITH DIFFERENT COMPONENTS OF SUBGRAPH
GENERATION MODULE OVER TWO DATASETS

Model Kindle Store loseit
Recall@20 NDCG@20 | Recalle20 NDCG@20
AMP — GCNy 0.1060 0.0663 0.0621 0.0440
AMP — GCNy 0.1081 0.0673 0.0623 0.0438
AMP — GCNy 0.1047 0.0655 0.0624 0.0447
AMP-GCN 0.1086 0.0685 0.0629 0.0451
0.120 0.08 =
—e— Kindle Store
”’//4\. —— Loseit
I ) &
%0,090 : E;:lif store %0,06
3 —=— Yelp2018 8 L
x z
0.075 0.05
,__,_—o—/\’
0.060 ;i‘,/;/’\{: 008

o 9 0 9

3 5 7 3 5 7
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Fig. 5. Performance of AMPA-GCN w.r.t. different numbers of similar item
neighbors 11, on Kindle Store and Loseit.

generation module, as it is the core of our AMP-GCN model.
To do this, we compare AMP-GCN with three variants:

e AMP — GCNy: This variant removes ID embedding of
item (i.e., e in (3)).

e AMP — GCNy: This variant removes the first layer em-
bedding (i.c., e!” in (3)).

e AMP — GCN,jy: This variant removes the interaction be-
tween ID embedding of item and the first layer embedding
Ge.el” ©e in (3)).

For each dataset, we conducted experiments under their
respective optimal settings. The results of the three variants
and AMP-GCN are reported in Table V, with the best results
highlighted in bold. From the table, it is evident that AMP-
GCN consistently outperforms the other three variants across
all datasets. This demonstrates the effectiveness of incorporating
ID embeddings, the first layer embeddings, and the interaction
between them in the subgraph generation module. These results
further validate the rationale behind our designed subgraph
generation module.

D. Study of AMPA-GCN

1) Compared to AMP-CGN (RQ5): We compare the perfor-
mance between AMPA-GCN and AMP-GCN to validate the
rationality of introducing the item-item correlations in AMPA-
GCN. As shown in Fig. 4, we conduct this experiment on

2089

Gowalla Gowalla

0.190

0.160

W AMP - GCN3
= AMPA - GCN3

= AMP - GCN;
= AMPA - GCN3

o
®
&

0.156

Recal @20
NDCG@20

o
i
®
S

0.152

0.175 0.148

4 5 6 7 2 4 5 6 7

2 3 3
Number of Layers Number of Layers

Results Comparison between AMP-GCN and AMPA-GCN with 2, 3 subgraphs at different layers on Gowalla.

Gowalla and increase the layer number from 2 to 7 and the
number of subgraphs from 2 to 3. From the Figure4, we have
the following observations:

¢ In terms of performance, AMP-GCN outperforms AMPA-

GCN when stacking up to 4 or 5 layers on the Gowalla
dataset. However, when stacking more than 4 or 5 lay-
ers, AMPA-GCN surpasses AMP-GCN. This implies that
AMPA-GCN performs better in a deep network, which
validates the rationale and effectiveness of incorporating
item-item correlations into the bipartite adjacency matrix.
This can be attributed to the fact that AMPA-GCN can
access a larger number of item nodes and select more
similar items for the embedding learning of the target item
node in a deep network. Furthermore, when stacking 5
or 6 layers, both AMP-GCN and AMPA-GCN achieve
their best performance. Increasing the number of layers
beyond this point actually leads to a decrease in perfor-
mance. This is because after 6 graph convolution layers,
an item node has already received almost all the informa-
tion from other nodes within the subgraph. Continuing to
increase the connections between nodes would introduce
noisy information. In summary, these findings validate the
effectiveness of the enhanced bipartite adjacency matrix
design and emphasize the importance of leveraging item
relationships to learn item embeddings.

® Another interesting finding is that AMPA-GCN begins to

outperform AMP-GCN starting from the 5Sth layer in the
experiment with 2 subgraphs. However, this occurs at the
6th layer when using 3 subgraphs. This can be attributed to
the fact that AMP — GCNj, is able to receive information
from a larger number of nodes in close proximity during
the embedding propagation process. Consequently, it can
access more similar items to design the enhanced bipartite
adjacency matrix, which is then utilized by AMP-GCN
to learn item embeddings. This highlights the significant
potential of leveraging item-item correlations to enhance
the learning of item embeddings.

2) Hyper-Parameter 11j, Sensitivity (RQ6): To investigate
the influence of the hyperparameter /1; on the performance
of the AMPA-GCN model, we conducted experiments on three
datasets using 3 subgraphs and 6 layers. The changes in Re-
call@20 and NDCG @20 with respect to the I [}, hyperparameter
are visualized in Figure5.

From the graph, we can observe that as the value of 11
increases, the performance of AMPA-GCN gradually improves
and reaches its peak when I = 5 or 7. This improvement can
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Fig. 6.

TABLE VI

THE EFFECTIVENESS OF AAMP-GCN IN SOCIAL NETWORK SCENARIOS

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 13, 2026

(b)

t-SNE visualization of item embeddings on Yelp2018. Left: LightGCN; Middle: AMP-GCN; Right: AMPA-GCN. Color indicates item category.

Model Yelp LastFM
Recall@20 NDCG@20 | Recall@20 NDCG@20
LightGCN 0.4012 0.1927 0.4593 0.3809
AMP-GCN 0.4108 0.1993 0.4803 0.4095
AMPA-GCN 0.4122 0.2010 0.4816 04112

be attributed to the fact that as I} increases, the target item
can learn better embeddings by leveraging feature embeddings
from alarger number of similar item neighbors. However, further
increasing the value of 11}, eventually leads to a sharp decline in
performance. This suggests that when the number of similar item
neighbors exceeds 5 or 7, they may introduce noisy or negative
information, thereby degrading performance. Therefore, it can
be concluded that a relatively small value for /1, is sufficient in
order to achieve optimal performance.

3) The Effectiveness in Social Network Scenarios: We com-
pared the performance of LightGCN, AMP-GCN, and AMPA-
GCN to assess the effectiveness of our proposed algorithms in
social network scenarios. We selected two social datasets: Yelp
and LastFM. Yelp [35] is a well-known online location-based
social network where users can make friends and review restau-
rants. LastFM [65] is a music dataset derived from the LastFM
online music system. Table VI presents the results. These results
clearly indicate that both AMP-GCN and AMPA-GCN consis-
tently outperform LightGCN across all datasets, highlighting
their robust applicability. By addressing the oversmoothing issue
in GNNs through innovative model design, AMP-GCN and
AMPA-GCN demonstrate significant improvements. Consid-
ering the wide-ranging applicability of GNNs across different
domains, our models show strong potential for impactful use in
various fields.

E. Embedding Visualization and Qualitative Analysis

To qualitatively assess the representation learning capability
of our models, we visualize the final-layer item embeddings
using t-SNE. Fig. 6 compares the 2D projections of embeddings
from Light GCN, AMP-GCN, and AMPA-GCN on the Yelp2018
dataset. Each point represents an item and is colored by its
category label.

As shown in the figure, embeddings from LightGCN are
loosely scattered and lack clear boundaries between cate-
gories. In contrast, AMP-GCN produces tighter and more

(©

well-separated clusters, indicating that the attribute-aware sub-
graph propagation process enhances the semantic consistency of
learned representations. AMPA-GCN further improves cluster-
ing by incorporating item-item correlation signals, resulting in
more compact intra-category distributions and better separation
across categories.

These visual results align with our theoretical motivation and
support our claim that AMP-GCN and AMPA-GCN improve
representation learning by filtering noise and preserving mean-
ingful item relationships.

VI. CONCLUSION AND FUTURE WORK

This paper addresses the issue of noise introduced by in-
discriminately aggregating information from high-order neigh-
bors in GCN-based recommendation models. As more layers
are stacked, this noise can negatively impact the performance.
To overcome this challenge, the paper proposes the AMP-
GCN model, which performs high-order propagation within
subgraphs to learn user/item embeddings. The subgraphs are
constructed using a subgraph generation model, which clusters
items with similar attributes and the users who interact with
them into the same subgraph. Within a subgraph, the embedding
learning of items is positively influenced by their high-order item
neighbors. AMP-GCN effectively filters out noise and prevents
it from adversely affecting the embedding learning process of
item nodes.

Furthermore, recognizing the importance of item-item corre-
lations in the learning of item embeddings, the paper introduces
AMPA-GCN. This model incorporates item-item correlations
into the bipartite adjacency matrix and utilizes this enhanced
matrix in the training process of AMP-GCN. Experimental
results on real-world datasets confirm that both AMP-GCN and
AMPA-GCN can effectively leverage high-order collaborative
signals to learn node embeddings, even as more graph con-
volution layers are added. Notably, these models outperform
existing approaches and achieve state-of-the-art performance in
recommendation tasks. These findings validate the efficacy and
robustness of AMP-GCN and AMPA-GCN in leveraging com-
plex graph structures and highlight their potential for enhancing
recommendation systems.

As part of future work, we plan to integrate LLMs with
GCN-based recommendations, this is because that the LLM can
help in encoding rich semantic information from textual data,
while the GCN can leverage the structural information encoded
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in the graph to provide personalized recommendations. In such
a way, recommendation systems can leverage the strengths of
both LLMs with GCN-based recommendations approaches to
deliver more personalized and context-aware recommendations
to users.
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