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Optimizing Dynamic Task Assignment in Spatial
Crowdsourcing: Bilateral Preference-Aware
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Abstract—Task assignment is a crucial challenge in spatial
crowdsourcing (SC). Most existing studies have two limitations:
First, only one-sided preferences of workers or tasks are taken into
account, and the satisfaction of workers or tasks could be improved;
Second, tasks are always assigned based on the current locations
of workers, which is no. suitable for many real-life applications,
such as carpooling, where the trajectories of workers require to
be taken into account. To this end, we investigate a new problem
of Bilateral Preference-aware Dynamic Task Assignment (BDTA),
which is proven to be NP-hard, to maximize overall satisfaction by
incorporating worker-task bilateral preferences and assigns tasks
using the trajectories of workers. For the BDTA problem, we first
propose a hybrid batch processing framework to address uneven
data distribution. After that, a task-initiated bidirectional select
algorithm is proposed to mitigates the impact of task order on
the matching results. Furthermore, we propose an α-approximate
task-initiated generalized deferred-acceptance algorithm and a
reverse generalized deferred-acceptance algorithm to enhance the
stability and overall satisfaction of task assignment results. Exten-
sive experiments are conducted on both real and synthetic datasets
to validate the effectiveness and efficiency of the proposed algo-
rithms. Code is available at (https://github.com/good-hy/BPTA).

Index Terms—Bilateral preference, spatial crowdsourcing,
stable task assignment.

I. INTRODUCTION

CROWDSOURCING, operating within the internet
paradigm, leverages platforms to delegate tasks that were

once reliant on specific individuals or organizations to a pool
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of workers, fostering a mutually beneficial arrangement. With
advancements in mobile internet and crowdsourcing platforms,
traditional crowdsourcing services have become extensively
integrated into people’s daily lives, enhancing convenience.

Unlike traditional crowdsourcing, spatial crowdsourcing (SC)
relies on geographic locations and time. Well-known applica-
tions, such as Uber1, Streetbees,2 DiDi Chuxing3, have become
essential to daily life, offering significant convenience.

Task assignment is a critical challenge for SC platforms [1],
[2], [3], [4], [5]. Although there has been extensive research on
this topic, existing approaches still face several limitations.
� Task assignment often lacks stability due to an imbalanced

consideration of bilateral preferences: User satisfaction in
task allocation is crucial for the sustainability and growth
of SC platforms [6]. Previous studies [4], [7], [8], [9],
[10] mainly focus on unilateral preferences such as worker
preferences (e.g., income [11], task difficulty [12]) or task
preferences (e.g., reputation [2], skill [13], time availabil-
ity [14]) to achieve single-objective optimization, such as
maximizing the task completion number [15]. Task-based
methods [14] prioritize task quality but limit worker agency
and reduce motivation. Instead, worker-based methods [7]
may lead to over-assignment and dissatisfaction due to
workload imbalance. These approaches consider only the
needs of a single party and fail to meet bilateral needs
simultaneously, affecting user satisfaction and potentially
leading to worker turnover [16].

� Tasks are assigned based on the current locations of
workers: Existing SC problems are primarily focused on
full-time workers, implying that tasks are assigned based
on their proximity to the current location of these work-
ers, as in [12], [17], [18], [19]. While location-based
task allocation reduces the distance between workers and
tasks, enabling faster completion and less delay, it may
no. align with the routes workers prefer to take [20],
[21]. With the rise of the sharing economy, some users
are willing to accept simple crowdsourced tasks as part-
timers during their free time or commuting hours to earn
extra income. In our daily life, there are tasks such as

1https://www.uber.com
2https://www.streetbees.com
3https://www.didiglobal.com
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Fig. 1. An example of the BDTA problem.

TABLE I
INFORMATION OF WORKERS

TABLE II
INFORMATION OF TASKS

photographing landmarks, water quality testing, etc.,
which can be completed on the way home from work.
For example, services like Amazon Flex4 provide similar
opportunities. In this case, trajectory-based task allocation
is more meaningful.

To address these issues, our previous work [1] studied the
bilateral preference-aware task assignment (BPTA) problem,
incorporating the routine trajectories of workers and the pref-
erences of both workers and tasks. It focused on assignment in
a static scenario, assuming that the spatio-temporal information
of tasks and workers is known in advance [22], [23]. However,
tasks and workers interact dynamically in practice, and the
spatio-temporal data of either cannot be known in advance [4].
The algorithms in [1] cannot be directly applied to the online
problem in this paper. Inspired by this, we propose the Bilateral
Preference-aware Dynamic Task Assignment (BDTA) problem,
which aims to assign tasks online while considering the prefer-
ences of both tasks and workers.

Example 1: Fig. 1 illustrates a BDTA example with tasks
t1 to t7 and three workers w1 to w3, arriving in the order
t6, t7, t1, t2, t4, w1, w2, w3, t3, t5. Tables I and II present the key
attributes of workers (Definition 1) and tasks (Definition 2),

4https://flex.amazon.com/

TABLE III
SHORTEST DISTANCE BETWEEN EACH WORKER-TASK

TABLE IV
THE DISTANCE FROM THE WORKER TO THE DETOUR POINT

TABLE V
DATASETS

respectively. Tables III and IV report the shortest distances
from workers’ trajectories to task locations, where ∞ indicates
a task beyond the worker’s service radius. All distances assume
a uniform worker speed of 5 units per unit time. Specifically,
worker preferences depend on the benefits of completing the
task, while task preferences depend on the reputation scores of
workers. Overall satisfaction is computed based on both worker
and task satisfaction with the final matching.

In reality, most SC platforms allocate tasks to the closest
workers to increase the assigned task count while minimizing
the travel costs for workers [24]. By this, based on the time
of appearance of tasks/workers in Tables I and II, we can
obtain a feasible assignmentM1 = {(w1, t1), (w2, t2), (w2, t4),
(w3, t6), (w1, t7)} with an overall satisfaction of 0.687 by Def-
inition 11. t3, t5 are no. matched because there is no. enough
capacity or time to be completed. However, this approach is
unfair to tasks as it only considers the preferences of workers,
assigning the nearest tasks to them while ignoring the prefer-
ences of the tasks.

Generally, workers prefer to complete high-profit tasks, while
tasks tend to choose workers with high reputation. Take task t4 as
an example. In M1, it is assigned to worker w2, but it is actually
more suitable for worker w1, because t4 prefers w1, and w1 also
prefers t4 the most among the 7 tasks.

For the BDTA problem outlined herein, which introduces
the bilateral preferences of workers and tasks, the matching
result is M2 = {(w2, t2), (w2, t3), (w1, t4), (w3, t6), (w1, t7)},
with an overall satisfaction of 0.712, as shown by the orange
arrows in Fig. 1. Compared to M1, M2 is more stable and has
a higher satisfaction. Here, at timestamps 5, for the work-task
match pairs (w1, t4), (w3, t6) and (w1, t7), tasks are assigned to
their most preferred workers, and workers are also matched to
their favorite tasks. Task t4 is the favorite task of both workers
w1 and w2. Considering the preferences of task t4, since the

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 02,2026 at 14:53:59 UTC from IEEE Xplore.  Restrictions apply. 
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reputation of w2 is lower than that of w1, t4 is matched with
w1, and it is fair and reasonable for w2 to be matched with the
second preferred task t2. Likewise, we obtain the worker-task
pair (w2, t3) at timestamp 5.2. For task t5, only w3 satisfies the
distance constraint. However, w3 cannot reach the destination
on time if it accepts t5, so t5 is no. assigned and waits for new
workers.

Challenges: It mainly faces four challenges in the BDTA prob-
lem. First, handling unevenly distributed tasks in real-time can
lead to resource waste and missed opportunities, necessitating
efficient batch processing to balance task allocation. Second, as-
signing tasks based on workers’ trajectories, rather than their cur-
rent locations, increases both complexity and computation time.
Evaluating all potential detour points (i.e., trajectory points) to
calculate the shortest detour distances between workers and
tasks exacerbates this challenge further. Third, bilateral task
distributions driven solely by unilateral preferences can result in
unstable allocations, diminishing the overall satisfaction of both
workers and tasks. Fourth, as formally proved in Section II, the
Bilateral Preference-aware Dynamic Task Assignment problem
is NP-hard, which makes efficient task allocation even more
challenging.

Contributions: Compared to the preliminary version in [1],
we make the following new extensions: First, considering that
task peaks and waiting times affect user experience, we pro-
pose a new hybrid batch framework for the BDTA problem.
Second, tasks and workers face time constraints, which can
lead to resource waste when strict preferences leave feasible
tasks unmatched. Therefore, we propose a dynamic preference
update strategy to optimize the Boston mechanism-based greedy
matching. Third, stable matching solutions are unattainable in
online multi-constraint task distributions, so we design two new
algorithms based on the i.e. of generalized deferred acceptance
to balance satisfaction and solution quality.
� We formalize a new problem of BDTA in SC, which

is based on the routine trajectories of workers and the
preferences of both workers and tasks, and prove it to be
NP-hard (Section II).

� We propose a hybrid batch processing framework that
jointly considers time and task volume to trade off latency
and efficiency (Section III).

� We propose the TIB algorithm to dynamically update task
preferences based on the Boston mechanism, increasing
the number of worker-task pairings for a task assignment
result with good satisfaction (Section IV).

� We design the TIDA algorithm as an α-approximate stable
matching based on the generalized deferred acceptance i.e.,
enhancing the stability of assignment results and overall
satisfaction (Section V).

� We design the RGDA algorithm, dynamically selecting
tasks or workers to initiate the Generalized Deferred-
Acceptance algorithm based on the overall task count and
the remaining available capacity of all workers, to improve
matching efficiency and quality (Section VI).

� Extensive experiments conducted on real and synthetic
datasets validate the effectiveness and efficiency of the
proposed algorithms.(Section VII).

Besides, Section VIII reviews the related work, and Section IX
concludes the paper and outlines a possible future work.

II. PRELIMINARIES

This section defines the BDTA problem and concepts.
Definition 1 (Spatial Worker): A spatial worker w =

〈w.p, w.t, w.d, w.r, w.s, w.c〉 refers to an individual who vol-
untarily deviates from the routine trajectory w.p to undertake
spatial tasks. w.t, w.d, and w.r define the planned departure
time, deadline, and the service radius around at point on w.p,
within which a worker can engage in tasks. Additionally, the
reputation score w.s and the maximum task capacity w.c of w
are also specified.

The routine trajectory w.p is a sequence of points
{s, o1, o2, . . . , oj , d}, with s as the source and d the tar-
get. Each oi (for 1 ≤ i ≤ j) is a detour point, allowing the
worker to deviate from the routine and perform task-related
activities.

Definition 2 (Spatial Task): A spatial task t=<t.l, t.a, t.d,
t.R, t.minR> is provided to the platform by the task requester.
Specifically, t.l represents the spatial coordinates of task t in 2D
space, t.a is the appearance time of the task, t.d is the deadline
by which workers must arrive at the task location to complete it,
t.R denotes the reward generated upon successful completion
of t, and t.minR denotes the minimum required reputation for a
worker to be eligible for t. Similar to [25], we presume negligible
task processing time.

Definition 3 (Detour Distance): Given a worker w and a task
t, the detour distance d̂(w.p, t)=d(oi, t.l)+d(t.l, oj) represents
the distance a worker deviates from their routine trajectory at oi
to reach the task location t.l and then returns to the trajectory at
oj .

To mitigate the computational complexity of calculating the
detour distances of workers, we transform both oi and oj into the
same point ok, where ok represents the trajectory point of worker
w nearest to the task location. Thus, the detour distance is com-
puted as d̂(w.p, t)= 2×d(w, t)=2×min{d(ok, t.l), ok∈w.p}.

Definition 4 (Work Available Detour Distance): Given a
worker w with assigned tasks M(w), the available detour
distance ADw is calculated as ADw = (w.d− ct) · speed −
Lw.p −

∑
ti∈M(w) d̂(w.p, ti). Here, ct is the current time, Lw.p

is the trajectory length of w.p, and speed is the average moving
speed of worker w.

The term (w.d− ct) · speed− Lw.p represents the maximum
detour distance worker w can travel before w.d. To complete all
assigned tasks, worker w must ensure that ADw ≥ 0 and can
reach the destination earlier than w.d.

Definition 5 (Task Available Detour Distance): Given a task
t and a worker w, the maximum available detour distance for
task t, denoted as ADt, can be calculated as ADt = (t.d− ct) ·
speed − Lwt −

∑
tk∈M(wj)|otk≺oj

d̂(w, tk), where ct denotes
the current time. Lwt represents the trajectory length from the
source point w.p.s of worker w to the detour point oj , the
closest to task t, and is given by Lwt = d(w.p.s, oj). Here,
{tk ∈ M(wj) | otk ≺ oj} restricts tk to tasks in M(wj) whose
detour points otk precede oj along the w.p.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 02,2026 at 14:53:59 UTC from IEEE Xplore.  Restrictions apply. 
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The first component denotes the detour distance before worker
wj completes task ti, while the remaining components indicate
the distance between the source of wj and tj . If ADt < 0, task
t cannot be completed on time by wj .

Example 2. Assume that at timestamp 5.2, worker w1 ini-
tially accepts task t4 before task t1. After accepting t4, the
available detour distance for w1 is calculated as ADw1

=
(25− 5.2)× 5− 80− 2.8× 2 = 13.4, and for t4, it holds that
ADt4 = (35− 5.2)× 5− 25− 2.8 = 121.2.

Definition 6 (Worker Preference List). The preference list of
a worker w is denoted as PW (w) = {t1, . . . , tm}, where each
task t ∈ PW (w) satisfies the following conditions:

i) Preference constraint: Worker preference value
Pt(w)=t.R−d̂(w.p, t)·c > 0, where c represents the
cost per unit distance traveled, and Pti(w) > Ptj (w)
for i < j.

ii) Radius constraint: d̂(w.p, t)≤w.r.
iii) Time constraint: (w.d− ct) ·speed −Lw.p

−d̂(w.p, t) > 0 and (t.d− ct) ·speed −Lwt −
d̂(w.p, t) > 0, where Lwt is the trajectory length
of w from origin to detour points of t.

Obviously, Cond. (i) means workers that are assigned tasks
with positive earnings; Cond. (ii) ensures that workers accept
tasks within their radius; and Cond. (iii) stipulates that task
completion requires adequate time for both worker and task.

Definition 7 (Task Preference List). The preference list of
each task t is denoted as PT (t) = {w1, . . . , wm}, where the
workers w ∈ PT (t) satisfy the following conditions:

i) Preference constraint: Task preference value Pw(t) =
w.s, where w.s > t.minR and Pwi

(t) > Pwj
(t) for i <

j.
ii) Radius and Time constraints: Each worker satisfies the

same radius and time constraints as in Definition 6.
Example 3. Assume that at timestamp 5.2, the current sets of

tasks and workers, as shown in Fig. 1, are {t6, t7, t1, t2, t4, t3}
and {w1, w2, w3}, respectively. According to Definition 6, for
worker w3, tasks t6 and t7 satisfy both the radius and time
constraints. The corresponding preference values are computed
asPt6(w3) = 8− 2.5× 2 = 3 andPt7(w3) = 7.6− 2.4× 2 =
2.8, resulting in the preference list PW (w3) = {t6, t7}. Simi-
larly, we obtain the following task preference lists: PT (t1) =
{w1}, PT (t2) = {w2}, PT (t4) = {w1, w2}, PT (t6) = {w3},
and PT (t7) = {w3, w1, w2}.

For task t3, based on Definition 7, workers w1 and w2

satisfy the required preference constraints, with Pw1
(t3) = 7

andPw2
(t3) = 6.6, yieldingPT (t3) = {w1, w2}. Similarly, the

preference lists of other workers are PW (w1) = {t4, t7, t1, t3}
and PW (w2) = {t4, t2, t7, t3}.

If we consider only the mutual preferences of tasks and
workers, task t6 will be assigned to worker w3, as both PT (t6)
and PW (w3) indicate a mutual match.

Definition 8 (Blocking Pair). Given a worker w, a task t, and
a matching set M , (w, t) /∈ M is a blocking pair if ∃t′ ∈ M(w)
that meets: ( i ) Pw(t) > PM(t)(t) and Pt(w) > Pt′(w). ( ii )
For the new task set M ′(w), it holds that ADt′′ ≥ 0 for each
task t′′ ∈ M ′(w), ADw ≥ 0, and w.c̄ ≤ w.c.

Here, M(w) is the set of tasks assigned to w, M(t) is the
worker assigned to t, M ′(w) is derived from M(w) by either
adding t or replacing a task t′ ∈ M(w) with t, and w.c̄ =
|M ′(w)|. Additionally, ifM(w) = ∅, thenPM(w)(w) = 0; sim-
ilarly, if M(t) = ∅, then PM(t)(t) = 0.

Definition 9 (Stable Matching). A matching set M is stable
if it has no.blocking pairs.

Example 4. Going back to Example 1, we have M1(t4) =
{w2} and M1(w1) = {t1, t7} for the feasible assignment
M1. However, worker w1 prefers task t4 to t1 (Pt4(w1) >
Pt1(w1)), and task t4 also prefers worker w1 to w2 (Pw1

(t4) >
Pw2

(t4)). If task t4 is directly added to M1(w1), the ca-
pacity constraint in (2) would be violated, i.e., |M1(w1)| =
3 > w1.c = 2. If task t4 replaces task t1 for worker
w1, we haveADw1

=(25−5)×5−80−1.7×2+2.8×2=22.2>0,
ADt7=(25−5)×5−30−2.35×2−1.7=63.6>0, and ADt4=
122.65>0. Therefore, (w1, t4) forms a blocking Pair. In contrast,
for M2, there are no.blocking pairs that prefer each other but
cannot be matched, so a stable matching is formed.

Definition 10 (Overall Satisfaction). Given a dynamically
arriving task set T and a worker set W , let M denote the set
of feasible worker-task pairs for all t ∈ T and w ∈ W in the
BDTA problem. The overall satisfaction of M is a weighted
combination of the average satisfaction of tasks and workers,
defined as:

ŠM=μ·
|T |∑
i=1

St(ti)· 1

|T |+(1−μ)·
|W |∑
j=1

Sw(wj)· 1

|W | , (1)

where |T | and |W | refer to the task count and worker count, re-
spectively. The satisfaction of task ti is given bySt(ti)=

Pw′ (ti)
Pw∗ (ti)

,

where w′ denotes the worker assigned to task ti, and w∗ denotes
the most preferred worker of ti in its preference list. For un-
matched tasks, St(ti) = 0. For a worker wj , Sw(wj) = 0 if wj

is unmatched; otherwise,

Sw(wj)=
1

|M(wj)| ·
∑

t′∈M(wj)

Pt′i(wj)

Pt∗i(w
′)
,

where M(wj) denotes the set of tasks assigned to worker wj ,
and t∗ is the most preferred task of wj in its preference list.

In Definition 10, the parameter μ denotes the trade-off be-
tween worker and task satisfaction, and is set to μ = 0.5 in this
paper to indicate equal priority for both.

Definition 11 (BDTA problem). Given a dynamically arriv-
ing worker set W = {w1, w2, . . . , w|W |} and a task set T =
{t1, t2, . . . , t|T |}, the goal of BDTA is to identify a worker-task
matching set M maximizing the overall satisfaction ŠM . For-
mally, it is described as:

max ŠM s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ADwj
> 0, ADti > 0

d̂(wj .p, ti)≤wj .r
wj .s ≥ ti.minR
Pti(wj) > 0, Pwj

(ti) > 0∑|T |
i=1 xji≤wj .c,

∑|W |
j=1 xji≤1.

(2)
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Algorithm 1: Hybrid Batch Processing Framework.

Here, wj∈W, ti∈T , xji∈{0, 1}, j∈[1, |W |], and i∈[1, |T |]. AD
is the available detour distance for the matched task/worker.
d̂(wj .p, ti) is the minimum distance between wj and ti, Pti(wj)
and Pwj

(ti) is the preferences of worker wj and task ti for each
other, respectively. The binary variable xji equals 1 if task ti is
allocated to worker wj , and 0 otherwise.

Theorem 1. BDTA is an NP-hard problem.
Remark: The reputation scores of workers can be obtained

based on their history of task completion [26], with their routine
trajectories derived from past routing data. From the view of
task requester, a stronger reputation score signifies better service
quality. Following [27], we treat workers’ reputation scores as
task preferences. Additionally, as discussed in [25], both the
worker and task requester supply other relevant information,
including voluntarily submitted historical records or other data.

III. HYBRID BATCH PROCESSING FRAMEWORK

In BDTA, tasks and workers arrive in real time. This makes
it challenging to find a globally optimal solution. Thus, we
employ a batch processing technique to enhance computational
efficiency and gain a local optimal solution.

In this subsection, we develop a hybrid batch strategy that con-
siders the uneven temporal and spatial distribution of workers
and tasks, focusing on the task count and the time window. Note
that the batch processing window is generally determined by the
tasks count, rather than the worker count, as SC platforms aim
to maximize revenue by completing as many tasks as possible.

As shown in Algorithm 1, Line 1 initializes the available
worker set b.W , the available task set b.T , and the worker-task
matching set Mb. The hybrid batch processing framework par-
titions tasks and workers into batches, each with at most b.n
tasks and arriving within the time interval b.t (Line 2). In Lines
3-4, the task set b.T and worker set b.W are computed from new
tasks and workers, along with unmatched ones from the previous
round that have remaining capacity and detour distance, with end
times later than the current timestamp. After that, the algorithms
described in Sections IV, V, and VI are applied to compute
the worker-task matching set Mb for tasks in the current batch
(Line 5). Finally, the tasks in Mb are removed from b.T , and
the information of each worker in b.W is updated accordingly
(Lines 6-8).

IV. TASK-INITIATED BIDIRECTIONAL ALGORITHM

In this section, task-initiated bidirectional (TIB) algorithm is
presented to solve BDTA, by the TPPG strategy from [1]. The
algorithm prioritizes task preferences and mitigates the impact
of task order on the matching results through the following
strategies.

Bidirectional Selection Strategy: Most existing research on
online task allocation processes tasks in the order of their arrival
time. As a result, early arriving tasks are easier to assign to
their preferred workers, while later arriving tasks often struggle
to be assigned to workers who meet their preferences. This
creates an unfair problem for tasks arriving later. To address
this issue, TIB integrates a bidirectional selection strategy by
incorporating the Boston Mechanism within the hybrid batch
processing framework.

Initially, tasks send requests to their most preferred workers.
Workers then rank the received tasks and sequentially accept
the ones they prefer most, according to their priority. Tasks that
remain unmatched in a round are re-offered to workers based on
their next preferences in the hierarchy.

In the Boston mechanism, matched workers face reduced
availability for new tasks due to time and capacity constraints,
leaving some tasks unassigned to preferred workers in later
rounds [28]. To mitigate this, we dynamically update the pref-
erences of tasks based on workers’ current matches.

Algorithm: As shown in Algorithm 2, it first initializes an
available worker set AW (workers with remaining capacity
and positive detour distance), an available task set AT (Unas-
signed tasks with unvisited workers in their PT ), a worker-task
matching set Mb, and a candidate matching set MC (Line 1).
In lines 2-3, it computes the initial preference lists PT (t),
PW (w) for all tasks t ∈ b.T and workers w ∈ b.W , and sets
the dynamic preference list PT ′(t) to PT (t). In lines 5-10, each
t ∈ AT requests its most preferred available and unrequested
worker w ∈ AW in its PT ′(t). If the (w, t) formed under Mb

satisfies the constraints of (2), (w, t) is added to MC (lines 7-8);
Otherwise, t is removed from AT (line 9). In lines 11-18, for
each worker w ∈ MC , tasks t′ ∈ MC(w) are added to Mb in
descending order of PW ′(w), provided they satisfy the con-
straint in (2). Once a worker can no.longer take new tasks, they
are removed from AW . In lines 19-20, Update PT ′(t) of the
unassigned task t ∈ AT using the PreferenceUpdate procedure.
Finally, when there are no.more workers or tasks in AT or AW ,
the algorithm stops, and Mb is produced as the final matching
set (Line 22).

The PreferenceUpdate function adjusts preferences based on
the urgency of each task and worker (lines 23-31). The task’s
new preference is determined (line 29) based on the worker’s
remaining capacity (line 26), available detour distance (line 27),
and the proportion of rejected tasks t (line 28).

Example 5. Assume a batch window b starts at time 0 with
a 5.2-unit interval, as shown in Fig. 1. Under this setting,
entities {t6, t7, t1, t2, t4, w1, w2, w3, t3} arrive in order within
b. By TIB, we first compute the initial PT and PW , with
the results shown in Example 3. Then, tasks t6, t7, t1, t2, t4,
and t3 simultaneously send requests to their most preferred
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Algorithm 2: TIB Algorithm.

workers w3, w3, w1, w2, w1, and w1, respectively. Worker w3

first accepts t6, then rejects t7 due to capacity, preference, and
detour constraints: w3.c = 2 ≥ |{t3, t7}|, Pt6(w3) > Pt7(w3),
and ADw3

− d̂(w3.p, t6) > 0, while the detour constraint for t7
is violated, i.e., ADw3

− d̂(w3.p, t6)− d̂(w3.p, t7) < 0. Simi-
larly, w1 rejects t3 due to insufficient capacity after accepting
tasks t1 and t4. The pair (w2, t2) is directly matched. Next
phase, unassigned tasks {t7, t3} update their preferences via
the preferenceUpda() function (e.g., new PTw2

(t7) = 1.4454,
PTw2

(t3) = 0.9636) and request their most preferred worker
w2. Worker w2 accepts the more preferred task t7, as it
cannot simultaneously accept t3 due to capacity constraints:
w2.c− |{t2, t7, t3}| = −1 < 0. Now, t3 has no.other available
workers to request. Finally, we obtain a matching result M3 =
{(w1, t1), (w2, t2), (w1, t4), (w3, t6), (w2, t7)} with an overall
satisfaction of 0.699.

Time Complexity: For each task t, generating its preference list
requires O(|W | · |P ′|) +O(|W | · log |W |). During matching,
identifying the best available worker per takes O(|W |). Addi-
tionally, each worker requires O(|T | · log |T |) +O(|T |) to sort
and select a preferred task. Thus, the overall time complexity
of TIB is O(|W | · |T | · (log |T |+ log |W |+ |P ′|)), where |P ′|
denotes the maximum trajectory points count per task.

Theorem 2. TIB cannot generate a stable matching.
The proof of Theorem 2 is similar to the proof of Theorem 2 in

our previous work [1], and we omit the detailed proof here to
avoid repetition.

Remark: Similar worker-initiated bidirectional strategies can
also be applied to task allocation. Note that tasks are no. allocated
to workers simultaneously to match their capacity; instead, each
worker accepts only one task at a time.

V. APPROXIMATE DEFERRED-ACCEPTANCE ALGORITHMS

As shown in Theorem 2, TIB does no. guarantee a stable
matching. Although TSDA (ICDE version) ensures strict stabil-
ity in static settings by eliminating all blocking pairs, such strict
stability is impractical in BDTA scenarios where tasks, worker
availability, and temporal constraints dynamically evolve. To
address this, we propose an α-approximate solution via a gen-
eralized deferred-acceptance (GDA) approach, relaxing strict
stability to accommodate real-world constraints like budget
limits and supply-demand imbalance, thus balancing stability
with practical feasibility.

A. α-Approximate Model

To enhance the stability of matching results, we aim to intro-
duce a stable matching strategy. However, due to the complex
constraints in dynamic task distribution problems, strict stability
conditions cannot always be satisfied. Thus, this section intro-
duces the approximate stability to improve the quality of task
assignment.

Definition 12 (α-Blocking Coalition [29]). Given a current
matching set M , and another matching set M ′, a blocking
coalition M ′(w) for a worker w exists if:
� M ′ satisfies the conditions in (2).
� Pw′(t) > Pw(t) for any worker-task pair (w′, t) ∈ M ′ \
M and (w, t) ∈ M .

� u(M ′(w)) > α · u(M(w)).
Here, u(M(w)) (or u(M ′(w))) denotes the utility of worker

w in M (or M ′) and is given by u(M(w)) =
∑

ti∈M(w) Pti(w).
Definition 13 (α-Stable Matching). A matching M is an α-

stable matching if no α-blocking coalitions exist in M .
Example 6. Going back to Example 1, it holdsM1(t4)={w2}

and M1(w1)={t1, t7} for the feasible assignment M1. How-
ever, worker w1 prefers t4 to t1, and t4 also prefers worker
w1 to worker w2. If task t4 is directly added to M1(w1),
it cannot satisfy the conditions in Definition 12, i.e., ca-
pacity condition. If task t4 replaces task t1 for worker
w1, we haveADw1

=(25−5)×5−80−1.7×2+2.8×2=22.2>0,
ADt7=(25−5)×5−30−2.35×2−1.7=63.6>0, and ADt4=
122.65>0. Therefore, (w1, t4) forms a worker-task pair in a
1-blocking coalition, meaning that t4 can replace t1 in M1(w1).

Definition 14 (α-Approximation). Given α ≥ 1 and a worker
w ∈ W , a sequential choice function Chw on PW (w) is called
α-approximate if

α · u(M(w)) = α · u(Chw(T
′))

≥ max {u(M(w)) : Satisfies Eq. (2) constraints} ,
where M(w) is the matching maximizing the utility of w.
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B. Task-Initiated Generalized Deferred-Acceptance Algorithm

In this subsection, we design a task-initiated generalized
deferred-acceptance (TIDA) algorithm and show that TIDA
guarantees the α-approximation ratio.

To design a mechanism that ensures approximately stable
matchings and facilitates efficient allocations under budget
constraints, we modify the Generalized Deferred Acceptance
(GDA) algorithm proposed by Hatfield and Milgrom [30]. By
ensuring the properties of substitutability, irrelevance of rejected
requests, and the law of aggregate demand, our mechanism
guarantees the stability of matchings within the hybrid batch
processing framework of the BDTA problem.

In the GDA mechanism, it first computes preferred workers
for each task sequentially, then workers temporarily accept tasks
according to their preferences. For a worker w, if he/she has
received a set of tasks, and a new task t′ arrives that exceeds the
constraints of the worker but is more preferred, t′ can replace an
existing task t, one of w’s accepted tasks that is less preferred
than t′. In this case, worker w will defer receiving t′ until
evaluating whether replacing t is beneficial.

To effectively improve worker utility in GDA, we integrate a
Local Search (LG) algorithm inspired by [31], as the per-worker
assignment aligns with the setting considered therein.

Algorithm: As depicted in Algorithm 3, TIDA first initializes
an available task set AT and a worker-task matching set Mb

(Line 1). The preference list PT (t) and PW (w) for each task t
and each worker is computed according to Definitions 7 and 6
(Line 2). The rest of TIDA is executed iteratively until the avail-
able task set AT is empty (Lines 3-25). Before each iteration,
nAT is initialized to AT for the next round of matching (Line
4), and tasks t ∈ AT are processed in order (Lines 5-24). Each
task t ∈ AT requests its most preferred unrequested worker w
according to its PT (t) (Line 6). we first check if t has been
rejected by all workers in PT (t) (Line 7). If so, task t will
wait for the next window to match (Lines 22-24). Otherwise,
if w directly accepts t, satisfying the constraint in (2) (line 8),
a matching (w, t) is formed. The detour distances of worker
w, task t′, the tasks in Mb(w), and w.c are updated based on
Definitions 4 and 5. t is removed from nAT (lines 9–13). If
no., we use LocalSearch function to find a replacement task
t′ ∈ Mb(w) satisfying Definition 14 (Line 15). If such a task t′

exists (Line 16), we replace the pair (w, t) with (w, t′) (Lines
17-18) and update the information of affected tasks andw (Lines
19-20). Now, task t does no. request a match in the next round,
while task t′ will submit a fresh assignment request (Line 21).
Once all tasks in AT are matched or no.available worker is left,
the final matching set Mb is produced (Line 25).

The LocalSearch Function determines whether replacing task
t′ in Mb(w) with a new task t increases the utility. Specifically,
the task t′ that satisfies the constraints in (2) and Definition 14,
and yields the highest marginal reward Δ, is replaced by t and
returned (Lines 27–37).

Example 7. On the assumption in Example 5, using TIDA,
We first compute the preference lists for tasks and workers
as shown in Example 3. In the first round of assignment,
following the task arrival order, task t6 requests its most

Algorithm 3: TIDA Algorithm

preferred worker w3 from PT (t6). Since PW (w3) = {t6, t7}
and w3, t6 satisfy the constraint in (2), a temporary matching
Mt = {(w3, t6)} is formed, updating the information of
Mt(w3) and w3. Next, t7 requests its most preferred w3 ∈
PT (t7) = {w3, w1, w2}, but is rejected because (i) w3 cannot
reach the destination on time if both t6 and t7 are assigned, i.e.,
ADw3

− d(w3, t6)− d(w3, t7) < 0. (ii) There is no.replaceable
task for t7, as marginal reward Δ(t6, t7,Mt(w3)) =
Pt7(w3)− Pt6(w3) = −0.2 < 0. Similarly, tasks t1, t2,
and t4 successively request w1, w2, and w1, respectively,
updating Mt = {(w1, t1), (w2, t2), (w1, t4), (w3, t6)}. when
t3 requests w1, it is rejected because (i) w1.c = 2 =
|Mt(w1)| = |{t4, t1}| is full. (ii) Δ(t3, t4,Mt(w1)) =
−0.4,Δ(t3, t1,Mt(w1)) = −2.3. Second round, tasks t7
and t3 in AT = {t7, t3} successively request w1 and w2 and
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are matched. Here, w1 replaces t1 with t7 because w1.c = 2,
Δ(t7, t1,Mt(w1)) = 4.2− 2.8 = 1.4 > Δ(t7, t4,Mt(w1)) =
4.2− 4.3 = −1.4, and the constraints in (2) are satisfied.
Mt = {(w2, t2), (w2, t3), (w1, t4), (w3, t6), (w1, t7)}.
In the final round, AT = {t1} and PT (t1) = {w1}.
However, t1 has no.available workers, as w1 has rejected
it. Thus, the matching ends with M = Mt and overall
satisfaction 0.712.

Theorem 3. If the local selection function LS is α-
approximate for each worker w ∈ W , then TIDA produces an
α-stable matching M .

Theorem 4. Let M be a β-approximate local optimal so-
lution obtained by the LS algorithm, Ω denotes the optimal
assignment, and OPT is the optimal solution value. Then,
u(M) ≥ β

β+1OPT.
For BDTA, the feasible set M(w) of each worker satisfies

a k-set constraint, which allows the use of a PTAS for k-set
packing and yields a β-approximation [32]. Consequently, the
stability guarantee of TIDA is given by α = 1+β

β .
Time Complexity: TIDA has two phases: initialization and

matching. In the initialization phase, computing and sorting each
task’s preference list takes O(|W | · |P ′|) +O(|W | log |W |). In
the matching phase, each task requires O(|W |) to find an avail-
able worker and O(C) for workers to accept or replace tasks.
The overall time complexity of TIDA is O(|W | · |T | · (|P ′|+
log |W |+ C)), whereC represents the worker capacity, and |P ′|
represents the maximum trajectory point count per trajectory.

Remark: The Worker-initiated Generalized Deferred-
Acceptance (WIDA) Algorithm is initiated by the worker first,
and the task performs matching operations such as acceptance,
replacement, or rejection.

VI. REVERSE GENERALIZED DEFERRED-ACCEPTANCE

ALGORITHM

The RGDA and WIDA algorithms are both unilateral-initiated
approaches. However, there is an inherent trade-off between
task and worker satisfaction, making it challenging to achieve
optimal satisfaction for both simultaneously. Additionally, in
these two algorithms, the side with the larger number of par-
ticipants has more opportunities to choose, thereby enhancing
matching flexibility [33]. Therefore, the reverse generalized
deferred-acceptance (RGDA) algorithm takes into account the
available task count and the remaining available worker capacity
in each batch. It dynamically selects either TIDA or WIDA,
aiming to balance worker and task satisfaction while enhancing
overall matching performance.

Algorithm: As depicted in Algorithm 4, RGDA first initializes
an available task set AT , an available worker set AW , an
unassigned task set UT , and two sets of worker-task matching
setMb and M̂b (Line 1). The preference listsPT (t) andPW (w)
for each task t and each workerw are computed from Definitions
7 and 6 (Line 2). The rest of RGDA involves selecting between
the WIDA and TIDA algorithms. If the available task count |AT |
exceeds the total available workers’ capacity, |AW | · w.c (Line
3), TIDA is applied to compute the worker-task matching setMb

(Line 4). Next, the available worker set AW and the unassigned
task set UT are updated (Lines 5-6). If AW and UT are no.

Algorithm 4: RGDA Algorithm.

empty, WIDA is used to compute another worker-task match-
ing set M̂b for tasks t∈UT and workers w∈AW (Lines 7-8).
Otherwise, WIDA is first applied to obtain Mb, and then TIDA
is executed on the unassigned task set UT and the available
worker setAW to obtain the worker-task matching setM̂b (Lines
10–14). Finally, the worker-task matching set Mb is updated to
Mb ∪ M̂b and produced as the final matching set (Lines 15-16).

Example 8. Following Example 5, with the batch window
set to [0-5.2] and each worker w∈AW having capacity w.c =2,
we have the available task set AT={t6, t7, t1, t2, t4, t3} and
available worker set AW={w1, w2, w3} within the batch win-
dow. RGDA first computes |AT |=6 and |AW |·w.c=3×2=6.
Since |AT |≥|AW | · w.c, RGDA is applied and returns the as-
signment M={(w2, t2), (w2, t3), (w1, t4), (w3, t6), (w1, t7)}.
Then, WIDA is executed for the unassigned task set {t1} and
available worker set {w3}, whose capacity is no. yet full. How-
ever, w3 cannot be assigned to t1 because t1 is out of his/her
service radius, i.e., d(w3, t1)=9.99>3. At last, M is produced
as the final matching set.

Time complexity: RGDA invokes both the TIDA and WIDA
algorithms to compute the worker-task matching set Mb. Ac-
cordingly, the total time complexity of RGDA is O(|W | ·
|T | · (|P ′|+ log |T |+ log |W |+ C)), where C represents the
worker capacity, and |P ′| represents the maximum trajectory
point count per trajectory.

VII. EXPERIMENTS

This section outlines the experimental setup from
Section VII-A, evaluates the performance of our algorithms in
Section VII-B, and concludes with a summary of the results in
Section VII-C.

A. Experiment Setup

Datasets: We validate our algorithms on two datasets, as
shown in Table V, namely Berlin [34] and T-Drive [35], [36].
Berlin is a real dataset comprising 236 bus routes representing
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TABLE VI
PARAMETER SETTING

worker trajectories and 3,083 Points-of-Interest (POIs) repre-
senting task locations. When the worker count exceeds 236,
trajectories are randomly sampled and repeated to ensure broad
coverage. Task locations are directly extracted from the POIs.
T-Drive is a synthetic dataset that includes 10,357 taxi tra-
jectories in Beijing, collected from February 2 to February 8,
2008. Given the high density of points, we selected 40 points
per trajectory, spaced at every fourth point, to simulate worker
paths and generated synthetic task data around these points. Task
locations in T-Drive are uniformly distributed around the worker
trajectories.

In line with common SC platform experimental setups, all
generated attributes adhere to a uniform manner standard, en-
suring dataset consistency [37]. To align with our BDTA prob-
lem requirements, we apply a Gaussian distribution model on
both T-Drive and Berlin to generate attributes such as worker
reputation, minimum task reputation, task rewards, and other
relevant parameters. Additionally, each worker’s deadline w.d
is calculated asw.d = w.t+ λ · (1 +Dw), where λ ∈ [0.2, 0.8]
is a random deadline coefficient, andDw represents the worker’s
daily trajectory time. We assume uniform values for the service
radius w.r, deadline coefficient λ, and capacity w.c across all
workers.

Algorithms: This study conducts the first investigation of
BDTA, and current approaches are no. directly applicable to
it. Instead, we propose a new baseline algorithm, called Greedy,
which is an extended of our closely related work [19]. Thus, the
following four algorithms are evaluated in the experiments.
� Task-initiated bidirectional (TIB) algorithm in Section IV.
� Task-initiated generalized deferred-acceptance (TIDA) al-

gorithm in Section V-B.
� Reverse generalized deferred-acceptance (RGDA) algo-

rithm in Section VI.
� The Greedy algorithm: For all tasks, the nearest worker

satisfying the constraints in (2) is selected.
Parameters and Metrics: In the experiments, we perform 20

repetitions for each parameter test and report the average results.
All algorithms are assessed by varying parameters like task
count |T |, worker count |W |, worker service radius w.r, worker
capacityw.c, time interval threshold b.t, and task count threshold
b.n within the hybrid batch processing framework. Note that
the reported runtime refers to the total time for processing all
batches, no. a single batch.

Setting: Table VI lists the parameter settings, with de-
faults in bold. All algorithms are evaluated by runtime (s)

and satisfaction (%), using GNU C++ on a server with
an Intel(R) Xeon(R) Gold 5218R CPU @ 2.10 GHz and
256 GB RAM.

B. Experiment Results

Effect of task count |T |: As depicted in Fig. 2(a), the satisfac-
tion of the four algorithms increases with the growth of |T | on
the Berlin dataset, whereas a decline is observed on the T-Drive
dataset. This divergence stems from the differing characteristics
of the two datasets. In T-Drive, when |T | grows to 20,000—far
exceeding the 3,000 available workers—the limited matching
capacity, combined with spatial and temporal constraints, results
in a large number of unmatched tasks and a sharp drop in task sat-
isfaction. Although more tasks offer workers increased choice,
the overall matching success rate still decreases. Consequently,
overall satisfaction declines due to the dominant influence of
task-side dissatisfaction. In contrast, the Berlin dataset features
repetitive and spatially dispersed bus routes. As |T | increases,
more tasks align with these fixed trajectories, increasing spatial
overlap. The lower competition and consistent coverage lead
to more stable matchings, improving both task and worker
satisfaction.

Algorithm Satisfaction Analysis: Among the four algorithms,
RGDA consistently achieves the highest satisfaction in most
scenarios, followed by TIDA and TIB, whereas Greedy yields
the lowest satisfaction, with the maximum difference reaching
up to 7%. This performance disparity stems from the design
principles of the algorithms. Greedy follows a one-shot matching
strategy that prioritizes local proximity without considering
global allocation balance, especially in situations of intense
competition or an unbalanced task-to-worker ratio, leading
to low satisfaction.In contrast, TIDA and RGDA incorporate
iterative and bidirectional mechanisms that allow both tasks
and workers to express preferences, enabling mutual selections
and more balanced matching. Specifically, RGDA dynamically
selects task- or worker-prioritized deferred acceptance based
on the current numbers of tasks and workers, ensuring that
more preferred and compatible matches are achieved across the
system. TIB updates task preferences in each round based on
urgency, helping improve task match success and satisfaction.
However, since the adjustment only happens on the task side, it is
less effective than TIDA or RGDA in finding globally balanced
matchings.

Algorithm Runtime Analysis: The execution times of all four
algorithms increase with |T |, reflecting the same pattern ob-
served in satisfaction trends. Greedy is the fastest due to its
single-pass design, while TIB is the slowest because of repeated
updates to task-side preferences. TIDA and RGDA involve
additional evaluations but maintain reasonable scalability. These
differences stem from the underlying preference construction
and update mechanisms, indicating a trade-off between compu-
tational efficiency and solution quality.

Effect of worker count |W |: The experimental results of
the four algorithms with varying |W | are shown in Fig. 2(b).
As the number of workers increases, overall satisfaction tends
to decline, while runtime increases. This is primarily due to
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Fig. 2. (a) Effect of task count |T |. (b) Effect of worker count |W |. (c) Effect of service radius w.r. (d) Effect of capacity w.c. (e) Effect of task count threshold
b.n. (f) Effect of time interval threshold b.t.

reduced worker utilization and greater computational overhead.
Specifically, as |W | grows, although the task has more candidate
workers, theoretically increasing matching flexibility, the rela-
tively fixed task count leads to a large number of idle workers,
thereby reducing overall satisfaction. As |W | increases, compu-
tational overhead grows, particularly for TIB due to frequent
preference updates. Greedy is fastest but suffers from lower
satisfaction. In contrast, our algorithms achieve a satisfaction im-
provement of 1% to 7%, reflecting a favorable trade-off between
efficiency and solution quality, consistent with trends observed
under increasing |T |. Notably, even the most time-consuming
algorithm, TIB, is only 4 seconds slower than Greedy on large
datasets and 0.1 seconds slower on small datasets. In return, our
algorithms improve satisfaction by 1% to 7%, demonstrating
a balanced trade-off between efficiency and solution quality,
consistent with trends observed when increasing |T |.

Effect of service radius w.r: The experimental results of
the four algorithms with varying w.r are shown in Fig. 2(c).
As w.r increases, satisfaction and runtime exhibit only minor
changes on both T-Drive and Berlin. A larger detour radius
expands each worker’s candidate task set. However, due to
spatiotemporal constraints among tasks and between work-
ers and tasks, the number of feasible matches does no. grow
proportionally. Although better compatibility can slightly im-
prove pairwise satisfaction, the limited number of successful

matches often flattens or reduces overall satisfaction. Runtime
on T-Drive increases with larger w.r, due to the density and
diversity of worker trajectories. The expansion of candidate task
sets intensifies local selection conflicts, raising computational
costs. In contrast, Berlin’s repetitive and spatially dispersed
routes lead to less overlap among workers, so runtime decreases
as reachability improves. These results, consistent with the
trend under increasing |T |, demonstrate that our algorithms
sustain high satisfaction and efficiency across varying service
radius.

Effect of capacity w.c: The experimental results of the four
algorithms with varying w.c are depicted in Fig. 2(d). As w.c
increases, the overall satisfaction slightly declines on T-Drive,
while it remains relatively stable on Berlin. In both datasets,
runtime drops significantly. Since the average satisfaction of
workers is linked to the ratio of satisfaction with their best
task, increasing task-side satisfaction but diluting individual
worker satisfaction can lower the overall score. Additionally,
higher capacity improves task allocation flexibility, preventing
bottlenecks and speeding up task matching. Again, RGDA out-
performs TIDA, which in turn outperforms TIDA, with Greedy
being the least effective. Even the least efficient TIB algorithm
achieves 3% to 8% higher satisfaction compared to the greedy
algorithm, while its runtime increases only slightly by 0.2 to 3
seconds. This further demonstrates that our algorithms enhance
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Fig. 3. (a) Effect of task limit t.d−t.a. (b) Effect of minimum required reputation. (c) Effect of task reward.

matching satisfaction while maintaining both effectiveness and
efficiency.

Effect of task count threshold b.n: Fig. 2(e) shows that as
b.n changes, the performance of the four algorithms in terms
of satisfaction and runtime exhibits slight variations across
datasets. On T-Drive, where tasks and workers are sparse and
dynamic, smaller b.n (e.g., 50) triggers more frequent match-
ing windows. Under such high-frequency, low-load conditions,
the game-theoretic mechanisms in TIDA and RGDA become
more effective, yielding the highest satisfaction. However, the
increased scheduling frequency leads to higher runtime. As b.n
increases, the number of tasks per window theoretically grows,
but the fixed time interval constraint b.t limits the actual increase
in task arrivals, resulting in only marginal improvements in sat-
isfaction and gradually reduced runtime due to fewer matching
rounds. In contrast, the Berlin dataset features denser and more
stable spatiotemporal distributions along worker trajectories.
Consequently, due to the active time interval constraint, the
effectiveness of matching becomes less sensitive to changes in
b.n, and both satisfaction and runtime remain relatively stable
as b.n increases. In summary, the performance trends under b.n
are consistent with those observed under |T |, while the overall
impact still depends on the batch window time threshold b.t and
the spatiotemporal characteristics of the dataset.

Effect of time interval threshold b.t: Fig. 2(f) shows the
experimental results with varying b.w. As b.t increases beyond
10, both satisfaction and running time decrease. The runtime
reduction slows as the task count threshold b.n begins to dom-
inate batching behavior. Larger time intervals lead to longer
waiting times, causing task and worker invalidation, which in
turn reduces satisfaction. These invalidations no. only reduce
satisfaction but also decrease the computational workload. On
T-Drive, TIDA and RGDA achieve similar runtimes to Greedy
but with higher satisfaction. TIB shows lower satisfaction and
running time than Greedy at smaller time intervals, but out-
performs Greedy in larger intervals. On Berlin, runtime differ-
ences among all algorithms are within 0.2 seconds, with each
achieving higher satisfaction than Greedy. Overall, the impact

of b.t on system performance is similar to that of b.n. Therefore,
balancing these parameters is critical to optimizing the trade-off
between running time and satisfaction in our framework and
algorithms.

Effect of task limit (t.d−t.a): To demonstrate the impact of
different task time limit on the assignment results, we sim-
ulate varying task time limits by fixing the appearance time
t.a for each task and sample its deadline t.d from a normal
distribution, i.e., t.d ∼ N (μ, 202). As shown in Fig. 3(a), both
the average satisfaction and the runtime of each algorithm
increase with the task deadline t.d on the Berlin and T-Drive
datasets. As tasks remain in the system longer, more workers
have overlapping availability, increasing the chances of forming
mutually satisfactory matches. Extended deadlines also relax
detour constraints, allowing workers to complete more tasks
and expanding the search space. When μ = 500, the enlarged
matching space enables algorithms to better leverage workers’
multi-tasking ability, reducing conflicts and priority competi-
tion. Consequently, runtimes and satisfaction converge across
algorithms. Note that task-worker matching is determined by the
overlap of their time windows. Therefore, modifying task time
limits has an equivalent effect to adjusting worker availability
windows. As a result, we omit separate experiments on worker
time limits.

Effect of task minimum required reputation t.minR ∼
N (μ, 52): The number of tasks and workers in each preference
list depends on whether a worker’s reputation w.r satisfies the
task’s minimum reputation t.minR. We fix w.r ∼ N (60, 202)
and sample t.minR ∼ N (μ, 52) with varying means μ. As
shown in Fig. 3(b), both the satisfaction and runtime of Greedy,
TIB, TIDA, and RGDA decrease as t.minR increases. Higher
t.minR impose stricter constraints on tasks, thereby pruning
more low-reputation workers from the candidate pool and reduc-
ing the number of feasible task-worker pairs. In extreme cases
(e.g., t.minR = 150), no.workers meet the requirement, caus-
ing all algorithms to fail in matching tasks, demonstrating the
severe impact of stringent preferences on matching feasibility
and platform efficiency.
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The experiment once again shows that the three algorithms
we proposed are always more satisfied than the location-based
greedy. Varying t.minR indirectly modifies worker preferences
by limiting accessible tasks, reducing preference diversity and
matching flexibility. Therefore, further analysis on w.r is omit-
ted, as varying t.minR captures its equivalent effect on com-
patibility.

Effect of task reward t.r: Fig. 3(c) shows how task rewards
affect assignment outcomes. We model task completion cost in
(0, 3] and generate rewards from a Gaussian distribution between
0.5 and 10 units. As rewards increase, more worker-task pairs be-
come feasible, improving overall satisfaction. Under low-reward
settings, Greedy achieves higher satisfaction than TIB. Since
workers are less reward-sensitive, Greedy can focus solely on
spatial proximity to form fast, conflict-free matches. In contrast,
TIB adopts the Boston mechanism. When reward differences
are small, task priorities become nearly indistinguishable,
rendering the sorting mechanism essentially ineffective. After
workers complete early matches, the availability of workers for
later unmatched tasks decreases, leading to increased matching
delays and failure rates.By comparison, TIDA and RGDA update
matching decisions dynamically over rounds, gradually forming
stable outcomes and maintaining high satisfaction across all
reward levels. Notably, Greedy incurs the highest runtime under
low rewards, as many nearby tasks are unprofitable, requiring
repeated candidate trials before successful matches.

C. Summary of Experiments

Across both datasets, TIB, TIDA, and RGDA achieve consis-
tently higher satisfaction than Greedy, with comparable runtime
performance.

Our RGDA algorithm consistently achieves the highest satis-
faction, while Greedy generally yields the lowest. Greedy makes
assignments based on proximity, neglecting future utility. TIB
employs the Boston mechanism with bilateral preferences but
prioritizes immediate decisions. TIDA allows relaxation of the
bilateral stability matching condition, improving adaptability.
RGDA further enhances satisfaction by dynamically adjusting
the proposer. Although TIB has the highest runtime due to
frequent preference recalculations in dense environments, its
execution time exceeds that of Greedy by only 0.3 seconds on
Berlin and 3 seconds on T-Drive, demonstrating good scalability.

Our hybrid batch framework, parameterized by b.n and b.t,
enables effective control over responsiveness and satisfaction.
As shown in Figs. 2(e) and 2(f), appropriate tuning of thresholds
yields consistent gains. Dataset properties shape outcomes: on
Berlin (sparser, moderate concurrency), TIDA and RGDA per-
form steadily; on T-Drive (dense, high volume), RGDA achieves
up to 15% higher satisfaction over Greedy. Overall, our meth-
ods deliver robust performance across varying spatiotemporal
scenarios with minimal overhead.

D. Discussion Section

This discussion section presents a comprehensive analysis
of BDTA, covering its practical applications, representative use
cases, scalability challenges, and directions for future research.

The proposed BDTA solution demonstrates strong potential
for real-world deployment and can be integrated into existing
platforms such as Gigwalk5 and Field Agent,6 where workers
are assigned to geo-tagged tasks such as storefront photography,
retail display audits, and signage verification.

Furthermore, by explicitly incorporating destination con-
straints, BDTA is also applicable to ride-hailing services such
as Uber1 and DiDi Chuxing3, where both pickup and drop-off
points are critical. These cases underscore BDTA’s flexibility in
managing real-time, location-sensitive matching scenarios.

To address scalability in large-scale dynamic settings, we
propose a batch-processing framework that groups tasks and
workers by time intervals and workload. This design signifi-
cantly reduces both response time and computational overhead.
However, the model assumes fixed travel speeds and does no. yet
incorporate environmental dynamics such as real-time traffic or
weather disruptions, which may affect task feasibility and rout-
ing decisions [38]. These limitations constrain the robustness of
BDTA in complex real-world deployments.

Future work may integrate BDTA with real-time traffic data,
spatiotemporal prediction models, and deep learning and ma-
chine learning algorithms to improve task-worker matching and
adapt to dynamic environments [39]. These enhancements could
broaden the model’s application to smart cities, urban logistics,
and drone deployment. In Industry 4.0 settings, BDTA may
support real-time robot dispatch based on equipment status
and dynamic task priorities. In healthcare, BDTA may assist
hospitals in dynamically allocating medical staff to patients
based on urgency, proximity, and specialty matching.

VIII. RELATED WORK

This section reviews research on task distribution and other
related studies within Spatial Crowdsourcing.

A. Task Assignment in Spatial Crowdsourcing

Crowdsourcing is a collaborative model where tasks are dis-
tributed among participants [26]. SC is an extension of crowd-
sourcing, which requires participants to appear in a specific
location [11], [13]. Typical applications include ridesharing like
Uber and DiDi, as well as urban sensing projects.

Task allocation is central to SC, ensuring that tasks are
efficiently and effectively allocated to workers. Most previ-
ous studies have focused on unilateral preferences in worker-
based/task-based predominant studies. Xie et al. [7] prepackage
tasks and assign them by worker preferences and trajectories
to boost matches and cut communication overhead. However,
task coalitions and budget limits exclude many worker groups,
preventing reassignment to higher-preference workers. Sakai
et al. [14] prioritized urgent tasks by classifying tasks as urgent
or routine, but ignored skill matching and lacked adaptability
in complex settings. Additionally, maximizing task allocation
count or improving individual utility has also been explored.
Zeng et al. [40] proposed offline algorithms with approximation
and competitive guarantees to balance matching quantity and

5https://www.gigwalk.com/
6https://www.fieldagent.net/
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delay under limited real-time worker availability. Chen et al. [5]
studied online approximation algorithms to minimize maximum
latency. Li et al. [41] proposed a gain model for cross-platform
task distribution to ensure fairness via multi-party coordination.

B. Task Assignment Based on Bilateral Preference

Early studies focused on unilateral preferences, neglecting
mutual satisfaction [42], [43], [44]. Later work introduced bilat-
eral models [19], [45], but progress on crowdsourcing platforms
remains preliminary.

Chen et al. [46] designed a convolutional neural network
model that captures the mutual expectations of job seekers and
job recruitment scenarios, considering bilateral preferences. Hu
et al. [47] introduced the Bilateral Occupational-Suitability-
aware Recommender System for online recruitment. However,
its model focuses more on action sequences in the hiring process
than real-time dynamic scenarios. Zhou et al. [1] developed a
stable match method based on bilateral preferences to implement
task assignment by combining task rewards and worker trajec-
tories, but the problem is an offline scenario. Yang et al. [18]
established a dual-perspective selection preference from job
seekers and employers in an online recruitment platform to
optimize person-job fit.

The stable matching framework proposed by Gale and Shap-
ley has been extended from classical domains to modern crowd-
sourcing systems [45], especially in applications involving
spatiotemporal constraints [4], [16], [42]. In particular, Yucel
et al. [48] designed several stable matching algorithms for static
scenarios to achieve stable bilateral worker-task matching across
different MCS systems, and proved that no.single algorithm can
guarantee stable matching in all system settings. Yin et al. [49]
assign workers with varying skill levels to mutually preferred
tasks in static scenarios, aiming to maximize worker satisfaction.
Huang et al. [22] use bipartite graphs and historical data to learn
preferences, applying linear programming for stable matching,
but the method suits static settings with offline workers only.
Yucel et al. [16] focus on a bilateral preference-based approach
under uncertain trajectories. Although the algorithm aims for
stable matching under uncertain conditions, there are cases
where workers do no. visit the scheduled region, resulting in
ineffective matching. Dai et al. [50] proposed a many-to-many
stable matching method that allows sellers to adaptively adjust
their asking prices based on matching results, thereby better
matching buyers and sellers. In addition, in three-dimensional
stable matching, Li et al. [51] designed an approximate algo-
rithm to ensure the stability of the matching results for tasks,
workers, and workplaces.

In summary, although bilateral preference research in SC is
enriching, several key gaps remain. First, most methods assume
static scenarios with known tasks and workers, making it difficult
to adapt to dynamic, time-sensitive scenarios. Second, most
approaches focus on worker locations and ignore their work
trajectories. Third, probabilistic models for uncertain mobility
cannot ensure that assigned workers reach the designated re-
gions, resulting in ineffective or inefficient matches. These gaps

motivate the need for dynamic, bilateral preference-aware, and
mobility-robust assignment mechanisms.

IX. CONCLUSION

In this paper, we explore the problem of Bilateral Preference-
aware Dynamic Task Assignment (BDTA). We first introduce a
hybrid batch processing framework to handle tasks in batches.
After that, we present a task-initiated bidirectional algorithm
and two generalized deferred acceptance algorithms to assign
tasks online, improving overall satisfaction and efficiency. Our
extensive experimental results on two datasets validate the ef-
fectiveness and efficiency of the BDTA method. Future research
may explore more innovative big-data-driven scenarios to en-
hance the generalizability of BDTA, such as modeling complex
worker–task interactions via heterogeneous graphs built from
user behavior. Graph neural networks, predictive models, and
transfer learning can be employed to support adaptive matching
under diverse conditions. Moreover, by leveraging both histor-
ical and predicted attributes of workers and tasks, the system
may enable pre-allocation, thereby improving scheduling effi-
ciency and personalization. Based on the above optimization
techniques, BDTA can be applied to smart cities, industrial
automation, and healthcare to improve coordination among het-
erogeneous entities.
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