
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 1, JANUARY 2026 1

FEditor: Consecutive Task Placement With Adjustable
Shapes Using FPGA State Frames

Yanyan Li , Yu Chen , Zhiqian Xu, Yawen Wang , Hai Jiang , Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—Field Programmable Gate Arrays (FPGAs) are widely
adopted in datacenters, where each FPGA is exclusively assigned
to a task. This strategy results in significant resource waste and
increased task rejections. To address this issue, placement algo-
rithms adjust the locations and shapes of tasks based on Dynamic
Partial Reconfiguration, which partitions an FPGA into multiple
rectangular areas for sharing. However, existing schemes are de-
signed for static task sets without adjustable shapes, incapable of
optimizing the placement problem in datacenters. In this paper,
FEditor is proposed as the first consecutive task placement scheme
with adjustable shapes. It expands the planar FPGA models into
three-dimensional ones with timestamps to accommodate consecu-
tive tasks. To reduce the complexity of three-dimensional resource
management, State Frames (SFs) are designed to compress the
models losslessly. Three metrics and a nested heuristic algorithm
are used for task placement. Experimental results demonstrate
that FEditor has improved resource utilization by at least 19.8%
and acceptance rate by at least 10% compared to the referenced
algorithms. SFs and the nested algorithm accelerate the task place-
ment by up to 10.26×. The suitability of FEditor in datacenter
environments is verified by its time efficiency trends.

Index Terms—Adjustable shapes, consecutive tasks, FPGA,
placement algorithms.

I. INTRODUCTION

F IELD Programmable Gate Arrays (FPGAs) are flexible,
energy-efficient, and high-performance accelerators based

on the Non-Von Neumann architecture in datacenters [1], [2],
[3]. A task is processed on an FPGA by loading its bitstream [9],
[10] rather than being encoded into instructions [19]. FPGAs can
be reconfigured via bitstreams for different functionalities [10]
and such flexibility can help improve resource sharing. As tasks

Received 8 May 2025; revised 25 August 2025; accepted 7 October 2025.
Date of publication 13 October 2025; date of current version 20 November
2025. This work was supported by the National Natural Science Foundation of
China (Grant No. 62472043). Recommended for acceptance by A. Li. (Yanyan Li
and Yu Chen contributed equally to this work.)(Corresponding authors: Yawen
Wang; Hai Jiang.)

Yanyan Li, Yu Chen, and Yawen Wang are with the State Key Laboratory
of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China (e-mail: liyanyan@bupt.edu.cn;
chenyu501@bupt.edu.cn; wangyawen@bupt.edu.cn).

Zhiqian Xu and Hai Jiang are with the School of Computer Science (Na-
tional Pilot Software Engineering School), Beijing University of Posts and
Telecommunications, Beijing 100876, China (e-mail: zhiqian.xu@bupt.edu.cn;
hai.jiang@bupt.edu.cn).

Keqin Li is with the College of Computer Science and Electronic Engineer-
ing, HunanUniversity, and the National Supercomputing Center in Changsha,
Hunan, Changsha 410082, China, and also with the Department of Computer
Science, State University of New York, New Paltz NY12561 USA (e-mail:
lik@newpaltz.edu).

Digital Object Identifier 10.1109/TPDS.2025.3620384

Fig. 1. Compilation flow of FPGAs with FEditor.

on FPGAs have their own dedicated memory and computing
resources, context switching, inter-process communication, and
memory access arbitration can all be streamlined. This enables
FPGAs to consume only the necessary energy and time for task
executions [6]. Thus, FPGAs have been widely adopted [27],
[31], [34], [38], [41].

With the advancement of semiconductor technology, FP-
GAs integrate a greater diversity and quantity of hardware re-
sources [4], [7]. However, current datacenters assign individual
FPGAs with static partitions to tasks [1], [2], [3] rather than
sharing them among multiple tasks. To simplify management, all
FPGAs have the same quantity and layout of hardware resources.
Such rigidity incurs internal fragmentation in each unit for
small tasks while large tasks could be rejected as they cannot
seamlessly occupy those unused regions in multiple units [39].

As shown in Fig. 1, the placement algorithm arranges task
regions and manages resources on FPGAs. Therefore, it should
adapt to datacenter environments to reduce the waste and rejec-
tion rates. In datacenters, resources on an FPGA are different
and non-uniformly arranged, while tasks arrive consecutively
with different resource requirements. The placement algorithm
must meet the following requirements.

1) Dynamic Task Placement With Lifetime Awareness: the
algorithm should map the consecutively arrived tasks onto FP-
GAs with the consideration of all tasks’ life cycles for usage
optimality.

2) Support of Adjustable Task Shapes With Resource Type
Awareness: the algorithm should reshape tasks to satisfy re-
source requirements when they are placed in different locations,
as resource distribution varies there.

1045-9219 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0004-6854-9056
https://orcid.org/0009-0006-3163-5449
https://orcid.org/0000-0002-3509-3273
https://orcid.org/0009-0006-2855-7259
https://orcid.org/0000-0001-5224-4048
mailto:liyanyan@bupt.edu.cn
mailto:chenyu501@bupt.edu.cn
mailto:wangyawen@bupt.edu.cn
mailto:zhiqian.xu@bupt.edu.cn
mailto:hai.jiang@bupt.edu.cn
mailto:lik@newpaltz.edu

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 1, JANUARY 2026

With these two requirements, tasks can be allocated to specific
regions, whose resources meet the requirements, rather than the
entire FPGA with static partitions to reduce the resource waste
and task rejection rates.

Unfortunately, current placement algorithms cannot satisfy
these two requirements at the same time due to the assumption
of a static task set with non-adjustable shapes. FEditor is the
first placement algorithm with considerations of both features.
It maximizes resource utilization and acceptance rate based on
Dynamic Partial Reconfiguration (DPR) [37] and the slotless
partitioning [15]. DPR partitions an FPGA into multiple rect-
angular regions, enabling a task to load its bitstream onto a
pre-placed region without any interference with others. The slot-
less partitioning enables the placement algorithm to dynamically
reshape each region for resource utilization optimization.

As shown in Fig. 1, FEditor can be integrated within the
conventional compilation flow. It obtains a resource requirement
vector and a predicted compilation time from a netlist file. Then,
it stacks all State Frames (SFs) within the life cycle of a task
and generates an optimal placement strategy. At last, these
selected SFs are edited based on the strategy for a relatively
optimal placement.

FEditor expands the planar FPGA model into a three-
dimensional (3D) model with a time dimension to support
dynamic task placement with lifetime awareness. To losslessly
compress the 3D model, FEditor introduces SFs to record es-
sential states, simplify resource management, and transform
the three-dimensional placement problem into several finite
two-dimensional sub-problems.

FEditor also expands the placement strategy into a quadruplet,
including location (x or y axis coordinates) and shape (length
and width) factors, to support adjustable task shapes with re-
source type awareness. Three metrics are proposed to evaluate
candidate placements and formulate the placement problem as
a combinatorial optimization. A nested heuristic algorithm is
developed to accelerate the process by partitioning the search
space and parallelizing computations.

Overall, FEditor makes the following contributions:
1) FEditor1 is the first dynamic placement algorithm support-

ing consecutive tasks with adjustable shapes. It expands
the FPGA model into a 3D version and the placement
strategy uses a quadruplet for task placement.

2) State Frames (SFs) are proposed to simplify resource
management by compressing expanded FPGA models and
transforming the 3D placement problem into finite 2D
sub-problems for acceleration.

3) FEditor designs three metrics on fragmentation and com-
pactness to evaluate candidate placements as well as a
nested heuristic algorithm to accelerate the combinatorial
optimization.

This paper is organized as follows. Section II reviews related
work. Section III describes the expanded 3D problem. Section IV
defines the 2D sub-problems. Metrics are detailed in Section V.
Section VI formulates the problem and describes the nested
algorithm. Experimental results are presented in Section VII.
Section VIII concludes and states the future work.

1https://github.com/NGDC-bupt/FEditor

Fig. 2. Terms for task placement. Different colors indicate different tile types.
The grid/layout is abstracted into a bitmap.

II. RELATED WORK

There have been numerous previous placement algorithms
based on fixed-size regions such as DML [11] and ExHiPR [35],
where FPGAs were pooled and partitioned into slots for task
execution [42]. Although they were relatively easy, the resource
utilization was low.

R3TOS [15] wrapped tasks with input and output data buffers
and partitioned FPGAs into rectangular regions with arbitrary
shapes, named slotless partitioning. Such partitioning enabled
placement algorithms to adjust the location and shape of a region
for a task’s requirement.

There are many algorithms focusing on optimizing locations
based on the slotless partitioning. Maximal Empty Rectangles
(MERs) were used to manage single-type-resource FPGAs [5],
[32] by assuming that there is only one type of resource on
an FPGA board. MERs can be split and merged as a buddy
system [23], [24], [25], although other memory management
methods are introduced as well [29], [40]. A binary tree was
introduced to organize these MERs [8] and a multifork tree was
proposed to accelerate the splitting and merging [37]. For better
flexibility, vertex links were developed [30] to record boundary
vertices of idle spaces and edges were weighted by the execution
durations of corresponding tasks. A placement strategy is gen-
erated based on these weights [33], although only static task sets
are considered. To place consecutive tasks, the FPGA model was
expanded with a time dimension [30] as the Three-Dimensional
Bin Packing (3DBP) problem [21], [22], [26]. However, these
algorithms were designed for single-type-resource FPGAs due
to the complexity of three-dimensional resource management.

To support placement on multi-type-resource FPGAs, a region
with the same resource distribution, which will be described
in Fig. 2(a), was selected as the task required [12], [17], [20].
Multi-type-resource FPGAs are equipped with multiple types
of resources on the board. Although overlap graphs were intro-
duced to handle placement conflicts [13], [36], they were only
designed for static task sets and suffered from low acceptance
rate. A few algorithms have attempted to update overlap graphs
dynamically for consecutive tasks, but suffered from high com-
putational overheads [18].

Few existing algorithms focus on adjusting both the location
and shape of a region simultaneously. Identical micro-slots could
be dynamically merged into a large region for a task [14].
This mechanism needs extra resources to implement commu-
nications. For flexibility, tasks are constructed from pre-defined
modular components and their alternative implementations [8].
Look-up tables are used to record all feasible locations and

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

https://github.com/NGDC-bupt/FEditor

LI et al.: FEDITOR: CONSECUTIVE TASK PLACEMENT WITH ADJUSTABLE SHAPES USING FPGA STATE FRAMES 3

TABLE I
NOTATIONS AND DESCRIPTIONS

shapes of modules and place consecutive tasks by enhanced
overlap graphs. However, such mechanism was limited to single-
type-resource FPGAs.

III. THE EXPANDED 3D PROBLEM

Multi-resource-type FPGAs and consecutive tasks are mod-
eled to address the consecutive task placement problem with
adjustable shapes. Its NP-hardness is also proved. Related nota-
tions are listed in Table I.

A. FPGA Model

Resources on FPGAs, including configurable logic blocks
(clbs), block random access memories (brams), and digital signal
processors (dsps), are interconnected via switch boxes. Multiple
identical resources compose a minimal placement unit, called a
tile. They have the same physical size and are arranged in a
grid on an FPGA. Since the quantity of semiconductors in each
tile remains the same and different types of resources change
in the number of transistors required for the composition, the
number of resources in a tile varies with its type. For instance,
a CLB tile might contain eight clbs while a DSP tile has two
dsps. Each column in the FPGA grid consists of tiles with the
same type. The placement algorithm assembles neighboring tiles
into a region assigned to a task. As shown in Fig. 2(a), the
FPGA board can be abstracted as a grid with coordinate axes.
The resource distribution indicates the order in which different
resources are arranged along the row dimension.

FEditor further expands the planar model into a 3D model
with a time dimension to support consecutive placements. The
grid plane is assigned with an infinite height, which abstracts
the FPGA into a box. The region of a task is assigned with

Fig. 3. A placement example of four tasks. Tasks are labeled based on their
arrival orders. Tasks 1, 2 and 4 overlap in time. Task 3 overlaps with tasks 1 and
4 in space. Here, the resource difference is ignored for simplicity.

Fig. 4. Piecewise functions of different resources. The shaded blocks at the
bottom illustrate the resource distribution of every row.

the same height as the execution period, which abstracts the
task into a cuboid. Since resources are non-uniformly arranged
on an FPGA, different locations where a task could be settled
lead to different task shapes. Therefore, the bottom surface of a
cuboid is adjustable according to the resource requirement and
the location as shown in Fig. 3.

Therefore, each FPGA can be formulated as a quadruplet:

FPGA = (xF , yF , T,fk), k ∈ {clb, bram, dsp}, (1)

where xF and yF denote the maximum row and column indices,
T is its height and fk represents piecewise functions of different
resource types. T is theoretically finite and set as the timestamp
for analysis when all tasks are removed. Regions on an FPGA
can be formulated as (x, y, l, w), where (x, y) indicates the
coordinates of the bottom-left corner and (l, w) specifies its
length and width. Obviously, a feasible placed region must be
within an FPGA area, stated as:

C1 : 0 ≤ x < x+ l ≤ xF , (2)

C2 : 0 ≤ y < y + w ≤ yF . (3)

Since tiles with the same x are identical, FEditor uses a piece-
wise function for each resource type to abstract its distribution
on an FPGA as shown in Fig. 4. The number of tiles between two
x-values can be calculated by subtracting their function values.
Therefore, the quantity of a certain type of resource in a placed
region can be calculated by:

rs,k = w · (fk(x+ l)− fk(x)), k ∈ {clb, bram, dsp}. (4)

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 1, JANUARY 2026

Resource supply of a placement can be modeled as a vector:

rs = 〈rclb, rbram, rdsp〉. (5)

Since a tile is the unit of axes on an FPGA grid, FEditor gets
the overall quantity of resources in a region by L1 norm:∑

rs,k = ||rs||1 = l · w. (6)

B. Task Model

FEditor specifies a task in three aspects, including timestamp
t, resource requirement rt and placement p, denoted as:

task = (t, rt, p). (7)

Each task is assigned with four timestamps, including ar-
rival timestamp tin, loading timestamp tload, removal timestamp
tremove and deadline timestamp tddl. Arriving timestamp tin can
be recorded when the netlist file of a task is received by FEditor.
As shown in Fig. 1, a task is placed into a region in the synthesis
phase and compiled into a bitstream in the implementation and
bitstream generation phases before being loaded to an FPGA.
FEditor calculates the real loading timestamp as:

tload = tin + tFEditor + t2 + t3. (8)

In (8), t2 is the period of implementation phase, and t3 is
the period of the bitstream generation phase. A deep learning
model predicts the value of t2 + t3 based on the netlist file with
accuracy exceeding 95% [35]. FEditor uses the model to predict
the time, denoted asΔt2,3 and sets a maximum durationΔtFEditor

based on historical placements to ensure its completion before
the timeout. Therefore, an approximate loading timestamp can
be calculated as:

t′load = tin +ΔtFEditor +Δt2,3 ≥ tload. (9)

The removal timestamp tremove indicates when to release
resources. FEditor obtains it by adding execution period to the
loading timestamp. The execution period can be derived from
the quantity of its data. Additionally, a deadline timestamp is set
for each task based on its Service Level Agreement (SLA). Tasks
can be delayed but have to terminate before the deadline. This
relaxation aligns with current datacenter practices. Based on the
above, the complete form of the timestamp vector is expressed
as:

t = 〈tin, t
′
load, tremove, tddl〉. (10)

FEditor uses Integrated Synthesis Environment (ISE) to ex-
tract the resource requirement of a task from its netlist file. The
requirement is formulated as:

rt = 〈rclb, rbram, rdsp〉. (11)

The placement of a task is a region on an FPGA. Therefore,
the formulation of a placement p is:

p = (x, y, l, w). (12)

As a legal placement must satisfy resource requirements and
a tile should only be assigned to one task at each moment,

constraints are derived as:

C3 : rs,k ≥ rt,k, k ∈ {clb, bram, dsp}, (13)

C4′ : tasks cannot overlap in both time and space. (14)

C. 3D Problem Definition

Based on the above models, the expanded 3D placement
problem is defined, similar to the 3DBP [21], [22], [26].

Definition 1: The expanded 3D placement problem for con-
secutive tasks with adjustable shapes is defined as:
� Input: An FPGA, (xF , yF , T,fk), a list of early placed

tasks, [(t, rt, p)], and an arrived task, (t0, rt,0).
� Output: A placement strategy, p0, if and only ifC1–C4′ are

all satisfied while achieving the most on resource utilization
and acceptance rate calculated by time-overlapped tasks,
or a rejection.

Compared with a conventional 3DBP, the internal substances
of the box and cuboids in FEditor are unevenly distributed,
because the resources on a FPGA grid are different. This makes
the expanded placement problem harder than the 3DBP. To prove
this NP-hardness, a reduction from the 3DBP is constructed.

Theorem 1: The expanded placement problem for consecu-
tive tasks with adjustable shapes on FPGAs is NP-hard.

Proof: The 3DBP problem can be reduced to an instance of
the task placement problem. In 3DBP, there exists a given set of
items I = {i1, i2, . . . , in} and a box with size, (L,W,H). Each
item ij has a 3D size, (lj , wj , hj). The 3DBP solver needs to
assign every item a location (xj , yj , tj). Its constraints require
that items do not overlap and do not exceed the box, which can
be formulated as:

∀i, 0 ≤ xj + lj ≤ L, 0 ≤ yj + wj ≤W, 0 ≤ tj + hj ≤ H.
(15)

We define the FPGA in the instance as (L,W,H). For each
task, let its t be 〈tj , tj , tj + hj〉, rt be 〈ljwj , 0, 0〉 and p be
(xj , yj , lj , wj). Constraints of 3DBP are equivalent to those of
C1, C2 and C5. The assertion stated in the preceding paragraph
holds.

If 3DBP has a solution, we can construct placements in the
instance. To simplify, we denote the solution as swith a location,
(xj , yj , tj) to each item ij with size, (lj , wj , hj). This solution
can be transformed into the placements in the instance. A taskTj

is assigned (xj , yj , lj , wj) with attributes 〈tj , tj , tj + hj〉 and
〈ljwj , 0, 0〉. Since the constraints are equivalent, these place-
ments are valid.

As the transformation above only involves variable mapping,
the reduction from 3DBP to the placement problem can be
completed in polynomial time. Therefore, the problem is at least
as difficult as 3DBP. As 3DBP is a proved NP-hard problem,
the placement for consecutive tasks with adjustable shapes on
FPGAs is NP-hard. �

IV. THE SIMPLIFIED 2D SUB-PROBLEMS

Developing a high-performance solver for the expanded
placement problem is extremely challenging due to its
complexity. An unconventional representation, State Frames

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FEDITOR: CONSECUTIVE TASK PLACEMENT WITH ADJUSTABLE SHAPES USING FPGA STATE FRAMES 5

Fig. 5. The generation of SFs in the example shown in Fig. 3.

(SFs) is used to simplify the resource management and the
expanded 3D problem. With SFs, the 3D problem is transformed
into a finite number of 2D sub-problems, providing an opportu-
nity for the development of high-performance solvers.

A. State Frames

Rather than recording information about the box and cuboids
as shown in Fig. 3, FEditor records the state of an FPGA. The
state is defined as the occupation states of tiles as shown in
Fig. 2(b). FEditor uses (t, sx,y) to represent the occupation state
of a tile, where t indicates the timestamp and sx,y shows whether
the tile at location (x, y) is occupied(1) or idle(0) with this
timestamp. Therefore, the FPGA state is formulated as:

state = (t′,S), t′ ∈ [0, T],S = (sx,y) ∈ {0, 1}xF×yF . (16)

The state exhibits the continuous characteristics of the vari-
able t′, while tasks do not arrive continuously. Therefore, the
gap between this state representation and the actual task arrivals
leads to substantial amounts of redundant information, which
complicates resource management.

State Frames eliminate unnecessary information for the spe-
cial states of an FPGA. They are generated whenever a task is
loaded onto or removed from the FPGA, as the variable S only
changes in those moments. To simplify, a set CT is defined to
include all related timestamps. An SF can be formulated as:

SF = (t,S), t ∈ CT,S = (sx,y) ∈ {0, 1}xF×yF . (17)

This operation is similar to extracting frames from the con-
tinuous model, as shown in Fig. 5(a) and (b).

SFs compress the 3D FPGA model losslessly as the occu-
pation state of every tile with any timestamp can be obtained.
To get (ti, sx0,y0

), FEditor finds out an SF (tj ,Sj) satisfying
tj ≤ ti < tj+1. The state is equal to Sj [x0, y0].

Fig. 6. The stacking process of SFs related to task 4 in the example shown in
Fig. 3.

Since compilation time is considered in FEditor, early arrived
tasks may be loaded onto the FPGA after later arrived tasks, such
as tasks 3 and 4 in Fig. 3. As the resources assigned to the early
task will not be used until its loading time, the latter task can
be overlapped with the earlier one in space to increase resource
utilization. To avoid conflicts, FEditor selects SFs throughout the
entire life-cycle of the task and evaluates a placement strategy
on all selected SFs. In this way, the 3D continuous placement
problem is simplified into a finite number of 2D sub-problems.
Rather than generating a placement strategy according to each
selected SF, FEditor stacks all those SFs to construct one feasible
search space. Therefore, a candidate placement is generated
from the stacked SF and evaluated from all selected SFs. We
formulate this operation as:

Sp = stack(SFm, . . . ,SFn) = Sm ∨ · · · ∨ Sn, (18)

where m and n correspond to tload and tremove respectively, as
shown in Fig. 6. Since the placed tasks are not recorded, the
complex constraint C4 can be simplified into:

C4 : Sp[x+ l′, y + w′] = 0, 0 ≤ l′ ≤ l, 0 ≤ w′ ≤ w. (19)

Additionally, conditions in (18) are formulated as:

C5 : 0 ≤ tm ≤ tn ≤ T, (20)

C6 : tm ≤ tload and tm+1 > tload, (21)

C7 : tn ≤ tremove and tn+1 > tremove. (22)

B. 2D Sub-Problem Definition

Based on SFs and the stacking process, the simplified 2D
sub-problems can be stated as the follows.

Definition 2: The simplified 2D placement sub-problems for
consecutive tasks with adjustable shapes are defined as:
� Input: An FPGA, (xF , yF , T,fk), a list of created SFs,
[(t,S)], and an arrived task, (t0, rt,0).

� Output: An edited list of SFs, [(t,S)] based on a placement
p0, if and only ifC1–C7 are all satisfied while achieving the
most on resource utilization and acceptance rate calculated
by SFs, or a rejection with non-edited SFs.

Straightforwardly, solvers of both problems obey the same
framework. First, time-overlapped tasks or SFs are found out.
Second, a candidate placement is generated. Third, legality
check is conducted. Fourth, metric calculations are performed
for a legal placement. Fifth, task lists or SFs are updated. To
evaluate the simplification, we assume that the second and fifth
steps are the same while the first step can be completed in one

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 1, JANUARY 2026

search with a hash. We can focus on the processing time of
legality check and metric calculation.

For rejections, the two solvers handle deadlines in the same
way, updating timestamps and repeating the framework. There-
fore, the proof is established for a legal candidate.

Theorem 2: The simplified 2D sub-problems reduce compu-
tation times compared with the expanded 3D problem.

Proof: We suppose that there are n early placed tasks and the
candidate placement strategy is p0 = (x0, y0, l0, w0).

In the simplified 2D sub-problems, the legality check is
conducted once on the stacked SF. The metric calculations are
applied to every selected SF. Therefore, the computation time is
equal to the number of selected SFs, O(m). Theoretically, each
task can create at most 2 SFs. Therefore, 0 < m ≤ 2n′, where
n′ is the number of time-overlapped tasks.

In the expanded 3D problem, the legality check is conducted
on every task, resulting in the computation time of O(n′).
Additionally, the metric calculations are performed on all time-
overlapped tasks. Therefore, the cost of metric calculations is
also O(n′).

The overall computation time of the simplified 2D sub-
problems is O(1 +m) ≤ O(1 + 2n′) while the expanded 3D
problem is O(2n′). Tasks in datacenters arrive consecutively
and densely, leading to multiple tasks’ arriving and completing at
the same time. Additionally, placement algorithms will optimize
metrics to overlap tasks for higher resource utilization and accep-
tance rate. Both features reduce the number of SFs generated by
each task. Therefore, with m
 2n′, the simplification by SFs
is proved. �

V. METRICS ON FRAGMENTATION AND COMPACTNESS

To solve the 2D sub-problems with high resource utilization
and acceptance rate, FEditor relies on three metrics for internal
fragmentation, external fragmentation, and placement compact-
ness to evaluate task placement candidates.

A. Internal Fragmentation

Internal fragmentation quantifies the extent of unused re-
sources within placed regions. Those resources cannot be al-
located to other tasks until the task is removed. This occupation
will decrease resource utilization. A metric is designed to help
minimize internal fragmentation. As the quantities of different
resources vary from each other, the metric values of different
types are measured respectively. A resource supply vector and
a resource requirement vector are used to calculate an internal
fragmentation vector as:

Δr =

〈
rs,k − rt,k

rs,k

〉
3

, k ∈ {clb, bram, dsp}. (23)

With the help of constraint C3, we derive that:

Δr ∝ rs − rt ≥ 0. (24)

FEditor calculates the metric for internal fragmentation based
on the weighted L1 norm of the vector:

a = Ωw(Δr) =
∑
k

Δrk · wk. (25)

Fig. 7. The three-dimensional objects of idle resources in the example illus-
trated in Fig. 3.

Rare resources are considered first. Therefore, the weight is
calculated by the exponential decay of resource quantities on the
entire FPGA, Rk:

wt =
e−kRk∑
k e
−kRk

. (26)

Based on the formulation, the value range of metric a is [0,1).
When quantities of resources in the region exactly meet the
requirement, a is 0. The more resources are wasted, the closer to
1 the value is. As this metric can be calculated for a placement,
we denote a = fa(x, y, l, w).

B. External Fragmentation

Only neighbouring tiles can be assembled into a region.
External fragmentation evaluates the degree of dispersion by
the compactness of idle resources based on their shapes. Tasks
can be rejected if idle resources are scattered. In other words,
there are task sets that can be accepted in compact shapes and
rejected in scattered shapes. Therefore, FEditor defines that the
more compact the idle shapes are, the greater the number of
acceptable task sets will be.

Since FPGAs are modeled as a box, idle resources are shaped
into three-dimensional irregular objects as shown in Fig. 7.
Accepted tasks are cuboids that can be placed within those
objects. FEditor defines Fill Set as the set of those accepted
cuboids, elements of which can exactly fill the given idle object.
Therefore, the number of Fill Sets reflects the compactness of
the object.

We useΓ(f) to denote the number of Fill Sets for an idle space
f . If a task placement p1 exhibits less external fragmentation
than another one p2, we can derive:

Γ(f1) > Γ(f2). (27)

Theorem 3: A cuboid owns the most Fill Sets.
Proof: Without losing generality, let f1 be a cuboid and f2

be an irregular object. Since the two candidates are generated
from identical Sp, the overall search space can be formulated
as (xF , yF , tremove − tload). Therefore, the volume of remaining
resources, denoted as Vf , can be derived as:

Vf = Vb − Vo − Vt, (28)

where Vb, Vo and Vt are the volumes of the partial box, other
tasks and candidate placement, respectively. Since different

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FEDITOR: CONSECUTIVE TASK PLACEMENT WITH ADJUSTABLE SHAPES USING FPGA STATE FRAMES 7

Fig. 8. Two possible shapes of idle resources.

Fig. 9. Generation of new cuboids with adjacent surfaces.

placements only influence Vc, we only calculate its value:

Vc = (lpwp) · (tremove − tload)

= ||rs,p
||1 ·Δt

= (||rt,p ||1 + ||Δrp||1) ·Δt, p ∈ {1, 2}. (29)

As FEditor will minimize the internal fragmentation, we can
suppose both candidates have no fragmentation:

fa(x1, y1, l1, w1) = fa(x2, y2, l2, w2) = 0. (30)

According to (30) and (25), we can derive:

Δr,1 = Δr,2 = 0. (31)

Therefore, the values of Vc of two candidates are identical:

Vf,1 = Vf,2. (32)

Based on the equality, we suppose a basic example shown
in Fig. 8, where f2 removes a small cuboid (w0, h0, l0) from
the cuboid (w, h, l) (i.e., f1) and appends it to another surface.
Since the bottom and top surfaces along the time axis are fixed
as tload and tremove, the small cuboid can only be appended to
surrounding surfaces. Similarly, we can regard f1 as placing the
convex cuboid into the hollow. For simplicity, the convex cuboid
is denoted as fconv and the common part of f1 and f2 is denoted
as fcomm. Therefore, we can count their Fill Sets:

Γ(fp) = Γ(fcomm) + Γ(fconv) + Γp(fconv). (33)

Γ(fcomm) and Γ(fconv) are the numbers of Fill Sets of the
common part and the convex cuboid respectively. Γp(fconv)
indicates the number of new Fill Sets created by combiningfcomm

and fconv according to fp.
A unit cuboid represents a tile with a height of one time unit.

Constructing a Fill Set involves grouping these unit cuboids
within an object.Γp(fconv) is determined by counting the number
of new cuboids that fconv adds to fcomm as shown in Fig. 9. As
only adjacent surfaces will expand the cuboid in fcomm, each

Fig. 10. SFs of the case.

surface will generate new Fill Sets as:

Γ0(fconv) = l0 · w0 · h0. (34)

The convex cuboid is adjacent to f1 with three surfaces and
f2 with one. We can derive:

ΔΓ12 = Γ1(fconv)− Γ2(fconv)

= (3− 1) · Γ0(fconv) > 0. (35)

Therefore, the cuboid in this case owns more Fill Sets:

ΔΓ = Γcuboid − Γobject > 0. (36)

Moreover, we can reduce all irregular objects to this basic
case through partitioning. Ifp2 creates multiple isolated irregular
objects, we assess each object separately and evaluate the quality
by their summaries. According to (36), the summary yields a
positive result:

ΔΓ =
∑

objects

ΔΓobject =
∑

objects

(Γcuboid − Γobject) > 0. (37)

If those objects are all cuboids, the number of their Fill Sets
will also be smaller than that of an entire cuboid. The Fill Set
containing the exact larger cuboid will be incompatible with the
smaller ones. Therefore, the difference is at least one:

ΔΓ = Γbig_cuboid −
∑

Γsmall_cuboid ≥ 1. (38)

Consequently, the theorem holds in all cases.
Theorem 4: A rectangle owns the most Fill Sets.
Proof: The case in Fig. 8 creates multiple SFs as illustrated

in Fig. 10. In period [tload, tremove], f1 generates one SF lasting
for the whole period, while f2 generates three. We can calculate
based on the rectangular:

Γ(f1) = 0, (39)

Γ(f2) = w0l0h0 − 2 · w0l0h0 = −w0l0h0 < 0. (40)

We get the same conclusion with Theorem 3:

Γ(f1) > Γ(f2). (41)

As proof in Theorem 3, this theorem holds in all cases. �

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 1, JANUARY 2026

Fig. 11. Measuring allocated compactness.

FEditor uses the difference between idle spaces and their min-
imal bounding rectangles to represent external fragmentation, as
defined in Theorem 4:

b =
∑

islands

(
areaisland∑

islands areaisland
· areaisland

minRecAreaisland

)

=
1∑

islands areaisland
·
∑

islands

area2island

minRecAreaisland
. (42)

For simplicity, we denote b = fb(x, y, l, w) and its value range
is [0,1]. When the remaining space is a rectangle, b = 1. If there
is no idle resource, b = 0.

C. Placement Compactness

Placement compactness evaluates idle resources in task place-
ments to avoid hollows in idle spaces. FEditor uses the area
of adjacent surfaces between tasks and boundaries to quantify
placement compactness. Maximizing this metric will make the
placement strategy closer to other tasks and FPGA boundaries.
Therefore, hollows can be minimized.

In Fig. 11, there are two candidate placements for task 3 while
tasks 1 and 2 have been loaded onto the FPGA. As shown in red
rectangles, adjacent surface S2 owns the higher area. Therefore
it exhibits better placement compactness. We can calculate those
areas:

S1 = w1 ·min (ttask1, ttask3), (43)

S2 = w2 ·min (ttask2, ttask3). (44)

There are three SFs in Fig. 11. The adjacent surfaces crossing
multiple SFs can be decomposed into multiple segments aligned
with SFs:

S1 = e1 · (t2 − t1), (45)

S2 = S1
2 + S2

2 = e2 · (t2 − t1) + e2 · (t3 − t2). (46)

As shown in Fig. 12(a), surfaces between two SFs have the
same height. Therefore, the area of an adjacent surface can be
converted into multiple areas of a unit surface:

S = n · Sunit. (47)

The maximal coefficient of the area equals to the sum of
boundaries of a placement:

Sideal = 2 · (l + w) · height. (48)

Fig. 12. Placement compactness of the two candidates. Yellow ones are
boundaries of candidate. Blue and green ones are placed tasks’. Red ones are
adjacent surfaces or edges created by candidate placements.

Therefore, we have the ratio between areas of adjacent sur-
faces and maximal values to quantify placement compactness
as:

Θ(S) =
S

Sideal
=

e · height
2 · (l + w) · height =

e

2 · (l + w)
. (49)

FEditor uses the following equation to calculate the area S:

w = ||(Allock ∧Aedge) ∨ (Alloc′k ∧ Sp)||0, (50)

Alloc′k =
∨

direct

Allocdirectk , direct ∈ {l, r, u, d}. (51)

The first intersection operation in (50) computes adjacent
surfaces between the candidate placement and boundaries while
the second computes those between the candidate one and early
placed tasks. Allock denotes a matrix for early placed tiles.
Aedge is a pre-defined matrix in which cells adjacent to bound-
aries are labeled. Alloc′k denotes the boundary of the placing
region, which can be calculated in (51). The superscript direct
indicates the direction of each boundary. Sp is calculated in
(18). After applying the union operation on the two matrices
and calculating L0 norm, we get a scalar value representing
adjacent edges.

According to the SF illustrated in Fig. 12(b), an adjacent
surface in an SF is an adjacent edge. Along with the calculation of
adjacent surface, we derive the metric based on adjacent edges:

Θ(e) =
e

eideal
=

e

2 · (l + w)
= Θ(S). (52)

Therefore, Θ(S) can be calculated based on SFs.
We define placement compactness as:

c =
||(Allock ∧Aedge) ∨ (Alloc′k ∧ Sp)||0

2 · (l + w)
. (53)

Similarly, we denote c = fc(x, y, l, w) and its range is [0,1].
When the placement has no adjacent surfaces, c = 0. When the
placement fills a hollow in idle spaces, c = 1.

VI. THE OPTIMIZATION FUNCTION AND ALGORITHM

Based on the above three metrics, the simplified 2D sub-
problems can be formulated as a combinatorial optimization
problem. A nested heuristic algorithm is implemented and ex-
plained for acceleration.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FEDITOR: CONSECUTIVE TASK PLACEMENT WITH ADJUSTABLE SHAPES USING FPGA STATE FRAMES 9

A. The Optimization Function

To increase resource utilization and task acceptance rate,
FEditor defines an optimal placement strategy to minimize
fragmentation and maximize compactness. Based on the above
three metrics, the optimization function of the simplified 2D
sub-problems can be formulated as:

P : min

∑
ti
(αai + β(1− bi) + γ(1− ci)) · (ti+1 − ti)

tm − tn
,

s.t. C1− C7,

C8 : α+ β + γ = 1, 0 ≤ α, β, γ ≤ 1. (54)

α, β, γ are hyperparameters, whose values will be evaluated
in Section VII. Constraints C1− C7 are described in the above
equations while C8 limits the range of hyperparameters. Ac-
cording to the definition of SFs, the overall metric values should
be evaluated over all selected SFs. This formulation uses their
durations to maintain fairness among SFs.

B. The Nested Heuristic Algorithm

Since the placement problem is NP-hard, FEditor uses heuris-
tic algorithms to make placements. Since searching a four di-
mensional space using conventional algorithms is quite costly,
a nested heuristic algorithm is implemented to speed up the
process. The outer loop is developed using Simulated Anneal-
ing (SA) [28], while the inner loop employs Particle Swarm
Optimization (PSO) [16]. The shape of a region is related to
its location, as resource distributions vary in FPGA locations.
This feature enables the nested optimization. Specifically, SA
is responsible for optimizing the location (x, y) whereas PSO
aims to find the optimal shape (l, w) for each (x, y).

Additionally, SA and PSO can both run in parallel to further
accelerate the process. The FPGA grid can be partitioned into
multiple areas. Each SA worker determines the location within
one area. This approach partitions the search space. PSO worker
can process initializations and updates of particles in parallel for
acceleration.

The pseudocode of the nested algorithm is shown in
Algorithm 1. The functions, launch ∗ (), launch multiple
threads to run SA (lines 1–12) or PSO (lines 14–25) in parallel.
Specifically, launchSAs() (line 32) needs to decide whether
to update the global bests. The algorithm will attempt to place
the task until success or expiration (lines 30). The SA loop will
call the PSO loop at each temperature (lines 2 and 9–10). SA
updates the best strategy based on Metropolis Criterion [28]
(line 5–7). PSO will initialize (lines 15–16) and update particles
iteratively (lines 17–25). Both SA and PSO will terminate the
iteration when either the iteration limit is reached or the current
best placement stabilizes.

C. Analysis of Time Complexity

Each SA worker will iterate at most (log T0 − log T)/ logα
times. And the PSO loop will iterate at most iter times. There-
fore, for a given task, the overall time complexity is:

O(iter · (log T0 − log T)/ logα) (55)

Algorithm 1: The Nested Heuristic Algorithm.

Input: Task:(t, rt), SFs:[(ti,Si)]
Output: Placement Strategy:(x, y, w, h)
1: Function SALoop(best, bcost, region):
2: while T ≥ T0orcnt ≥ CNT do
3: pos← UpdatePos(region, pos)
4: bestSA, bcostSA← PSOLoop()
5: if bcostSA < bcostor
random < exp(−(bcostSA− bcost)/T) then

6: best, bcost← UpdateGB(bestSA, bcostSA)
7: cnt← 0
8: end if
9: T ← T ∗ α

10: cnt← cnt+ 1
11: end while
12: endFunction
13:
14: Function PSOLoop:
15: particles← launchPSOs(InitParticle, pos,Sp, rt)
16: bestSA, bcostSA← InitLB(particles)
17: while iter ≥ 0orcnt ≤ CNT do
18: particles←

launchPSOs(UpdateParticles, particles)
19: if p ∈ particlesandp.c < bcostSA then
20: bestSA, bcostSA, particles← UpdateLB(p)
21: cnt← 0
22: end if
23: iter ← iter − 1
24: cnt← cnt+ 1
25: end while
26: return bestSA, bcostSA
27: endFunction
28:
29: bests, bcosts← Init()
30: WHILE bestsisemptyortexpires do
31: Sp ← StackStateFrames(t)
32: launchSAs(SALoop,bests, bcosts)
33: IF bestsisempty then
34: t← UpdateTime(t,SFs)
35: end if
36: end while
37: return bests.best

Without partitioning and parallelism, SA needs to increase the
value of T0 to maintain the same number of iterations while PSO
needs to calculate each particle one-by-one. Supposing there are
thdsSA SA workers and particles PSO workers, the number of
SA iterations is thdsSA times more than the nested one while the
computations of particles need to be serialized. Approximately,
the time complexity is:

O((iter · particles) · (thdsSA · (log T0 − log T)/ logα)))
(56)

The complexity of calculating metrics for each candidate
region can be determined using (25), (42) and (53). Internal
fragments can be obtained via a functional operation in O(1)

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 1, JANUARY 2026

TABLE II
SIMULATION FPGA MODELS

TABLE III
INFORMATION OF TASK SETS

time. A structure is developed to maintain idle spaces enabling
the calculation of external fragments through list lookup inO(1)
time. Compactness is computed based on a state frame inO(n′2)
time. Parametern′ is the portion of split search space and is much
smaller than the original length and width of FPGA boards.
Therefore, the overall time complexity is O(n′2).

Since both parallel and sequential versions need to calculate
metrics for each candidate region, the accelerating rate can
disregard this portion. Therefore, our algorithm theoretically
executes faster than normal nested algorithms by a factor of
approximately around (paritcles · thdsSA).

VII. EVALUATION

FEditor is evaluated in three aspects in a simulated envi-
ronment. The effectiveness of the three metrics and the nested
heuristic algorithm is also verified. Additionally, the suitability
of FEditor for datacenters is proved.

A. Environment Setup

The simulation is performed on an Intel Core i5-13600 K CPU
(5.10 GHz) with 32 GB memory. FEditor and other compared
methods are evaluated using Xilinx’s mainstream FPGA families
(Virtex and Zynq) and Intel’s Altera Cyclone FPGAs as detailed
in Table II.

Four types of task sets are used to evaluate FEditor as shown
in Table III. Tasks are generated based on an uniform distributed
engine. To avoid the influence of scattered task sets, the result
of each type is averaged over 10 unique task sets.

As FEditor is the first consecutive task placement algorithm
with adjustable shapes, we can only select three most related and
most advanced algorithms to compare, including P2MC [30],
3D and LA-3D [36]. P2MC can handle FPGAs with multiple
resource types based on location weights, but assumes a static set
of tasks. Tasks in the set arrives simultaneously and are placed

immediately. As the whole FPGA remains occupied until all
loaded tasks are completed, this immediate placement strategy
leads to many task expirations. Differently, 3D and LA-3D
consider the time dimension to support consecutive tasks based
on vertex links. But they are established on FPGAs with a single
resource type. As the vertex links only record the resource states
at latest timestamp, the two algorithms can only attempt to place
one task each time. Therefore, tasks cannot be delayed based on
their deadlines to optimize the overall resource utilization and
acceptance rate.

We expand P2MC with a lazy placement strategy. The en-
hanced P2MC collects arrived tasks and places them at their
earliest tddl. Also, we developed H3D and LA-H3D to adapt
different resources on FPGAs. Starting from each vertex, they
exhaustively search for the minimal length and width of each
task. Then they choose the best placement. To support deadline
and compilation prediction, H3D and LA-H3D record the ver-
tex links with each special timestamp as SFs do. The loading
timestamps can be calculated as FEditor does.

To compare with the conventional slot-based placement
algorithm, we implemented a straightforward allocation strategy
named FIFO-slot. This strategy partitions the FPGA board into
multiple static slots. Each task will either fit into one slot or be
rejected. Tasks are placed into idle slots in FIFO order.

B. Performance

Three rates, including utilization, acceptance rate, and re-
source waste, are calculated to evaluate the performance of
FEditor and other algorithms as shown in Fig. 13.

Utilization rate denotes how many resources are effectively
used. It is the sum of SFs weighted by their durations. Accep-
tance rate indicates how many tasks in the task set can be suc-
cessfully placed. Resource waste denotes the degree of internal
fragmentation. Therefore, we define an optimal algorithm as the
one with the highest utilization rate and acceptance rates as well
as the lowest resource waste rate.

FEditor and other algorithms all reach relatively stable lev-
els of utilization and resource waste across all types of task
sets. However, their acceptance rates decrease as the resource
requirements increase. This is because the number of tasks in
different types of task sets is identical. Larger tasks occupy more
resources over longer periods. As a result, FEditor and other
algorithms must reject tasks due to resource shortages.

The experimental results demonstrate that FEditor signifi-
cantly outperforms existing algorithms across the three rates.
Compared with H3D and LA-H3D, FEditor constitutes an en-
hanced evolution of the LA-H3D algorithm, addressing its inher-
ent limitations. While LA-H3D employs a one-step look-ahead
strategy constrained by computational complexity, FEditor gen-
erates placement strategies across the entire life-cycle of each
task. This comprehensive approach yields substantial perfor-
mance gains. On the T4-Zynq suite, FEditor achieves a 19.8%
increase in resource utilization and a 10% improvement in task
acceptance rate compared to LA-H3D. In terms of optimization
extent relative to H3D, FEditor achieves 25.6× and 7.6× higher
optimization on T4-Zynq and T4-Virtex suites respectively.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FEDITOR: CONSECUTIVE TASK PLACEMENT WITH ADJUSTABLE SHAPES USING FPGA STATE FRAMES 11

Fig. 13. Performance of Algorithms on Zynq, Virtex and Cyclone FPGAs.

Furthermore, FEditor reduces relative resource waste by 60%
and 80% compared to LA-H3D on both suites. As for the T4-
Cyclone suite, FEditor achieves an increase of 18.9% and 12.2%
on resource utilization and acceptance rates. Also, resource
waste is reduced by 7.3% compared with LA-H3D.

When contrasted with the P2MC, FEditor exhibits even more
pronounced advantages. FEditor reduces relative resource waste
by 88% and 94.5% relative to P2MC on T4-Zynq and T4-Virtex
suites, while simultaneously achieving 32.5% and 33.2% higher
utilization rates respectively. And FEditor increases overall task
acceptance rate by around 30% on the T4 task set. Moreover,
in Altera’s FPGAs, FEditor achieves 59.8%, 45.4%, and 90%
relative optimization in three aspects for the T4 task set. Notably,
even though P2MC is enhanced by the lazy placement strategy,
its performance remains constrained by the inability to address
straggler tasks in one placed group.

As shown in Fig. 13, the slot-based placement algorithm,
FIFO-slot, causes significant resource waste and task rejection
by forcing all accepted tasks to occupy an entire slot. As small
tasks incur fragmentation and resource waste, large ones cannot
use resources across slots, which increases the task rejection
rate.

C. Metrics Effectiveness

Different ratios of α, β and γ lead to different performance.
To evaluate their effectiveness, we adjust their values and test

Fig. 14. Rate values based on different hyperparameters.

FEditor on T4-Zynq. The results are presented as ternary phase
diagrams in Fig. 14. Each point in this figure represents a
combination, which can be interpreted by drawing parallel lines
to the axes. We shade the area around each point with one rate

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 1, JANUARY 2026

Fig. 15. The relative acceleration rates of different heuristic algorithms.

value defined above. We can identify the optimal combination
from the deepest shaded area in Fig. 14(a) and (b), while the
lightest is optimal in Fig. 14(c).

The figures demonstrate that the optimal combination consis-
tently lies within the interior of the triangles rather than along
their edges. This geometric observation strongly suggests that all
three metrics—internal fragmentation, external fragmentation,
and placement compactness—contribute positively to the overall
performance. The absence of edge dominance indicates a collab-
orative relationship among the metrics, where each contributes
unique value that cannot be fully compensated by the others.
It is important to note that while pure α-maximization (with
β = γ = 0) would theoretically minimize internal fragmenta-
tion, the extreme weight configurations cannot reach the overall
optimum.

Further analysis of parametric optimization under fixed
weights reveals a symmetry in the optimal configuration. When
α is held constant, the optimal solutions cluster around the point
whereβ equalsγ. This symmetry arises from the complementary
nature of external fragmentation control and placement com-
pactness optimization. Metric on external fragmentation remains
in rectangular idle spaces, while placement compactness pre-
vents fragmented hollows within these spaces. When fixing β
or γ, experimental results show that the optimal α:(β/γ) ratio
stabilizes near 3:1 across different task sets. The darkest-shaded
area in the figures corresponds to this combination (0.6,0.2,0.2),
which proves the 3:1:1 regularity.

The aforementioned findings highlight the importance of the
collaborative relationship among the three metrics. Scattered
values in the results arise from limitations in the task sets.

D. Nested Algorithm Acceleration

To evaluate proposed nested heuristic algorithm, we compare
it with Exhaustive Search (ES), Simulated Annealing (SA), and
Particle Swarm Optimization (PSO). For fairness, we develop
their parallel versions for comparison. We measure their relative
time consumption on the Zynq FPGA model, as shown in Fig. 15.
We fine-tune their hyperparameters to achieve results compa-
rable to the nested algorithm. Compared with other heuristic
algorithms, the nested algorithm accelerates the search by up
to 16× and 13× on average, while SA achieves 4× and 2.3×
speedups and PSO obtains 9.5× and 5.5× speedups. This is

Fig. 16. Trends of time efficiency for task sets on Zynq.

because the nested heuristic algorithm splits the search space
and explores multiple sub-spaces in parallel. In contrast, PSO
and SA only accelerate computations. SA maintains a stable
acceleration rate because it traverses all temperature levels in its
annealing schedule.

E. Trends of Time Efficiency

FEditor uses the stacked SF to suggest placement strategies.
As tasks are consecutively placed onto the FPGA, many can-
didate placements overlap with existing ones. When checking
the legality of candidates, a direction to idle spaces in a SF is
returned if the candidate is illegal. FEditor modifies its solutions
by following the given direction. Based on this mechanism,
FEditor can decide whether to accept or reject a task rapidly.
As more tasks keep arriving, its advantage will become even
more obvious.

LA-H3D uses vertex links of multiple idle spaces to explore
the solution space. It generates candidate solutions with min-
imal internal fragmentation for each vertex. After traversing
all vertices, LA-H3D selects the solution with the highest 3D
adjacency score as the final placement. Unlike FEditor, vertex
links management becomes complicated with arrivals of tasks,
as the number of vertices becomes huge.

As shown in Fig. 16, we can clearly observe the time consump-
tion ratio of each task. The x-axis represents the task sequence,
and the two y-axes indicate the proportion of each task’s time
consumption to the overall time. The left one corresponds to
FEditor, and the right one corresponds to LA-H3D. The horizon-
tal dashed line denotes the most concentrated ratios of FEditor
and LA-H3D.

FEditor experiences a cold-start period and then maintains its
highest time efficiency. This is because FEditor gradually fills up
the FPGA, reducing the number of idle regions and minimizing
the valid search space. The concentrated time ratio maintains a
low value, around 8 textpertenthousand.

The curve of LA-H3D presents a mountain-like shape. As
tasks accumulate, the time consumption gradually rises and

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

LI et al.: FEDITOR: CONSECUTIVE TASK PLACEMENT WITH ADJUSTABLE SHAPES USING FPGA STATE FRAMES 13

TABLE IV
REAL TIME CONSUMPTION (MS) ON ZYNQ

TABLE V
REAL TIME CONSUMPTION (MS) ON VIRTEX

TABLE VI
REAL TIME CONSUMPTION (MS) ON CYCLONE

stabilizes. As tasks are drained, the time consumption gradually
decreases. This is because the number of vertex links is smaller
during the filling phase. After repeated placement and release
operations, vertex links become increasingly complex and nu-
merous. Ratios in the stable phase are highest and most dense,
around 20 textpertenthousand. As shown in Fig. 13(b), most
rejections by LA-H3D occur during the stable phase. Therefore,
the arrival rate during the draining phase is lower than the
removal rate, which simplifies the vertex link structure. Task
placement in this phase thus consumes less time.

Since tasks in datacenters arrive consecutively, FEditor can
generate placements for arriving tasks efficiently when FPGAs
are under heavy load, whereas LA-H3D tends to reject them.
This trend makes FEditor suitable for datacenter environments
while renders LA-H3D unsuitable.

The real-time consumption results of FEditor and LA-H3D
are shown in Tables IV, V, and VI. The data in tables are the sum-
mary of decision-making, not including structure maintenance.
FEditor runs faster than LA-H3D by achieving a speedup of up
to 10.26×. From the time complexity analysis, we can get the
complexity of FEditor isO(iter · (log T0 − log T)/ logα · n′2).
Since LA-H3D needs to traverse the vertex links to search for
the optimal region, the complexity is O(mn), while parameters
m and n are length and width of the original board. Due to the
effective parallelization and space splitting, FEditor runs faster
than LA-H3D.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes FEditor to address the placement problem
for consecutive tasks with adjustable shapes on FPGAs with

multiple resource types. SFs are introduced to simplify the re-
source management and transform the 3D problem into finite 2D
sub-problems. Based on this approach, we introduce three com-
plementary metrics. The problem is formally formulated and
proved to be NP-hard by reduction from 3DBP, followed by the
design of a nested heuristic algorithm. Extensive experimental
evaluations demonstrate that FEditor significantly outperforms
the most advanced methods. However, FEditor relies on the
accuracy of the compilation time predictor. We plan to optimize
the predictor and implement FEditor on a real FPGA board in
the future.

REFERENCES

[1] AWS, “Amazon EC2 F2 instances.” Accessed: Oct. 2025. [Online]. Avail-
able: https://aws.amazon.com/ec2/instance-types/f2/

[2] Aliyun, “New generation FPGA instances.” Accessed: Oct. 2025. [On-
line]. Available: https://promotion.aliyun.com/ntms/act/fpgaf3.html

[3] Azure, “FPGA attestation for Azure NP-Series VMs.” 2024. Accessed:
Oct. 2025. [Online]. Available: https://learn.microsoft.com/en-us/azure/
virtual-machines/field-programmable-gate-arrays-attestation

[4] AMD, “AMD virtex UltraScale+ FPGAs.” 2025. Accessed: Oct. 2025.
[Online]. Available: https://www.amd.com/en/products/adaptive-socs-
and-fpgas/fpga/virtex-ultrascale-plus.html

[5] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement
for reconfigurable computing systems,” IEEE Des. Test Comput., vol. 17,
no. 1, pp. 68–83, Jan.–Mar. 2000.

[6] C. Bobda et al., “The future of FPGA acceleration in datacenters and the
cloud,” ACM Trans. Reconfigurable Technol. Syst., vol. 15 no. 3, pp. 1–42,
Feb. 2022.

[7] A. Boutros and V. Betz, “FPGA architecture: Principles and progression,”
IEEE Circuits Syst. Mag., vol. 21, no. 2, pp. 4–29, Second Quarter 2021.

[8] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B*-Trees: A new
representation for non-slicing floorplans,” in Proc. 37th Des. Automat.
Conf., 2000, pp. 458–463.

[9] E. Chung et al., “Serving DNNs in real time at datacenter scale with project
brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, Mar./Apr. 2018.

[10] G. Dai, Y. Chi, Y. Wang, and H. Yang, “FPGP: Graph processing frame-
work on FPGA a case study of breadth-first search,” in Proc. 2016
ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2016, pp. 105–110.

[11] A. Dhar et al., “DML: Dynamic partial reconfiguration with scalable
task scheduling for multi-applications on FPGAs,” IEEE Trans. Comput.,
vol. 71, no. 10, pp. 2577–2591, Oct. 2022.

[12] A. Eiche, D. Chillet, S. Pillement, and O. Sentieys, “Task placement for
dynamic and partial reconfigurable architecture,” in Proc. 2010 Conf. Des.
Architectures Signal Image Process., 2010, pp. 228–234.

[13] S. Fekete, B. Fiethe, S. Friedrichs, H. Michalik, and C. Orlis, “Efficient
reconfiguration of processing modules on FPGAs for space instruments,”
in Proc. 2014 NASA/ESA Conf. Adaptive Hardware Syst., 2014, pp. 15–22.

[14] Z. Guettatfi, P. Kaufmann, and M. Platzner, “Optimal and greedy heuristic
approaches for scheduling and mapping of hardware tasks to reconfig-
urable computing devices,” in Applied Reconfigurable Computing. Ar-
chitectures, Tools, and Applications. Berlin, Germany: Springer, 2020,
pp. 108–117.

[15] X. Iturbe et al., “R3TOS: A novel reliable reconfigurable real-time oper-
ating system for highly adaptive, efficient, and dependable computing on
FPGAs,” IEEE Trans. Comput., vol. 62, no. 8, pp. 1542–1556, Aug. 2013.

[16] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. Int.
Conf. Neural Netw., 1995, pp. 1942–1948.

[17] Q. H. Khuat, D. Chillet, and M. Hübner, “Considering reconfiguration
overhead in scheduling of dependent tasks on 2D reconfigurable FPGA,”
in Proc. 2014 NASA/ESA Conf. Adaptive Hardware Syst., 2014, pp. 1–8.

[18] M. Koester, M. Porrmann, and H. Kalte, “Task placement for hetero-
geneous reconfigurable architectures,” in Proc. 2005 IEEE Int. Conf.
Field-Program. Technol., 2005, pp. 43–50.

[19] D. Korolija, T. Roscoe, and G. Alonso, “Do OS abstractions make sense
on FPGAs?,” in Proc. 14th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2020, pp. 991–1010.

[20] Q. H. Le, E. Casseau, and A. Courtay, “Place reservation technique for
online task placement on a multi-context heterogeneous reconfigurable
architecture,” in Proc. 2014 Int. Conf. Reconfigurable Comput. FPGAs,
2014, pp. 1–6.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/ec2/instance-types/f2/
https://promotion.aliyun.com/ntms/act/fpgaf3.html
https://learn.microsoft.com/en-us/azure/virtual-machines/field-programmable-gate-arrays-attestation
https://learn.microsoft.com/en-us/azure/virtual-machines/field-programmable-gate-arrays-attestation
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/fpga/virtex-ultrascale-plus.html

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 37, NO. 1, JANUARY 2026

[21] K. Li and K. H. Cheng, “Generalized first-fit algorithms in two and three
dimensions,” Int. J. Found. Comput. Sci., vol. 1, no. 02, pp. 131–150, 1990.

[22] K. Li and K. H. Cheng, “On three-dimensional packing,” SIAM J. Comput.,
vol. 19, no. 5, pp. 847–867, 1990.

[23] K. Li and K. H. Cheng, “Static job scheduling in partitionable mesh con-
nected systems,” J. Parallel Distrib. Comput., vol. 10, no. 2, pp. 152–159,
1990.

[24] K. Li and K. H. Cheng, “Job scheduling in a partitionable mesh using a
two-dimensional buddy system partitioning scheme,” IEEE Trans. Parallel
Distrib. Syst., vol. 2, no. 4, pp. 413–422, Oct. 1991.

[25] K. Li and K. H. Cheng, “A two-dimensional buddy system for dynamic
resource allocation in a partitionable mesh connected system,” J. Parallel
Distrib. Comput., vol. 12, no. 1, pp. 79–83, 1991.

[26] K. Li and K. H. Cheng, “Heuristic algorithms for on-line packing in three
dimensions,” J. Algorithms, vol. 13, no. 4, pp. 589–605, 1992.

[27] H. Liao et al, “TurboHE: Accelerating fully homomorphic encryption
using FPGA clusters,” in Proc. 2023 IEEE Int. Parallel Distrib. Process.
Symp., 2023, pp. 788–797.

[28] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,” J.
Chem. Phys., vol. 21, no. 6, pp. 1087–1092, 1953.

[29] X. Peng et al, “Capuchin:Tensor-based GPU memory management for
deep learning,” in Proc. 25th Int. Conf. Architectural Support Program.
Lang. Operating Syst., 2020, pp. 891–905.

[30] J. Tabero, J. Septién, H. Mecha, and D. Mozos, “Task placement heuristic
based on 3D-adjacency and look-ahead in reconfigurable systems,” in
Proc. 2006 Asia South Pacific Des. Automat. Conf., 2006, pp. 396–401.

[31] B. L. Tan, K. M. Mok, J. J. Chang, W. K. Lee, and S. O. Hwang, “RISC32-
LP: Low-power FPGA-based IoT sensor nodes with energy reduction
program analyzer,” IEEE Internet Things J., vol. 9, no. 6, pp. 4214–4228,
Mar. 2022.

[32] H. Walder, C. Steiger, and M. Platzner, “Fast online task placement on
FPGAs: Free space partitioning and 2D-hashing,” in Proc. Int. Parallel
Distrib. Process. Symp., 2003.

[33] G. Wang, S. Liu, J. Nie, F. Wang, and T. Arslan, “An online task placement
algorithm based on maximum empty rectangles in dynamic partial recon-
figurable systems,” in Proc. 2017 NASA/ESA Conf. Adaptive Hardware
Syst., 2017, pp. 180–185.

[34] J. Whangbo et al., “FireAxe: Partitioned FPGA-accelerated simulation
of large-scale RTL designs,” in Proc. ACM/IEEE 51st Annu. Int. Symp.
Comput. Archit., 2024, pp. 501–515.

[35] Y. Xiao, D. Park, Z. J. Niu, A. Hota, and A. Dehon, “ExHiPR: Extended
high-level partial reconfiguration for fast incremental FPGA compilation,”
ACM Trans. Reconfigurable Technol. Syst., vol. 17, no. 2, pp. 1–28, 2024.

[36] R. Yao, Y. Zhao, Y. Yu, Y. Zhao, and X. Zhong, “Fast search and efficient
placement algorithm for reconfigurable tasks on modern heterogeneous
FPGAs,” IEEE Trans. Very Large Scale Integration Syst., vol. 30, no. 4,
pp. 474–487, Apr. 2022.

[37] P. H. Yuh, C. L. Yang, and Y. W. Chang, “Temporal floorplanning using the
T-tree formulation,” in Proc. IEEE/ACM Int. Conf. Comput. Aided Des.,
IEEE, 2004, pp. 300–305.

[38] S. Zeng et al., “DF-GAS: A distributed FPGA-as-a-service architecture to-
wards billion-scale graph-based approximate nearest neighbor search,” in
Proc. 56th Annu. IEEE/ACM Int. Symp. Microarchit., 2023, pp. 283–296.

[39] Y. Zha and J. Li, “Virtualizing FPGAs in the cloud,” in Proc. 25th Int. Conf.
Architectural Support Program. Lang. Operating Syst., 2020, pp. 845–858.

[40] J. Zhang et al., “WIC: Hiding producer-consumer synchronization delays
with warp-level interrupt-based GPU communications,” in Proc. 2025
USENIX Annu. Tech. Conf., 2025, pp. 889–904.

[41] W. Zhang, J. Zhao, G. Shen, Q. Chen, C. Chen, and M. Guo, “An optimizing
framework on MLIR for efficient FPGA-based accelerator generation,”
in Proc. 2024 IEEE Int. Symp. High-Perform. Comput. Archit., 2024,
pp. 75–90.

[42] Z. Zhu, A. X. Liu, F. Zhang, and F. Chen, “FPGA resource pooling in
cloud computing,” IEEE Trans. Cloud Comput., vol. 9, no. 2, pp. 610–626,
Apr.–Jun. 2021.

Yanyan Li received the BS degree in computer science and technology in
2024 from the Beijing University of Posts and Telecommunications, Beijing,
China, where he is currently working toward the PhD degree with the State Key
Laboratory of Networking and Switching Technology. His research interests
include distributed software in datacenters, and computer theory.

Yu Chen received the BS degree in computer science and technology in 2023
from the Beijing University of Posts and Telecommunications, Beijing, China,
where she is currently working toward the master’s degree with the State Key
Laboratory of Networking and Switching Technology. Her research interests
include distributed software in FPGA resource management and scheduling.

Zhiqian Xu received the master’s degree in computer science from Wayne State
University, USA, in 1995, and the PhD degree in information security from
Royal Holloway, University of London, London, U.K., in 2019. She is currently
a research associate with Beijing University of Posts and Telecommunications,
Beijing, China. Her research interests include system security, high performance
computing, and quantum computing.

Yawen Wang received the PhD degree in communication and information
systems from the Beijing University of Posts and Telecommunications (BUPT),
Beijing, China, in 2010. She is currently an associate professor with the State
Key Laboratory of Networking and Switching Technology, BUPT. Her research
interests include high-performance computing, compilation systems, program
analysis, and software testing. She is also a member of the China Computer
Federation.

Hai Jiang (Member, IEEE) received the master’s and PhD degrees in computer
science from Wayne State University, USA, in 1995 and 2003, respectively.
He is currently a professor with the School of Computer Science (National
Pilot Software Engineering School), Beijing University of Posts and Telecom-
munications, Beijing, China. His research interests include high performance
computing, system security, and quantum computing. He is a member of ACM
and IEEE Computer Society.

Keqin Li (Fellow, IEEE) received the BS degree in computer science from
Tsinghua University, Beijing, China, in 1985, and the PhD degree in computer
science from the University of Houston, Houston, TX, USA, in 1990. He is
also a SUNY distinguished professor with the State University of New York,
USA, and a National Distinguished professor with Hunan University, China.
He has authored or coauthored more than 1130 journal articles, book chapters,
and refereed conference papers. He also holds nearly 80 patents announced
or authorized by the Chinese National Intellectual Property Administration.
Since 2020, he has been among the world’s top few most influential scientists
in parallel and distributed computing regarding single-year impact (ranked 2)
and career-long impact (ranked 4) based on a composite indicator of the Scopus
citation database. He was the recipient of the IEEE TCCLD Research Impact
Award from the IEEE CS Technical Committee on Cloud Computing in 2022,
the IEEE TCSVC Research Innovation Award from the IEEE CS Technical
Community on Services Computing in 2023, IEEE Region 1 Technological
Innovation Award (Academic) in 2023, the 2022–2023 International Science
and Technology Cooperation Award, and the 2023 Xiaoxiang Friendship Award
of Hunan Province, China. From 2023 to 2024, he was listed in Scilit Top Cited
Scholars and is also among the top 0.02% out of more than 20 million scholars
worldwide based on top-cited publications. From 2022 to 2024, he was listed in
ScholarGPS Highly Ranked Scholars and is among the top 0.002% out of more
than 30 million scholars worldwide based on a composite score of three ranking
metrics for research productivity, impact, and quality in the recent five years.
He is also a member of the European Academy of Sciences and Arts, Academia
Europaea (Academician of the Academy of Europe), and SUNY Distinguished
Academy. He is also fellow of AAAS, AAIA, ACIS, and AIIA.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on December 05,2025 at 06:38:40 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

